期末考试试卷答案(通用7篇)
期末考试试卷答案 篇1
离散数学试题(B卷答案1)
一、证明题(10分)
1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R)((P∧Q)∧R))∨((Q∨P)∧R)((P∨Q)∧R)∨((Q∨P)∧R)((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2)x(A(x)B(x)) xA(x)xB(x)证明 :x(A(x)B(x))x(A(x)∨B(x))xA(x)∨xB(x)xA(x)∨xB(x)xA(x)xB(x)
二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。
证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R))(P∧(Q∨R))∨(P∧Q∧R)(P∧Q)∨(P∧R))∨(P∧Q∧R)(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R)m0∨m1∨m2∨m7 M3∨M4∨M5∨M6
三、推理证明题(10分)
1)C∨D,(C∨D) E,E(A∧B),(A∧B)(R∨S)R∨S 证明:(1)(C∨D)E(2)E(A∧B)
P P
P(3)(C∨D)(A∧B)T(1)(2),I(4)(A∧B)(R∨S)(5)(C∨D)(R∨S)(6)C∨D
T(3)(4),I P(7)R∨S T(5),I 2)x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x))证明(1)xP(x)P
(2)P(a)T(1),ES(3)x(P(x)Q(y)∧R(x))P(4)P(a)Q(y)∧R(a)T(3),US(5)Q(y)∧R(a)T(2)(4),I(6)Q(y)T(5),I(7)R(a)T(5),I(8)P(a)∧R(a)T(2)(7),I(9)x(P(x)∧R(x))T(8),EG(10)Q(y)∧x(P(x)∧R(x))T(6)(9),I
四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。
解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。
先求|A∩B|。
∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。
于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。
五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。
证明:∵x A-(B∪C) x A∧x(B∪C)
x A∧(xB∧xC)
(x A∧xB)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C)
∴A-(B∪C)=(A-B)∩(A-C)
六、已知R、S是N上的关系,其定义如下:R={
解:R={
七、设R={,,
解:r(R)={,,
12-1
2s(R)={,,
八、证明整数集I上的模m同余关系R={
证明:1)x∈I,因为(x-x)/m=0,所以xx(mod m),即xRx。
2)x,y∈I,若xRy,则xy(mod m),即(x-y)/m=k∈I,所以(y-x)/m=-k∈I,所以yx(mod m),即yRx。
3)x,y,z∈I,若xRy,yRz,则(x-y)/m=u∈I,(y-z)/m=v∈I,于是(x-z)/m=(x-y+y-z)/m=u+v ∈I,因此xRz。
九、若f:A→B和g:B→C是双射,则(gf)=fg(10分)。
1-1-14325证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数(gf):C→A。同理可推fg:C→A是双射。
因为
1-1
-1-1-1-1
-1-1-1
-1离散数学试题(B卷答案2)
一、证明题(10分)
1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T 证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(等幂律)T(代入)2)xy(P(x)Q(y)) (xP(x)yQ(y))证明:xy(P(x)Q(y))xy(P(x)∨Q(y))x(P(x)∨yQ(y))xP(x)∨yQ(y)xP(x)∨yQ(y)(xP(x)yQ(y))
二、求命题公式(PQ)(P∨Q)的主析取范式和主合取范式(10分)
解:(PQ)(P∨Q)(PQ)∨(P∨Q)(P∨Q)∨(P∨Q)(P∧Q)∨(P∨Q)(P∨P∨Q)∧(Q∨P∨Q)(P∨Q)M1 m0∨m2∨m3
三、推理证明题(10分)
1)(P(QS))∧(R∨P)∧QRS 证明:(1)R(2)R∨P(3)P(4)P(QS)(5)QS(6)Q(7)S(8)RS 2)x(A(x)yB(y)),x(B(x)yC(y))xA(x)yC(y)。
证明:(1)x(A(x)yB(y))P(2)A(a)yB(y)T(1),ES(3)x(B(x)yC(y))P(4)x(B(x)C(c))T(3),ES(5)B(b)C(c)T(4),US(6)A(a)B(b)T(2),US(7)A(a)C(c)T(5)(6),I(8)xA(x)C(c)T(7),UG(9)xA(x)yC(y)T(8),EG
四、只要今天天气不好,就一定有考生不能提前进入考场,当且仅当所有考生提前进入考场,考试才能准时进行。所以,如果考试准时进行,那么天气就好(15分)。
解 设P:今天天气好,Q:考试准时进行,A(e):e提前进入考场,个体域:考生 的集合,则命题可符号化为:PxA(x),xA(x)QQP。
(1)PxA(x)P(2)PxA(x)T(1),E(3)xA(x)P T(2),E(4)xA(x)Q P(5)(xA(x)Q)∧(QxA(x))T(4),E(6)QxA(x)T(5),I(7)QP T(6)(3),I
五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C)(10分)
证明:∵x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC)(x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C)
六、A={ x1,x2,x3 },B={ y1,y2},R={
七、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R),并作出它们及R的关系图(15分)。
解:r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>, <3,3>,<4,4>,<5,5>} s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R=R={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>,<5,5>}
八、设R1是A上的等价关系,R2是B上的等价关系,A≠且B≠。关系R满足:<
证明 对任意的
对任意的
5∈R,即R
对任意的∈A×B,若,则>∈R,即,所以R是传递的。
综上可得,R是A×B上的等价关系。
九、设f:AB,g:BC,h:CA,证明:如果hgf=IA,fhg=IB,gfh=IC,则f、g、h均为双射,并求出f、g和h(10分)。
解 因IA恒等函数,由hgf=IA可得f是单射,h是满射;因IB恒等函数,由fhg=IB可得g是单射,f是满射;因IC恒等函数,由gfh=IC可得h是单射,g是满射。从而f、g、h均为双射。
由hgf=IA,得f=hg;由fhg=IB,得g=fh;由gfh=IC,得h=gf。-
1-1
-1-1-1
-1离散数学试题(B卷答案3)
一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?(写过程)1)P(P∨Q∨R)2)((QP)∨P)∧(P∨R)3)((P∨Q)R)((P∧Q)∨R)解:1)重言式;2)矛盾式;3)可满足式
二、(10分)求命题公式(P∨(Q∧R))(P∨Q∨R)的主析取范式,并求成真赋值。
解:(P∨(Q∧R))(P∨Q∨R)(P∨(Q∧R))∨P∨Q∨R P∧(Q∨R)∨P∨Q∨R (P∧Q)∨(P∧R)∨(P∨Q)∨R ((P∨Q)∨(P∨Q))∨(P∧R)∨R 1∨((P∧R)∨R)1 m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7 该式为重言式,全部赋值都是成真赋值。
三、(10分)证明((P∧Q∧A)C)∧(A(P∨Q∨C))(A∧(PQ))C 证明:((P∧Q∧A)C)∧(A(P∨Q∨C))((P∧Q∧A)∨C)∧(A∨(P∨Q∨C))((P∨Q∨A)∨C)∧((A∨P∨Q)∨C)
((P∨Q∨A)∧(A∨P∨Q))∨C ((P∨Q∨A)∧(A∨P∨Q))C ((P∨Q∨A)∨(A∨P∨Q))C ((P∧Q∧A)∨(A∧P∧Q))C (A∧((P∧Q)∨(P∧Q)))C (A∧((P∨Q)∧(P∨Q)))C (A∧((QP)∧(PQ)))C (A∧(PQ))C
四、(10分)个体域为{1,2},求xy(x+y=4)的真值。
解:xy(x+y=4)x((x+1=4)∨(x+2=4))
((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+2=4))(0∨0)∧(0∨1)0∧10
五、(10分)对于任意集合A,B,试证明:P(A)∩P(B)=P(A∩B)解:xP(A)∩P(B),xP(A)且xP(B),有xA且xB,从而xA∩B,xP(A∩B),由于上述过程可逆,故P(A)∩P(B)=P(A∩B)
六、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。
解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>} t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}
七、(10分)设函数f:R×RR×R,R为实数集,f定义为:f(
解:1)
2)
∈R×R,由f(
,通过计算可得x=(p+q)/2;y=(p-q)/2;从而
的原象存在,f是满射。
八、(10分)
证明:1)a,b∈G,ab=a*u*b∈G,运算是封闭的。
2)a,b,c∈G,(ab)c=(a*u*b)*u*c=a*u*(b*u*c)=a(bc),运算是可结合的。
3)a∈G,设E为的单位元,则aE=a*u*E=a,得E=u,存在单位元u。4)a∈G,ax=a*u*x=E,x=u*a*u,则xa=u*a*u*u*a=u=E,每个元素都有逆元。
所以
九、(10分)已知:D=
解:1)D的邻接距阵A和可达距阵P如下:
A= 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1-
1-1
P= 1 1 1 1
十、(10分)求叶的权分别为2、4、6、8、10、12、14的最优二叉树及其权。
解:最优二叉树为
权=(2+4)×4+6×3+12×2+(8+10)×3+14×2=148
离散数学试题(B卷答案4)
一、证明题(10分)
1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T
证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(等幂律)T(代入)2)x(P(x)Q(x))∧xP(x)x(P(x)∧Q(x))证明:x(P(x)Q(x))∧xP(x)x((P(x)Q(x)∧P(x))x((P(x)∨Q(x)∧P(x))x(P(x)∧Q(x))xP(x)∧xQ(x)x(P(x)∧Q(x))
二、求命题公式(PQ)(P∨Q)的主析取范式和主合取范式(10分)
解:(PQ)(P∨Q)(PQ)∨(P∨Q)(P∨Q)∨(P∨Q)(P∧Q)∨(P∨Q)(P∨P∨Q)∧(Q∨P∨Q)(P∨Q)M1m0∨m2∨m3
三、推理证明题(10分)
1)(P(QS))∧(R∨P)∧QRS 证明:(1)R 附加前提(2)R∨P P(3)P T(1)(2),I(4)P(QS)P(5)QS T(3)(4),I(6)Q P(7)S T(5)(6),I(8)RS CP 2)x(P(x)∨Q(x)),xP(x)x Q(x)证明:(1)xP(x)P(2)P(c)T(1),US(3)x(P(x)∨Q(x))P(4)P(c)∨Q(c)T(3),US(5)Q(c)T(2)(4),I(6)x Q(x)T(5),EG
四、例5在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过1/8(10分)。
证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。
五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C)(10分)
证明:∵x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC)(x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C)
六、={A1,A2,„,An}是集合A的一个划分,定义R={|a、b∈Ai,I=1,2,„,n},则R是A上的等价关系(15分)。
证明:a∈A必有i使得a∈Ai,由定义知aRa,故R自反。a,b∈A,若aRb,则a,b∈Ai,即b,a∈Ai,所以bRa,故R对称。
a,b,c∈A,若aRb 且bRc,则a,b∈Ai及b,c∈Aj。因为i≠j时Ai∩Aj=,故i=j,即a,b,c∈Ai,所以aRc,故R传递。
总之R是A上的等价关系。
七、若f:A→B是双射,则f:B→A是双射(15分)。
证明:对任意的x∈A,因为f是从A到B的函数,故存在y∈B,使
对任意的x∈A,若存在y1,y2∈B,使得
因此f是双射。
八、设
证明 假设A≠G且B≠G,则存在aA,aB,且存在bB,bA(否则对任意的aA,aB,从而AB,即A∪B=B,得B=G,矛盾。)
对于元素a*bG,若a*bA,因A是子群,aA,从而a *(a*b)=b A,所以矛盾,故a*bA。同理可证a*bB,综合有a*bA∪B=G。综上所述,假设不成立,得证A=G或B=G。
九、若无向图G是不连通的,证明G的补图G是连通的(10分)。
证明 设无向图G是不连通的,其k个连通分支为G1、G2、„、Gk。任取结点u、v∈G,若u和v不在图G的同一个连通分支中,则[u,v]不是图G的边,因而[u,v]
1-1-1
-1-1-1-1是图G的边;若u和v在图G的同一个连通分支中,不妨设其在连通分支Gi(1≤i≤k)中,在不同于Gi的另一连通分支上取一结点w,则[u,w]和[w,v]都不是图G的边,因而[u,w]和[w,v]都是G的边。综上可知,不管那种情况,u和v都是可达的。由u和v的任意性可知,G是连通的。
离散数学试题(B卷答案5)
一、(10分)求命题公式(P∧Q)(PR)的主合取范式。
解:(P∧Q)(PR)((P∧Q)(PR))∧((PR)(P∧Q))((P∧Q)∨(P∧R))∧((P∨R)∨(P∨Q))(P∧Q)∨(P∧R)(P∨R)∧(Q∨P)∧(Q∨R)
(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)M1∧M3∧M4∧M5
二、(8分)叙述并证明苏格拉底三段论
解:所有人都是要死的,苏格拉底是人,所以苏格拉底是要死的。符号化:F(x):x是一个人。G(x):x要死的。A:苏格拉底。命题符号化为x(F(x)G(x)),F(a)G(a)证明:
(1)x(F(x)G(x))P(2)F(a)G(a)T(1),US(3)F(a)P(4)G(a)T(2)(3),I
三、(8分)已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C)证明:∵x A∩(B∪C) x A∧x(B∪C)
x A∧(xB∨xC)
(x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)
∴A∩(B∪C)=(A∩B)∪(A∩C)
四、(10分)已知R和S是非空集合A上的等价关系,试证:1)R∩S是A上的等价关系;2)对a∈A,[a]R∩S=[a]R∩[a]S。
解:x∈A,因为R和S是自反关系,所以
x、y∈A,若
x、y、z∈A,若
总之R∩S是等价关系。
2)因为x∈[a]R∩S
五、(10分)设A={a,b,c,d},R是A上的二元关系,且R={,,,
解 r(R)=R∪IA={,,,
t(R)=R={,,,
4232-1d>,}
六、(15分)设A、B、C、D是集合,f是A到B的双射,g是C到D的双射,令h:A×CB×D且∈A×C,h()=
证明:1)先证h是满射。
∈B×D,则b∈B,d∈D,因为f是A到B的双射,g是C到D的双射,所以存在a∈A,c∈C,使得f(a)=b,f(c)=d,亦即存在∈A×C,使得h()=
2)再证h是单射。
、∈A×C,若h()=h(),则
到D的双射,所以a1=a2,c1=c2,所以=,所以h是单射。
综合1)和2),h是双射。
七、(12分)设
证明: a,b∈H有b∈H,所以a*b∈H。a∈H,则e=a*a∈H a=e*a∈H ∵a,b∈H及b∈H,∴a*b=a*(b)∈H ∵HG且H≠,∴*在H上满足结合律 ∴
八、(10分)设G=
解:设G的每个结点的度数都大于等于6,则2|E|=d(v)≥6|V|,即|E|≥3|V|,与简单无向平面图的|E|≤3|V|-6矛盾,所以G至少有一个结点的度数小于等于5。九.G=,A={a,b,c},*的运算表为:(写过程,7分)-
1-1
-1-1-1-1-1
-1-1(1)G是否为阿贝尔群?
(2)找出G的单位元;(3)找出G的幂等元(4)求b的逆元和c的逆元 解:(1)(a*c)*(a*c)=c*c=b=a*b=(a*a)*(c*c)(a*b)*(a*b)=b*b=c=a*c=(a*a)*(b*b)(b*c)*(b*c)=a*a=a=c*b=(b*b)*(c*c)所以G是阿贝尔群
(2)因为a*a=a a*b=b*a=b a*c=c*a=c 所以G的单位元是a(3)因为a*a=a 所以G的幂等元是a(4)因为b*c=c*b=a,所以b的逆元是c且c的逆元是b
十、(10分)求叶的权分别为2、4、6、8、10、12、14的最优二叉树及其权。
解:最优二叉树为
权=148 离散数学试题(B卷答案6)
一、(20分)用公式法判断下列公式的类型:(1)(P∨Q)(PQ)(2)(PQ)(P∧(Q∨R))解:(1)因为(P∨Q)(PQ)(P∨Q)∨(P∧Q)∨(P∧Q)
(P∧Q)∨(P∧Q)∨(P∧Q)m1∨m2∨m3 M0
所以,公式(P∨Q)(PQ)为可满足式。
(2)因为(PQ)(P∧(Q∨R))((P∨Q))∨(P∧Q∧R))
(P∨Q)∨(P∧Q∧R))
(P∨Q∨P)∧(P∨Q∨Q)∧(P∨Q∨R)(P∨Q)∧(P∨Q∨R)
(P∨Q∨(R∧R))∧(P∨Q∨R)(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)M0∧M1
m2∨m3∨m4∨m5∨m6∨m7
所以,公式(PQ)(P∧(Q∨R))为可满足式。
二、(15分)在谓词逻辑中构造下面推理的证明:每个科学家都是勤奋的,每个勤奋
又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人或事业半途而废的人。
解:论域:所有人的集合。Q(x):x是勤奋的;H(x):x是身体健康的;S(x):x是科学家;C(x):x是事业获得成功的人;F(x):x是事业半途而废的人;则推理化形式为:
x(S(x)H(x))Q(x)),x(Q(x)∧H(x)C(x)),x(S(x)∧x(C(x)∨F(x))下面给出证明:
(1)x(S(x)∧H(x))
P(2)S(a)∧H(a)
T(1),ES(3)x(S(x)Q(x))
P(4)S(a)Q(a)
T(1),US(5)S(a)
T(2),I(6)Q(a)
T(4)(5),I(7)H(a)
T(2),I(8)Q(a)∧H(a)
T(6)(7),I(9)x(Q(x)∧H(x)C(x))
P(10)Q(a)∧H(a)C(a)
T(9),Us(11)C(a)
T(8)(10),I(12)xC(x)
T(11),EG(13)x(C(x)∨F(x))
T(12),I
三、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。解
P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}}
四、(15分)设R和S是集合A上的任意关系,判断下列命题是否成立?(1)若R和S是自反的,则R*S也是自反的。(2)若R和S是反自反的,则R*S也是反自反的。(3)若R和S是对称的,则R*S也是对称的。
(4)若R和S是传递的,则R*S也是传递的。(5)若R和S是自反的,则R∩S是自反的。(6)若R和S是传递的,则R∪S是传递的。
解
(1)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R*S,故R*S也是自反的。
(2)不成立。例如,令A={1,2},R={<1,2>},S={<2,1>},则R和S是反自反的,但R*S={<1,1>}不是反自反的。
(3)不成立。例如,令A={1,2,3},R={<1,2>,<2,1>,<3,3>},S={<2,3>,<3,2>},则R和S是对称的,但R*S={<1,3>,<3,2>}不是对称的。
(4)不成立。例如,令A={1,2,3},R={<1,2>,<2,3>,<1,3>},S={<2,3>,<3,1>,<2,1>},则R和S是传递的,但R*S={<1,3>,<1,1>,<2,1>}不是传递的。
(5)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R∩S,所以R∩S是自反的。
五、(15分)令X={x1,x2,„,xm},Y={y1,y2,„,yn}。问(1)有多少个不同的由X到Y的函数?
(2)当n、m满足什么条件时,存在单射,且有多少个不同的单射?(3)当n、m满足什么条件时,存在双射,且有多少个不同的双射?
解
(1)由于对X中每个元素可以取Y中任一元素与其对应,每个元素有n种取法,所以不同的函数共nm个。
(2)显然当|m|≤|n|时,存在单射。由于在Y中任选m个元素的任一全排列都形成X到
mY的不同的单射,故不同的单射有Cnm!=n(n-1)(n―m―1)个。
(3)显然当|m|=|n|时,才存在双射。此时Y中元素的任一不同的全排列都形成X到Y的不同的双射,故不同的双射有m!个。
六、(5分)集合X上有m个元素,集合Y上有n个元素,问X到Y的二元关系总共有多少个?
解
X到Y的不同的二元关系对应X×Y的不同的子集,而X×Y的不同的子集共有个2mn,所以X到Y的二元关系总共有2mn个。
七、(10分)若
b。
证明 设e是群
-
-
-所以,x=a1*b是a*x=b的解。-若x∈G也是a*x=b的解,则x=e*x=(a1*a)*x=a1*(a*x)=a1*b=x。所以,x
-
-
-=a1*b是a*x=b的惟一解。-
八、(10分)给定连通简单平面图G=
证明
由偶拉公式得|V|-|E|+|F|=2,所以|F|=2-|V|+|E|=8,于是d(f)=2|E|=
fF24。若存在f∈F,使得d(f)>3,则3|F|<2|E|=24,于是|F|<8,与|F|=8矛盾。故对任意f∈F,d(f)=3。
离散数学试题(B卷答案7)
一、(15分)设计一盏电灯的开关电路,要求受3个开关A、B、C的控制:当且仅当A和C同时关闭或B和C同时关闭时灯亮。设F表示灯亮。
(1)写出F在全功能联结词组{}中的命题公式。(2)写出F的主析取范式与主合取范式。
解
(1)设A:开关A关闭;B:开关B关闭;C:开关C关闭;F=(A∧C)∨(B∧C)。在全功能联结词组{}中:
A(A∧A)AA A∧C(A∧C)(AC)(AC)(AC)
A∨B(A∧B)((AA)∧(BB))(AA)(BB)所以
F((AC)(AC))∨((BC)(BC))(((AC)(AC))((AC)(AC)))(((BC)(BC))((BC)(BC)))(2)F(A∧C)∨(B∧C)
(A∧(B∨B)∧C)∨((A∨A)∧B∧C)(A∧B∧C)∨(A∧B∧C)∨(A∧B∧C)∨(A∧B∧C)m3∨m5∨m7
主析取范式 M0∧M1∧M2∧M4∧M6
主合取范式
二、(10分)判断下列公式是否是永真式?(1)(xA(x)xB(x))x(A(x)B(x))。(2)(xA(x)xB(x))x(A(x)B(x)))。解
(1)(xA(x)xB(x))x(A(x)B(x))(xA(x)∨xB(x))x(A(x)B(x))(xA(x)∨xB(x))∨x(A(x)∨B(x))(xA(x)∧xB(x))∨xA(x)∨xB(x)(xA(x)∨xA(x)∨xB(x))∧(xB(x)∨xA(x)∨xB(x))x(A(x)∨A(x))∨xB(x)T
所以,(xA(x)xB(x))x(A(x)B(x))为永真式。
(2)设论域为{1,2},令A(1)=T;A(2)=F;B(1)=F;B(2)=T。
则xA(x)为假,xB(x)也为假,从而xA(x)xB(x)为真;而由于A(1)B(1)为假,所以x(A(x)B(x))也为假,因此公式(xA(x)xB(x))x(A(x)B(x))为假。该公式不是永真式。
三、(15分)设X为集合,A=P(X)-{}-{X}且A≠,若|X|=n,问(1)偏序集是否有最大元?(2)偏序集是否有最小元?
(3)偏序集中极大元和极小元的一般形式是什么?并说明理由。解
偏序集不存在最大元和最小元,因为n>2。
考察P(X)的哈斯图,最底层的顶点是空集,记作第0层,由底向上,第一层是单元集,第二层是二元集,…,由|X|=n,则第n-1层是X的n-1元子集,第n层是X。偏序集与偏序集
相比,恰好缺少第0层和第n层。因此的极小元就是X的所有单元集,即{x},x∈X;而极大元恰好是比X少一个元素,即X-{x},x∈X。
四、(10分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。
解
r(R)=R∪IA={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,-
<4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=Ri={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,i11>,<5,4>,<5,5>}。
五、(10分)设函数g:A→B,f:B→C,(1)若fg是满射,则f是满射。(2)若fg是单射,则g是单射。
证明
因为g:A→B,f:B→C,由定理5.5知,fg为A到C的函数。
(1)对任意的z∈C,因fg是满射,则存在x∈A使fg(x)=z,即f(g(x))=z。由g:A→B可知g(x)∈B,于是有y=g(x)∈B,使得f(y)=z。因此,f是满射。
(2)对任意的x1、x2∈A,若x1≠x2,则由fg是单射得fg(x1)≠fg(x2),于是f(g(x1))≠f(g(x2)),必有g(x1)≠g(x2)。所以,g是单射。
六、(10分)有幺元且满足消去律的有限半群一定是群。
证明
设
考虑a,a2,„,ak,„。因为G只有有限个元素,所以存在k>l,使得ak=al。令m=k-l,有al*e=al*am,其中e是幺元。由消去率得am=e。
于是,当m=1时,a=e,而e是可逆的;当m>1时,a*am-1=am-1*a=e。从而a是可逆的,其逆元是am-1。总之,a是可逆的。
七、(20分)有向图G如图所示,试求:(1)求G的邻接矩阵A。
(2)求出A2、A3和A4,v1到v4长度为1、2、3和4的路有多少?
(3)求出ATA和AAT,说明ATA和AAT中的第(2,2)元素和第(2,3)元素的意义。(4)求出可达矩阵P。(5)求出强分图。
解
(1)求G的邻接矩阵为:
00A00101011
101100(2)由于
002A001110220130A0211102011120322044A
031201012313 2322所以v1到v4长度为1、2、3和4的路的个数分别为1、1、2、3。(3)由于
00ATA000002131212TAA
21011102132110 2121再由定理10.19可知,所以ATA的第(2,2)元素为3,表明那些边以v2为终结点且具有不同始结点的数目为3,其第(2,3)元素为0,表明那些边既以v2为终结点又以v3为终结点,并且具有相同始结点的数目为0。AAT中的第(2,2)元素为2,表明那些边以v2为始结点且具有不同终结点的数目为2,其第(2,3)元素为1,表明那些边既以v2为始结点又以v3为始结点,并且具有相同终结点的数目为1。
(4)00B4AA2A3A40000所以求可达矩阵为P0000(5)因为PPT0010100110+10101000111111。
11111111101111∧1111111100001110=01110111000111,所以{v1},{v2,v3,v4}
111111因
1110
2010
+
1110
0110
2120312204+
2120320101231323220
000
为
741
747,747
434构成G的强分图。
离散数学试题(B卷答案8)
一、(10分)证明(P∨Q)∧(PR)∧(QS)S∨R
证明
因为S∨RRS,所以,即要证(P∨Q)∧(PR)∧(QS)RS。(1)R
附加前提(2)PR
P(3)P
T(1)(2),I(4)P∨Q
P(5)Q
T(3)(4),I(6)QS
P(7)S
T(5)(6),I(8)RS
CP(9)S∨R
T(8),E
二、(15分)根据推理理论证明:每个考生或者勤奋或者聪明,所有勤奋的人都将有所作为,但并非所有考生都将有所作为,所以,一定有些考生是聪明的。
设P(e):e是考生,Q(e):e将有所作为,A(e):e是勤奋的,B(e):e是聪明的,个体域:人的集合,则命题可符号化为:x(P(x)(A(x)∨B(x))),x(A(x)Q(x)),x(P(x)Q(x))x(P(x)∧B(x))。
(1)x(P(x)Q(x))
P(2)x(P(x)∨Q(x))
T(1),E(3)x(P(x)∧Q(x))
T(2),E(4)P(a)∧Q(a)
T(3),ES(5)P(a)
T(4),I(6)Q(a)
T(4),I(7)x(P(x)(A(x)∨B(x))
P(8)P(a)(A(a)∨B(a))
T(7),US(9)A(a)∨B(a)
T(8)(5),I(10)x(A(x)Q(x))
P
(11)A(a)Q(a)
T(10),US(12)A(a)
T(11)(6),I
(13)B(a)
T(12)(9),I(14)P(a)∧B(a)
T(5)(13),I(15)x(P(x)∧B(x))
T(14),EG
三、(10分)某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数。
解
设A、B、C分别表示会打排球、网球和篮球的学生集合。则:
|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2,|(A∪C)∩B|=6。因为|(A∪C)∩B|=(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2=6,所以|(A∩B)|=3。于是|A∪B∪C|=12+6+14-6-5-3+2=20,|ABC|=25-20=5。故,不会打这三种球的共5人。
四、(10分)设A1、A2和A3是全集U的子集,则形如Ai(Ai为Ai或Ai)的集合称
i13为由A1、A2和A3产生的小项。试证由A1、A2和A3所产生的所有非空小项的集合构成全集U的一个划分。
证明
小项共8个,设有r个非空小项s1、s2、…、sr(r≤8)。
对任意的a∈U,则a∈Ai或a∈Ai,两者必有一个成立,取Ai为包含元素a的Ai或Ai,则a∈Ai,即有a∈si,于是Usi。又显然有siU,所以U=si。
i1i1i1i1i13rrrr任取两个非空小项sp和sq,若sp≠sq,则必存在某个Ai和Ai分别出现在sp和sq中,于是sp∩sq=。
综上可知,{s1,s2,…,sr}是U的一个划分。
五、(15分)设R是A上的二元关系,则:R是传递的R*RR。
证明
(5)若R是传递的,则
反之,若R*RR,则对任意的x、y、z∈A,如果xRz且zRy,则
六、(15分)若G为连通平面图,则n-m+r=2,其中,n、m、r分别为G的结点数、边数和面数。
证明
对G的边数m作归纳法。
当m=0时,由于G是连通图,所以G为平凡图,此时n=1,r=1,结论自然成立。假设对边数小于m的连通平面图结论成立。下面考虑连通平面图G的边数为m的情况。
设e是G的一条边,从G中删去e后得到的图记为G,并设其结点数、边数和面数分别为n、m和r。对e分为下列情况来讨论:
若e为割边,则G有两个连通分支G1和G2。Gi的结点数、边数和面数分别为ni、mi和ri。显然n1+n2=n=n,m1+m2=m=m-1,r1+r2=r+1=r+1。由归纳假设有n1-m1+r1=2,n2-m2+r2=2,从而(n1+n2)-(m1+m2)+(r1+r2)=4,n-(m-1)+(r+1)=4,即n-m+r=2。
若e不为割边,则n=n,m=m-1,r=r-1,由归纳假设有n-m+r=2,从而n-(m-1)+r-1=2,即n-m+r=2。
由数学归纳法知,结论成立。
七、(10分)设函数g:A→B,f:B→C,则:(1)fg是A到C的函数;
(2)对任意的x∈A,有fg(x)=f(g(x))。
证明
(1)对任意的x∈A,因为g:A→B是函数,则存在y∈B使
对任意的x∈A,若存在y1、y2∈C,使得
综上可知,fg是A到C的函数。
(2)对任意的x∈A,由g:A→B是函数,有
八、(15分)设
证明
对于任意a∈G,必有a1∈G使得a1*a=e∈H,所以∈R。
-
-
若∈R,则a1*b∈H。因为H是G的子群,故(a1*b)1=b1*a∈H。所以
-
-
-a>∈R。
若∈R,∈R,则a1*b∈H,b1*c∈H。因为H是G的子群,所以(a
-
-
-1*b)*(b1*c)=a1*c∈H,故∈R。--综上可得,R是G中的一个等价关系。
对于任意的b∈[a]R,有∈R,a1*b∈H,则存在h∈H使得a1*b=h,b=a*h,-
-于是b∈aH,[a]RaH。对任意的b∈aH,存在h∈H使得b=a*h,a1*b=h∈H,∈R,故aH[a]R。所以,[a]R=aH。
离散数学试题(B卷答案9)
一、(10分)证明(P∧Q∧AC)∧(AP∨Q∨C)(A∧(PQ))C。证明:(P∧Q∧AC)∧(AP∨Q∨C)(P∨Q∨A∨C)∧(A∨P∨Q∨C)
(P∨Q∨A∨C)∧(A∨P∨Q∨C)((P∨Q∨A)∧(A∨P∨Q))∨C ((P∧Q∧A)∨(A∧P∧Q))∨C (A∧((P∧Q)∨(P∧Q)))∨C (A∧(PQ))∨C (A∧(PQ))C。
二、(10分)举例说明下面推理不正确:xy(P(x)Q(y)),yz(R(y)Q(z))xz(P(x)R(z))。
解:设论域为{1,2},令P(1)=P(2)=T;Q(1)=Q(2)=T;R(1)=R(2)=F。则: xy(P(x)Q(y))x((P(x)Q(1))∨(P(x)Q(2)))
((P(1)Q(1))∨(P(1)Q(2)))∧((P(2)Q(1))∨(P(2)Q(2)))((TT)∨(TT))∧((TT)∨(TT))T yz(R(y)Q(z))y((R(y)Q(1))∨(R(y)Q(2)))
((R(1)Q(1))∨(R(1)Q(2)))∧((R(2)Q(1))∨(R(2)Q(2)))
((FT)∨(FT))∧((FT)∨(FT))
T
但
xz(P(x)R(z))x((P(x)R(1))∧(P(x)R(2)))((P(1)R(1))∧(P(1)R(2)))∨((P(2)R(1))∧(P(2)R(2)))((TF)∧(TF))∨((TF)∧(TF))F 所以,xy(P(x)Q(y)),yz(R(y)Q(z))xz(P(x)R(z))不正确。
三、(15分)在谓词逻辑中构造下面推理的证明:所有牛都有角,有些动物是牛,所以,有些动物有角。
解:令P(x):x是牛;Q(x):x有角;R(x):x是动物;则推理化形式为:
x(P(x)Q(x)),x(P(x)∧R(x))x(Q(x)∧R(x))下面给出证明:
(1)x(P(x)∧R(x))
P(2)P(a)∧R(a)
T(1),ES(3)x(P(x)Q(x))
P(4)P(a)Q(a)
T(3),US(5)P(a)
T(2),I(6)Q(a)
T(4)(5),I(7)R(a)
T(2),I(8)Q(a)∧R(a)
T(6)(7),I(9)x(Q(x)∧R(x))
T(8),EG
四、(10分)证明(A∩B)×(C∩D)=(A×C)∩(B×D)。
证明:因为
五、(15分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。
解
r(R)=R∪IA={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,-
<4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=Ri={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,i11>,<5,4>,<5,5>}。
六、(10分)若函数f:A→B是双射,则对任意x∈A,有f1(f(x))=x。
-证明
对任意的x∈A,因为f:A→B是函数,则
-由f-1是B到A的函数,于是可写为f1(f(x))=x。
-
七、(10分)若G为有限群,则|G|=|H|·[G:H]。
证明
设[G:H]=k,a1、a2、…、ak分别为H的k个左陪集的代表元,由定理8.38得
G[ai]RaiH
i1i1kk又因为对H中任意不同的元素x、y∈H及a∈G,必有a*x≠a*y,所以|a1H|=…=|akH|=|H|。因此
|G||aiH|i1k|aH|k|H|=|H|·[G:H]。
ii1k
八、(20分)(1)画出3阶2条边的所有非同构有向简单图。
解:由握手定理可知,所画的有向简单图各结点度数之和为4,且最大出度和最大入度均小于或等于2。度数列与入度列、出度列为: 1、2、1:入度列为0、1、1或0、2、0或1、0、1;出度列为1、1、0或1、0、1或0、2、0 2、2、0:入度列为1、1、0;出度列为1、1、0 四个所求有向简单图如图所示。
(2)设G是n(n≥4)阶极大平面图,则G的最小度≥3。
证明
设v是极大平面图G的任一结点,则v在平面图G-{v}的某个面f内。由于G-{v}是一个平面简单图且其结点数大于等于3,所以d(f)≥3。由G的极大平面性,v与f上的结点之间都有边,因此d(v)≥3。由v的任意性可得,G的最小度≥3。
离散数学试题(B卷答案10)
一、(10分)使用将命题公式化为主范式的方法,证明(PQ)(P∧Q)(QP)∧(P∨Q)。
证明:因为(PQ)(P∧Q)(P∨Q)∨(P∧Q)
(P∧Q)∨(P∧Q)(QP)∧(P∨Q)(Q∨P)∧(P∨Q)(P∧Q)∨(Q∧Q)∨(P∧P)∨(P∧Q)(P∧Q)∨P
(P∧Q)∨(P∧(Q∨Q))(P∧Q)∨(P∧Q)∨(P∧Q)(P∧Q)∨(P∧Q)所以,(PQ)(P∧Q)(QP)∧(P∨Q)。
二、(10分)证明下述推理: 如果A努力工作,那么B或C感到愉快;如果B愉快,那么A不努力工作;如果D愉快那么C不愉快。所以,如果A努力工作,则D不愉快。
解 设A:A努力工作;B、C、D分别表示B、C、D愉快;则推理化形式为: AB∨C,BA,DCAD
(1)A 附加前提(2)AB∨C P(3)B∨C T(1)(2),I(4)BA P(5)AB
T(4),E(6)B T(1)(5),I(7)C T(3)(6),I
(8)DC P(9)D T(7)(8),I(10)AD CP
三、(10分)证明xy(P(x)Q(y))(xP(x)yQ(y))。xy(P(x)Q(y))xy(P(x)∨Q(y))x(P(x)∨yQ(y))xP(x)∨yQ(y)xP(x)∨yQ(y)(xP(x)yQ(y))
四、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。解 P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}}
五、(15分)设X={1,2,3,4},R是X上的二元关系,R={<1,1>,<3,1>,<1,3>,<3,3>,<3,2>,<4,3>,<4,1>,<4,2>,<1,2>}(1)画出R的关系图。(2)写出R的关系矩阵。
(3)说明R是否是自反、反自反、对称、传递的。解(1)R的关系图如图所示:(2)R的关系矩阵为:
10M(R)111011101100 00(3)对于R的关系矩阵,由于对角线上不全为1,R不是自反的;由于对角线上存在非0元,R不是反自反的;由于矩阵不对称,R不是对称的;
经过计算可得
10M(R2)111011101100M(R),所以R是传递的。00
六、(15分)设函数f:R×RR×R,f定义为:f(
(4)求复合函数ff和ff。
证明(1)对任意的x,y,x1,y1∈R,若f(
(2)对任意的∈R×R,令x=-1-
1uwuwuwuw,y=,则f(
-1
(
xyxy,2xy(xy)>=
七、(15分)给定群
证明 对G中任意元a和b。
因为a*b=(a*b),所以a*a*b*b=a*(a*b)*b,即得a*b=(b*a)。同33
333
2255
13
111理,由a*b=(a*b)可得,a*b=(b*a)。由a*b=(a*b)可得,a*b=(b*a)。
于是(a*b)*(b*a)=(b*a)=a*b,即b*a=a*b。同理可得,(a*b)*(b*a)=(b*a)=a*b,即b*a=a*b。
3333334
344433555444
由于(a*b)*b=a*b=b*a=b*(b*a)=b*(a*b)=(b*a)*b,故a*b=b*a。
八、(15分)(1)证明在n个结点的连通图G中,至少有n-1条边。
证明 不妨设G是无向连通图(若G为有向图,可略去边的方向讨论对应的无向图)。设G中结点为v1、v2、„、vn。由连通性,必存在与v1相邻的结点,不妨设它为v2(否则可重新编号),连接v1和v2,得边e1,还是由连通性,在v3、v4、„、vn中必存在与v1或v2相邻的结点,不妨设为v3,将其连接得边e2,续行此法,vn必与v1、v2、„、vn1中的某个结点相邻,得新边en1,由此可见G中至少有n-1条边。
(2)试给出|V|=n,|E|=(n-1)(n-2)的简单无向图G=
解 下图满足条件但不连通。
12344333
期末考试试卷答案 篇2
1 材料与方法
以西安交通大学医学院2008级临床医学和法医学专业五年制本科生的系统解剖学期末考试试卷为材料。本次试卷共164份, 首先统计题型分布并进行试题的主客观性比较;其次将全部试卷按分数段计数, 绘制条图并制定出考试成绩频数表, 用SPSS13.0 统计软件进行正态性分布检验;再对全卷及各大题的难度和区分度进行计算比较;最后在高分组和低分组分别随机抽出30份试卷, 具体算出各小题的正确率或平均分数, 用每一小题的难度和区分度对试题进行优秀、良好、一般和差的评判。
2 结果
2.1 成绩总体情况
试卷满分为100分, 平均为72.22分, 标准差为18.47。最高分96分, 最低分3分, 全距高达93分, 变异系数为0.26 。不及格 (60分以下) 41人, 不及格率为25%。
试卷题型总体分布见表1, 试题的主客观性比较见表2, 其中单选题、双选题、填空题和填图题属于客观试题, 简答题和论述题属于主观试题。各分数段频数分布见表3和图1。用SPSS13.0 统计软件包对考试成绩进行正态性检验, P<0.01, 表明学生成绩呈正态分布。
2.2 试卷分析
主要考察试题的难度和区分度, 以此作为评价试题质量的主要指标
试题的难度与区分度。难度 (P) 指全部应试者中答对该题的人数, 也可也说是正确答案的比例或百分比。P值大小与试题的难易程度呈反相关, 即P值越大, 试题难度越小, 表明试题越简单;P值越小, 试题越难。试题的区分度 (D) 是指试题对被试者学习情况分辨能力的大小, 也是某道试题与本次考试整体之间的相关系数。区分度大的试题可以将不同层次的学生良好的区分开来, 而区分度过低则使成绩分布趋同, 无法达到检验学生学习情况的目的。本次考试全试卷及各大题的难度系数与区分度见表4。本试题的总体难度P=X/Xmax, X和Xmax分别为平均分和满分。各题型的难度计算用下面的方法:首先将成绩由高到低排序, 取27%的高分组试卷和27%的低分组试卷, 即各取44份, 按照D= (XH-XL) /Xmax公式进行计算, 其中XH和XL分别为高分组和低分组平均得分, Xmax为该题满分。
试题优良的评判。在高分组和低分组中分别随机抽出30份试卷, 用率法计算客观试题的难度, 用平均数法计算主观试题的难度, 得到每一小题的难度和区分度。根据难度适中区分度较大为优良试题的总思路, 对试题进行优良评判, 见表5和表6。
3 讨论
3.1 试卷的题型分布
从表1, 表2可见试卷的题型分布比较合理:在数量上, 覆盖面较宽的客观试题 (单选题、双选题、填空题和填图题) 占到86%, 对了解学生对大纲要求内容的掌握情况起到了良好的作用;主观题虽然量少, 单分值也占到了50%, 而且简答题、论述题分值分配合理, 减少了考试中偶然性对成绩的影响。
3.2 成绩分析
从图1和表3可以看出, 成绩主要集中在70~至90~分数段, 占频率的0.621;其次是50~至60~分数段, 占0.250, 而50分以下的仅占0.121。这样的成绩总体上代表了学生的实际学习状况。
3.3 试卷分析
本试卷总难度系数P为0.72, 区分度为0.43, 从总体上看较为合理。从表4可以看出, 难度较大的是填空、填图和叙述题, P值均小于0.7;双选题P>0.8, 较易, 其余题型P值在0.7-0.8之间, 难度适中。区分度由大到小依次是填图题>填空题>叙述题>单选题>双选题>简答题。从区分度的角度看, D>0.4的优良题占到75%, D<0.2的差题仅占5%。综合难度系数与区分度来看, 难度适中而区分度又好的试题在50%以上, 因而是一份既有一定难度又有较好区分度的试题。
以上根据考试结果计算出的试题难度称为实测难度, 此外试题还可以有个预计难度。即出考题时由教育专家或具有丰富教学经验的教师对试题通过率进行估计所得的数值。为了保证试题有一定的难度同时具有良好的区分度, 我系通常由系上有资历的教授对试题把关, 以免出现试题过难或过易, 达不到考试的目的。
3.4 学生成绩呈正态分布的意义
本试卷由课程主讲教师根据教学大纲的要求命题, 试题量适当、题型较丰富, 教学内容覆盖率达98%以上, 反映了本课程的主要内容与要求。学生成绩成正态分布, 首先说明考试题目难度适中, 70-89分的学生占到了45.7%, 90分以上的占17.1, 60分以下的占24.9%。试题不但将优秀的学生与中等的学生区分开来, 还将中等的与差的明确区分开来。同时正态分布也是符合正常人群智力分布规律的。但是, 大学生是经过高考选拔的相对高智商人群, 稍偏高分数段的偏态分布更能说明学生整体学习刻苦, 成绩优良。
3.5 建立科学规范的题库势在必行
多年来人们一直对应试教育产生的“高分低能”现象有所诟病, 呼吁素质教育的呼声愈来愈高。但是考试是被教育学理论和教学实践证明的一种检验学生学习状况的必不可少的有效手段。如何使考试脱离死记硬背的僵化模式, 向更多的考察学生运用知识解决实际问题的能力方面转变, 是摆在每位教师面前的重大课题, 而科学规范的题库的建立将大大有助于考察学生的实际能力。与时俱进的将优良试题选入题库, 淘汰劣质试题, 使题库不断完善, 这既有利于将考察知识与考察能力相结合, 又有利于教师提高工作效率。
3.6 关于不及格率的问题
虽然本试卷从难度和区分度来看是一份较好的试题, 但是不及格的学生达到41名, 占到学生总数的25%, 显然有些偏高。这与大一新生刚从中学考入大学, 对大学课程的学习还处于适应阶段, 对解剖学课程无任何基础以及有些学生学习方法不当有关。为了避免学生平时学习不认真, 考试前突击复习取得高分数, 以及有少数学生虽然平时努力学习, 但是期末考试发挥失常导致的不及格, 期末考试卷面成绩只占该门课总成绩的75%, 其它25%为平时成绩。包括考勤5分, 作业5分, 提问5分和期中标本考试10分。经过平时成绩的矫正, 不及格人数为20人, 不及格率为12%, 这是较合理的比例。
摘要:对西安交通大学医学院2008级五年制临床、法医专业系统解剖学期末考试试卷 (共164份) 进行了统计学分析, 结果考试成绩呈正态分布 (P<0.01) , 平均分为72.22分, 标准差为18.47分。整份试卷难度系数为0.72, 区分度为0.43。数据显示这是一份难度适中、区分度良好的试卷, 为今后期末考试出题提供了一个有益的参考。
关键词:系统解剖学,试卷,难度,区分度
参考文献
[1]路明, 张晓田.组织胚胎学考试试卷分析[J].西北医学教育, 2002, 10 (1) :41.
[2]李凯丽.人体解剖学考试试卷分析与评价[J].医学教育探索, 2008, 7 (7) :679.
[3]杨文清, 郭克锋.五年制临床医学专业康复医学试卷分析与思考[J].医学教育探索, 2009, 6 (8) :648.
期末考试测试卷(一) 篇3
1.抛物线y=mx2的准线方程为y=2,则m的值为 .
2.若函数f(x)=a-x+x+a2-2是偶函数,则实数a的值为 .
3.若sin(α+π12)=13,则cos(α+7π12)的值为 .
4.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 .
5.已知向量a的模为2,向量e为单位向量,e⊥(a-e),则向量a与e的夹角大小为 .
6.设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(-2,0)时,f(x)=2x,则f(2012)-f(2013)= .
7.已知直线x=a(0
8.已知双曲线x2a2-y2=1(a>0)的一条渐近线为y=kx(k>0),离心率e=5k,则双曲线方程为 .
9.已知函数f(x)=ax(x<0),
(a-3)x+4a(x≥0)满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则a的取值范围是 .
10.设x∈(0,π2),则函数y=2sin2x+1sin2x的最小值为 .
11.△ABC中,C=π2,AC=1,BC=2,则f(λ)=|2λCA+(1-λ)CB|的最小值是
12.给出如下四个命题:
①x∈(0,+∞),x2>x3;
②x∈(0,+∞),x>ex;
③函数f(x)定义域为R,且f(2-x)=f(x),则f(x)的图象关于直线x=1对称;
④若函数f(x)=lg(x2+ax-a)的值域为R,则a≤-4或a≥0;
其中正确的命题是 .(写出所有正确命题的题号).
13.在平面直角坐标系xOy中,点P是第一象限内曲线y=-x3+1上的一个动点,以点P为切点作切线与两个坐标轴交于A,B两点,则△AOB的面积的最小值为 .
14.若关于x的方程|ex-3x|=kx有四个实数根,则实数k的取值范围是 .
二、解答题
15.已知sin(A+π4)=7210,A∈(π4,π2).
(1)求cosA的值;
(2)求函数f(x)=cos2x+52sinAsinx的值域.
16.在四棱锥PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求四棱锥PABCD的体积V;
(2)若F为PC的中点,求证PC⊥平面AEF;
(3)求证CE∥平面PAB.
17.某企业有两个生产车间分别在A、B两个位置,A车间有100名员工,B车间有400名员工.现要在公路AC上找一点D,修一条公路BD,并在D处建一个食堂,使得所有员工均在此食堂用餐.已知A、B、C中任意两点间的距离均有1km,设∠BDC=α,所有员工从车间到食堂步行的总路程为s.
(1)写出s关于α的函数表达式,并指出α的取值范围;
(2)问食堂D建在距离A多远时,可使总路程s最少.
18.已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:x2a2+y2b2=1(a>b>0)有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求AP·AQ的取值范围.
19.幂函数y=x的图象上的点Pn(t2n,tn)(n=1,2,…)与x轴正半轴上的点Qn及原点O构成一系列正△PnQn-1Qn(Q0与O重合),记an=|QnQn-1|
(1)求a1的值;
(2)求数列{an}的通项公式an;
(3)设Sn为数列{an}的前n项和,若对于任意的实数λ∈[0,1],总存在自然数k,当n≥k时,3Sn-3n+2≥(1-λ)(3an-1)恒成立,求k的最小值.
20.已知函数f(x)=(x2-3x+3)·ex定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.
(1)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(2)求证:n>m;
(3)求证:对于任意的t>-2,总存在x0∈(-2,t),满足f′(x0)ex0=23(t-1)2,并确定这样的x0的个数.
附加题
21.[选做题] 本题包括A,B,C,D四小题,请选定其中两题作答,每小题10分,共计20分.
A.选修41:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B.选修42:矩阵与变换
已知二阶矩阵A=1a
34对应的变换将点(-2,1)变换成点(0,b),求实数a,b的值.
C.选修44:坐标系与参数方程
椭圆中心在原点,焦点在x轴上.离心率为12,点P(x,y)是椭圆上的一个动点,
若2x+3y的最大值为10,求椭圆的标准方程.
D.选修45:不等式选讲
若正数a,b,c满足a+b+c=1,求13a+2+13b+2+13c+2的最小值.
[必做题] 第22、23题,每小题10分,计20分.
22.如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA1B1C1D1中,P是侧棱CC1上的一点,CP=m.
(1)试确定m,使直线AP与平面BDD1B1所成角为60°;
(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q⊥AP,并证明你的结论.
23.(本小题满分10分)
已知,(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*)
(1)求a0及Sn=a1+a2+a3+…+an;
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
参考答案
一、填空题
1. -18
2. 2
3. -13
4. 0.75
5. π3
6. 12
7. 710
8. x24-y2=1
9. (0,14]
10. 3
11. 2
12. ③④
13. 3324
14. (0,3-e)
二、解答题
15.解:(1)因为π4<A<π2,且sin(A+π4)=7210,
所以π2<A+π4<3π4,cos(A+π4)=-210.
因为cosA=cos[(A+π4)-π4]
=cos(A+π4)cosπ4+sin(A+π4)sinπ4
=-210·22+7210·22=35.所以cosA=35.
(2)由(1)可得sinA=45.所以f(x)=cos2x+52sinAsinx
=1-2sin2x+2sinx=-2(sinx-12)2+32,x∈R.因为sinx∈[-1,1],所以,当sinx=12时,f(x)取最大值32;当sinx=-1时,f(x)取最小值-3.
所以函数f(x)的值域为[-3,32].
16.解:(1)在Rt△ABC中,AB=1,
∠BAC=60°,∴BC=3,AC=2.
在Rt△ACD中,AC=2,∠CAD=60°,
∴CD=23,AD=4.
∴SABCD=12AB·BC+12AC·CD
=12×1×3+12×2×23=523.则V=13×523×2=533.
(2)∵PA=CA,F为PC的中点,
∴AF⊥PC.∵PA⊥平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.∴CD⊥PC.
∵E为PD中点,F为PC中点,
∴EF∥CD.则EF⊥PC.
∵AF∩EF=F,∴PC⊥平面AEF.
(3)取AD中点M,连EM,CM.则EM∥PA.
∵EM平面PAB,PA平面PAB,
∴EM∥平面PAB.
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC平面PAB,AB平面PAB,
∴MC∥平面PAB.
∵EM∩MC=M,
∴平面EMC∥平面PAB.
∵EC平面EMC,
∴EC∥平面PAB.
17.解:(1)在△BCD中,
∵BDsin60°=BCsinα=CDsin(120°-α),
∴BD=32sinα,CD=sin(120°-α)sinα,
则AD=1-sin(120°-α)sinα.
s=400·32sinα+100[1-sin(120°-α)sinα]
=50-503·cosα-4sinα,其中π3≤α≤2π3.
(2)s′=-503·-sinα·sinα-(cosα-4)cosαsin2α=503·1-4cosαsin2α.
令s′=0得cosα=14.记cosα0=14,α0∈(π3,2π3);
当cosα>14时,s′<0,当cosα<14时,s′>0,
所以s在(π3,α0)上单调递减,在(α0,2π3)上单调递增,
所以当α=α0,即cosα=14时,s取得最小值.
此时,sinα=154,
AD=1-sin(120°-α)sinα=1-32cosα+12sinαsinα
=12-32·cosαsinα=12-32·14154=12-510.
答:当AD=12-510时,可使总路程s最少.
18.解:(1)点A代入圆C方程,得(3-m)2+1=5.
∵m<3,∴m=1.
圆C:(x-1)2+y2=5.
设直线PF1的斜率为k,则PF1:y=k(x-4)+4,即kx-y-4k+4=0.
∵直线PF1与圆C相切,∴|k-0-4k+4|k2+1=5.解得k=112,或k=12.
当k=112时,直线PF1与x轴的交点横坐标为3611,不合题意,舍去.
当k=12时,直线PF1与x轴的交点横坐标为-4,
∴c=4,F1(-4,0),F2(4,0).
2a=AF1+AF2=52+2=62,a=32,a2=18,b2=2.
椭圆E的方程为:x218+y22=1.
(2)AP=(1,3),设Q(x,y),AQ=(x-3,y-1),
AP·AQ=(x-3)+3(y-1)=x+3y-6.
∵x218+y22=1,即x2+(3y)2=18,
而x2+(3y)2≥2|x|·|3y|,∴-18≤6xy≤18.
则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36].
x+3y的取值范围是[-6,6].
∴AP·AQ=x+3y-6的取值范围是[-12,0].
19.解:(1)由P1(t21,t1)(t>0),得kOP1=1t1=tanπ3=3t1=33,
∴P1(13,33),a1=|Q1Q0|=|OP1|=23.
(2)设Pn(t2n,tn),得直线PnQn-1的方程为:y-tn=3(x-t2n),
可得Qn-1(t2n-tn3,0),
直线PnQn的方程为:y-tn=-3(x-t2n),可得Qn(t2n+tn3,0),
所以也有Qn-1(t2n-1+tn-13,0),得t2n-tn3=t2n-1+tn-13,由tn>0,得tn-tn-1=13.
∴tn=t1+13(n-1)=33n.
∴Qn(13n(n+1),0),Qn-1(13n(n-1),0),
∴an=|QnQn-1|=23n.
(3)由已知对任意实数时λ∈[0,1]时,n2-2n+2≥(1-λ)(2n-1)恒成立,
对任意实数λ∈[0,1]时,(2n-1)λ+n2-4n+3≥0恒成立
则令f(λ)=(2n-1)λ+n2-4n+3,则f(λ)是关于λ的一次函数.
对任意实数λ∈[0,1]时,f(0)≥0
f(1)≥0.
n2-4n+3≥0
n2-2n+2≥0n≥3或n≤1,
又∵n∈N*,∴k的最小值为3.
20.(1)解:因为f′(x)=(x2-3x+3)·ex+(2x-3)·ex=x(x-1)·ex
由f′(x)>0x>1或x<0;由f′(x)<00<x<1,所以f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减
欲f(x)在[-2,t]上为单调函数,则-2<t≤0.
(2)证:因为f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减,所以f(x)在x=1处取得极小值e
又f(-2)=13e2<e,所以f(x)在[-2,+∞)上的最小值为f(-2)
从而当t>-2时,f(-2)<f(t),即m<n.
(3)证:因为f′(x0)ex0=x20-x0,所以f′(x0)ex0=23(t-1)2即为x20-x0=23(t-1)2,
令g(x)=x2-x-23(t-1)2,从而问题转化为证明方程g(x)=x2-x-23(t-1)2=0
在(-2,t)上有解,并讨论解的个数.
因为g(-2)=6-23(t-1)2=-23(t+2)(t-4),g(t)=t(t-1)-23(t-1)2=13(t+2)(t-1),所以
①当t>4或-2<t<1时,g(-2)·g(t)<0,所以g(x)=0在(-2,t)上有解,且只有一解.
②当1<t<4时,g(-2)>0且g(t)>0,
但由于g(0)=-23(t-1)2<0,
所以g(x)=0在(-2,t)上有解,且有两解.
③当t=1时,g(x)=x2-x=0x=0或x=1,所以g(x)=0在(-2,t)上有且只有一解;
当t=4时,g(x)=x2-x-6=0x=-2或x=3,
所以g(x)=0在(-2,4)上也有且只有一解.
综上所述,对于任意的t>-2,总存在x0∈(-2,t),满足f′(x0)ex0=23(t-1)2,
且当t≥4或-2<t≤1时,有唯一的x0适合题意;当1<t<4时,有两个x0适合题意.
(说明:第(2)题也可以令φ(x)=x2-x,x∈(-2,t),然后分情况证明23(t-1)2在其值域内,并讨论直线y=23(t-1)2与函数φ(x)的图象的交点个数即可得到相应的x0的个数)
附加题
21.(A)解:因为MA为圆O的切线,所以MA2=MB·MC.
又M为PA的中点,所以MP2=MB·MC.
因为∠BMP=∠BMC,所以△BMP∽△PMC.
于是∠MPB=∠MCP.
在△MCP中,由∠MPB+∠MCP+∠BPC+∠BMP=180°,得∠MPB=20°.
(B)解:∵0
b=1a
34-2
1=-2+a
-6+4,
∴0=-2+a
b=-2,即a=2,b=-2.
(C)解:离心率为12,设椭圆标准方程是x24c2+y23c2=1,
它的参数方程为x=2cosθ
y=3sinθ,(θ是参数).
2x+3y=4ccosθ+3csinθ=5csin(θ+φ)最大值是5c,
依题意tc=10,c=2,椭圆的标准方程是x216+y212=1.
(D)解:因为正数a,b,c满足a+b+c=1,
所以,(13a+2+13b+2+13c+2)[(3a+2)+(3b+2)+(3c+2)]≥(1+1+1)2,
即13a+2+13b+2+13c+2≥1,
当且仅当3a+2=3b+2=3c+2,即a=b=c=13时,原式取最小值1.
22.解:(1)建立如图所示的空间直角坐标系,则
A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),
B1(1,1,1),D1(0,0,2).
所以BD=(-1,-1,0),BB1=(0,0,2),
AP=(-1,1,m),AC=(-1,1,0).
又由AC·BD=0,AC·BB1=0知AC为平面BB1D1D的一个法向量.
设AP与面BDD1B1所成的角为θ,
则sinθ=cos(π2-θ)=|AP·AC||AP|·|AC|
=22·2+m2=32,解得m=63.
故当m=63时,直线AP与平面BDD1B1所成角为60°.
(2)若在A1C1上存在这样的点Q,设此点的横坐标为x,
则Q(x,1-x,2),D1Q=(x,1-x,0).
依题意,对任意的m要使D1Q在平面APD1上的射影垂直于AP.等价于
D1Q⊥APAP·D1Q=0x+(1-x)=0x=12
即Q为A1C1的中点时,满足题设的要求.
23.解:(1)取x=1,则a0=2n;取x=2,则a0+a1+a2+a3+…+an=3n,
∴Sn=a1+a2+a3+…+an=3n-2n;
(2)要比较Sn与(n-2)2n+2n2的大小,即比较:3n与(n-1)2n+2n2的大小,
当n=1时,3n>(n-1)2n+2n2;
当n=2,3时,3n<(n-1)2n+2n2;
当n=4,5时,3n>(n-1)2n+2n2;
猜想:当n≥4时,3n>(n-1)2n+2n2,下面用数学归纳法证明:
由上述过程可知,n=4时结论成立,
假设当n=k,(k≥4)时结论成立,即3k>(k-1)2k+2k2,
两边同乘以3得:3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2]
而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0,
∴3k+1>((k+1)-1)2k+1+2(k+1)2
即n=k+1时结论也成立,∴当n≥4时,3n>(n-1)2n+2n2成立.
综上得,当n=1时,Sn>(n-2)2n+2n2;当n=2,3时,Sn<(n-2)2n+2n2;
近世代数期末考试试卷及答案 篇4
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1、6阶有限群的任何子群一定不是()。A、2阶
B、3 阶 C、4 阶 D、6 阶
2、设G是群,G有()个元素,则不能肯定G是交换群。A、4个 B、5个 C、6个 D、7个
3、有限布尔代数的元素的个数一定等于()。
A、偶数 B、奇数 C、4的倍数 D、2的正整数次幂
4、下列哪个偏序集构成有界格()
A、(N,)B、(Z,)C、({2,3,4,6,12},|(整除关系))D、(P(A),)
5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有()
A、(1),(123),(132)B、12),(13),(23)C、(1),(123)D、S3中的所有元素
二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。
1、群的单位元是--------的,每个元素的逆元素是--------的。
2、如果f是A与A间的一一映射,a是A的一个元,则f1fa----------。
3、区间[1,2]上的运算ab{mina,b}的单位元是-------。
4、可换群G中|a|=6,|x|=8,则|ax|=——————————。
5、环Z8的零因子有-----------------------。
6、一个子群H的右、左陪集的个数----------。
7、从同构的观点,每个群只能同构于他/它自己的---------。
8、无零因子环R中所有非零元的共同的加法阶数称为R的-----------。
n9、设群G中元素a的阶为m,如果ae,那么m与n存在整除关系为--------。
三、解答题(本大题共3小题,每小题10分,共30分)
1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?
2、S1,S2是A的子环,则S1∩S2也是子环。S1+S2也是子环吗?
3、设有置换(1345)(1245),(234)(456)S6。
1.求和1;
2.确定置换和1的奇偶性。
四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)
1、一个除环R只有两个理想就是零理想和单位理想。
2、M为含幺半群,证明b=a-1的充分必要条件是aba=a和ab2a=e。
近世代数模拟试题三
参考答案
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1、C;
2、C;
3、D;
4、D;
5、A;
二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。
1、唯
一、唯一;
2、a;
3、2;
4、24;
5、9、mn;
6、相等;
7、商群;
8、特征;;
三、解答题(本大题共3小题,每小题10分,共30分)
1、解 在学群论前我们没有一般的方法,只能用枚举法。用笔在纸上画一下,用黑白两种珠子,分类进行计算:例如,全白只1种,四白一黑1种,三白二黑2种,…等等,可得总共8种。
2、证 由上题子环的充分必要条件,要证对任意a,b∈S1∩S2 有a-b, ab∈S1∩S2:
因为S1,S2是A的子环,故a-b, ab∈S1和a-b, ab∈S2,因而a-b, ab∈S1∩S2,所以S1∩S2是子环。S1+S2不一定是子环。在矩阵环中很容易找到反例:
1(1243)(56)
3、解: 1.,(16524);
2.两个都是偶置换。
四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)
1、证明:假定是R的一个理想而不是零理想,那么a0,由理想的定 3
1a义a1,因而R的任意元bb1
这就是说=R,证毕。
2、证 必要性:将b代入即可得。充分性:利用结合律作以下运算: ab=ab(ab2a)=(aba)b2a=ab2a=e,ba=(ab2a)ba=ab2(aba)=ab2a=e,所以b=a-1。
—————————————————————————————————————— 一.判断题(每小题2分,共20分)
1.实数集R关于数的乘法成群.()2.若H是群G的一个非空有限子集,且a,bH都有abH成立,则H是G的一个子群.()3.循环群一定是交换群.()4.素数阶循环群是单群.()
5.设G是有限群,aG,n是a的阶,若ake,则n|k.()
6.设f是群G到群G的同态映射,H是G的子群,则fH是G的子群.()7.交换群的子群是正规子群.()8.设G是有限群,H是G的子群,则GH|G|.()|H|9.有限域的特征是合数.()10.整数环Z的全部理想为形如nZ的理想.()二.选择题(每小题3分,共15分)11.下面的代数系统G,中,()不是群.A.G为整数集合,为加法; B.G为偶数集合,为加法; C.G为有理数集合,为加法; D.G为整数集合,为乘法.12.设H是G的子群,且G有左陪集分类H,aH,bH,cH.如果H的阶为6,那么G 的阶G()
A.6;
B.24;
C.10;
D.12.4
13.设S31,12,13,23,123,132,,则S B.2;
C.3;
3中与元123不能交换的元的个数是
A.1;
D.4.14.从同构的观点看,循环群有且只有两种,分别是()
A.G=(a)与G的子群;
B.整数加法群与模n的剩余类的加法群; C.变换群与置换群;
D.有理数加法群与模n的剩余类的加法群.15.整数环Z中,可逆元的个数是()。
A.1个
B.2个
C.4个
D.无限个 三.填空题(每小题3分,共15分)
16.如果G是全体非零有理数的集合,对于普通乘法来说作成一个群,则这个群的单位元是.17.n次对称群Sn的阶是____________.18.整数加法群Z关于子群nZ的陪集为.19.设N是G的正规子群,商群GN中的单位元是。
20.若R是交换环, aR则主理想a____________.四.计算题(第21小题8分, 第22小题12分,共20分)21.令6123456123456,543212315641621354,计算,.123456
22.设H{(1),(123),(132)}是3次对称群S3的子群,求H的所有左陪集和右陪集,并说明H是否是S3的正规子群.五.证明题(每题10分,共30分)
23.设G是群,H是G的子群,证明:aG,则aHa1也是子群
24.设G是群,H是G的正规子群.G关于H的陪集的集合为
GH{gH|gG},证明:G/H对于陪集的乘法成为一个群,称为G对H的商群.25.证明:域F上全体nn矩阵的集合MnF在矩阵的加法和乘法下成为环.一.判断题(每小题2分,共20分)
1-10 ××√√√ √√√×√ 二.选择题(每小题3分,共15分)11.D;12.B;13.C;14.B;15.B.三.填空题(每小题3分,共15分)16.1; 17.n!;18.nZ,nZ1,,nZn1;
19.N;20.aR.四.计算下列各题(第21小题8分, 第22小题12分,共20分)
21.解:123456546213,4分 6
1123456.8分
31264522.解:H的所有左陪集为
H{(1),(123),(132)},(23)}4分
12H{(12),(13),;H的所有右陪集为
H{(1),(123),(132)},H12{(12),(13),(23)}.对S3,有HH,即H是正规子群.12分 五.证明题(每题10分,共30分)
23.证明:因为H是G的子群,对任意x,yH,有xyH.4分 由题意,对任意
1,ax,yH,有ax11ay1aa,a从H而
axaay111aaxy11aaHa1,即aHa1也是子群.10分
24.证明:首先G3分 H对于上述乘法是封闭的,且乘法满足结合律.陪集HeH是它的单位元,eHgHegHgH,gH.7分 又任意gH,有gHgHeHgHgH,即gH是gH的逆元.10分
25.证明:MnF关于加法是封闭的,且满足结合律, 3分 零元是0nn,对任意AnnMnF,有AnnAnn0nn,即Ann的负元是Ann.111MnF关于乘法是封闭的,且满足结合律,单位元是Enn. 8分
高一政治期末考试试卷附答案 篇5
1、下列各项中属于商品的选项是 ( )
A.刘先生摸彩票中得宝马轿车一辆 B.废品收购站收购的废酒瓶
C.农民自种自收、自己消费的粮食 D.蔬菜与瓜果
2、信用卡作为新一代的理财工具,具有的优点是 ( )
A.集存款、取款、贷款、消费、结算、查询为一体,方便安全 B.可以任意透支
C.不需要任何条件可以随意申领 D.可以到任何地点进行消费使用
3、对于支票的理解,正确的是 ( )
①支票是国家发行的,强制流通的价值符号 ②支票是从商品中分离出来固定地充当一般等价物的商品
③支票是活期存款的支付凭证 ④在我国,支票主要分为转帐支票和现金支票,一律记名,不准流通转让
A. ①② B. ②③ C. ①④ D. ③④
4、假定生产一个电子计算器的社会必要劳动时间是2小时,生产一部手机的社会必要劳动时间是10小时,现在有甲乙丙三家生产该种手机的企业,他们生产一部手机的时间分别是5,10,15小时,在其他条件相同的情况下,甲乙丙三家企业在30小时里生产的手机分别可以换到多少个电子计算器 ( )
A.15 15 15 B.80 15 10
C. 10 15 3 D.5 5 5
5、在市场经济条件下,由于价值规律的作用,商品生产者积极地改进技术,改善经营管理,这主要是因为 ( )
A.商品的价值量是有个别劳动时间决定的
B.他们都希望自己产品的个别劳动时间低于社会必要劳动时间
C.他们都希望为社会创造更多的使用价值 D.提高产品的质量,提高商品的价格
6、时下“请人吃饭不如请人流汗”成为都是一大时尚,人们越来越舍得花钱买健康,对此,错误的认识是( )
A.这说明我国的消费结构正在发生变化 B.这将有助于促进我国服务业的发展
C.享受资料消费已成为人们消费的主流 D.这有利于提高个人生活质量
7、11月3日,100美元兑换699元人民币,5月21日。人民币对美元汇率中间价创下6.8897的新高,则下列说法正确的是 ( )
A.外汇汇率升高 B.人民币外汇汇率升高
C.美元升值 D. 人民币升值
8、通货紧缩和通货膨胀二者都会 ( )
A.使人们手中的钱不值钱 B.造成物价总水平持续下降
C.影响人们的经济生活和社会经济秩序 D.造成货币不断升值
国酒茅台坚持“物有所值,贵而不奢”的定价风格,恪守价格诚信,每瓶售价300元左右,最终赢得更多消费者的尊重和钟爱,真正让老百姓既能体验消费“国酒”的身价之尊,又尽享开怀畅饮之趣。运用所学知识,回答9—11题。
9、消费者购买茅台酒,注重“物有所值”,说明消费者 ( )
A.把商品看作是使用价值和价值的统一体 B.把商品看作是交换价值和价值的统一体
C.从“物美”的角度考察商品 D.从“价廉”的角度考察商品
10、某消费者拿出300元去购买一瓶茅台酒,这是人民币代替货币执行 ( )
A.价值尺度的职能 B.流通手段的职能
C.贮藏手段的职能 D.支付手段的职能
11、在商场的柜台上,一瓶茅台酒标价300元,这300元是 ( )
①货币在执行价值尺度的职能 ②现实的货币 ③观念中的货币
④商品的价值 ⑤商品的价格
A.①②④ B. ①②⑤ C.①③⑤ D. ②④
12、“生产的目的是为了消费,只有不断扩大消费需求,才能拉到经济的持续增长”这强调( )
A.消费对生产的决定作用, B.生产对消费的决定作用
C.生产对消费的反作用 D.消费对生产的反作用
13、具有民族特色的传统手工织品价格一般都比较高。这主要是因为 ( )
A.这些产品的价值量高 B.这些产品一般都在旅游胜地出售
C.这些产品的产量太少 D.生产这些产品耗费的劳动时间较多
14、我国政府领导人多次强调,我们必须保持人民币币值稳定。人民币币值稳定,有利于( )
①保持国内物价稳定 ②扩大就业 ③增强我国商品的国际竞争力 ④促进国民经济健康发展
A.①②③④ B. ①②③ C. ②③④ D. ①②④
15、下列对公有制主体地位的理解正确的是 ( )
①在全国各个行业,公有资产占优势 ②国有经济的比重增加
③公有资产在社会总资产中占优势 ④ 国有经济控制国民经济命脉
A.①② B. ②③ C. ③④ D. ①④
16、现在越来越多的企业开始召回自己经售出的有缺陷的产品,加强售后服务,提高企业信誉,这是因为,它们已经认识到企业的信誉( )
A有利于提高企业的市场竞争力 B.是企业的一种无形资产
C.通过产品和服务的质量体现出来 D.是一种投资回报
17、下列消费品中,不具有替代关系的是 ( )
A.汽车与自行车 B.电视机与收音机 C.上衣与裤子 D.大米与面粉
18、中国环境报日前报道,致公党在《关于倡导绿色消费,推进建立循环型社会的建议》中提出,推进建立循环型社会,必须大力倡导绿色消费,建立起物质资源良性循环的循环型社会。绿色消费的核心是 ( )
A.适度消费 B.可持续消费 C.多元化消费 D.健康消费
19、劳动者获得权利,维护权益的基础是( )
A.依法签订劳动合同 B.保障劳动者的主人翁地位
C.自觉履行劳动者的义务 D.增强维权和法律意识
20、目前青少年中肥胖者日益增多,从消费角度来看,产生这种现象的主要原因是( )
A.在食品生产环节中出现问题 B.只注重物质消费,而忽视精神消费
C.勤俭节约的美德缺失 D.忽视了消费的科学性
21、下列有利于解决用工荒问题的措施是 ( )
①维护劳动者的合法权益 ②政府统筹安排劳动者就业
③引导劳动者树立正确的就业观 ④ 加强劳动者的技能培训
A.①②③ B. ②③④ C. ①③④ D. ①②④
22、毫不动摇地鼓励、支持和引导非公有制经济发展,是因为非公有制经济 ( )
A.同社会化大生产相适应 B.是社会主义市场经济的重要组成部分
C.对国民经济发展总起积极作用 D.可以在重要行业和关键领域占支配地位
23、“在阳光灿烂的日子,他们会把伞借给你,当下雨时,他们会要求你把伞还给他们”,“他们”是( )
A.保险公司 B.商业银行 C.证劵公司 D.百货公司
24、小李在年初将1000元存入银行,准备年底取出,已知银行的月利率为0.165%,那么到年末,他将取出多少元( )
A.1019.80 B.1003.96 C.1015.84 D.1015.72
25、储蓄存款和债券、股票相比 ( )
A.收益高,风险低 B.收益低,风险高 C收益低,风险低 D.收益高,风险高
二、非选择题(共50分)
26、材料一:当前我国笔记本电脑价格出出现大跳水现象,一方面随着我国电脑行业技术日益成熟,劳动生产率不断提高,给降价带来了很大空间,另一方面市场上笔记本电脑的供应不断增加,各厂家为了加强竞争,纷纷降价促销,笔记本电脑价格有原来的5000元以上,降到4000元左右。
材料二:面对笔记本电脑新一轮的价格竞争,一些厂家采取了限产等措施,以适应市场发展趋势,许多消费者则抓住时机,将台式电脑更换为笔记电脑。(10分)
(1)结合材料一说明导致我国笔记本电脑价格下调的主要原因有哪些?(6分)
(2)结合材料二说明笔记本电脑价格下降带来了哪些影响?(4分)
27、材料一:近期,在温州,“高利贷”压垮了一些中小企业,导致民间借贷资金链断裂,出现了老板纷纷跑路,企业随之关闭的温州之痛。作为民营经济标杆地的温州,企业生存景象集中反映了国内中小企业在每次经济起伏中的命运。
材料二:进入20,我国中小企业面临诸多困境,一方面,外需萎靡,内需不热,汇率波动,通胀有压,订单减少,原材料,人工成本不断上涨,企业利润受挤压,经营负担加重,另一方面,中小企业多以加工贸易型,劳动密集型为主,技术含量不高,很难得到政策的关照和扶持,中小企业自身经营状况不好,加剧了银行惜待,企业越缺钱,银行越不敢借钱,因此,国务院确定了一系列支持小型和微型企业发展的金融和财税政策,这是对中小企业的伤病进行的一次全面救治。(1)中小企业如果经营不好,就会面临破产,你认为实行企业破产制度有何积极意义?(4分)
(2)根据上述材料,运用经济生活的有关知识,从中小企业自身的角度,请你为中小企业走出困境提出几点建议(8分)
28、十多年来,家住济南市的刘大妈的菜篮子不经意间发生了巨大变化,往日冬季当家的萝卜,白菜,土豆少了,鸡鸭鱼肉虾和各种新鲜蔬菜多了。自从市场上有了绿色食品,刘大妈就成了它的
忠实的追随者,绿色消费已成为当今时尚,家里背投电视,变频空调,高档洗衣机,电脑等家用电器一应俱应,双休日,刘大妈一家经常到体育馆和健身房进行锻炼,用她的话说,就是花钱买健康,而利用DVD娱乐休闲,网络购物,参加网络远程教育等,也是刘大妈一家生活的重要内容,刘大妈整天乐呵呵的,新时代,新生活已成为她的口头禅。
阅读上述材料,回答下列问题:
请结合生产与消费的关系原理,谈谈刘大妈的生活变化(8分)
29、材料一,从210全国就业工作座谈会传来消息,年高校毕业生人数为680万人,十二五时期应届毕业生年平均规模将达到近700万人,随着我国转变经济发展方式和产业结构,技能水平以及职业素质方面难以满足用人单位的要求,另外,现行就业管理体系和服务能力不能满足用人毕业生的需要,公共就业人才服务机构的服务内容和服务方式比较简单,高校毕业生没有建立统一规范的就业失业登记制度,高校毕业生离校前后信息缺乏有机衔接,就业统计和服务管理难度较大。
材料二 以下是某大学届毕业学生就择业问题发表的观点:
同学甲:我要根据自身专业特长,兴趣爱好和条件找份工作。
同学乙:我想考公务员,因为工作比较稳定,也更体面。
同学丙:现在工作难找,我还想参加一些培训以提高就业能力,这样找工作比较更有优
(20分)
结合材料一,分析目前大学生就业难的原因(6分)请简要评析材料二中三位同学的就业择业观(6分)请你根据材料一,二,从国家与个人角度为解决好高校毕业生就业问题出谋划策(8分)
参考答案
1—5 BADBB 11—15 CDDAC 21—25 CBBAC
6—10 CDCAB 16—20 ACBCD
26、(1)1.价值决定价格,由于生产笔记本电脑的社会劳动生产率提高,社会必要劳动时间缩短,导致价值下降,因而价格下降(3分)
2.供求影响价格,笔记本电脑市场供给增加,市场竞争加剧,是价格下降的重要因素(3分)。(2)1.价格变动影响生产,企业限产体现了价格变动调节生产规模 ,调节产量(2分)。
2. 价格变动影响人们的需求,笔记本电脑价格的下降促使人们增加了笔记本电脑的购买(2分)
27、(1)1.有利于强化企业的风险意识,促使企业在破产的压力下改善经营管理,提高企业竞争力(2分)
2.通过企业破产,及时淘汰落后的企业,有利于社会资源的合理配置和产业结构的合理调整(2分)。
(2)1.中小企业要根据自身的实际和经济的变化,制定正确的经营战略。
2.中小企业要着力转变经济发展方式,加快自主创新,提高产品的科技含量和附加值,形成具有自主知识产权的产品和品牌,提高市场竞争力
3.中小企业要自觉遵循和利用价值规律,适应市场变化,主动调整结构,积极拓展市场,努力培育新的经济增长点,充分利用国际国内两种资源和两个市场
4.中小企业要依靠技术进步,科学管理等手机,提高劳动生产率,降低生产成本,形成竞争优势
5.中小企业要依法经营 ,诚实守信,维护职工合法权益,积极履行社会责任,树立良好良好的信誉和企业形象(每点2分,只要答出4点即可满分8分)
28、1.生产与消费都是社会再生产中的重要环节,二者相互联系,相互影响,生产决定消费 ,消费对生产有重要的反作用(2分)
2. 生产决定消费的对象,决定消费的质量和水平,为消费创造动力(2分)
3. 消费是生产的目的,消费具有导向作用,一个新的消费热点的出现,往往能带动一个产业的出现和成长,消费为生产创造出新的劳动力(2分)
4. 刘大妈消费内容和消费水平以及消费方式的变化,都是生产发展的结果,同时,刘大妈的消费对拉到经济,促进生产发展也有积极的作用(2分)
29、(1)1.高校毕业生就业总量巨大,劳动力供大于求的格局短期内不会改变(2分)
2部分高校毕业生的知识技能和职业素质与社会经济发展的需要不完全适应(2分)
3 就业管理体系不健全和服务能力较低,劳动力市场不完善,就业信息不畅通(2分)
(2)1.甲同学根据个人的专长,兴趣和条件去选择职业,体现了自主择业观,有一定的合理性,但还要考虑社会需要和实际的就业形势(2分)
2.乙同学选择公务员无可厚非,但认为更其体面,不符合职业平等观,不正确(2分)
3.丙同学想通过培训学习提高就业能力 ,积极主动去适应劳动力市场需要,体现了竞争就业观,正确(2分)
(3)国家方面:1.大力发展经济,增加就业岗位,2 从人民群众的根本利益出发,实施积极的就业政策,加强引导,3完善市场就业机制,扩大就业规模,改善就业结构,完善就业培训和服务体系,改善就业创造环境,促进人力资源优化配置(4分)
七年级英语期末考试试卷及答案 篇6
( ) 1. A. Yes, I do. B. No, I’m not. C. I know anyone here.
( ) 2. A. You’re welcome. B. That’s right. C. See you later.
( ) 3. A. I’m fine. B. I’m nine years old. C. Me, too.
( ) 4. A. They are from America B. She is from Australia. C. He is from Cuba
( ) 5. A. He likes red. B. He likes oranges. C. He is old with white hair.
( ) 6. A. He looks like a cat. B. I like the girl with black hair. C. She likes a cat.
( ) 7. A. It’s a white cat. B. Its name is Mimi. C. It’s hers.
( ) 8. A. She has a big nose. B. He is short. C. She is tall.
( ) 9. A. My English teacher. B. It’s here. C. He has a fat nose.
( ) 10. A. Yes, I do. B. F-A-V-O-R-I-T-E, favorite.
C. F-A-I-V-O-U-R-I-T-E, faivourite.
第二节 对话问答:根据你听到的对话内容选择正确答案,将其标号填入题前括号内。每组对话读两遍。(每小题1分,共5分。)
( ) 11. A. Jack. B. Jack’s sister. C. I don’t know.
( ) 12. A. It’s Jim’s. B. It’s Maria’s. C. It’s the man’s.
( ) 13. A. Tom. B. Mike. C. Michael and David.
( ) 14. A. The boy. B. The girl. C. The boy and the girl.
( ) 15. A. They’re cats. B. They’re tigers. C. They’re pandas.
第三节 短文理解:根据你听到的短文内容选择正确答案,将其标号填入题前括号内。短文读两遍。(每小题1分,共5分。)
( )16. Where is Jim Green now ?
A. In Zhejiang. B. In Henan. C. in Shanxi.
( ) 17. How many children are there(有) in John’s family ?
A. Six. B. Four. C. Three.
( ) 18. Are Jim’s sisters and brother all middle school students ?
A. No, they aren’t. B. Yes, they are. C. Yes, they do.
( ) 19. What time does Jim go to school ?
A. At 6: 45 B. At 7: 00 C. At 7: 15
( ) 20. What time does Jim play sports( 进行体育活动) ?
A. At 4: 10 B: At 3: 50 C. At 9: 56
笔 试 部 分(共 100分)
一、单项选择 下面每小题中只有一个答案是正确的,请选出,并将代表该答案的序号填入题前括号内。(每小题1分,共15分)
( ) 21. I ____ a boy. My name _______ Jack.
A. am; are B. am; is C. is; are D. are; is
( )22. — Is this your book, Alice? — Yes, it is _________ .
A. his B. my C. hers D. mine
( )23. 8:15 in English is _________.
A. a quarter to nine B. a quarter past nine
C. forty- five to nine D. a quarter past eight
( ) 24. — _________ does your friend Li Qiang look like?
— He is tall and has black hair.
A. How B. What C. Which D. Why
( ) 25. — What does your father do? — _________
A. He’s old. B. He’s fine.
C. He likes me. D. He’s a cook.
( ) 26. — Does she ______ any pencils?
—Yes, she ______ three pencils.
A. have; has B. have; have C. has; have D. has; has
( ) 27. — What about going for a picnic with us?
— I’m sorry I can’t. My mother isn’t _________. I have to cook.
A. out B. in C. at D. for
( )28. It’s time _________ school.
A. go to B. to go C. to go to D. goes to
( ) 29. I want to buy ________ vegetables, but I don’t want to buy _____ chicken.
A. some; any B. any; some C. some; some D. any; any
.( ) 30. — These clothes are very nice. Could I _________?
— Sure.
A. try it on B. try them on C. try on it D. try on them
( ) 31. Please _________ the tree. Can you _________ any apples on it?
A. look; see B. look at; see C. see; look D. see; look at
( ) 32. We would like some meat and rice _____ lunch.
A. to B. in C. of D. for
( ) 33. A nurse works ______________.
A. in a school B. in a hospital C. on a farm D. in an office
( ) 34. -What color is it?
-It’s orange. It’s orange pen.
A. a, an B. an, an C. an, / D. /, an
( ) 35. — Can I help you ? — Yes, I’d like ______________.
A. two bag of salt B. two bags of salt
C. two bag of salts D. two bags of salts
二. 口语运用 从B栏中找出能与A栏相对应的答语,并将代表该答案的序号填入题前括号内。(每小题1分,共10分)
A
( )36. Can you spell pencil?
( )37. Is this coat red or green?
( )38. Is it a brown one?
( )39. Where does he come from?
( ) 40. Do you speak English?
( )41. Whose T-shirt is this?
( )42.Where is your cat?
( )43. Which knife is yours?
( )44. Do you like English?
( )45. What does he look like?
B
A. The black one.
B. It is in my room.
C. It’s his.
D. He is tall and thin with short hair.
E. Yes, I like it very much.
F. He comes from Japan.
G. No, it’s a blue one.
H. Yes, P-E-N-C-I-L, pencil.
I. It’s red.
J. Yes, but only a little.
三、完形填空 阅读短文,然后为短文后各题选择正确的答案,将其标号填入题前括号内。(每小题1分,共10分)
My name is Peter. I’m a boy 46 England. Welcome to my family. Here is a 47 of my family. We all live in Beijing now. The old man is my grandfather. He is a farmer. And the old woman is my grandmother. She is a farmer, too. They both work 48 .The young man is my father. He 49 in a factory. The young woman is my mother. She works 50 of Chaoyang District (区). She can speak Chinese. She often helps me with my Chinese. The lovely(可爱的) girl 51 blue is my aunt. She has long hair. She is twenty 52 . She likes Sichuan food a lot. She is a teacher, and she 53 English in our school. Her students like 54 very much. Can you see the little boy ? Haha, it’s me. I 55 in Xiangyang Junior High School.
( ) 46. A. is from B. comes from C. from
( ) 47. A. tree B. room C. photo
( ) 48. A. in a school B. on a farm C. in an office
( ) 49. A. works B. lives C. does
( ) 50. A. in hospital B. in a hospital C. to the hospital
( ) 51. A. with B. at C. in
( ) 52. A. old B. years C. years old
( ) 53. A. has B. teaches C. studies
( ) 54. A. she B. her C. him
( ) 55. A. study B. live C. work
四、阅读理解(每小题2分,共40分)
A
Jim is from the USA. But his father,mother and he are in China now. His mother is a teacher. His father is a doctor. Jim is in Class 7, Grade 8. He is 13. His mother is my English teacher. I’m Zhang Jun. I’m in Class 8, Grade 7. I’m 13, too.
根据短文内容,选择正确答案,并将其标号填入题前括号内。
( ) 56. Jim’s family is from _______.
A. America B. China C. Japan
( ) 57. Who is in Grade 8?
A. Li Lei. B. Jim. C. Zhang Jun.
( ) 58. Who is in Class 8?
A. Zhang Jun. B. Jim. C. His mother.
( ) 59. How old is Jim?
A. 7. B. 8. C. 13.
( ) 60. Are Zhang Jun and Jim of the same age (同龄)?
A. Yes, he is. B. Yes, they are. C. No, they aren’t.
B
Bill, Jack and I are in the same class at Chongqing No.2 High School now. We are good friends, but we are from different countries(国家). Bill is from England. He likes Chinese noodles very much. Jack’s favorite food is hamburgers. They look like twin(双胞胎) brothers, but they are not. Jack is from Canada. I come from China. I like Chongqing food very much. They like singing very much and I like playing soccer(踢足球) a lot.
根据短文内容,选择正确答案。
( ) 61. We are in now.
A. Beijing B. Chongqing C. America
( ) 62. We are from countries.
A. same B. different C. all
( ) 63. Jack likes very much.
A. Chinese noodles B. eggs C. hamburgers
( ) 64. Jack is Bill’s .
A. friend B. brother C. teacher
( ) 65. My favorite sport is .
A. driving B. singing C. soccer
C
Mike’s uncle comes to his home and the family plan(计划) to go for a picnic in the park. Mike’s mother puts(放) the picnic food in a black bag. She tells him to take it in the car. But his father asks him to throw away(扔掉) another(另一个)black bag. The bags look like the same. When(当……时)they go out, Mike throws away one of them.
An hour (小时) later, they get to the park. They take(拍)photos and go fishing. When they want to have lunch, they can’t find the food. Mike doesn’t throw away the right bag, so they have to eat out of the park. The food is very nice. They are all very happy, but Mike doesn’t say anything.
根据短文内容,选择正确答案,并将其标号填入题前括号内。
( ) 66. Who comes to Mike’s home?
A. Mike’s aunt. B. Mike’s uncle. C. Mike’s friend.
( ) 67. Mike’s family plan to __________ in the park.
A. drive B. go fishing C. have a picnic
( ) 68. They get to the park _________ later.
A. three hours B. one hour C. two hours
( ) 69. They have lunch _________ .
A. at home B. in the park C. out of the park
( ) 70. Mike may be _________for the picnic.
A. great B. sorry C. happy
D
根据上面的家谱,从下面方框中选择词的适当形式填空,补全短文。每空一词。(每小题1分,共10分)
two, family, mother, father, sister, parent, brother, daughter, Tom, Jean
Look at my 71 tree, please. I am Mike. I’m from the U.S.A.. I have a big happy family. My wife(妻子) 72 is a nurse. We have 73 kids. 74 is our son and Joy is our 75 . They study at No.1 High School. My father’s name is Bill and my 76 name is Helen. My 77 are old. John is my 78 . He is a doctor. Kate is my wife’s 79 . She is a worker. My wife’s mother’s name is Emma. My wife’s 80 name is Peter. They’re old, too. They don’t go to work and they are often at home.
71. ________ 72. ________ 73. ________74. __________75. ___________
76. ________ 77. _________78. ________79. _________ 80. ___________
五. 补全对话 :根据对话内容和上下文,用适当句子或短语补全对话,使对话完整通顺。(每句2分,共5分)
A: Hello! What’s your name, please?
B: My name is Bill
A: 81 ?
B: I’m from Canada.
A: 82 ?
B: Yes, I do. But my Chinese isn’t good.
83 ?
A: No problem. Do you often speak Chinese after class ?
B: 84 .
A: That’s good. 85 ?
B: No, I don’t. Can you help me find one ?
A: OK. A pen pal is good for your Chinese study.
六.书面表达。(15分)
请你以David的身份给May写一封信,介绍你自己和你家人的情况。你可以谈谈他们的工作和他们所喜欢的食品。信的开头和末尾已经给出。所给提示词都要用上。
提示词:family, happy, teacher,fish, doctor,chicken,student, grades, milk, vegetables
要求:
1. 书写规范,卷面整洁,语句通顺。
2. 所给提示词都要用上。
3. 60个词左右(不包括所给开头和结尾的词)。
Dear May,
I’m David. I’m from England.
Yours,
期末考试试卷答案 篇7
1 资料与方法
1.1 一般资料
(1) 学生情况:我校五年制高职护生为初中毕业中考后统一录取。2010级高职护生170名, 女生167名, 男生3名。 (2) 教材及教学方式:教材采用科学出版社出版的全国卫生职业院校规划教材《护理技术》第2版。理论教学152学时, 实践教学152学时, 总计304学时。本课程安排在第四学年。
1.2 方法
遵循教考分离的原则, 试卷由教务科从题库抽题组成, 满分100分, 共69题, 各题型所占比例见表1。本次考试为闭卷考试, 在课程完成后一周左右进行。依据统一评卷标准, 客观题采用流水方式评卷, 主观题按得分点每一题由一人评卷, 以减少人为评分差异, 最后由专人负责查阅试卷, 进一步保证评卷的公平公正。采用SPSS 11.0统计软件包进行数据处理和统计分析。
2 结果
2.1 护生考试成绩及分布 (见表2)
护生成绩为34~93分, 平均分为72.16分, 标准差为10.43分, 全距为59.00分, 多为65~85分, 基本呈正态分布。
2.2 试卷分析
以难度和区分度作为评价试卷质量的主要指标[4]。
2.2.1 难度 (P)
难度是指试题的难易程度, 一般用试题得分率或答对率来表示。本次研究用通过率计算客观题难度 (某题答对人数/总人数) , 用平均得分率计算主观题难度 (某题平均得分/标准分) 。本套试卷难度为0.7, 各题的难度见表3。
2.2.2 区分度 (D)
区分度是试题对不同学生学业成绩的鉴别程度。如果一个题目的测试结果使水平高的学生答对得高分, 而使水平低的考生答错得低分, 则其区分度很强。区分度是鉴定题目有效性的指标。0.15≤D≤0.30为试题良好, D<0.15为不宜采用, D>0.30为试题优秀。本次研究采用得分率求差法计算每道题目的区分度。本套试卷的区分度为0.61, 各题区分度见表4。
2.3 护生各种题型的失分情况 (见表5)
3 讨论
3.1 考试题型和成绩
本套试卷客观题与主观题的题量比为7∶1, 分值比为3∶2, 客观题题型只有单项选择。为了考查护生对基本概念、重点知识的掌握情况, 使其适应护士执业资格考试, 自2011年护士执业资格考试改革以后, 我校基础护理学期末考试中加大了单项选择题的题量, 题型与护士执业资格考试相仿, 主要使用A2、A3、A4型题, 辅以少量考查概念的A1型题。但并没有完全采用客观题, 保留了一定比例的主观题型。主要目的是为了考查学生归纳总结、综合分析复杂问题的能力。此次考试护生成绩为34~93分, 全距为59.00分, 65~85分者占73.53%, 及格率为92.35%, 平均分为72.16分, 这表明绝大多数护生基本掌握教学重点, 达到教学目标, 完成教学任务。90分以上1人, 50分以下7人, 最低分34分, 表明少部分护生知识掌握不牢固, 提示教师要关注学习积极性不高、学习方法不当的护生。可以利用课后辅导或增加辅导资料、课后练习题等方式激发护生学习积极性, 提高成绩。
3.2 试卷质量
合理的难度分配是一套高质量试卷的重要方面[2]。本套试卷难度为0.7, 难度适中, 其中难度<0.4的较难试题8题, 占11.59%, 为单项选择题 (7题) 和填空题 (1题) , 分别占单项选择题的11.67%和填空题的50.00%;难度0.4~0.7的适中试题22题, 占31.88%, 为单项选择题 (18题) 、名词解释 (3题) 和填空题 (1题) , 分别占单项选择题的30.00%、名词解释的100.00%和填空题的50.00%;难度>0.7的容易试题39题, 占56.52%, 为单项选择题 (35题) 、简答题 (3题) 和病例分析题 (1题) , 分别占单项选择题的58.33%、简答题的100.00%和病例分析题的100.00%。区分度是评价试卷质量的另一重要指标。本套试卷区分度为0.61, 区分度优, 能较好区分护生实际水平。其中, 区分度≥0.40的50题, 占72.46%;区分度0.30~0.39的5题, 占7.25%;区分度0.20~0.29的6题, 占8.70%;区分度<0.20的8题, 占11.59%。
3.3 护生失分情况
此次考试护生失分率由高到低依次为名词解释、填空题、单项选择题、病例分析题和简答题, 总失分率30.59%。病例分析题和简答题失分率低, 可能与护生复习时注重大题的背诵有关。基础护理学中的简答题一般是条款清楚的大知识点, 护生容易记忆, 不易失分。病例分析题考点突出, 混淆护生判断的障碍设置不明显, 护生感觉比较简单。教师将改革后历年护士执业资格考试真题以及大量辅导资料中基础护理学部分的知识点根据教材章节建立题库, 并以辅导资料的形式让护生进行练习, 这是单项选择题失分率较低的主要原因。单项选择题失分集中在A2型题, 说明护生解决临床实际问题的能力有待提高。其中“标本采集”和“急救”章节内容失分率最高, 标本采集知识4道题中两道题失分率高, 分别为60.00%、90.00%;急救知识5道题中有3道题失分率高达67.06%、86.57%和91.76%。表明护生基本没有掌握以上知识点, 提示教师应加强此章内容的讲解。名词解释和填空题失分率高, 说明护生对基本知识点记忆不够准确, 对小知识点不会归纳总结。
3.4 存在的问题
3.4.1 对基本知识点记忆不够准确
护生对基本知识点记忆不够准确造成某些知识点混淆;对基本概念理解得不够准确造成概念不清, 这是名词解释和填空题失分的重要原因。
3.4.2 综合分析问题能力较差
单项选择题中A2型题的题干都会联系临床实际, 要求护生综合分析题干后作出判断。护生会出现错误理解甚至无法理解题干内容而答错, 这主要是因为其综合分析能力较差。
3.4.3 某些内容讲授不够细致深入
教师是影响护生学习的因素之一。“标本采集”章节知识点多而细, 并且目前临床发展变化快, 教师如果只是照本宣科, 学生很难理解其重要性。“急救”章节知识点多而复杂, 与健康评估、外科等密切相关, 护生往往感到难以理解也不容易记忆, 教师如果没有丰富的临床经验和授课技巧, 很难激发护生的听课兴趣, 更不能将知识点讲清讲透。
3.5 建议
为提高基础护理学教学质量, 笔者提出以下建议: (1) 加强集体备课。备课内容要细、要深, 明确教学的重点、难点, 统一教师认识。年轻教师应虚心向有经验的老教师请教有关突出重点、突破难点的方法, 提高自身教学水平。 (2) 紧扣临床。建立一支懂医学、懂护理、懂人文、肯钻研, 热爱护理专业并有一定临床护理经验的“双师型”教师队伍是目前高职护理学教学改革中需解决的问题[5]。我校根据基础护理教研室教师数量和每学期教学工作量, 有计划、有步骤地安排教师进入临床学习, 丰富临床经验, 拓宽临床视野, 培养“双师型”人才。 (3) 不断完善题库, 提高试题质量。每学期期末考试结束后都应对试卷进行分析, 区分并淘汰区分度差的试题。可适当调整难度分配, 例如, 加大简答题和病例分析题的难度, 以达到考查学生综合分析问题能力的目的。
参考文献
[1]殷磊, 于艳秋.护理学基础[M].北京:人民卫生出版社, 2000.
[2]廖灯彬, 宁宁.外科护理学期末考试试卷分析与评价[J].护理学杂志:外科版, 2009, 24 (20) :73-75.
[3]张旭东, 张双娥.试卷分析在学校教学管理中作用的思考[J].山西医科大学学报:基础医学教育版, 2009, 11 (2) :252-253.
[4]张凤, 张巧俊.神经病学试卷质量分析与评价[J].西北医学教育, 2003, 11 (4) :329-331.
【期末考试试卷答案】推荐阅读:
初二下册物理期末考试试卷答案20107-03
《物权法》期末考试试卷及答案10-10
vfp期末考试卷a及答案02-25
高三第一学期语文期末考试试卷答案03-07
数字电子技术基础期末考试试卷及 答案04-25
六年级语文第二学期期末考试试卷答案06-10
五年级语文下册期末考试卷和答案范文10-24
国际贸易理论与实务期末考试试卷及答案02-22