沪科版七年级数学总结

2025-02-21|版权声明|我要投稿

沪科版七年级数学总结(通用8篇)

沪科版七年级数学总结 篇1

七年级是为数学打基础的阶段,下面就是小编为您收集整理的沪科版七年级数学课件的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!

沪科版七年级数学课件

教学目标

知识与技能:

1.说出有理数的意义。

2.把给出的有理数按要求分类。

3.说出数0在有理数分类中的作用。

过程与方法:

树立对数分类讨论的观点并发展正确地进行分类的能力。

情感、态度与价值观:

通过有理数的分类,感受数学对称美。

重点、难点、疑点及解决办法

1.重点:有理数包括哪些数。

2.难点:有理数的分类。

3.疑点:明确有理数分类标准。

教具准备

投影仪、自制胶片。

教学设计思路

这节课主要教学内容是有理数的分类,讲解时要启发引导,充分体现学生为主体,注重学生参与意识。

教学过程设计

1、什么是有理数?

(1)找区别:

结合教科书P9思考1提出问题1:

随着正负数的引入,我们学习的数的范围在不断的扩大.让学生分组讨论“现在你学习了哪些类型的数?每种类型各举一例.”看哪个组找的最全面.教师组织学生交流各组讨论的结果.让学生说出各类数的名称.教师进一步引导学生归纳出种不同类型的数:正整数、零、负整数、正分数、负分数.学生讨论分析教科书P9思考2:我们以前学习过的小数实际上是正分数.(2)找联系:

让学生根据数的特征,找出不同“数集”之间的内在联系.进而归纳出整数、分数、有理数的概念.正整数

正整数、零、负整数统称整数;正分数、0

负整数 负分数统称分数.我们规定,把上面两种数 正分数 合在一起,就成了有理数,既整数和分数统

负分数

分数 称有理数.2、有理数的分类

(1)按定义分类

强调零的特殊性.(0既不是正整数也不是负整数,是整数)

(2)按正负性分类

问题:有理数可以分成正数和负数两类吗?为什么?

学生分组讨论,教师引导学生交流讨论结果.要让学生明确:

① 0既不是正数也不是负数,0是有理数,是整数.② 还存在一些正数和负数是我们没有学习的,但它们不是有理数.(如圆周率π)

③ 我们把有理数中的正数部分叫做正有理数,负数部分叫做负有理数.④ 我们把有理数中的正数部分包括正整数、正分数.负数部分包括负整数、负分数.有理数 0

负有理数 正整数 正分数 负整数

负分数

应使学生了解分类的标准不一样时,分类的结果也不同.所以分类要明确标准,使分类后,每一个参加分类的对象属于其中的一类,而且也只能属于这一类(即要不重不漏).三、例题讲解

补充例1:将下列各数填在相应的集合中

13.55 8.5,6,5,0,200,2,0.1,20%2.35,0.01,86,45810

2(1)正整数集合{}(2)负正数集合{}

(3)正分数集合{}(4)负分数集合{}

(5)整数集合 {}(6)分数集合 {}

(7)正有理数集合{ }(8)负有理数集合{ }

本题关键是要按有理数的分类方法将各数对号入座,填入时要做到不重不漏,最后要加上省略号.解本题关键是掌握有理数的分类.1.整数:正整数、0、负整数统称为整数.2.分数:正分数、负分数统称为分数.3.有理数:正数分数统称为有理数.根据实际情况还可渗透以下几个数集,强化对0的理解.4.非负数:正数和零统称为非负数.5.非正数;负数和零统称为非正数.6.非负整数:正整数和零统称为非负整数.7.非正整数:负整数和零统称为非正整数.同时要注意:有些数需要化简后,再判断.如-200%

在此练习中出现了集合的概念,可对学生作简单的说明:把一些数放在一起,就做成了一个数的集合,简称数集.所有有理数组成的数集叫做有理数集,所有分数组成的数集叫做分数集,所有正数组成的数集叫做正数集,所有整数组成的数集叫做整数集.数集一般用圆圈或大括号表示,填上所给的数后,最后要加上省略号.补充例2: 判断对错

(1)一个有理数,不是整数就是分数.(2)一个有理数,不是正数就是负数.(3)0是最小的有理数.(4)0,1/4,2004,1.25是非负数.(5)正整数、负整数统称为整数.(6)自然数一定是正数.(7)有理数包括正数、0、负数.分析:⑴对 ⑵错⑶错 ⑷对 ⑸错(注意零)⑹错(零是自然数)⑺错(正数负数不都是有理数)

补充例3 :选择题

1.负整数是指()

A是整数,但不是正数.B是整数,而且是非负数.C是整数,而且是负数.D是整数,但不包括0.2.下列说法错误的是()

① 自然数是正整数.② 不存在最小的正数,也不存在最大的正数.③ 0是最小的整数.④ 整数不是正的就是负的.A 1B 2 C 3D4

3.下面两个集合有公共部分的是()

A正数集合与负数集合B整数集合与分数集合C整数集合与负数集合 D非负数数集合与负分数集合答案:1.C;2.C(自然数是正整数和0,负整数还要比零小,整数还有0);

3.C(整数中包含负整数).通过解题,进一步加深对有理数分类及各类数集概念的理解,让学生明确各类数集之间的区别与联系.

沪科版七年级数学的教学计划 篇2

通过七年级上学期的学习,学生在用字母代替数的数学计算、理解和综合应用等方面都得到了一定的发展,对图形有初步的感知,对数据统计和统计图形的认识有进一步的提高,通过数与代数,空间与图形和统计与概率的学习,学生正处于形象思维向逻辑抽象思维的转变。从上册数学期末考试成绩来看,本班优秀率达到36%,基本达到预期目标,但及格率只达到 60% 多,与预期尚有一定的差距。总体上来看,仅管绝大多数学生学习很努力,也掌握了一定的学习数学的方法和技巧,但基础知识的不扎实成为制约他们学习的瓶颈,造成班级发展不平衡,两极分化现象严重。

二、教育教学指导思想

坚持党的__大教育方针,以《初中数学新课程标准》为基准,将新课程改革落到实处。以提高学生的基础知识和基本技能为根本任务,制定切实可行的教学计划,重点培养学生创新思维和应用数学的能力。通过本学期的数学教学,进一步培养学生学习数学的兴趣,激发其求知欲望。本学期以新课程理念指导教研工作,紧紧围绕课程实施中的基本问题。深入而全面展开教学研究。总结课程实施过程中形成的经验,与教师共同探讨,共同寻找解决问题的方法,提升各自的研究水平和能力,努力实现三维目标。

三、本学期教学的主要任务和要求

本期教材任务为完成沪教版七年级下数学教科书教材的数学五章节内容的教学,并进行一次学区联考和一次期末统考本期教材任务为完成沪科版七年级下数学“实数”、“一元一次不等式与不等式组”、“整式乘除与因式分解”、“分式”、“相交线、平行线与平移”、“频数分布”的章节内容教学。

四、教材内容的重点和难点分析

第六章实数这部分的内容是七—九年级“数与代数”部分的重要内容,是在有理数之后,对数系的又一次扩展,是今后学习函数、方程、不等式等知识的基础。

第七章一元一次不等式与不等式组是在学生掌握了有理数的大小比较、等式及其性质、一元一次方程和不等式组等知识的基础上进行的。不等式的概念和性质、一元一次不等式及不等式组是最基本的内容,对它的学习可为后续不等式知识的学习打下基础。

第八章重点是整式的乘除法和因式分解,特别是作为乘、除运算基础的是幂的运算。

第九章分式中分式的基本性质是方式乘除法运算中约分的依据,也是进行异分母分式加减法运算中通分的依据,因此分式的基本性质是本章学习的关键。

第十章学习重点是垂直概念及其性质1,平行线的判定和性质1,平移及其性质,难点是对垂直、平行概念及性质的理解和应用。

沪科版七年级数学总结 篇3

一、教学目标:

1、知识与技能:让学生经历代数式概念的产生过程,了解代数式的概念。使学生会用代数式表示简单的数量关系,并能运用代数式这一数学模型去表示和解释简单实际问题中的数量关系。

2、过程与方法:通过创设实际背景和引用符号,经历观察、体验、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识。

3、情感态度、价值观:让学生感知数学与生活的关系,知道在现实生活中处处都有数学问题,处处都有需要用数学去解决的问题;知道数学来源于生活,运用于生活,在解决学习、生活、生产中各种数学问题的过程中得到完善和发展并体现其存在的价值。进而引导学生关注生活、热爱生活,并学会用课堂上学到的数学知识去解决生活中的数学问题。

二、教学重难点

重点:代数式的概念和列代数式。

难点:根据现实问题中的数量关系正确列出代数式;从不同的角度给代数式赋予实际意义。三:教学准备: 多媒体课件

四:教学方法:师生合作、精讲点拨、启发式教学 五:教学过程:

(一)激趣引入

1.长方形的长是a,宽是b ,周长是多少?面积呢? 2.球的体积怎么算?

3.圆的半径用r表示,周长和面积各是多少? 4.加法交换律,结合律? 2(a+b),ab,a+b=b+a

等 ,象这样的式子我们并不陌生,今天我们送给它一个名字——代数式(师板书课题:2 代数式).

(二)、合作交流 探究新知

1、探究概念

师:观察这些式子,你会发现它们有什么特征?

(板书):用加、减、乘、除及乘方等运算符号把数或表示数的字母连接而成的式子,叫做代数式。

先判别下列哪些是代数式?再说说你对代数式构成的看法4x.12a222 ① ②r ③32 ④ab ⑤abba ⑥y ⑦5a3a⑧5x6

2、代数式书写规则:

(1)在数字与字母的乘积关系中通常省略乘号,数字写在字母的前面。

2a(2)字母与字母相乘,相同字母写成幂的形式;(如:a×a写成)

(3)数字与数字相乘,“×”号不能省略;(4)带分数写成假分数。(5)代数式没有除号,通常写成分数形式。(6)如果有单位,加减运算时代数式加括号。

即时练习:判断下列代数式书写是否规范

131abab2x 3ab x4 3 2ab3xy 2 mmm 3n2个

3、知识应用

在今后的学习中,为解决问题常需要把问题中的一些数量关系用代数式表示出来,也就是列代数式,下面我们一起来研究:(出示例1)例1:设甲数为a,乙数为b,用代数式表示:

(1)甲数的相反数;

(2)甲数的3倍与乙数的一半的差;

(3)甲、乙两数和的平方;

(4)甲与乙两数平方的和。巩固练习:

(1)、甲数比乙数的2倍多4,设乙数为x,则甲数为_________。

(2)、甲数除以乙数得商为10,设甲数为y,则乙数为________。(3)a的相反数用代数式表示应为_________。小结:列代数式应注意两点:

(一)、要正确理解问题中的数量关系,特别 要弄清问题中的和、差、积、商与大、小、多、少、倍、几分之几等词语的意义。

(二)、要弄清楚问题中的运算顺序

4、生活中的代数式

师:代数式与我们的生活息息相关,让我们一起去看看小明同学在国庆长假中遇到了什么问题

情景:国庆长假小明和妈妈一起来的淮河路步行街,遇到了以下问题

(1)小明今年x岁,妈妈的年龄是小明的3倍,2年后小明的年龄是_____岁,妈妈的年龄是___岁。

(2)淮河路某商店上月收入x元,本月收入比上月的2倍还多5万元,该商店本月收入为__________ 元。

(3)一件a元的衬衫,降价10%,价格为__________元。

(4)苹果每千克售价p元,买5kg以上9折优惠,现买15kg,应付___元。(5)m支铅笔售价10元,n支这种铅笔的售价是________元。

(6)超市里矿泉水进价每瓶为a元,零售时要加价20%,它的零售价是____元。在超市里妈妈还帮小明买了圆珠笔和练习簿 说出下列代数式的意义:

(1)圆珠笔每支售价a元,练习簿每本售价b元,那么3a4b表示什么?(2)长方形的练习簿长、宽分别为a,b,那么a(b1)表示什么?

小明高高兴兴地和妈妈回家了。

(四)、发展思维 应用拓展

代数式还能帮我们解决生活中更负责的问题。挑战一下(出示)例3代数式表示:

(1)一桶含盐p%的盐水的质量为m kg,则这桶盐水中水的质量为多少?(2)含盐10%的盐水800g,在其中加入a g后,求盐水含盐的百分率。(3)把a本书分给若干名学生,若每人5本,尚余3本,求学生数;

(4)2011年6月30日京沪高铁客运专线正式开通,从北京到上海,高铁列车比动车组列车运行时间缩短了约3 h,假设从北京到上海列车运行全程为S km,动车组列车的平均速度为v km/h,求高铁列车运行全程所需时间。

(学生小组讨论,教师总结。)

(五)、课堂小结:

今天老师和同学们一起共同学习了代数式,说说你的感受,让大家一起来分享,怎么样?

1、代数式的概念

2、列代数式的要求

3、代数式的应用

八年级数学下册教学计划沪科版 篇4

八年级数学下册教学计划篇一

一 指导思想:

本学期数学组教研工作将围绕我区开展的赛马场比活动,以课程改革实验为主线,以提高初中数学教学优秀率、合格率为重点,认真搞好教学研究、扎实有效开展教研活动,促进教师、学生共同发展.。切实加强教研组建设,提高课堂教学效率。总结经验,发挥优势,改进不足,聚集全组教师的工作力和创造力,努力使数学教研组在有朝气、有创新精神、团结奋进的基础上焕发出新的生机与活力。因此特结合本组的实际,制定本学期的教研组工作计划。

二.本学期主要工作:

(一)认真学习新课程标准,提高教师自身素质。

1.按教务处统一部署,开学初组织本组教师认真学习数学教学的新课程标准。组织学科教师围绕新教材认真讨论,将学习所得用以指导教学工作。

2.在理论学习的同时,坚持业务学习,组织全组教师根据各年级教材特点,讨论教材教法,相互交流经验互相学习,互相取长补短,共同提高。

(二)加强教研组的常规管理。

教研组长经常深入备课组,了解、检查本组的教学工作情况。开学初,期中以及期末对各教师的备课、听课、批改作业的情况进行检查一次,以便及时发现问题、解决问题。

(三)提高教研质量, 切实开展校本教研。

以学校教研组、备课组为单位,切实组织好常规教研,理论学习,说、讲、评要有实效,各备课组要发挥备课组在教学活动中的作用,加强常规教学的研究。坚持集体备课,充分发挥教师的群体智慧,让每个教师的聪明才智融汇到教案和教学中。在常规教学中使全组达到统一进度,集体备课,根据各班不同情况编写教案,布置练习,统一考试。坚持每周一次的备课教研,重点研究教材,教法,备课,练习,考试和评点。按学校要求,每次教研会,须有主讲并做好会议记录,以存资料,以备检查。提倡相互听课,相互学习,相互帮助。达到以老带新,以能带新,共同提高的目的。听课节数按学校要求。每位教师要上一堂公开课,听课后认真评议,就教学设计、教学方法、教学手段的使用,教学思想的渗透提出反思。

(四)加强资料建设.各备课组要编写或选用符合我校实际,课堂适应,学生欢迎的上课资料和训练检测资料。初三年级要完成初三全年大部份教学任务以及第一轮、第二轮复习资料的准备工作。各年级单元考试、综合考试要求既针对

中考,又符合学生实际。以学生为中心,以考纲为重点,以培养学生能力为前提,以适应中考变化为目的。要摸索出适应学生实际的小单元检测资料,电脑备份,以便选用,资源共享。

(五)开展课题研究

不断地对学生进行正确的学习态度和科学的学习方法的教育。学习态度的好坏,关系到学习是否主动,是否刻苦,要变“要我学”为“我要学”。而学习方法的好坏,关系到学习是否有成效,教师既要向学生教方法,又要指导学生自己总结积累方法。要把立足点放在让学生学会“独立思考”、学会“探究学习”中来。要注意学生数学素质的培养。在教改方向上,初三年级主要从提高学生的数学素养和应试能力上进行教学研究和教学改革,初一年级要做好小学、初中教学的衔接,重点是把学生尽快地引上正轨,同时进行培养学生自学能力的实验。初二年级要以培养优生和缩小后进面作为教改的突破口,关注农民工子女教育问题,用鼓励去激发学生的学习热情,用赞赏点燃学生智慧的火花,鼓励各位教师根据所教学生的特点和教学实际,确立自己的教改课题。

(六)继续开展培优辅差第二课堂活动

对于较好的年段三分之一的学生,组织每周一次的提高辅导,定员、定时、定内容。对于学困生,各班根据每次小单元考情况,及时对学困生进行补缺漏,细水长流。各年段组织一次竟赛活动,以激发优生的学习热情。

总之我们教研组要多进行合作交流,发挥整体效能。教师间要建立积极互助的伙伴关系,加强在教学活动中的参与和合作,分享教学资源,形成教研合力,以尽快提高教研组整体教学水平。

八年级数学下册教学计划篇二

一、工作的重点和特色

1、努力建设一支勤奋好学的优秀备课组。

2、努力探索自主高效课堂教学模式。

3、加强集体备课,力争每一节都成为集体智慧结晶。

4、积极推进教育技术运用,探索信息技术与数学学科的整合5、积极开展备课组内听课评课活动。

二、工作目标

1.加强学习自主高效课堂所倡导的教学理念和教学策略,积极投身于课堂教学模式改革之中。,努力构建开放的、富有活力的课堂教学,倡导自主学习为主,主张探究式、体验式的学习方法,形成良好的数学学习氛围。

2.以学校“为学生的终身发展负责”的办学理念为宗旨,着力提升课堂效能,大力加强科学研究,促进教师业务水平的提高和学生学习能力的提升。

3.构建平等合作的师生关系,营造宽松、和谐的课堂氛围。引导学生多角度、多元化地思考问题,鼓励学生敢于向教师、向教材挑战,充分张扬自己的个性。

4.做好教学常规工作,力争数学学科合格率、优秀率在期中、期末考试中有好的成绩。重视“培优补差”工作,充分发挥优生的特长,激发潜能生的学习兴趣。

5.努力使备课组活动常规化、制度化,认真落实 “集体备课、磨课、听课、评课、反思”常态化,争取做到定时间、定地点、定内容、定中心发言人;加强对平时教学工作的交流、研讨,提高全组数学教师的教学水平。

三、具体的工作措施

1.在教师方面:

(1)积极开展备课制度

①时间:每周三上午第一节课的时间。

②地点: 八年级晚修课室(东楼一楼)。

③要求:每位发言人要认真钻研新材,做到六备:备课标、备教材、备学生、备教法、备教具、备习题;注意进行教材的单元分析,拟定周课教学计划。全体组员要认真参与,从不同角度全方位的研究各种情况,分析学情,探讨教法。同层次班级统一进度,统一习题,统一检测。

④“随时集体备课战略”:要多到办公室钻研教材,发挥集体优势、集体的智慧。加强对教材、教学大纲、考试说明、中考的研究,开展组内“说课、上课、评课”。

⑤备课组具体活动安排:

(2)教学基本功和艺术

① 从教学常规入手,精益求精,努力提高教学基本功。

②“内强外引”措施,努力用好我校的先进的教学设备这一宝贵的资源。同时通过多种手段借鉴外地名师资源,努力提升本组教师课堂教学能力。

③大兴学习之风,增强集体实力,整个备课组要多学习本校其它备课组有特色的课堂教学艺术,同时尽量多互相听课,特别是本校名师、骨干教师示范课。

(3)认真学习新理论,全面提升教师基本功。

2.在学生方面

(1)狠抓学生学习习惯的培养

①“上课专心听讲,课后及时复习,课下抓紧订正,课余适量练习”,任课老师在本学期要反复习强调这四点。要做到落实到位不放松。

②课堂做笔记,课外做错题集。鼓励学生巩固发扬这一良好的习惯。

③“量变到质变”:训练量的积累以求实现质的飞跃。小题训练,分层作业要常抓不懈。

(2)认真做好提优补差工作,利用课余时间,大力开展薄弱生辅导。老师要多关心薄弱生,通过分层作业,让薄弱生激发兴趣,多投入时间到学习中。

总之,我们八年级数学备课组将全力以赴,不断探索。八年级是关键的一年,我们会尽最大的努力让学生在八年级的学习生活中不断进步,达到知识与能力的双丰收!

八年级数学下册教学计划篇三

一、指导思想

全面贯彻党的教育方针,以提高民族素质为宗旨,以培养创新精神和实践能力为重点,努力实施新课改。学习新课程新课改经验,深化课堂教学改革实践,提高学生的数学素养,让所有的学生学到有价值的富有挑战的数学,让所有的学生学会数学的思考问题,并能积极的参与数学活动,进行自主探索。

二、学情分析

本期我继续担任八年级169班数学教学工作。通过上学期的学习,学生的自学理解能力,自主探究能力得到发展与培养,逻辑思维与逻辑推理能力得到发展与培养,学生由形象思维向抽象思维转变,抽象思维得到较好的发展,但部分学生没有达到应有水平,学生课外自主拓展知识的能力几乎没有,没有形成对数学学习的浓厚兴趣,不能自行拓展与加深自己的知识面;通过教育与培养,绝大不分学生能够认真对待每次作业并及时纠正作业中的错误,课堂上能专心致志的进行学习与思考,学生的学习兴趣得到了激发和进一步的发展,课堂整体表现较为活跃,积极开动脑筋,乐于合作学习和善于分享交流在学习中的发现与体会,喜欢动手实践。本学期将继续促进学生自主学习,让学生亲身参与活动,进行探索与发现,以自身的体验获取知识与技能;体现现代信息社会的发展要求,通过各种教学手段帮助学生理解概念,操作运算,扩展思路。

三、教材分析

1、教学内容的引入,采取从实际问题情境入手的方式,贴近学生的生活实际,选择具有现实背景的素材,建立数学模型,使学生通过解决问题的过程,获取数学概念,掌握解决问题的技能与方法。

2、教材内容的呈现,创设学生自主探究的学习情境和机会,适当编排探索性和开放性的问题,发挥学生的主动性,给学生留有充分的时间与空间,自主探索实践,促进学生思维能力、创造能力的培养与提高,为学生的终身可持续发展奠定良好的基础。

3、教材内容的编写坚持把握《课程标准》,同时又具有弹性,以满足高程度学生的需要,使得不同水平的学生都得到发展。

4、教材内容的叙述,适当介绍数学内容的背景知识与数学史料等,将背景材料与数学内容融为一体,激发学生学习数学的兴趣,体现数学的文化价值。

四、教学资源

联系学生的现实生活,运用学生关注和感兴趣的生活实例作为认知的材料,激发学生的求知欲,使学生感受到数学就在自己身边,加强学生对数学应用和实际问题的解决。

五、教学目标

1、理解因式分解的含义及它与整式乘法的区别与联系;

2、掌握提公因式法和公式法,能准确熟练地把一些多项式用提公因式法或公式法分解;

3、了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除的运算;

4、能够依据具体问题的数量关系,列出简单的分式方程,体会方程是刻画现实世界的一个有效的数学模型;

5.会解简单的可化为一元一次方程的分式方程(方程中的分式不超过两个);

6、掌握并会灵活运用平行四边行及特殊平行四边形的定义、性质及判定;

7、会灵活运用平行四边形及特殊平行四边形的相关知识解决一些简单的实际问题;

8、掌握梯形及等腰梯形的定义、性质及判定,并会灵活运用;

9、理解并掌握三角形中位线、梯形中位线的定义及性质定理,并会应用它们解决一些计算及实际问题;

10、掌握多边形的内角和及外角和公式;

11、理解二次根式的概念,能够应用定义判断一个式子是否为二次根式;

12、理解二次根式的性质;

13、熟练掌握二次根式的运算;

14、初步认识概率的概念及用概率分析简单的事件;

15、体会数学里充满着观察、实践、猜想和探索的过程,掌握求概率的数学方法。

六、教学措施

1、认真作好教学六认真工作。把六认真工作作为提高教学质量和学生成绩的主要途径,认真研究教材,体会新课标理念、认真上课、认真辅导和批改作业、同时让学生认真学习;

2、引导学生积极参与知识的构建,营造民主、和谐、平等、学生自主探究、合作共享发现快乐的课堂、让学生体会学习的快乐;

3、通过实践探索,培养学生归纳推理能力和多种途径探求问题的解决方式;

4、培养学生良好的学习习惯,发展学生的非智力因素;

5、进行分层教育的探讨,让全体学生都得到充分的发展;

6、组织学生“结对学习”。

七.课时安排

第一章:因式分解 课时

第二章:分式 课时

第三章:四边形 课时

第四章:二次根式 课时

第五章:概率的概念 课时

八年级数学下册教学计划篇四

一、学生基本情况:

八年级五班总人数为33人,均为男生。其中彝族学生32人,占总人数的98%。从上期学生期末考试的情况来看,成绩在前面的基础上还有所倒退。对大部分学生来说,简单的基础知识还不能有效的掌握,成绩较差,在几何中,由于缺少三角形全等与勾股定理的相应知识,学生在推理上的思维训练有所缺陷,学生对四边形中的相应的数量关系缺少更深入的认识。对很多孩子来说,对几何有畏难情绪,相关知识学得不很透彻。在代数上现行的教材降低了孩子们在计算上的难度,对于一些较简单的计算题,讲解新课时,能又快又好的进行计算,但时间一长,学生又忘得快,根据以往的经验,学生在广泛的深入的理解基础上使知识在各个方面建立起有机的联系,是最不容易忘记的,但现在的要求中,学生在这方面还是有所缺失的。

在知识上学生对不等式、整式的乘法、公式、机会、平移与旋转、四边形的学习,对孩子们今后的学习,打下基础,也会这一学期孩子们在代数中无理数与实数的学习,对数的认识上一个台阶,函数的学习,比例与相似,也会使孩子们在数学的认识上来一个飞跃,前面的学习为这一期的学习打下了较好的基础。最令人担心的是班级中的差生的学习,无论如何要尽可能的使他们跟上班级体整体前进的步伐。在学习能力上,学生课外主动获取知识的能力有所进步,也要继续鼓励有条件的孩子拓宽自己的知识视野。使孩子们在这个初中阶段这个最重要的一年中还剩下一期的时间里能更上一层楼。

本学期中,学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,还要提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,本学期中,要抽出一定的时间给孩子们讲讲有关新概念几何,用面积来证题的相关知识,提升学生素质;在学习态度上,绝大部分学生上课不能主动投入到学习中去,多数学生对数学学习上的困难,使他们对数学处于一种放弃的心态,课堂作业,只有一半的学生能认真完成,另一半的学生需要教师督促,成为老师的牵挂对象。课堂家庭作业,学生完成的质量要大打折扣,学生的自觉性降低,学习风气淡化,是本学期要解决的一个问题;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,还需要加强,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

二、教材分析

本学期教学内容,共计五章,知识的前后联系,教材的德育因素,重、难点分析如下:

第十六章 分式 本章主要学习分式的概念和基本性质,掌握分式的约分和通分法则,结合分式的运算将指数的讨论范围扩大到全体整数,学会化为一元一次方程的分式方程并掌握这种方程的解法。教学中要学生充分去讨论与思考,归纳与总结,历经知识发展与运用过程中的坎坎坷坷,做到对概念的深刻掌握与运算的熟练进行,对一些要经常运用到的化简要在课堂让就要让孩子们掌握,不要寄希望于课外,否则会增加差生的人数。

第十七章 反比例函数 本章的主要内容是反比例函数的概念和图象,确定反比例函数的解析式。本章的重点是反比例函数的概念、图象和性质。其难点是对反比例函数及其图象的性质的理解和掌握。通过本章的学习掌握相关的知识,同时养成数形结合的思考形式和思考方法,代数式、方程、函数、图形、直角坐标系结合起来进行思考,互相解释、互相补充,对于整个中学数学的学习,愈往后,愈显出其重要性,通过本章的学习,要为数形结合能力打下良好的基础。培养学生的应用意识。这一章的学习对中等与中等偏下的孩子有一定的难度,主要是对知识的理解困难,对知识间的相互转换感到困难。解决这个问题的关键是要学生多画图、多思考,适当的放慢教学进度。对知识要达到熟练的转换的程度,并且要求在课堂上掌握这些知识。

第十八章 勾股定理 本章的主要内容是勾股定理及逆定理的概念。本章要使学生能运用勾股定理解决简单问题、用勾股定理的逆定理判定直角三角形。同时注重介绍数学文化。本章的重点是勾股定理及其证明,直角三角形的边角关系,解直角三角形(三角形边角关系的应用),难点是运用灵活运用勾股定理解决实际问题,对锐角三角函数的理解及其合理应用,解决实际问题。

第十九章 四边形 本章的主要内容是掌握各种四边形的概念、性质、判定及它们之间的关系并能应用相关知识进行证明和计算。本章的重点是平行四边形的定义、性质和判定。难点是平行四边形与各种特殊平行四边形之间的联系和区别。本章的教学内容联系比较紧密,研究问题的思路和方法也类似,推理论证的难度也不大,教学中要注意用“集合”的思想,分清四边形的从属关系,梳理它们的性质和判定方法。

第二十章 数据的分析 本章是在前面学习数据的描述的基础上的进一步学习。本章的主要内容是研究平均数、中位数、众数、极差、方差等统计量的统计意义,并能运用这些统计量分析数据的集中趋势和离散情况。教学中要合理使用计算器,发挥计算器在处理数据中的作用,使学生的学习重点集中在理解统计量的统计意义和体会统计思想上来。

三、本期教学任务:

通过本期的学习,在知识与技能上,学习分式的概念和性质,掌握分式的约分和通分;理解反比例函数的概念及判定,学会描画反比例函数的图象,会求反比例函数的解析式;会用勾股定理及逆定理;能分清四边形的从属关系,掌握它们的性质和判定方法;进一步理解平均数、中位数、众数等统计量的意义,能选择适当的统计量表示数据的集中趋势,会计算极差和方差。通过本学期的学习,学生在数学的认识与理解上应该要上一个台阶。在情感与态度上,通过本期的学习使学生认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物主义的熏陶,提高学生素质。

四、提高学科教育质量的主要措施:

1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。

3、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

4、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

5、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

五、全期教学进度安排:

章节   课时 教学起止时间

第十六章分式  13 第一周~第三周第十七章 反比例函数 8 第四周~第五周第十八章 勾股定理   7 第六周~第七周半期考试

沪科版七年级数学总结 篇5

教学目标

1、在具体情境中了解对顶角,能找出图形中的一个角的对顶角;

2、能运用“对顶角相等”进行简单的运算以及解决一些相关的实际问题.教学重难点

重点:

对顶角的概念,对顶角的性质与应用。

难点:

理解对顶角相等的性质的探究。

教学过程

一.创设情境

1、课件展示图片,让学生观察、感受生活中的相交线,平行线。

2、想一想:这组图片有什么共同特点?引出课题。

二、探究新知

1、画一画并尝试解决下列问题:

请同学们画出任意两条相交直线

两条相交直线形成的小于平角的角有几个?

两两相配共有几对角?

各对角存在怎样的位置关系呢?

2、相关概念

邻补角:如果两个角有一公共顶点,并且他们的两边分别互为反向延长线,那么这两个角叫做邻补角。(找出图中的所有邻补角)

对顶角:如果两个角有一个公共顶点,并且他们的两边分别互为反向延长线,那么这两个角叫做对顶角。(找出图中的所有对顶角)

3、想一想:判断下列各图中∠1和∠2是否为对顶角,并说明理由?

4、猜一猜:请你猜一猜,剪刀剪东西的过程中,∠AOC和∠BOD这两个角的大小保持怎样的关系?(师演示)

5、量一量:请你用量角器量一量你刚才画的∠AOC与∠BOD这两个角,看看你的猜想是否正确?

猜想:对顶角相等

6、证一证:对顶角的性质:对顶角相等.已知:直线AB与CD相交于点O

求证:∠1=∠3

∠2=∠4

证明:∵直线AB与CD相交于点O

∴∠1+∠2=180°

∠2+∠3=180°(平角的定义)

∴∠1=∠3

(同角的补角相等)

同理可得:∠2=∠4

三、巩固新知

例题1(略)

例题2(略)

例题3(略)

四、反思小结

五、布置作业:

1、课堂练习

P121--1,22、课后作业

沪科版七年级数学总结 篇6

整体设计

教学目标

知识与技能:

1.有理数的加减乘除混合运算。

2.在运算中合理使用运算律简化运算。过程与方法:

通过学生做题,来提高学生的灵活解题能力和运算技能。情感、态度与价值观:

通过师生共同的活动,来培养学生的应用意识,训练学生的思维。学情介绍

学生在学习了有理数加减乘除运算的基础上,综合起来按照运算顺序得出正确的结果,小学就学过四则运算,在此基础上探究有理数范围内的四则运算法则和运算律,对学生来说,运用运算律简化计算不是很容易掌握。内容分析

教材首先让学生在动手操作计算中,回顾小学学过的四则运算的顺序,然后在计算中让学生发现不同,归纳总结注意事项。教学重、难点

重点:按有理数的运算顺序,正确而合理地进行有理数混合运算。难点:按有理数的运算顺序,正确而合理地运用运算律简化计算。教学过程

一、新课引入 导语:小学就学过四则运算,在有理数范围内的四则运算有怎样的不同?今天我们就来研究有理数的四则运算。

二、讲授新课 【问题展示一】

计算:111135() 532114【合作探究】

生:黑板板演,其他同学在纸上完成。【问题解答】

教师点评学生解法,然后分析,本题含有减法,乘法和除法运算,还含有括号,解题既要考虑运算顺序,又要考虑运算法则。

【问题展示二】 计算:

3(1)8(0.5)(8);

54(2)(3)(1)(0.25);

653114(3)(81)

4315【合作探究】

生:黑板板演,其他同学在纸上完成。【问题解答】

教师点评学生解法,然后分析 【问题展示】

某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?

【合作探究】

学生独立完成,一学生板演,师生互评。【问题解答】

共盈利:1.53231.74(2.3)23.7(万元)。你能总结出有理数混合运算的步骤吗?

有理数混合运算的步骤:先乘除,后加减,有括号先算括号里的。

三、巩固新知 【小组讨论】

师:计算下列各题:

(1)(7)(5)90(15);

1(2)(345)();

551(3)(919)

24【自主解答】 计算:

13(1)(810.04)();

34157(2)[()()](60);

156121(3)(33)(0.25)(7)(4)(0.3);

3(4)1312513216(13)(301)

四、小结与评价

通过本课的探讨学习,你获得了哪些新的知识,你认为你有哪些方面的进步? 【回答要点】

(1)由于有除法可以转化为乘法,因此有理数的乘除混合运算可以统一为乘法运算。(2)有理数的乘除运算也可以按照顺序依次进行,但要注意乘除哪个在前面就先算哪种运算。

(3)含加、减、乘、除的算式,如没有括号,应先算乘除,后算加减,如有括号,先算 2

括号里的运算。

(4)乘法的交换律、结合律、分配律对有理数的运算都成立。

总的来说,三个优先:运算顺序优先考虑,运算结果的符号优先考虑,能运用运算律的优先考虑。

五、习题超市 1.选择:

(1)一个数的倒数等于它本身,那么这个数等于()A.1 B.1 C.0 D.1

(2)已知两有理数的商是负数,那么()A.它们的和是负数 B.它们的差是负数 C.它们的积是负数 D.它们的积是正数 2.计算:

(1)(14112136)36(15);

(2)511212(425)(113)(318);

(3)1922223(5);

(4)(2112)1.25

沪科版七年级数学总结 篇7

(沪科版)

本资料为woRD文档,请点击下载地址下载全文下载地址

件 2.2 整式加减

第1课时 合并同类项

.通过对具体情境中的问题的分析,探索同一个量的不同表现形式,体会合并同类项的合理性和可行性.

2.能运用分配律说明合并同类项的法则的正确性.

3.能熟练运用合并同类项的法则,化简多项式并求值.

重点

理解同类项的概念,并能正确进行同类项的合并.

难点

找准同类项;能熟练地进行同类项的合并.

一、复习旧知,导入新知

有理数可以进行加减计算,那么整式是否可以进行加减运算呢?又怎样化简呢?这就是我们今天要学习的内容:合并同类项.

二、自主合作,感受新知

回顾以前学的知识、阅读课文并结合生活实际,完成《探究在线•高效课堂》“预习导学”部分.

三、师生互动,理解新知

探究点一:同类项的概念

问题:甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余部分油漆,请根据课本P69图2-6中的尺寸,算出:

两面墙上油漆面积一共有多大?

较大一面墙比较小一面墙的油漆面积大多少?

解析:甲面墙原来的面积为2ab,乙面墙原来的面积为ab,挖去的圆形空洞面积为πr2,因此可先算两个长方形墙面的面积之和2ab+ab,再减去两个圆面积之和πr2+πr2.挖去的两个圆形空洞面积相等,较大一面墙比较小一面墙的油漆面积大多少,即是原来甲面墙的面积比乙面墙的面积大多少.

思考:2ab与ab,πr2与πr2有什么共同点?

由此可得同类项的定义,老师总结并板书.

像这样,所含字母都相同,并且相同字母的次数也相同的项叫做同类项.

注意:几个常数项也是同类项.

思考:判断同类项需要注意哪些条件呢?

判断同类项的两条标准:①各项中所含的字母相同;②相同字母的指数也相同.两者缺一不可.

想一想:x与y,a2b与ab2,-3pq与3pq,abc与ac,a2和a3是不是同类项?

学生自主交流.

探究点二:合并同类项

问题1:两个苹果加三个苹果等于几个苹果?一个梨子加两个梨子等于几个梨子?

结合上面的实例,把一个苹果看作a,把一个梨子看作b2,试一试,2a+3a=?,b2+2b2=?

根据乘法分配律,也可以得到:

4a3+3a3=a3=7a3;

a2b+2a2b=a2b=3a2b.结论:多项式中的同类项可以合并.

问题2:请同学们思考下列问题:

在多项式中,某两项具有什么特点时可以合并成一项?合并前后的系数有什么关系?字母和它的指数有无变化?

把具有以上特点的两项合并成一项时,我们实际上用了什么运算律?

结论:把多项式中几个同类项合并成一项的过程,叫做合并同类项.

合并同类项的法则是:同类项的系数相加,所得结果作为系数,字母和字母的次数不变.

说一说:多项式x3-4x2+7x2-2x-5与多项式x3+3x2-6x+4x-5相等吗?

通过合并同类项发现两个式子都等于x3+3x2-2x-5.得出:两个多项式分别经过合并同类项后,如果它们的对应项系数都相等,那么称这两个多项式相等.

四、应用迁移,运用新知

.同类项的识别

例1 指出下列各题的两项是不是同类项,如果不是,请说明理由.

-x2y与12x2y;23与-34;

2a3b2与3a2b3;13xyz与3xy.解析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,对各式进行判断即可.

解:是同类项,因为-x2y与12x2y都含有x和y,且x的指数都是2,y的指数都是1;

是同类项,因为23与-34都不含字母,为常数项.常数项都是同类项;

不是同类项,因为2a3b2与3a2b3中,a的指数分别是3和2,b的指数分别为2和3,所以不是同类项;

不是同类项,因为13xyz与3xy中所含字母不同,13xyz含有字母x、y、z,而3xy中含有字母x、y.所以不是同类项.

方法总结:判断几个单项式是否是同类项的条件:a.所含字母相同;b.相同字母的指数分别相同.同类项与系数无关,与字母的排列顺序无关.常数项都是同类项.

2.已知两个单项式是同类项,求字母指数的值

例2 若-5x2ym与xny是同类项,则m+n的值为

A.1

B.2

c.3

D.4

解析:因为-5x2ym和xny是同类项,所以n=2,m=1,m+n=1+2=3.方法总结:注意掌握同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同.

3.合并同类项

例3 见课本P70例1.例4 将下列各式合并同类项:

-x-x-x;

2x2y-3x2y+5x2y;

2a2-3ab+4b2-5ab-6b2;

-ab3+2a3b+3ab3-4a3b.解析:利用乘法的分配律,再根据合并同类项的法则进行计算.

解:-x-x-x=x=-3x;

2x2y-3x2y+5x2y=x2y=4x2y;

2a2-3ab+4b2-5ab-6b2

=2a2+b2+ab

=2a2-2b2-8ab;

-ab3+2a3b+3ab3-4a3b

=ab3+a3b

=2ab3-2a3b.方法总结:合并同类项的时候,为了不漏项,可用不同的符号标记不同的同类项.

4.化简求值

例5 见课本P70例2.例6 化简求值:2a2b-2ab+3-3a2b+4ab,其中a=-2,b=12.解析:先将原式合并同类项得到最简结果,再把a与b的值代入计算即可求出值.

解:2a2b-2ab+3-3a2b+4ab=a2b+ab+3=-a2b+2ab+3.当a=-2,b=12时,原式=-2×12+2××12+3=-1.方法总结:对多项式化简求值时,一般先化简,即先合并同类项,再代入值计算结果,在算式中代入负数时,要注意添加负号.

5.合并同类项的应用

例7 有一批货物,甲可以3天运完,乙可以6天运完,若这批货物共有x吨,甲乙合作运输一天后还有________吨没有运完.

解析:甲每天运货物的13,乙每天运货物的16,则两个合作运输一天后剩余的货物为x-13x-16x=12x,故填12x.方法总结:体现了数学在生活中的运用.解决问题的关键是读懂题意,找到所求的量之间的关系.

五、尝试练习,掌握新知

课本P71练习第1~4题.

《探究在线•高效课堂》“合作探究”部分.

六、课堂小结,梳理新知

通过本节课的学习,我们都学到了哪些数学知识和方法?

本节课学习了:

判断同类项的两条标准:①各项中所含的字母相同;②相同字母的指数也相同.

注意:同类项与系数无关;与字母的顺序无关.

合并同类项的方法:系数相加,字母及字母的指数不变.

七、深化练习,巩固新知

课本P76习题2.2第1、2题.

第2课时 去括号、添括号

.通过运用分配律,总结出去括号法则和添括号法则.

2.应用去括号法则,能按要求去括号.

3.应用添括号法则,能按要求正确添括号.

重点

熟练掌握去括号法则,正确去括号;能利用去括号法则解决简单的实际问题.

难点

当括号前面是“-”时的去括号问题.

一、创设情境,导入新知

周三下午,校图书馆内起初有a名同学.后来某年级组织学生阅读,第一批来了b位同学,第二批来了c位同学,则图书馆内一共有______位同学.

学生从不同角度寻求解决问题的办法,有两种答案:a+;a+b+c.讨论:1.以上两式之间有什么联系和区别?

学生答:联系:它们相等;区别:式有括号,式没有括号.

2.从式到式你能给它起个名字吗?从式到式呢?

学生口答,从而引入本节课题——去括号、添括号.

二、自主合作,感受新知

回顾以前学的知识、阅读课文并结合生活实际,完成《探究在线•高效课堂》“预习导学”部分.

三、师生互动,理解新知

探究点一:去括号

.去括号法则1

问题1:在上述问题中,两个答案是表示同一事物的结果,你认为它们相等吗?

从以上所得的结果,我们可以得到:a+=a+b+c,把该等式记为①.问题2:这个等式①大家熟悉吗?

学生答:这个是加法结合律.

问题3:观察等式①的左右两边,有什么规律?

教学策略:教师可提醒学生观察各项符号的变化和括号的变化.

问题4:你能用自己的语言来描述去括号法则吗?

学生回答,教师归纳,得出括号法则1:

如果括号前面是“+”号,去括号时括号内的各项都不改变符号.

2.去括号法则2

问题5:若图书馆内原有a位同学,后来有些同学因上课要离开,第一批走了b位同学,第二批又走了c位同学,你能用两种方式写出图书馆内剩下的同学数吗?=a-b-c,把该等式记为②)

问题6:观察等式②中,等号左边的多项式为什么会等于等号右边的多项式?这其中有没有什么规律?如果有,又是怎样的规律呢?

师:下面我们利用乘法对加法的分配律来验证②的正确性,下面请同学计算:a+.

生:a+=a+b+c=a-b-c.因为a+可以表示为a-,所以a-=a+=a-b-c,即a-=a-b-c.问题7:你能用自己的语言来描述去括号法则吗?

学生回答,教师归纳,得出括号法则2:

如果括号前面是“-”号,去括号时括号内的各项都改变符号.

探究点二:添括号

问题8:去括号:+;

-.

学生口答:

+=a+b-c;

-=-a-b+c.反过来则有:

a+b-c=+;

-a-b+c=-.

从中你发现了什么规律?

让学生探讨交流,然后类比去括号法则得出添括号法则:

所添括号前面是“+”号,括到括号内的各项都不改变符号;

所添括号前面是“-”号,括到括号内的各项都改变符号.

四、应用迁移,运用新知

.去括号后进行整式的化简

例1 见课本P72例3.例2 先去括号,后合并同类项:

x+[-x-2];

12a-+3;

2a-+3.

解析:去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项的法则进行计算,即系数相加作为系数,字母和字母的指数不变.

解:原式=x-x-2x+4y=-2x+4y;

原式=12a-a-23b2-32a+b2=-2a+b23;

原式=2a-5a+3b+6a-3b=3a.方法总结:解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.

2.与绝对值、数轴相结合,去括号进行代数式的化简

例3 有理数a、b、c在数轴上的位置如图所示,化简|a+c|+|a+b+c|-|a-b|+|b+c|.解析:根据数轴上的数,右边的数总是大于左边的数,即可确定a、b、c的符号,进而确定式子中绝对值内的式子的符号,根据正数的绝对值是本身,负数的绝对值是它的相反数,即可去掉绝对值符号,对式子进行化简.

解:由图可知a>0,b<0,c<0,|a|<|b|<|c|,∴a+c<0,a+b+c<0,a-b>0,b+c<0,∴原式=----=-3a-b-3c.方法总结:本题考查了利用数轴比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的符号,去掉绝对值符号.

3.添括号

例4 在括号内填入适当的项:

x2-x+1=x2-;

2x2-3x-1=2x2+;

-=a-.

解析:根据添括号法则,所添括号前的符号是“+”号还是“-”号,确定括到括号里的各项是全变号还是全不变号;先去括号,再根据添括号法则解答.

解:x-1;-3x-1;b+c-d.方法总结:在去括号或者添括号时,如果括号前是“-”号,那么括号内的各项都改变符号,注意不要漏项;可用去括号检验添括号是否正确.

五、尝试练习,掌握新知

课本P73练习第1~3题、P74练习第1~3题.

《探究在线•高效课堂》“合作探究”部分.

六、课堂小结,梳理新知

通过本节课的学习,我们都学到了哪些数学知识和方法?

本节课学习了:

.去括号法则:

如果括号前面是“+”号,去括号时括号内各项都不改变符号;

如果括号前面是“-”号,去括号时括号内的各项都改变符号.

2.添括号法则

所添括号前面是“+”号,括号内的各项都不改变符号;

所添括号前面是“-”号,括号内的各项都改变符号.

七、深化练习,巩固新知

课本P76习题2.2第4、5题.

第3课时 整式加减

.理解整式的加减实质就是去括号,合并同类项.

2.在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤.

3.能够正确地进行整式的加减运算.

重点

知道整式加减运算的法则,熟练进行整式的加减运算.

难点

能用整式加减运算解决实际问题.

一、创设情境,导入新知

七年级班分成三个小组,利用星期日参加社会公益活动.第一组有学生m名;第二组的学生人数比第一组学生人数的2倍少10;第三组的学生人数是第二组的一半.七年级班共有学生多少名?

提问:七年级班的学生总数是三个小组学生人数的和,大家一起说一下三个小组分别有多少人?

m,2m-10,和12.

引导学生活动:

让学生在练习本上列出求学生总数的式子,即m++12;

对该式进行化简得出班级的具体人数.给出准确答案,让同学们互相更正.

师提出问题:上述式子中,每个括号内的式子是什么式子?从而引出课题——整式加减,并板书课题.

二、自主合作,感受新知

回顾以前学的知识、阅读课文并结合生活实际,完成《探究在线•高效课堂》“预习导学”部分.

三、师生互动,理解新知

探究点一:整式的和差

问题1:求整式4-5x2+3x与-2x+7x2-3的差.

学生活动:学生在练习本上接着计算,一个学生接着老师板书继续完成以下过程.把不同层次学生的胶片显示在投影上,教师给予肯定或纠正.

解:-

=4-5x2+3x+2x-7x2+3

=++

=-12x2+5x+7.提出问题:在这几个整式相加时,为什么4-5x2+3x与-2x+7x2-3要加上括号.

注意:运算结果,常将多项式按某个字母的次数从大到小依次排列,这种排列叫做关于这个字母的降幂排列.如上面问题的结果为-12x2+5x+7,就是按x的降幂排列的.

问题2:说出下列单项式的和.

①-3x,-2x,-5x2,5x2;②-2n,3n2,-5n2.写出下列第一个式子减去第二个式子的差.

①3ab,-2ab;②-4x2,3x;③-5ax2,-4x2a.学生活动:题学生在练习本上完成后口答.题直接观察回答.

探究点二:整式的加减

问题3:计算:2b3+-2.

师提出问题:通过上面的学习,你发现进行整式的加减运算一般分几步?

学生活动:小组讨论,互相叙述,待讨论结果认为合理后,让学生举手回答.教师做简要归纳后,板书内容.

解:2b3+-2

=2b3+3ab2-a2b-2ab2-2b3

=+-a2b

=ab2-a2b.总结:整式的加减的步骤,一般分为:去括号;合并同类项.

四、应用迁移,运用新知

.升、降幂排列

例1 把多项式7x3y-2x4y3-5-x2y4+xy2按x的降幂排列是______,按y的升幂排列是______.

解析:解题时要注意看清题目要求,注意常数项的位置.所填答案为-2x4y3+7x3y-x2y4+xy2-5;-5+7x3y+xy2-2x4y3-x2y4.方法总结:解决升幂、降幂问题时,要注意交换多项式中各项位置时连同每项的符号也一起交换.

2.整式的化简

例2 见课本P74例4.例3 化简:3-2.

解析:先运用去括号法则去括号,然后合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.

解:3-2=6x2-3y2-6y2+4x2=10x2-9y2.方法总结:去括号时应注意:①不要漏乘;②括号前面是“-”号,去括号后括号里面的各项都要变号.

3.整式的化简求值

例4 见课本P75例5.例5 化简求值:12a-2-+1,其中a=2,b=-32.解析:先将原式去括号合并同类项得到最简结果,再把a与b的值代入计算即可求出值.

解:原式=12a-2a+23b2-32a-13b2+1=-3a+13b2+1,当a=2,b=-32时,原式=-3×2+13×2+1=-6+34+1=-414.方法总结:化简求值时,一般先将整式进行化简,当代入求值时,要适当添上括号,否则容易发生计算错误,同时还要注意代数式中同一字母必须用同一数值代替,代数式中原有的数字和运算符号都不改变.

4.整式加减的应用

例6 如图,小红家装饰新家,小红为自己的房间选择了一款窗帘,请你帮她计算:

窗户的面积是多大?

窗帘的面积是多大?

挂上这种窗帘后,窗户上还有多少面积可以射进阳光?

解析:窗户的宽为b+b2+b2=2b,长为a+b2,根据长方形的面积计算方法求得答案即可;窗帘的面积是2个半径为b2的14圆的面积和一个直径为b的半圆的面积的和,相当于一个半径为b2的圆的面积;利用窗户的面积减去窗帘的面积即可.

解:窗户的面积是=2b=2ab+b2;

窗帘的面积是π2=14πb2;

射进阳光的面积是2ab+b2-14πb2=2ab+b2.方法总结:解决问题的关键是看清图意,正确利用面积计算公式列式即可.

五、尝试练习,掌握新知

课本P75练习第1~5题.

《探究在线•高效课堂》“随堂演练”部分.

六、课堂小结,梳理新知

通过本节课的学习,我们都学到了哪些数学知识和方法?

本节课学习了:

整式的加减实际上就是去括号、合并同类项这两个知识的综合.

整式的加减的一般步骤:①如果有括号,那么先去括号.②如果有同类项,则合并同类项.

求多项式的值,一般先将多项式化简再代入求值,这样使计算简便.

七、深化练习,巩固新知

课本P76习题2.2第3、6、7题.

沪科版七年级数学总结 篇8

一、选择题(每小题4分,共12分)

nk21.在式子m+5,ab,a=1,0,π,3(x+y), ,x>3中,是代数式的有()

180(A)6个(B)5个(C)4个(D)3个 选A.a=1和x>3不是代数式,其余6个都是代数式

abm12.若是四次单项式,则m的值是()

6(A)2(B)-2(C)4(D)-4 选C.由题意得1+m-1=4,3.多项式8x2+mxy-5y2+xy-8中不含xy项,则m的值为()(A)0(B)1(C)-1(D)-5 选C.8x2+mxy-5y2+xy-8=8x2+(m+1)xy-5y2-8.因为多项式中不含xy项,所以m+1=0,∴m=-1.二、填空题(每小题4分,共12分)4.用代数式表示“a、b两数的平方和”,结果为________.a2+b2 a、b两数的平方和是指a的平方与b的平方的和,即a2+b2.5.写出含有字母x、y的五次单项式______(只要求写出一个).23 答案不惟一,例如xy所写单项式只要满足含有字母x、y,且字母x、y的指数和等于5即可.6.受洪水影响,我国南方某市有x人急需转移到安全地带,原计划转移时间是a小时,由于天气原因,必须提前2小时转移完毕,那么每小时需多转移______人.(xx-)a2ax人,提前2小时转移完毕,a计划用a小时转移x人,则每小时转移则用(a-2)小时,则每小时转移

x人,a2用心

爱心

专心 1 所以每小时需多转移(xx-)人.a2a

三、解答题(共26分)7.(8分)用代数式表示.(1)一个数x的1与6的和.3(2)甲数为x,乙数比甲数的一半大5,则乙数为多少?

(3)正方形的边长为m厘米,把这个正方形的每边减少2厘米,则减少后的正方形的面积是多少?

(1)11x6(2)x5(3)(m-2)2 cm2 324xy28.(8分)已知多项式-6xy-7x3m-1y2+-xy-5是七次多项式,求m值.334xy4xy因为多项式-6xy-7x3m-1y2+-x2y-5是七次多项式,而-6xy, ,-x2y,-5的次数都

333不是7,故只能是-7x3m-1y2的次数为7,即有3m-1+2=7.所以m=2.9.(10分)观察下列等式 9-1=8; 16-4=12; 25-9=16; 36-16=20; ……

这些等式反映出自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示此规律

观察所给等式可知,等号左边为两个平方数的差,右边为4的倍数,所以 第1个式子可看作32-12=4×2,第2个式子可看作42-22=4×3.……

所以用关于n的等式可表示为(n+2)2-n2=4(n+1).用心

爱心

专心

用心

爱心

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:河长制进校园活动总结下一篇:新建中学弱电需求

付费复制
期刊天下网10年专业运营,值得您的信赖

限时特价:7.98元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题