行测数量计算题技巧(精选8篇)
行测数量计算题技巧 篇1
江西分校(jx.offcn.com)
在江西大学生村官考试中,数量关系题目一直是大家头疼的问题,因为这一部分题目变化形式非常多,并且往往是几个知识点的杂糅、混合,如果题干信息没有理顺,解决起来还是颇费一番周折。但是我们也应该知道,数量关系考察的就是数据的分析、整理、归纳,运算,如果对数字的特性非常敏感的话,很多题目还是有秒杀的技巧的。下面,中公教育专家带大家感受不一样的数量关系。
第一:整除
整除是考试当中经常使用的一种秒杀技巧,当题目中出现了如下题干特征:1.数字特征:比例、分数、百分数;2.文字特征:每、平均、倍数、整除,出现这样的关键词的时候,我们就先考虑整除特性。数字特性很多时候是考察3的整除特性,部分是7和9,以及11和13等等,因此我们要把握好一些基本的被这些数整除的数的特点,这样在考场才能够迅速秒杀。
1、某调查队的男女队员比例为3:2,分为甲乙丙三个小组,已知甲乙丙三组的人数比为10:8:7,甲组中男女比例为3:1,乙组中男女比例为5:3,则丙组中男女比例为多少? A.4:9 B.5:9 C.4:7 D.5:7 【答案】B。中公解析:先观察这道题的特点,题目中都是比例,既然有比例,就会存在整除关系。已知甲乙丙三组的人数比为10:8:7,那么无论怎么变,则丙的人数一定是7的倍数,所以丙中男女最简比的和一定是7的倍数,观察选项,只有B选项符合,直接秒B。
2、某单位组织员工去旅游,要求每辆汽车坐的人数相同。如果每辆车坐20人,还剩下2名员工;如果减少一辆汽车,员工正好可以平均分到每辆汽车。问该单位共有多少名员工? A.244 B.242 C.220 D.224 【答案】B。中公解析:根据第一个条件可知,员工总数除以20余数为2,故总人数减掉2,肯定能被20整除,选项中只有242这个数满足这一特征,直接选B
3、某公司三名销售人员2011年的销售业绩如下:甲的销售额是乙和丙销售额的1.5倍,甲和乙的销售是丙的销售额的5倍,已知乙的销售额是56万元,问甲的销售额是:
A.140万元 B.112万元 C.98万元 D.144元
【答案】D。中公解析:观察这道题目,很明显题干中都是倍数信息,我们就考虑整除特性。问甲的销售额,从这句话“甲和乙的销售额是丙销售额的5倍”,我们知道甲加乙肯定能被5整除,乙是56,根据5的整除特性,能被5整除,末位数字一定是5或0,56只有和D相加,末位数字才是0,直接选D。
第二:奇偶性
偶数:能被2整除的数是偶数,0也是偶数;奇数:不能被2整除的数是奇数。我们需要知道运算中奇偶性,方便我们做题。
江西中公教育总部地址:江西省南昌市阳明路310号江西省出版大厦5楼
江西分校(jx.offcn.com)
性质1:奇数+奇数=偶数,奇数-奇数=偶数,偶数+偶数=偶数,偶数-偶数=偶数,奇数+偶数=奇数,奇数-偶数=奇数,换句话就是两个数加减法中,相同为偶,不同为奇。
性质2:奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数,换言之,乘法中-乘数有偶则为偶,乘数无偶则为奇。
推论:两数之和的奇偶性和两数之差的奇偶性一样。
例: 某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数相差多少? A.33 B.39 C.17 D.16 【答案】D。中公解析:不做和做错是一样的分数,可以看为一样的。而做对跟他们和的得分为偶数,那么他们的差也一定是偶数,直接选D 数量关系的秒杀技巧还是很多的,中公教育专家建议大家在平时做题时细心总结,这样在考场上才能游刃有余。
文章来源中公江西公务员考试网:http://jx.offcn.com/
江西中公教育总部地址:江西省南昌市阳明路310号江西省出版大厦5楼
行测数量计算题技巧 篇2
一、差量法
差量法是根据在化学反应中反应物与生成物的差量和造成这种差量的实质及其关系, 列出比例式求解的解题方法。我们甚至把“差量”看成是化学方程式中的一种特殊产物, 该差量的大小与参与反应的物质的有关量成正比。一般说来, 化学反应前后凡有质量差、气体体积差、密度差、压强差等差量都可用差量法求解。即根据题意确定“理论差值”, 再根据题目提供的“实际差量”, 列出正确的比例式, 求出答案。
解题步骤 (1) 根据化学方程式分析反应前后形成差量的原因 (即影响质量变化的因素) , (2) 找出差量与已知量、未知量间的关系, 列比例式 (注意:单位要一致) , (3) 求解。
例:在某硫酸铜溶液中, 加入一质量为1.12g的铁片, 经过一段时间, 铁片表面覆盖了一层红色的铜, 取出洗净、烘干、称重, 质量变为1.16g。计算该反应中溶解了铁多少克?析出了铜多少克?
分析Fe+CuSO4=FeSO4+Cu
从化学方程可以看出, 铁片质量的增加, 与铁的溶解和铜的析出直接联系, 每溶解56g铁, 将析出64g铜, 会使铁片质量增加:64g-56g=8g
根据铁片增加的质量 (1.16g-1.12g) , 可计算出溶解的Fe的质量和析出的Cu的质量.
[解]设溶解的Fe为xg, 析出的Cu为yg
则:解得:x=0.28 (g) y=0.32 (g)
答:在这个化学反应中溶解了铁0.28g析出了铜0.32g。
二、守恒法:
守恒法是解决化学计算常用的一种快速、简便而又准确的一种方法, 在考试时可节省时间又可提高准确率。守恒法一般包括质量守恒 (原子或原子团守恒) 、电荷守恒、得失电子守恒以及一些化学变化前后恒定不变的量。下面, 以质量守恒 (原子或原子团守恒) 法实例分析。
质量守恒定律的内容, 从宏观上表达是:“参加化学反应的各物质的质量总和等于反应后生成的各物质的质量总和”;从微观上可理解为:“在一切化学反应中, 反应前后原子的种类、数目、原子质量前后没有变化, 因此质量守恒”。
[例]: (05年全国卷) 已知Q与R的摩尔质量之比为9:22, 在反应X+2Y=2Q+R中, 当1.6 g X与Y完全反应后, 生成4.4 g R, 则参加反应的Y和生成物Q的质量之比为 ( ) 。
A.46:9 B.32:9 C.23:9 D.16:9
解析由题意得:X+2Y=2Q+R
根据质量守恒, 参加反应Y与生成物Q的质量之比为 (4.4+3.6—1.6) :3.6=16:9
解答D
三、极值法 (极端假设法)
所谓“极值法”就是对数据不足无从下手的计算或混合物组成判断的题, 极端假设恰好为某一成分, 或者极端假设为恰好完全反应, 以确定混合体系各成分的名称、质量分数、体积分数的解题方法。用极值法确定物质的成份。在物质组成明确, 列方程缺少关系无法解题时, 可以根据物质组成进行极端假设得到有关极值, 再结合平均值原则确定正确答案。
例1某碱金属单质与其普通氧化物的混合物共1.40g, 与足量水完全反应后生成1.79g碱, 此碱金属可能是 ( )
(A) Na (B) K (C) Rb (D) Li
【解析】本题若用常规思路列方程计算, 很可能中途卡壳、劳而无功。但是如果将1.4g混合物假设成纯品 (碱金属或氧化物) , 即可很快算出碱金属相对原子质量的取值范围, 以确定是哪一种碱金属。
(1) 假定1.4g物质全是金属单质 (设为R) (2) 假定1.40g全是氧化物设为R2O
则:R→ROH△m
解之MR=24.3
既然1.40g物质是R和R2O的混合物, 则R的相对原子质量应介于24.3—61之间。题中已指明R是碱金属, 相对原子质量介于24.3—61之间的碱金属只有钾, 其相对原子质量为39。答案为B
物理计算题解题技巧 篇3
物理计算题的功能:对学生的能力考查较全面,它不仅能很好地考查学生对物理概念、物理规律的理解能力和根据已知条件及物理事实对物理问题进行逻辑推理和论证的能力,而且还能更有效地考查学生的综合分析能力及应用数学方法处理物理问题的能力。因此计算题的难度较大,对学生的要求较高。要想解答好计算题,除了需要扎实的物理基础知识外,还需要掌握一些有效规范的答题技巧。
规范答题体现了一个考生的物理学科的基本素养。高考《考试大纲》中明确表述:在“理解能力”中有“理解所学自然科学知识的含义及其适用条件,能用适当的形式(如文字、公式、图或表)进行表达”;在“推理能力”中有“并能把推理过程正确地表达出来”。这些都是考纲对考生书面表达能力的要求。物理题的解答书写与答题格式,在高考试卷上也有明确的说明:解答应写出必要的文字说明、方程式和重要演算步骤,只写出答案的不能得分;有数字计算的题目,答案中必须明确写出数值和单位。评分标准中也有这样的说明:只有最后答案而无演算过程的不给分;解答中单纯列出与解答无关的文字公式,或虽列出公式,但文字符号与题目所给定的不同,不给分。因此,要想提高得分率,取得好成绩,在学习过程中,除了要抓好基础知识的掌握、解题能力的训练外,还必须强化答题的规范,培养良好的答题习惯,形成规范的答题行为。
1.审题的规范化
审题是对题目进行分析、综合、寻求解题思路和方法的过程,所以审题规范是正确解答物理题的前提条件。一些学生往往会出现见到试题不知如何下手,找不到切入点,想到哪就写到哪儿,没有一个基本的审题程序。其原因就是不知道怎样去审题。审题过程主要包括以下几个方面:明确物理状态和过程、明确条件和目标、确定解题思路和方法。
物理状态和过程:每一道物理试题都是由若干个物理状态和过程组合而成的,弄清楚这些状态和过程是审题的关键。解题前首先要认真阅读试题,分析题意,了解题目中所述的物理状态和过程,必要时可在草稿纸上画出题中所反映的物理状态和过程的简图,然后借助简图分析这些状态和过程的特点,找出它们所遵循的物理规律。对多过程物理问题,可以把它拆分成若干个简单过程来处理,同时还要兼顾各个过程之间的联系,从而做到化繁为简各个击破。
条件和目标:条件是指“题目中告诉了什么”;目标是指“题中要求什么”。这是解题必须明确的两个问题。条件的分析一是要找出题目中明确告诉的已知条件,二是要挖掘题中的隐含条件。一些学生往往因不明确隐含条件而导致错误,隐含条件的挖掘是解计算题的重要环节,有些隐含条件含在相关的概念中,可以从分析概念中去挖掘;有的隐含在物理对象模型中,如质点、理想气体、点电荷等;有的隐含在物理过程模型中,如自由落体运动、匀速圆周运动、简谐运动等。还有一些题目所述物理模型是模糊不清的,但只要抓住问题的主要因素,忽略次要因素,恰当地将复杂的对象或过程向隐含的理想化模型转化,就能使问题得以解决,同时要注意从临界状态前后变化中寻找临界条件。三是发现题中的干扰条件要大胆舍弃,干扰信息往往与解题的必备条件混杂在一起,若不及时识别并排除就容易受干扰而误入陷阱。目标的分析主要是明确要求什么,要善于把复杂的问题转化为简单的问题,把抽象的问题具体化来处理。
解题思路和方法:一个题目的条件和目标之间存在着一系列的必然联系,这些联系就是由条件通向目标的桥梁。用哪些关系来解题要根据这些关系和题中所述的物理过程遵循的物理规律来确定。解题的实质就是分析这些关系和题中所属过程遵循的那个物理规律相对应,有的对应关系十分隐蔽,需要认真分析和揭示,有的对应关系可能有多种,就会出现解法有多种。
2.语言表达的规范化
语言表达规范化要求学生用物理语言来描述相应的物理过程、物体的运动状态、受力情况;能用精准的语言描述实验的操作步骤、描述实验结论等。语言表达的规范化还体现在必要的文字说明上,这是学生常常容易忽视的地方。必要的文字说明是保证题目完整解答不可缺少的文字表述,它能使解题思路表达地清楚明了,解答有据,流畅完美。具体来说计算题规范化表述过程常包括以下几个方面:
(1)明确研究对象(个体还是系统);
(2)根据题意准确画出受力图、运动示意图、电路图等有关图像;
(3)要指明物理过程及始末状态,包括其中的隐含条件或临界状态;
(4)指明要选取的正方向或零位置;
(5)物理量尽量用题目中给定的符号,需自设的物理量(包括待求量、中间过度量)要说明其含义;
(6)要指明所用物理公式的名称、条件和依据,并用相关词语来表达,如“由……定律得……”“将……代人……”“联立……”等句式;
(7)用文字串联起完整的思路及思维流程;
(8)求得结果应有文字说明及带入题给数据的算式,最终结果要有准确的数字和单位,必要时对问题的结果加以适当讨论,说明其物理意义。
3.作图的规范化
作图是解题的重要步骤,它有助于建立清晰有序的物理过程和确立物理量间的关系,可以把问题具体化、形象化。在审题过程中,要养成画草图的习惯;解物理题时,能画图的尽量画图,图能帮助我们理解题意、分析过程以及探讨过程中各物理量的变化,便于构建物理模型。在高中物理中,力学部分涉及的运动过程有匀速直线运动、匀变速直线运动、平抛运动、圆周运动、简谐运动等,除了这些运动过程外,还有两类重要的过程:一类是碰撞过程,另一类是先变加速运动后匀速运动的过程(如汽车以恒定功率启动问题)。电学中的变化过程主要有电容器的充电和放电、电磁感应中的导体棒变加速运动等,作出这些物理过程的示意图,或画出关键情境的受力分析图,是解计算题的常规手段。需要保留在卷面上的图必须用尺、规、铅笔,不能随心所欲徒手作图。作出的图应能反映有关量的关系,图文要对应。画函数图象时,要画好坐标原点和坐标轴上的箭头,标好物理量的符号、单位及坐标轴上的数据。图形、图线应清晰准确,线段的虚实要分明有区别。
4.方程式和主要步骤书写的规范化
原始的基本方程是主要的得分依据,写出的方程式必须能反映出所依据的基本物理规律,不能以变形的结果式代替方程式。同时方程式应该全部用字母、符号来表示,不能出现字母、符号和数据混合,数据式同样不能代替方程式。有多个方程式,一般要分别列出并进行编号,以便于计算说明。计算时一般要先进行代数式的字母运算,推导出有关未知量的代数表达式,然后再代入数据计算。这样做既有利于减轻计算负担,又有利于一般规律的发现和回顾检查。从近几年高考物理计算题的答案及评分标准中可以看出,求解方程时卷面上只要写出最简式,然后做出必要的说明,直接给出计算结果即可。切忌把大量的运算过程写在卷面上,这样会给人以繁琐凌乱、思路不清的感觉,同时也增大了出错的几率。
5.解题结果的规范化
解题结果是解题者智慧的结晶,是整个解题过程的重要组成部分,规范的答案能清晰地反映出解题的最终结果。答案规范是指答案准确、简洁、全面。既要注意计算结果的验证、取舍,还要注意答案的完整,要认真规范地加以表述。作为计算结果的数据一般要用科学计数法;有效数字的位数应根据题意确定,有的题目对有效数字的位数有明确要求,就要严格按要求取,多取少取都会被扣分。计算结果的数据必须带上单位;结果用字母表示的,则要看题中提供的表示已知量的字母是否带有单位,如果不带单位,则最后的结果也不要带单位,反之则要带上单位。有时对解题结果要做适当的说明和讨论,例如结果是矢量的就要说明方向,方向的说明要与题目中涉及的方向相对应。总之,规范化解题是一种良好的解题习惯,更是一种能力。解题格式规范化不仅可以让阅卷老师准确掌握学生的解题思路、答题意图,而且还能给人以美的享受。
另外在规范化解题的前提下,还要谨慎细心,严防思维定势。在物理计算题中会经常遇到这样的题目,其故意多给出一些已知条件,或在表述物理情境时精心设置一些陷阱(如安排一些似是而非的判断),以此形成干扰因素来考查学生明辨是非的能力。这些因素的迷惑程度越大,同学们越容易在解题过程中犯错误。在审题过程中,只有有效排除这些干扰因素,才能迅速而正确地得出答案。有些题目的物理过程含而不露,需结合已知条件,应用相关概念和规律进行具体分析。分析前不要急于动笔列方程,以免用假的过程模型代替了实际的物理过程,同时还要防止定势思维的负迁移。
行测数量计算题技巧 篇4
秒杀一法:代入法
代入法是考试中经常会用到的一种快速计算方法,经常用于诸如以下描述的题目中:“一个数”满足某种特点,或题目中所要求解的数据在选项中都已经给出来。
例题1:一个数除以11余3,除以8余4,除以7余1,问这个数最小是多少? A.36 B.55 C.78 D.122 解析:从最小的选项开始代入,因为这道题问的就是这个数最小是多少。代入36发现符合条件所描述的情况,直接选定答案即可。
例题2:甲、乙、丙三种软糖,甲种每块0.08元,乙种每块0.05元,丙种每块0.03元,买10块共用0.54元,求三种糖各买几块?()A.4、2、4 B.4、3、3 C.3、4、3 D.3、3、4 解析:从A项开始代入,只要满足条件一:三种软糖的个数为10,条件二:三种软糖的价格数位0.54,就是正确选项。A项,4+2+4=10,4*0.08+2*0.05+4*0.03=0.54,所以选择A项。
秒杀二法:特值法
工程问题中的设1思想的本质就是采用设定特值来解决问题,这种方法一般用于所要求的结果是一个比例,如几分之几或百分之几,或者设定的数值对于解题没有影响。
北京大学生村官http://bj.offcn.com/html/cunguan/
例题:李森在一次村委会选举中,需2/3的选票才能当选,当统计完3/5的选票时,他得到的选票数已达到当选票数的3/4,他还需要得到剩下选票的几分之几才能当选?()A.7/10 B.8/11 C.5/12 D.3/10 解析:这道题最后问的是一个比值,所以总票数是多少对于计算结果没有影响,所以我们可以给总票数设定一个特值来方便求解。一般设定这个特值选择分数分母的公倍数,方便化简。这道题我们可以选择60。那么需要40票才能当选,当统计完36票时,他得到了40*3/4=30票,他还差10票。剩下的票数是60-36=24票,所以10/24=5/12就是正确答案。
秒杀三法:答案选项法
行测题目的答案之间有诸多联系,比如题目中如果指出两个量的和是多少,或甲比乙多出多少,一般选项中会出现某两个选项存在这样的等量关系,我们可以据此直接根据选项来判断出答案来。
例题:一队战士排成三层空心方阵多出9人,如果在空心部分再增加一层,又差7人,问这队战士共有多少人?()A.121 B.81 C.96 D.105 解析:这道题的常规解法是求出空心部分增加的一层人数为9+7=16,根据方阵中每层人数相差8得出这三层人数分别为24,32,40,相加得96,再加上多出来的9人,共105人。答案选项法是直接观察CD两项,差值为9,所以这道题就是利用很多考生计算出三层人数后忘记加9而错选C选项,可以迅速选择D项为正确答案。
秒杀四法:整除特性法
北京大学生村官http://bj.offcn.com/html/cunguan/
题目如果有某个数值的几分之几这样的字眼,我们可以很容易的判断某个数值是常见数字如2,3,5,11等的倍数,如甲的4/11是女的,我们可以判定甲的总数为11的倍数,而甲中女的数量为4的倍数。
例题:两个数的差是2345,两数相除的商是8,求这两个数之和。()A.2353 B.2896 C.3015 D.3457 解析:两数相除的商是8,也就是其中一个数是另一个数的8倍,那么这两个数的和就是其中小一点的那个数字的9倍,所以说两数之和为9的倍数,在选项中只有C项是9的倍数。
文章来源:中公教育北京分校西客站学习中心
行测数量计算题技巧 篇5
行政能力倾向测试是公务员(civil servant)考试必考的一科,数字推理题又是行政测试中一直以来的固定题型。如果给予足够的时间,数字推理并不难;但由于行政试卷整体量大,时间短,很少有人能在规定的考试时间内做完,尤其是对于文科的版友们来说,数字推理、数字运算(应用题)以及最后的资料分析是阻碍他们行政拿高分的关卡。并且,由于数字推理处于行政A类的第一项,B类的第二项,开头做不好,对以后的考试有着较大的影响。应广大版友,特别是MM版友的要求,甘蔗结合杨猛80元书上的习题,把自己的数字推理题解题心得总结出来。如果能使各位备考的版友对数字推理有所了解,我在网吧花了7块钱打的这篇文章也就值了。
数字推理考察的是数字之间的联系,对运算能力的要求并不高。所以,文科的朋友不必担心数学知识不够用或是以前学的不好。只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。抽根烟,下面开始聊聊。
一、解题前的准备
1.熟记各种数字的运算关系。
如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。这是迅速准确解好数字推理题材的前提。常见的需记住的数字关系如下:
(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144
13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。当看到这些数字时,立刻就能想到平方立方的可能性。熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。如 216,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样 215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。
2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。根号运算掌握简单规律则可,也不难。3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。
二、解题方法
按数字之间的关系,可将数字推理题分为以下十种类型: 1.和差关系。又分为等差、移动求和或差两种。
(1)等差关系。这种题属于比较简单的,不经练习也能在短时间内做出。建议解这种题时,用
口算。
12,20,30,42,()127,112,97,82,()
3,4,7,12,(),28(2)移动求和或差。从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多 了也就简单了。1,2,3,5,(),13 A 9
B 1C 8
D7 选C。1+2=3,2+3=5,3+5=8,5+8=13 2,5,7,(),19,31,50 A 1
2B 1
3C 10
D11 选A 0,1,1,2,4,7,13,()A 22 B 23 C 24 D 25 选C。注意此题为前三项之和等于下一项。一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。5,3,2,1,1,()A-3 B-2
C 0
D2 选C。
2.乘除关系。又分为等比、移动求积或商两种
(1)等比。从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。8,12,18,27,(40.5)后项与前项之比为1.5。6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3(2)移动求积或商关系。从第三项起,每一项都是前两项之积或商。2,5,10,50,(500)100,50,2,25,(2/25)
3,4,6,12,36,(216)此题稍有难度,从第三项起,第项为前两项之积除以2 1,7,8,57,(457)
后项为前两项之积+1 3.平方关系
1,4,9,16,25,(36),49
66,83,102,123,(146)
8,9,10,11,12的平方后+2 4.立方关系
1,8,27,(81),125
3,10,29,(83),127
立方后+2
0,1,2,9,(730)
有难度,后项为前项的立方+1 5.分数数列。一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进
行简单的通分,则可得出答案
1/
24/
39/
416/
525/6
(36/7)
分子为等比,分母为等差
2/3
1/2
2/5
1/3(1/4)
将1/2化为2/4,1/3化为2/6,可知
下一个为2/8 6.带根号的数列。这种题难度一般也不大,掌握根号的简单运算则可。限于计算机水平比较烂,打不出根号,无法列题。7.质数数列
2,3,5,(7),11 4,6,10,14,22,(26)
质数数列除以2 20,22,25,30,37,(48)后项与前项相减得质数数列。8.双重数列。又分为三种:(1)每两项为一组,如
1,3,3,9,5,15,7,(21)第一与第二,第三与第四等每两项后项与前项之比为3
2,5,7,10,9,12,10,(13)每两项之差为3
1/7,14,1/21,42,1/36,72,1/52,()两项为一组,每组的后项等于前项倒数*2(2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。
22,39,25,38,31,37,40,36,(52)由两个数列,22,25,31,40,()和39,38,37,36组成,相互隔开,均为等差。
34,36,35,35,(36),34,37,(33)由两个数列相隔而成,一个递增,一个递减(3)数列中的数字带小数,其中整数部分为一个数列,小数部分为另一个数列。
2.01, 4.03,8.04,16.07,(32.11)
整数部分为等比,小数部分为移动求和数列。双重数列难题也较少。能看出是双重数列,题目一般已经解出。特别是前两种,当数字的个数超过7个时,为双重数列的可能性相当大。
9.组合数列。
此种数列最难。前面8种数列,单独出题几乎没有难题,也出不了难题,但8种数列关系两两组合,变态的甚至三种关系组合,就形成了比较难解的题目了。最常见的是和差关系与乘除关系组合、和差关系与平方立方关系组合。只有在熟悉前面所述8种关系的基础上,才能较好较快地解决这类题。
1,1,3,7,17,41()
A 89 B 99 C 109 D 119 选B。此为移动求和与乘除关系组合。第三项为第二项*2+第一项
65,35,17,3,()A
1B
2C 0
D 4 选A。平方关系与和差关系组合,分别为8的平方+1,6的平方-1,4的平方+1,2的平方-1,下一个应为0的平方+1=1 4,6,10,18,34,()
A 50
B 6
4C 66
D 68 选C。各差关系与等比关系组合。依次相减,得2,4,8,16(),可推知下一个为32,32+34=66 6,15,35,77,()A 106 B 117 C 136 D 163 选D。等差与等比组合。前项*2+3,5,7依次得后项,得出下一个应为77*2+9=163 2,8,24,64,()
A 160 B 512
C 124
D 164 选A。此题较复杂,幂数列与等差数列组合。2=1*2的1次方,8=2*2的平方,24=3*2的3次方,64=4*2的4次方,下一个则为5*2的5次方=160 0,6,24,60,120,()
A 186 B 210 C 220 D 226 选B。和差与立方关系组合。0=1的3次方-1,6=2的3次方-2,24=3的3次方-3,60=4的3次方-4,120=5的3次方-5。
1,4,8,14,24,42,()A 76
B 66
C 64
D68 选A。两个等差与一个等比数列组合 依次相减,得3,4,6,10,18,()再相减,得1,2,4,8,(),此为等比数列,下一个为16,倒推可知选A。
10.其他数列。
2,6,12,20,()
A 40
B 32
C 30
D 28 选C。2=1*2,6=2*3,12=3*4,20=4*5,下一个为5*6=30
1,1,2,6,24,()
A 48 B 96 C 120 D 144 选C。后项=前项*递增数列。1=1*1,2=1*2,6=2*3,24=6*4,下一个为120=24*5
1,4,8,13,16,20,()
A20
B 2
5C 27
D28 选B。每三项为一重复,依次相减得3,4,5。下个重复也为3,4,5,推知得25。
27,16,5,(),1/7 A 16
B 1
C 0
D 2 选B。依次为3的3次方,4的2次方,5的1次方,6的0次方,7的-1次方。
这些数列部分也属于组合数列,但由于与前面所讲的和差,乘除,平方等关系不同,故在此列为其他数列。这种数列一般难题也较多。
综上所述,行政推理题大致就这些类型。至于经验,我想,要在熟练掌握各种简单运算关系的基础上,多做练习,对各种常见数字形成一种知觉定势,或者可以说是条件反射。看到这些数字时,就能立即大致想到思路,达到这种程度,一般的数字推理题是难不了你了,考试时十道数字推理在最短的时间内正确完成7道是没有问题的。但如果想百尺竿头更进一步,还请继续多做难题。强烈建议继续关注我们的清风百合江苏公务员,在下次公务员考试之前,复习冲刺的时候,我们会把一些难题汇总并做解答,对大家一定会有更多的帮助的。讲了这么多,自我感觉差不多了。这篇文章主要是写给没有经过公务员考试且还未开始准备公务员考试的版友看的属于入门基础篇,高手见笑了。仓促完成,难免有不妥之处,欢迎版友们提出让我改善。目前准备江苏省公务员考试时间很充裕,有兴趣的朋友可以先开始看书准备。也欢迎有对推理题有不懂的朋友把题目帖出来,大家讨论。我不可能解出所有题,但我们清风版上人才众多,潜水者不计其数,肯定会有高手帮助大家。
第二部分:数学运算题型及讲解
一、对分问题 例题:
一根绳子长40米,将它对折剪断;再对剪断;第三次对折剪断,此时每根绳子长 多少米?
A、5B、10C、15D、20 解答:
答案为A。对分一次为2等份,二次为2×2等份,三次为2×2×2等份,答案可 知。无论对折多少次,都以此类推。
二、“栽树问题” 例题:
(1)如果一米远栽一棵树,则285米远可栽多少棵树? A、285B、286C、287D、284(2)有一块正方形操场,边长为50米,沿场边每隔一米栽一棵树,问栽满四周 可栽多少棵树?
A、200B、201C、202D、199 解答:
(1)答案为B。1米远时可栽2棵树,2米时可栽3棵树,依此类推,285米可栽 286棵树。
(2)答案为A。根据上题,边长共为200米,就可栽201棵树。但起点和终点重 合,因此只能栽200棵。以后遇到类似题目,可直接以边长乘以4即可行也答案。考生应掌握好本题型。
三、跳井问题 例题:
青蛙在井底向上爬,井深10米,青蛙每次跳上5米,又滑下来4米,象这样青蛙 需跳几次方可出井?
A、6次B、5次C、9次D、10次
解答:答案为A。考生不要被题中的枝节所蒙蔽,每次上5米下4米实际上就是每 次跳1米,因此10米花10次就可全部跳出。这样想就错了。因为跳到一定时候,就出了井口,不再下滑。
四、会议问题
例题:某单位召开一次会议。会前制定了费用预算。后来由于会期缩短了3天,因此节省了一些费用,仅伙食费一项就节约了5000元,这笔钱占预算伙食费的1/3。伙食费预算占会议总预算的3/5,问会议的总预算是多少元? A、20000B、25000C、30000D、35000 解答:答案为B。预算伙食费用为:5000÷1/3=15000元。15000元占总额预算的 3/5,则总预算为:15000÷3/5=25000元。本题系1997年中央国家机关及北京市公 务员考试中的原题(或者数字有改动)。
五、日历问题 例题:
某一天小张发现办公桌上的台历已经有7天没有翻了,就一次翻了7张,这7天 的日期加起来,得数恰好是77。问这一天是几号? A、13B、14C、15D、17 解答:答案为C。7天加起来数字之和为77,则平均数11这天正好位于中间,答案 由此可推出。
六、其他问题 例题:
(1)在一本300页的书中,数字“1”在书中出现了多少次?
A、140B、160C、180D、120(2)一个体积为1立方米的正方体,如果将它分为体积各为1立方分米的正方体,并沿一条直线将它们一个一个连起来,问可连多长(米)? A、100B、10C、1000D、10000(3)有一段布料,正好做16套儿童服装或12套成人服装,已知做3套成人服装比 做2套儿童服装多用布6米。问这段布有多少米? A、24B、36C、48D、18(4)某次考试有30道判断题,每做对一道题得4分,不做或做错一道题倒扣2分,小周共得96分,问他做对了多少道题?
A、24B、26C、28D、25(5)树上有8只小鸟,一个猎人举枪打死了2只,问树上还有几只鸟?
A、6B、4C、2D、0 解答:
(1)答案为B。解题时不妨从个位、十位、百位分别来看,个位出现“1”的次数为 30,十位也为30,百位为100。
(2)答案为A。大正方体可分为1000个小正方体,显然就可以排1000分米长,1000 分米就是100米。考生不要忽略了题中的单位是米。
(3)答案为C。设布有X米,列出一元一次方程:X/6×3-X/2×2=6,解得X=48 米。
(4)答案为B。设做对了X道题,列出一元一次方程:4×X-(30-X)×2=96,解 得X=26。
(5)答案为D。枪响之后,鸟或死或飞,树上是不会有鸟了。
第三部分: 数字推理题的各种规律 一.题型:
□ 等差数列及其变式
【例题1】2,5,8,()
A 10 B 11 C 12 D 13
【解答】从上题的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。
【例题2】3,4,6,9,(),18
A 11 B 12 C 13 D 14
【解答】答案为C。这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,„„。显然,括号内的数字应填13。在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。
□ 等比数列及其变式
【例题3】3,9,27,81()
A 243 B 342 C 433 D 135
【解答】答案为A。这也是一种最基本的排列方式,等比数列。其特点为相邻两个数字之间的商是一个常数。该题中后项与前项相除得数均为3,故括号内的数字应填243。
【例题4】8,8,12,24,60,()
A 90 B 120 C 180 D 240
【解答】答案为C。该题难度较大,可以视为等比数列的一个变形。题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1.5,2,2.5,3,因此括号内的数字应为60×3=180。这种规律对于没有类似实践经验的应试者往往很难想到。我们在这里作为例题专门加以强调。该题是1997年中央国家机关录用大学毕业生考试的原题。
【例题5】8,14,26,50,()
A 76 B 98 C 100 D 104
【解答】答案为B。这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2倍减2之后得到后一项。故括号内的数字应为50×2-2=98。
□ 等差与等比混合式
【例题6】5,4,10,8,15,16,(),()
A 20,18 B 18,32 C 20,32 D 18,32
【解答】此题是一道典型的等差、等比数列的混合题。其中奇数项是以5为首项、等差为5的等差数列,偶数项是以4为首项、等比为2的等比数列。这样一来答案就可以容易得知是C。这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型。
□ 求和相加式与求差相减式
【例题7】34,35,69,104,()
A 138 B 139 C 173 D 179
【解答】答案为C。观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为173。在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律。
【例题8】5,3,2,1,1,()
A-3 B-2 C 0 D 2
【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项5与第二项3的差等于第三项2,第四项又是第二项和第三项之差„„所以,第四项和第五项之差就是未知项,即1-1=0,故答案为C。
□ 求积相乘式与求商相除式
【例题9】2,5,10,50,()
A 100 B 200 C 250 D 500
【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项10等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D。
【例题10】100,50,2,25,()
A 1 B 3 C 2/25 D 2/5
【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C。
□ 求平方数及其变式
【例题11】1,4,9,(),25,36
A 10 B 14 C 20 D 16
【解答】答案为D。这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1的平方,第二个数字是2的平方,第三个数字是3的平方,第五和第六个数字分别是5、6的平方,所以第四个数字必定是4的平方。对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的。
【例题12】66,83,102,123,()
A 144 B 145 C 146 D 147
【解答】答案为C。这是一道平方型数列的变式,其规律是8,9,10,11,的平方后再加2,故括号内的数字应为12的平方再加2,得146。这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了。
□ 求立方数及其变式
【例题13】1,8,27,()
A 36 B 64 C 72 D81
【解答】答案为B。各项分别是1,2,3,4的立方,故括号内应填的数字是64。
【例题14】0,6,24,60,120,()
A 186 B 210 C 220 D 226
【解答】答案为B。这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是1的立方减1,第二个数是2的立方减2,第三个数是3的立方减3,第四个数是4的立方减4,依此类推,空格处应为6的立方减6,即210。
□ 双重数列
【例题15】257,178,259,173,261,168,263,()
A 275 B 279 C 164 D 163
【解答】答案为D。通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,„„。也就是说,奇数项的都是大数,而偶数项的都是小数。可以判断,这是两项数列交替排列在一起而形成的一种排列方式。在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找。我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式。而偶数项是178,173,168,(),也是一个等差数列,所以括号中的数应为168-5=163。顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化。
两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式。只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了。
□ 简单有理化式
二、解题技巧
数字推理题的解题方法
数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助。
1快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。
2推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。
3空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。
4若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证。常见的排列规律有:
(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);
(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减。
(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;
如:2 4 8 16 32 64()
这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128。
(4)二级等差:相邻数之间的差或比构成了一个等差数列;
如:4 2 2 3 6 15
相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5。
(5)二级等比数列:相邻数之间的差或比构成一个等比数理;
如:0 1 3 7 15 31()
相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63。
(6)加法规律:前两个数之和等于第三个数,如例题23;
(7)减法规律:前两个数之差等于第三个数;
如:5 3 2 1 1 0 1()
相邻数之差等于第三个数,空缺项应为-1。
(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;
(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;
如:2 3 10 15 26 35()
1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15......空缺项应为50。
(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列。
如:1 2 6 15 31()
相邻数之间的差是完全平方序列,依次为1、4、9、16,空缺项应为31+25=56。4道最BT公务员考试数字推理题汇总 1、15,18,54,(),210
A 106 B 107 C 123 D 112 2、1988的1989次方+1989的1988的次方„„ 个位数是多少呢? 3、1/2,1/3,2/3,6/3,(),54/36
A 9/12, B 18/3 ,C 18/6 ,D 18/36 4、4,3,2,0,1,-3,()
A-6 , B-2 , C 1/2 ,D 0 5、16,718,9110,()
A 10110,B 11112,C 11102,D 10111 6、3/2,9/4,25/8,()
A 65/16, B 41/8, C 49/16, D 57/8 7、5,(),39,60,105.A.10 B.14 C.25 D.30 8、8754896×48933=()
A.428303315966 B.428403225876 C.428430329557 D.428403325968
9、今天是星期二,55×50天之后()。
A.星期一 B.星期二 C.星期三 D.星期四
10、一段布 料,正好做12套儿童服装或9套成人服装,已知做3套成人服装比做2套儿童服装多用布6米,这段布有多长?
A 24
B 36
C54
D 48
11、有一桶水第一次倒出其中的6分之一,第二次倒出3分之一,最后倒出4分之一,此时连水带桶有20千克,桶重为5千克,问桶中最初有多少千克水?
A 50 B 80 C 100 D 36
12、甲数比乙数大25%,则乙数比甲数小()
A 20%
B 30%
C 25%
D 33%
13、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车? A B 8 C 6 D4
14、某校 转来6名新生,校长要把他们安排在三个班,每班两人,有多少中安排方法? A 18
B 24 C 36 D 46
15、某人把60000元投资于股票和债券,其中股票的年回报率为6%,债券的年回报率为10%。如果这个人一年的总投资收益为4200元,那么他用了多少钱买债券? A.45000 B.15000 C.6000 D.4800
16、一粮站原有粮食272吨,上午存粮增加25%,下午存粮减少20%,则此时的存
粮为()吨。
A.340
B.292
C.272
D.268 17、3 2 53 32()
A.7/5
B.5/6
C.3/5
D.3/4 18、17 126 163 1124()
19、-2,-1,1,5()29(2000年题)
A.17 B.15 C.13 D.11 20、5 9 15 17()
A 21
B 24
C 32
D 34
21、81 30 15 12(){江苏的真题} A10
B8
C13
D14 22、3,2,53,32,()A 75
B 5 6
C 35
D 34 23、2,3,28,65,()
A 214B 83C 414D 314 24、0,1,3,8,21,(),144 25、2,15,7,40,77,()A96,B126,C138,,D156 26、4,4,6,12,(),90 27、56,79,129,202()
A、331 B、269 C、304 D、333 28、2,3,6,9,17,()
A 19 B 27 C 33
D 45 29、5,6,6,9,(),90
A 12, B 15, C 18, D 21 30、16 17 18 20()
A21
B22
C23
D24 31、9、12、21、48、()32、172、84、40、18、()33、4、16、37、58、89、145、42、(?)、4、16、.....答案
1、答案是A 能被3整除嘛
2、答:应该也是找规律的吧,1988的4次个位就是6,六的任何次数都是六,所以,1988的1999次数个位和1988的一次相等,也就是8 后面那个相同的方法个位是1 忘说一句了,6乘8个位也是8
3、C(1/3)/(1/2)=2/3 以此类推
4、c两个数列 4,2,1-〉1/2(依次除以2);3,0,-3
5、答案是11112 分成三部分:
从左往右数第一位数分别是:5、7、9、11 从左往右数第二位数都是:1
从左往右数第三位数分别是:6、8、10、12
6、思路:原数列可化为1又1/2, 2又1/4, 3又1/8。故答案为4又1/16 = 65/16
7、答案B。5=2^2+1,14=4^2-2,39=6^2+3,60=8^2-4,105=10^2+5
8、答 直接末尾相乘,几得8,选D。、解题思路:从55是7的倍数减1,50是7的倍数加1,快速推出少1天。如果用55×50÷7=396余6,也可推出答案,但较费时
10、思路:设儿童为x,成人为y,则列出等式12X=9Y 2X=3Y-6 得出,x=3,则布为3*12=36,选B
11、答5/6*2/3*3/4X=15 得出,x=36 答案为D
12、已X,甲1.25X,结果就是0.25/1.25=20% 答案为A
13、B
14、无答案公布 sorry 大家来给些答案吧 15、0.06x+0.1y=4200 , x+y=60000, 即可解出。
答案为B 16、272*1.25*0.8=272 答案为C
17、分数变形:A 数列可化为:3/1 4/2 5/3 6/4 7/5
18、依次为2^3-1,3^3-1,„„,得出6^3-1
19、依次为2^3-1,3^3-1,„„,得出6^3-1 20、思路:5和15差10,9和17差8,那15和(?)差6 5+10=15 9+8=17 15+6=21 21、81/3+3=30,30/3+5=15,15/3+7=12,12/3+9=13 答案为1322
22、思路:小公的讲解
2,3,5,7,11,13,17.....变成2,3,53,32,75,53,32,117,75,53,32......3,2,(这是一段,由2和3组成的),53,32(这是第二段,由2、3、5组成的)75,53,32(这是第三段,由2、3、5、7组成的),117,75,53,32()这是由2、3、5、7、11组成的)
不是,首先看题目,有2,3,5,然后看选项,最适合的是75(出现了7,有了7就有了质数列的基础),然后就找数字组成的规律,就是复合型数字,而A符合这两个规律,所以才选A
2,3,5,后面接什么?按题干的规律,只有接7才是成为一个常见的数列:质数列,如果看BCD接4和6的话,组成的分别是2,3,5,6(规律不简单)和2,3,5,4(4怎么会在5的后面?也不对)
质数列就是由质数组成的从2开始递增的数列
23、无思路!暂定思路为:2*65+3*28=214,24、0+3=1*3,1+8=3*3,3+21=8*3,21+144=?*3。得出?=55。
25、这题有点变态,不讲了,看了没有好处
26、答案30。4/4=1,6/12=1/2,?/90=1/3
27、不知道思路,经过讨论:
79-56=23
129-79=50
202-129=73
因为23+50=73,所以下一项和差必定为50+73=123 ?-202=123,得出?=325,无此选项!
28、三个相加成数列,3个相加为11,18,32,7的级差 则此处级差应该是21,则相加为53,则53-17-9=27 答案,分别是27。
29、答案为C
思路: 5×6/5=6,6*6/4=9,6*9/3=18(5-3)*(6-3)=6(6-3)*(6-3)=9(6-3)*(9-3)=18
30、思路:
22、23结果未定,等待大家答复!
31、答案为129
9+3=12,12+3平方=21,21+3立方=48
32、答案为7
172/2-2=84
84/2-2=40
40/2-2=18
18/2-2=7
第四部分:数字推理题典!
4,18,56,130,()A.26 B.24 C.32 D.16 答案是B,各项除3的余数分别是1.0.2.1 0.对于1、0、2、1、0,每三项相加=>3、3、3 等差 1,3,4,8,16,()A.26 B.24 C.32 D.16 我选B 3-1=2 8-4=4 24-16=8 可以看出2,4,8为等比数列 1,1,3,7,17,41,()A.89
B.99
C.109
D.119 我选B 1*2+1=3 2*3+1=7 2*7+3=17 „
2*41+17=99 1,3,4,8,16,()A.26 B.24 C.32 D.16 我选 C 1+3=4 1+3+4=8 „
1+3+4+8=32 1,5,19,49,109,()。A.170 B.180 C 190 D.200
1*1+4=5 5*3+4=19 9*5+4=49 13*7+4=95 17*9+4=157 4,18,56,130,()A216
B217
C218
D219 我搜了一下,以前有人问过,说答案是A 如果选A的话,我又一个解释 每项都除以4=>取余数0、2、0、2、0 仅供参考~:)
1.256,269,286,302,()
A.2
54B.307
C.294
D.316
解析: 2+5+6=13
256+13=269
2+6+9=17
269+17=286 2+8+6=16
286+16=302 ?=302+3+2=307
2.72 , 36 , 24 , 18 ,()
A.12
B.16
C.14.4
D.16.4 解析:(方法一)
相邻两项相除,72
/
/
/
2/1
3/2
4/3(分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而18/14.4=5/4.选C
(方法二)6×12=72,6×6=36,6×4=24,6×3 =18,6×X
现在转化为求X 12,6,4,3,X 12/6,6/4,4/3,3/X化简得2/1,3/2,4/3,3/X,注意前三项有规律,即分子比分母大一,则3/X=5/4 可解得:X=12/5 再用6×12/5=14.4
3.8 , 10 , 14 , 18 ,()
A.24
B.32
C.26
D.20 分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8 所以,此题选18+8=26
4.3 , 11 , 13 , 29 , 31 ,()
A.52
B.53
C.54
D.55 分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=55,故此题选D
5.-2/5,1/5,-8/750,()。
A 11/375
B 9/375
C 7/375
D 8/375 解析:-2/5,1/5,-8/750,11/375=> 4/(-10),1/5,8/(-750),11/375=> 分子 4、1、8、11=>头尾相减=>7、7 分母-10、5、-750、375=>分2组(-10,5)、(-750,375)=>每组第二项除以第一项=>-1/2,-1/2 所以答案为A
6.16 , 8 , 8 , 12 , 24 , 60 ,()A.90
B.120
C.180
D.240 分析:相邻两项的商为0.5,1,1.5,2,2.5,3,所以选180 10.2,3,6,9,17,()A.18
B.23
C.36
D.45 分析:6+9=15=3×5 3+17=20=4×5 那么2+?=5×5=25
所以?=23 11.3,2,5/3,3/2,()
A.7/5
B.5/6
C.3/5
D.3/4
分析:通分 3/1
4/2 5/3 6/4----7/5
13.20,22,25,30,37,()
A.39
B.4C.48
D.51
分析:它们相差的值分别为2,3,5,7。都为质数,则下一个质数为11 则37+11=48 16.3 ,10 ,11 ,(),127 A.44
B.52
C.66
D.78 解析:3=1^3+2 10=2^3+2 11=3^2+2 66=4^3+2 127=5^3+2 其中
指数成3、3、2、3、3规律
25.1,2/3,5/9,(1/2),7/15,4/9,4/9
A.1/2
B.3/4
C.2/13
D.3/7 解析:1/1、2/3、5/
9、1/2、7/
15、4/
9、4/9=>规律以1/2为对称=>在1/2左侧,分子的2倍-1=分母;在1/2时,分子的2倍=分母;在1/2右侧,分子的2倍+1=分母 31.5,5,14,38,87 ,()
A.167
B.168
C.169
D.170 解析:前三项相加再加一个常数×变量
(即:N1是常数;N2是变量,a+b+c+N1×N2)5+5+14+14×1=38 38+87+14+14×2=167
32.(),36,19,10,5,2 A.77
B.69
C.54
D.48 解析:5-2=3 10-5=5 19-10=9 36-19=17 5-3=2 9-5=4 17-9=8 所以X-17应该=16 16+17=33 为最后的数跟36的差 36+33=69 所以答案是 69
33.1,2,5,29,()A.34
B.846
C.866
D.37 解析:5=2^2+1^2
29=5^2+2^2
()=29^2+5^2
所以()=866,选c
34.-2/5,1/5,-8/750 ,()
A.11/375
B.9/375
C.7/375
D.8/375 解析:把1/5化成5/25
先把1/5化为5/25,之后不论正负号,从分子看分别是:2,5,8
即:5-2=3,8-5=3,那么?-8=3
?=11
所以答案是11/375 36.1/3,1/6,1/2,2/3,()解析:1/3+1/6=1/2 1/6+1/2=2/3 1/2+2/3=7/6 41.3 , 8 , 11 , 9 , 10 ,()
A.10
B.18
C.16
D.14 解析:答案是A 3, 8, 11, 9, 10, 10=> 3(第一项)×1+5=8(第二项)3×1+8=11 3×1+6=9 3×1+7=10 3×1+10=10 其中 5、8、6、7、7=> 5+8=6+7 8+6=7+7
42.4,3,1,12,9,3,17,5,()
A.12
B.13
C.14
D.1
5解析: 本题初看较难,亦乱,但仔细分析,便不难发现,这是一道三个数字为一组的题,在每组数字中,第一个数字是后两个数字之和,即4=3+1,12=9+3,那么依此规律,()内的数字就是17-5=12。
故本题的正确答案为A。
44.19,4,18,3,16,1,17,()
A.5
B.4
C.3
D.2解析:本题初看较难,亦乱,但仔细分析便可发现,这是一道两个数字为一组的减法规律的题,19-4=15,18-3=15,16-1=15,那么,依此规律,()内的数为17-2=15。故本题的正确答案为D。
45.1,2,2,4,8,()
A.280
B.320
C.340
D.360
解析:本题初看较难,但仔细分析后便发现,这是一道四个数字为一组的乘法数列题,在每组数字中,前三个数相乘等于第四个数,即2×5×2=20,3×4×3=36,5×6×5=150,依此规律,()内之数则为8×5×8=320。故本题正确答案为B。
46.6,14,30,62,()
A.85
B.92
C.126
D.250
解析:本题仔细分析后可知,后一个数是前一个数的2倍加2,14=6×2+2,30=14×2+2,62=30×2+2,依此规律,()内之数为62×2+2=126。
故本题正确答案为C。
48.12,2,2,3,14,2,7,1,18,3,2,3,40,10,(),4A.4
B.3
C.2
D.1解析:本题初看很乱,数字也多,但仔细分析后便可看出,这道题每组有四个数字,且第一个数字被第二、三个数字连除之后得第四个数字,即12÷2÷2=3,14÷2÷7=1,18÷3÷2=3,依此规律,()内的数字应是40÷10÷4=1。故本题的正确答案为D。
49.2,3,10,15,26,35,()
A.40
B.45
C.50
D.5解析:本题是道初看不易找到规律的题,可试着用平方与加减法规律去解答,即2=12+1,3=22-1,10=32+1,15=42-1,26=52+1,35=62-1,依此规律,()内之数应为72+1=50。
故本题的正确答案为C。
50.7 ,9 ,-1 , 5 ,(-3)A.3
B.-3
C.2
D.-1 解析:7,9,-1,5,(-3)=>从第一项起,(第一项 减 第二项)×(1/2)=第三项
51.3,7,47,2207,()
A.4414
B 6621
C.8828
D.4870847
解析:本题可用前一个数的平方减2得出后一个数,这就是本题的规律。即7=32-2,47=72-2,22072-2=4870847,本题可直接选D,因为A、B、C只是四位数,可排除。而四位数的平方是7位数。故本题的正确答案为D。
52.4,11,30,67,()
A.126
B.127
C.128
D.129
解析:这道题有点难,初看不知是何种规律,但仔细观之,可分析出来,4=1^3+3,11=2^3+3,30=3^3+3,67=4^3+3,这是一个自然数列的立方分别加3而得。依此规律,()内之数应为5^3+3=128。
故本题的正确答案为C。
53.5 , 6 , 6/5 , 1/5 ,()A.6
B.1/6
C.1/30
D.6/25 解析:(方法一)头尾相乘=>6/
5、6/
5、6/5=>选D
(方法二)后项除以前项:6/5=6/5
1/5=(6/5)/6 ;()=(1/5)/(6/5);所以()=1/6,选b
54.22,24,27,32,39,()
A.40
B.42
C.50
D.52解析:本题初看不知是何规律,可试用减法,后一个数减去前一个数后得出:24-22=2,27-24=3,32-27=5,39-32=7,它们的差就成了一个质数数列,依此规律,()内之数应为11+39=50。
故本题正确答案为C。
55.2/51,5/51,10/51,17/51 ,()
A.15/51
B.16/51
C.26/51
D.37/5
1解析:本题中分母相同,可只从分子中找规律,即2、5、10、17,这是由自然数列1、2、3、4的平方分别加1而得,()内的分子为52+1=26。故本题的正确答案为C
56.20/9,4/3,7/9,4/9,1/4,()
A.5/36
B.1/6
C.1/9
D.1/14
4解析:这是一道分数难题,分母与分子均不同。可将分母先通分,最小的分母是36,通分后分子分别是20×4=80,4×12=48,7×4=28,4×4=16,1×9=9,然后再从分子80、48、28、16、9中找规律。80=(48-28)×4,48=(28-16)×4,28=(16-9)×4,可见这个规律是第一个分子等于第二个分子与第三个分子之差的4倍,依此规律,()内分数应是16=(9-?)×4,即(36-16)÷4=5。故本题的正确答案为A。
57.23,46,48,96,54,108,99,()
A.200
B.199
C.198
D.197
解析:本题的每个双数项都是本组单数项的2倍,依此规律,()内的数应为99×2=198。本题不用考虑第2与第3,第4与第5,第6与第7个数之间的关系。故本题的正确答案为C。
58.1.1,2.2,4.3,7.4,11.5,()
A.155
B.156
C.158
D.166
解析:此题初看较乱,又是整数又是小数。遇到此类题时,可将小数与整数分开来看,先看小数部分,依次为0.1,0.2,0.3,0.4,0.5,那么,()内的小数应为0.6,这是个自然数列。再看整数部分,即后一个整数是前一个数的小数与整数之和,2=1+1,4=2+2,7=4+3,11=7+4,那么,()内的整数应为11+5=16。故本题的正确答案为D。
59.0.75,0.65,0.45,()
A.0.78
B.0.88
C.0.55
D.0.96
解析:在这个小数数列中,前三个数皆能被0.05除尽,依此规律,在四个选项中,只有C能被0.05除尽。
故本题的正确答案为C。
60.1.16,8.25,27.36,64.49,()
A.65.25
B.125.64
C.125.81
D.125.0
1解析:此题先看小数部分,16、25、36、49分别是4、5、6、7自然数列的平方,所以()内的小数应为8.2=64,再看整数部分,1=13,8=23,27=33,64=43,依此规律,()内的整数就是5.3=125。故本题的正确答案为B。
61.2,3,2,(),6
A.4
B.5
C.7
D.8
解析:由于第2个2的平方=4,所以,这个数列就成了自然数列2、3、4、()、6了,内的数应当就是5了。
故本题的正确答案应为B。
62.25,16,(),4A.2
B.3
C.3
D.6
解析:根据 的原理,25=5,16=4,4=2,5、4、()、2是个自然数列,所以()内之数为3。故本题的正确答案为C。
63.1/2,2/5,3/10,4/17,()
A.4/24
B.4/25
C.5/26
D.7/26
解析:该题中,分子是1、2、3、4的自然数列,()内分数的分子应为5。分母2、5、10、17一下子找不出规律,用后一个数减去前一个数后得5-2=3,10-5=5,17-10=7,这样就成了公差为2的等差数列了,下一个数则为9,()内的分数的分母应为17+9=26。故本题的正确答案为C。
65.-2,6,-18,54,()
A.-162
B.-172
C.152
D.16
4解析:在此题中,相邻两个数相比6÷(-2)=-3,(-18)÷6=-3,54÷(-18)=-3,可见,其公比为-3。据此规律,()内之数应为54×(-3)=-162。故本题的正确答案为A。
66.7 , 9 ,-1 , 5 ,(-3)A.3
B.-3
C.2
D.-1 解析:7,9,-1,5,(-3)=>从第一项起,(第一项 减 第二项)×(1/2)=第三项
67.5 , 6 , 6/5 , 1/5 ,()A.6
B.1/6
C.1/30
D.6/2
5解析:头尾相乘=>6/
5、6/
5、6/5,选D
68.2,12,36,80,150,()
A.250
B.252
C.253
D.2
解析:这是一道难题,也可用幂来解答之
2=2×1的2次方,12=3×2的2次方,36=4×3的2次方,80=5×4的2次方,150=6×5的2次方,依此规律,()内之数应为7×6的2次方=252。故本题的正确答案为B。
69.0,6,78,(),15620 A.240
B.252
C.1020
D.7771 解析:0=1×1-1 6=2×2×2-2 78=3×3×3×3-3 ?=4×4×4×4×4-4 15620=5×5×5×5×5×5-5
答案是1020 选C
74.5 , 10 , 26 , 65 , 145 ,()
A.197
B.226
C.257
D.290 分析:2^2+1=5 3^2+1=10 5^2+1=26 8^2+1=65 12^2+1=145 17^2+1=290 纵向看2、3、5、8、12、17之间的差分别是1、2、3、4、5
75.
解析:观察可知,繁分数中共有12个分母数字较大的分数,按常规的通分方法显然行不通。若取最大值和最小值来讨论算式的取值范围,也较
找出算式的整数部分。
因此,S的整数部分是165。
76.65,35,17,3,(1)8平方加一,6平方减一,4平方加一,2平方减一,0平方加一。
77.23,89,43,2,(3)
取前三个数,分别提取个位和百位的相同公约数列在后面。
79.3/7,5/8,5/9,8/11,7/11,()A.11/14
B.10/13
C.15/17
D.11/12 解析:每一项的分母减去分子,之后分别是:
7-3=4
8-5=3
9-5=4
11-8=3
11-7=4 从以上推论得知:每一项的分母减去分子后形成一个4和3的循环数列,所以 推出下一个循环数必定为3,只有A选项符合要求,故答案为A。
80.1,2,4,6,9,(),18 A.11
B.12
C.13
D.14 分析:(1+2+4+6)-2×2=9
(2+4+6+9)-2×4=13
(13+6+9+4)-2×8=18 所以选C
85.1,10,3,5,()
A.11
B.9
C.12
D.4 分析
(一):两两相比,1/10,3/5通分,1/10,6/10,下组应该是11/10,故答案A 分析
(二):要把数字变成汉字,看笔画1、10、3、5、(4)一、十、三、五、四 88.1,2,5,29,()A.34
B.846
C.866
D.37 解析:5=2^2+1^2
29=5^2+2^2
()=29^2+5^2
所以()=866,选C
89.1 , 2 , 1 , 6 , 9 , 10 ,()A.13
B.12
C.19
D.17 解析:1+2+1=4=2平方 2+1+6=3平方 1+6+9=4平方 6+9+10=5平方
9+10+(?)=6平方
答案:17
90.1/2,1/6,1/12,1/30,()
A.1/42
B.1/40
C.11/42
D.1/50 解析:主要是分母的规律,2=1×2,6=2×3,12=3×4,30=5×6,?=6×7
所以答案是A
91.13 , 14 , 16 , 21 ,(), 76 A.23
B.35
C.27 解析:按奇偶偶排列,选项中只有22是偶数
92.1 , 2 , 2 , 6 , 3 , 15 , 3 , 21 , 4 ,()A.46
B.20
C.12
D.44 解析:2/1=2
6/2=3
15/3=5
21/3=7
44/4=11
93.3 , 2 , 3 , 7 , 18 ,()A.47
B.24
C.36
D.70 解析:第一项和第三项的和为中间项的三倍
94.4,5,(),40,104 A.7
B.9
C.11
D.13 解析:5-4=1^3 104-64=4^3 由此推断答案是13,因为:13-5=8,是2的立方;40-13=27,是3的立方,所以答案选D
95.0,12,24,14,120,16,()
A.280
B.32 C.64
D.336 解析:奇数项 1的立方-1
3的立方-3
5的立方-5
7的立方-7
96.3 , 7 , 16 , 107 ,()解析:答案是16×107-5 第三项等于前两项相乘减5
98.1 , 10 , 38 , 102 ,()
A.221
B.223
C.225
D.227 解析:2×2-3 4×4-6 7×7-11 11×11-19 16×16-31 3
6-3=3
11-6=5
19-11=8
31-19=12 5-3=2
8-5=3
12-8=4 100.0 ,22 ,47 ,120 ,(),195 解析:2 5 7 11 13 的平方,-4-3-2-1 0-1
答案是169
101.11,30,67,()
解析:2的立方加3,3的立方加3.......答案是128
102.102 ,96 ,108 ,84 ,132,()
解析:依次相差-
6、+
12、-
24、+
48、(-96)所以答案是 36
103.1,32,81,64,25,(),1,1/8 解析:1^6、2^5、3^4、4^3、5^
2、(6^1)、7^1、8^-1。答案是6
104.-2,-8,0,64,()解析:1^3×(-2)=-2
2^3×(-1)=-8
3^3×0=0
4^3×1=64
答案:5^3×2=250
105.2,3,13,175,()解析:(C=B^2+2×A)
13=3^2+2×2
175=13^2+2×3 答案: 30651=175^2+2×13
106.3 , 7 , 16 , 107,()解析:16=3×7-5 107=16×7-5 答案:1707=107×16-5
107.0,12,24,14,120,16,()A.280
B.32
C.64
D.336 解析:奇数项 1的立方-1
3的立方-3
5的立方-5
7的立方-7
108.16,17,36,111,448,()
A.639
B.758
C.2245
D.3465 解析:16×1=16 16+1=17,17×2=34 34+2=36,36×3=108 108+3=111,111×4=444 444+4=448,448×5=2240 2240+5=2245 110.5,6,6,9,(),90 A.1
2B.1
5C.18 D.21 解析:6=(5-3)×(6-3)
9=(6-3)×(6-3)
18=(6-3)×(9-3)
90=(9-3)×(18-3)
111.55 , 66 , 78 , 82 ,()
A.98
B.100
C.96
D.102 解析:56-5-6=45=5×9
66-6-6=54=6×9
78-7-8=63=7×9
82-8-2=72=8×9
98-9-8=81=9×9
112.1 , 13 , 45 , 169 ,()A.443
B.889
C.365
D.701 解析:1
由13的各位数的和1+3得
由45的各位数4+5 由169的各位数1+6+9
(25)
由B选项的889(8+8+9=25)
113.2,5,20,12,-8,(),10 A.7
B.8
C.12
D.-8 解析:本题规律:2+10=12;20+(-8)=12;12;所以5+(7)=12,首尾2项相加之和为12
114.59 , 40 , 48 ,(),37 , 18 A.29
B.32
C.44
D.43 解析:第一项减第二项等于19
第二项加8等于第三项
依次减19加8下去
115.1 , 2 , 1 , 6 , 9 , 10 ,()A.13
B.12
C.19
D.17 解析:1+2+1=4=2平方 2+1+6=3平方 1+6+9=4平方 6+9+10=5平方 9+10+()=6平方 答案17
116.1/3 , 5/9 , 2/3 , 13/21 ,()A.6/17
B.17/27
C.29/28
D.19/27
解析:1/3,5/9,2/3,13/21,(17/27)=>1/3,5/9,12/18,13/21,(17/27)每项分母与分子差=>2、4、6、8、10等差
117.1 , 2 , 1 , 6 , 9 , 10 ,()
A.13
B.12
C.19
D.17 解析:1+2+1=4 2+1+6=9 1+6+9=16 6+9+10=25 9+10+17=36
118.1 , 2/3 , 5/9 ,(), 7/15 , 4/9 , 4/9 解析:3/3 , 4/6 , 5/9 ,(6/12), 7/15 , 8/18
119.-7,0,1,2,9,()解析:-7等于-2的立方加1,0等于-1的立方加1,1等于0的立方加1,2等于1的立方加1,9等于2的立方加1,所以最后空填3的立方加1,即28
120.2,2,8,38,()A.76
B.81
C.144
D.182 解析: 后项=前项×5-再前一项
121.63,26,7,0,-2,-9,()解析:63=4^3-1 26=3^3-1 7=2^3-1 0=1^3-1-2=(-1)^3-1-9=(-2)3-1(-3)^3-1=-28
122.0,1,3,8,21,()解析:1×3-0=3 3×3-1=8 8×3-3=21 21×3-8=55
123.0.003,0.06,0.9,12,()解析:0.003=0.003×1 0.06=0.03×2 0.9=0.3×3 12=3×4 于是后面就是30×5=150
124.1,7,8,57,()解析:1^2+7=8 7^2+8=57 8^2+57=121
125.4,12,8,10,()解析::(4+12)/2=8
(12+8)/2=10
(8+10)/2=9
126.3,4,6,12,36,()
解析:后面除前面,两两相除得出4/3, 3/2, 2,3,X,我们发现A×B=C于是我们得到X=2×3=6于是36×6=216
127.5,25,61,113,()解析:25-5=20 61-25=20+16 113-61=36+16 x-113=52+16
129.9,1,4,3,40,()A.8
1B.80
C.121 D.120 解析:除于三的余数是011011
答案是121
130.5,5,14,38,87,()
A.167
B.168
C.169
D.170 解析:5+1^1-1=5 5+3^2=1
414+5^2-1=38 38+7^2=87 87+9^2-1=167 133.1 , 5 , 19 , 49 , 109 ,()A.170
B.180
C.190
D.200 解析:19-5+1=15 ①
②-①=21 49-19+(5+1)=36 ②
③-②=49 109-49+(19+5+1)=85 ③
④-③=70(70=21+49)?-109+(49+19+5+1)=④
④=155 ?=155+109-(49+19+5+1)=190
134.4/9 , 1 , 4/3 ,(), 12 , 36 解析:4/9 × 36 =16
× 12 =12
==>x=6
4/3 × x =8
/
135.2 , 7 , 16 , 39 , 94 ,()A.227
B.237
C.242
D.257 解析:第一项+第二项×2 =第三项
136.-26 ,-6 , 2 , 4 , 6 ,()A.8
B.10
C.12
D.14 解析:选D;-3的3次加1,-2的3次加2,-1的3次加3,0的3次加4, 1的3次加5,2的3次加6
137.1 , 128 , 243 , 64 ,()A.121.5
B.1/6
C.5
D.358 1/3 解析:1的9次方,2的7次方,3的5次方,6的三次方,后面应该是5的一次方
所以选C 138.5 , 14,38,87,()
A.167
B.168
C.169
D.170 解析:5+1^2-1=5 5+3^2=14 14+5^2-1=38
38+7^2=87 87+9^2-1=167 所以选A
139.1,2,3,7,46 ,()
A.2109
B.1289
C.322
D.147 解析:2^2-1=3 3^2-2=7 7^2-3=46
46^2-7=2109
140.0,1,3,8,22,63,()
解析:1×3-0=3 3×3-1=8 8×3-2=22 22×3-3=63 63×3-4=185 142.5 , 6 , 6 , 9 ,(), 90 A.12
B.15
C.18
D.21 解析:(5-3)×(6-3)=6..........(6-3)×(9-3)=18 选C 145.2 , 90 , 46 , 68 , 57 ,()
A.65
B.62.5
C.63
D.62 解析:前两项之和除以2为第三项,所以答案为62.5
146.20 , 26 , 35 , 50 , 71 ,()A.95
B.104
C.100
D.102 解析:前后项之差的数列为6 9
分别为3×2
3×3
3×5
3×7,则接下来的为3×11=33,71+33=104选B
147.18 , 4 , 12 , 9 , 9 , 20 ,(), 43 A.8
B.11
C.30
D.9 解析:奇数项,偶数项分别成规律。
偶数项为4×2+1=9,9×2+2=20,20×2+3=43 答案所求为奇数项,奇数项前后项差为6,3,等差数列下来便为0 则答案为9,选D
148.-1 , 0 , 31 , 80 , 63 ,(), 5 解析:0-(-1)=1=1^6 31-(-1)=32=2^5 80-(-1)=81=3^4
149.3 , 8 , 11 , 20 , 71 ,()
A.168
B.233
C.91
D.304 解析:把奇数项和偶数项分开看:3,11,71的规律是:(3+1)×3=11+1,(11+1)×6=71+18,20,168的规律可比照推出:2×8+4=20,20×8+8=168
150.2 , 2 , 0 , 7 , 9 , 9 ,()
A.13
B.12
C.18
D.17 解析:前三项之和分别是2,3,4,5的平方,所以C
151.8 , 8 ,(), 36 , 81 , 169 A.16
B.27
C.8
D.26 解析:8+8=16=4^2,后面分别是4,6,9,13的平方,即后项减前项分别是2,3,4的一组等差数列,选A
152.102 , 96 , 108 , 84 , 132 ,()解析:依次相差-
6、+
12、-
24、+
48、(-96)所以答案是 36
154.-2 ,-8 , 0 , 64 ,()解析:1^3×(-2)=-2
2^3×(-1)=-8
3^3×0=0
4^3×1=64
答案:5^3×2=250
155.2 , 3 , 13 , 175 ,()解析:(C=B^2+2×A)
13=3^2+2×2
175=13^2+2×3
答案: 30651=175^2+2×13
156.3 , 7 , 16 , 107 ,()解析:16=3^7-5 63-(-1)=64=4^3 24-(-1)=25=5^2 5-(-1)=6=6^1 选B
107=16^7-5
答案:1707=107^16-5
166.求32+62+122+242+42+82+162+322
A.2225
B.2025
C.1725
D.2125 解析:由勾股定理知 32+ 42 = 52 , 62 + 82 =102,122+ 162=202 242+322 = 402 所以:
32+62+122+242+42+82+162+322 =>52+102+202+402=>25+100+400+1600=2125 178.18 , 4 , 12 , 9 , 9 , 20 ,(), 43 解析:两个数列18
相减得第3个数列:6
0 所以:()=9
179.5 , 7 , 21 , 25 ,()
A.30
B.31
C.32
D.34 解析:25=21+5-1
?=25+7-1
180.1 , 8 , 9 , 4 ,(), 1/6 A.3
B.2
C.1
D.1/3 解析:1^4 2^3 3^2 4^1 5^0 6^-1
181.16 , 27 , 16 ,(), 1 A.5
B.6
C.7
D.8 解析:2^4 3^3 4^2 5^1 6^0
182.2 , 3 , 6 , 9 , 18 ,()解析:题中数字均+3,得到新的数列:5,6,9,12,21,()+3 6-5=1,9-6=3,12-9=3,21-12=9,可以看出()+3-21=3×9=27,所以()=27+21-3=45
183.1 , 3 , 4 , 6 , 11 , 19 ,()解析:3-1=2,4-3=1,11-6=5,19-11=8
得出数列:2 1 2 5 8 15
2+1+2=5
1+2+5=8
2+5+8=15
184.1,2,9,121,()
A.251
B.441
C.16900
D.960 解析:前两项和的平方等于第三项
(1+2)^2=9(2+9)^2=121(121+9)^2=16900
187.5 , 6 , 6 , 9 ,(), 90
A.12
B.15
C.18
D.21 解析:(5-3)(6-3)=6(6-3)(9-3)=18(18-3)(9-3)=90 所以,答案是18
188.1 , 1 , 2 , 6 ,()
A.19
B.27
C.30
D.24 解析:后一数是前一数的1,2,3,4倍 答案是24
189.-2 ,-1 , 2 , 5 ,(),29 解析:2的次方从0开始,依次递增,每个数字都减去3,即2的0次方减3等于-2,2的1次方减3等于-1,2的2次方减3等于1,2的3次方减3等5,则2的4次方减3等于13
190.3,11,13,29,31,()解析:2的平方-1 3的平方+2 4的平方-3 5的平方+4 6的平方-5 后面的是7的平方+6了
所以答案为53
191.5,5,14,38,87,()A.167
B.68
C.169
D.170 解析:它们之间的差分别为0 9 24 49 0=1的平方-1 9=3的平方
24=5的平方-1 49=7的平方
所以接下来的差值应该为9的平方-1=80 87+80=167
所以答案为167
192.102 , 96 , 108 ,84 , 132 ,()解析:102-96=6 96-108=-12 108-84=24 84-132=-48 132-X=96,X=36
193.0,6,24,60,120,()
解析:0=1^3-1
6=2^3-2
24=3^3-3
60=4^3-4
120=5^3-5
210=6^3-6
194.18 , 9 , 4 , 2 ,(), 1/6
A.3
B.2
C.1
D.1/3 解析:18/9=2 4/2=2 1/3除以1/6=2
198.4.5,3.5,2.8,5.2,4.4,3.6,5.7,()A.2.3
B.3.3
C.4.3
D.5.3 解析:(方法一)4.5,3.5,2.8,5.2,4.4,3.6,5.7,2.3
视为4、3、2、5、4、3、5、2和5、5、8、2、4、6、7、3的组合 其中 4、3、2、5、4、3、5、2=>4、3;
2、5;
4、3;
5、2分四组,每组和为7 5、5、8、2、4、6、7、3=>5、5;
8、2;
4、6;
7、3分四组,每组和为10
(方法2)4.5+3.5=8 2.8+5.2=8 4.4+3.6=8 5.7+?=8 ?=2.3
200.0,1/4,1/4,3/16,1/8,(5/64)解析:(方法一)0,1/4,1/4,3/16,1/8,(5/64)=> 0/
2、1/
4、2/
8、3/
16、4/
32、5/64 分子 0、1、2、3、4、5 等差 分母2、4、8、16、32 等比
(方法二)1/4=1/41/4×1/4 ; 1/8=3/163/16×1/4
201.16 , 17 , 36 , 111 , 448 ,()A.247
2B.224
5C.186
3D.1679 解析:16×1+1=17
17×2+2=36
36×3+3=111
111×4+4=448
448×5+5=2245
203.133/57 , 119/51 , 91/39 , 49/21 ,(), 7/3 A.28/12
B.21/14
C.28/9
D.31/15 解析:133/57=119/51=91/39=49/21=(28/12)=7/3 所以答案为A
204.0 , 4 , 18 , 48 , 100 ,()A.140
B.160
C.180
D.200 解析: 0
180
作差
作差
205.1 , 1 , 3 , 7 , 17 , 41 ,()A.89
B.99
C.109
D.119 解析:从第3项起,每一项=前一项×2+再前一项
206.22 , 35 , 56 , 90 ,(), 234 A.162
B.156
C.148
D.145 解析:22
145
234
作差
作差
=>
8+13=21 13+21=34
207.5 , 8 ,-4 , 9 ,(), 30 , 18 , 21
A.14
B.17
C.20
D.26 解析:5 ;-4 ; 17 30 ; 18 =>分四组,每组第二项减第一项=>3、13、13、3
208.6 , 4 , 8 , 9 , 12 , 9 ,(), 26 , 30 A.12
B.16
C.18
D.22 解析:6 ; 9 ; 16
30=>分三组,每组作差=>
2、-4;-
3、3;-
10、-4=>每组作差=>6;-6;-6
209.1 , 4 , 16 , 57 ,()A.165
B.76
C.92
D.187 解析:1×3 + 1(既:1^2)
4×3 + 4(既:2^2)
16×3 + 9(既:3^2)
57×3 + 16(既:4^2)= 187 210.-7,0,1,2,9 ,()A.12
B.18
C.24
D.28 解析:-7=(-2)^3+1
0=(-1)^3+1
1=0^3+1
2=1^3+1
9=2^3+1
28=3^3+1
211.-3,-2,5,24,61 ,(122)A.125
B.124
C.123
D.122 解析:-3=0^3-3
-2=1^3-3
5=2^3-3
24=3^3-3
61=4^3-3
122=5^3-3
212.20/9,4/3,7/9,4/9,1/4,(5/36)A.5/36 B.1/6 C.1/9 D.1/144 解析:20/9=20/9 4/3=24/18 7/9=28/36 4/9=32/72 1/4=36/144 5/36=40/288 其中
分子20、24、28、32、36、40等差 分母9、18、36、72、144、288等比
216.23,89,43,2,()A.3
B.239
C.259
D.269
解析:2是23、89、43中十位数2、8、4的最大公约数 3是23、89、46中个位数3、9、3的最大公约数
所以选A
217.1 , 2/3 , 5/9 ,(), 7/15 , 4/9 A.1/2
B.3/4
C.2/13
D.3/7 解析:1,2/3,5/9,1/2,7/15,4/9=>3/
3、4/
6、5/
9、6/
12、7/
15、8/18=> 分子3、4、5、6、7、8等差 分母3、6、9、12、15、18等差
220.6 , 4 , 8 , 9 ,12 , 9 ,(), 26 , 30 解析:头尾相加=>36、30、24、18、12等差
223.4 , 2 , 2 , 3 , 6 , 15 ,(?)A.16
B.30
C.45
D.50 解析:每一项与前一项之商=>1/2、1、3/2、2、5/
2、3等差
261.7 , 9 , 40 , 74 , 1526 ,()
解析:7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。所以7×7-9=40 , 9×9-7=74 , 40×40-74=1526 , 74×74-40=5436
262.2 , 7 , 28 , 63 ,(), 215 解析:2=1^3+1
7=2^3-1
28=3^3+1
63=4^3-1
所以()=5^3+1=126
215=6^3-1
263.3 , 4 , 7 , 16 ,(), 124 解析:两项相减=>1、3、9、27、81等比
264.10,9,17,50,()A.69
B.110
C.154
D.199 解析:9=10×1-1
17=9×2-1
50=17×3-1
199=50×4-1
265.1 , 23 , 59 ,(), 715 A.12
B.34
C.214
D.37 解析:从第二项起作变化23,59,37,715=>(2,3)(5,9)(3,7)(7,15)=>
2×2-第一项=3
5×2-第一项=9
3×2+第一项=7
7×2+第一项=15
266.-7,0,1,2,9,()A.12
B.18
C.24
D.28 解析:-2^3+1=7
-1^3+1=0
1^3+1=2
2^3+1=9
3^3+1=28
267.1 , 2 , 8 , 28 ,()A.72
B.100 C.64 D.56 解析:1×2+2×3=8
2×2+8×3=28
8×2+28×3=100
268.3 , 11 , 13 , 29 , 31()
A.52
B.53
C.54
D.55 解析:11=3^2+2 13=4^2-3 29=5^2+4 31=6^2-5 55=7^2+6
269.14 , 4 , 3 ,-2 ,(-4)A.-3
B.4
C.-4
D.-8
解析: 2除以3用余数表示的话,可以这样表示商为-1且余数为1,同理,-4除以3用余数表示为商为-2且余数为2
2、因此14,4,3,-2,(-4),每一项都除以3,余数为2、1、0、1、2 =>选C ps:余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1
270.-1,0,1,2,9,(730)解析:(-1)^3+1=0
0^3+1=1
1^3+1=2
2^3+1=9
9^3+1=730
271.2,8,24,64,(160)解析:1×2=2
2×4=8
3×8=24
4×16=64
5×32=160
272.4 , 2 , 2 , 3 , 6 , 15,(45)A.16
B.30
C.45
D.50 解析:每一项与前一项之商=>1/2、1、3/2、2、5/
2、3等差
273.7,9,40,74,1526,(5436)解析:7×7-9=40
9×9-7=74
40×40-74=1526
74×74-40=5436
274.0,1,3,8,21,(55)
解析:第二个数乘以3减去第一个数得下个数
280.8 , 12 , 24 , 60 ,()
解析:12-8=4,24-12=12,60-24=36,()-60=? 差可以排为4,12,36,?
可以看出这是等比数列,所以?=108 所以()=168 289.5,41,149,329,(581)解析:0×0+5=5
6×6+5=41
12×12+5=149
18×18+5=329
290.1,1,2,3,8,(13)
解析:各项先都除以第一项=>得商数列1、2、3、8、13=>对于商数列=>
2×2-1(商数列的第一项)=3
3×2+2=8
8×2-3=13
291.2,33,45,58,(612)解析:把数列中的各数的十位和个位拆分开=> 可以分解成3、4、5、6与2、3、5、8、12 的组合。3、4、5、6 一级等差 2、3、5、8、12
二级等差
297.2 , 2 , 0 , 7 , 9 , 9 ,()A.13
B.12
C.18
D.17 解析:2+2+0=4
2+0+7=9
0+7+9=16
7+9+9=25
9+9+?=36
?=18
299.3 , 2 , 5/3 , 3/2 ,()A.7/5
B.5/6
C.3/5
D.3/4 解析:(方法一)3/
1、2/
1、5/
3、3/
2、7/5=>分子减分母=>2、1、2、1、2
=>答案A
(方法二)原数列3,2,5/3,3/2 可以变为3/1,4/2,5/3,6/4,分子上是3,4,5,6,分母上是1,2,3,4,均够成自然数数列,由此可知下一数为7/5
(2)、5,15,10,215,()A.415 B.-115 C.445 D.-112 解析:10=5*5-15
215=15*15-10 115=10*10-215(3)、4,18,56,130,()A.216 B.217 C.218 D.219(6)、5,10,15,85,140,()
A.285 B.7225 C.305 D.7445 解析: 5^2=10+15,10^2=15+85,15^2=85+140,85^2=140+7085(1)、1,2,3,7,16,(),191 A.66 B.65 C.64 D.63 解析:1^2+2=3,2^2+3=7,7^2+16=65
1)48,2,4,6,54,(),3,9
A.6 B.5 C.2 D.3 解析:第一题四个四个为一组,答案应该是2
1,2,4,6,9,(c),18 A、11
B、12
C、13
D、18 解析:
思路1我有一个解释,仅供参考~:)1+2+4-1=6 2+4+6-3=9 4+6+9-6=13 6+9+13-10=18 其中 1、3、6、10二级等差
思路2: 应该是13,我是这样推理的:(1+4)/2=2余1(2+6)/2=4余0(4+9)/2=6余1(6+?)/2=9余0或者1(9+18)/2=?余0或者1
满足条件的只有13
(7)120,20,(),-4
A.0 B.16 C.18 D.19 120=5^3-5 20=5^2-5 0=5^1-5-4=5^0-5 所以答案是A
(8)6, 13 , 32, 69,()A.121 B.133 C.125 D.130 选D 6=3*2+0 13=3*4+1 32=3*10+2 69=3*22+3 130=3*42+4 42-22=20,22-10=12,10-4=6,4-2=2 20-12=8,12-6=6,6-2=4 8、6、4等差。
1,9,45,(),891 A.52 B.49 C.189 D.293 答案应该是C 1=1*3^0 9=3*3^1 45=5*3^2 189=7*3^3 891=11*3^4 1、3、5、7、11的规律 1)48,2,4,6,54,(),3,9 A.6 B.5 C.2 D.3 我选C 48=2×4×6 54=?×3×9 =>2(2)-7, 3, 4,(), 11 A.-6 B.7 C.10 D.13
我选B 前两个数相加的和的绝对值=第三个数=>选B
9)3.3,5.7,13.5,()A.7.7 B.4.2 C.11.4 D.6.8
我选A 把分子拆开为一组数列:3,5,13,? 把分母拆开为一组数列:3,7,5,? 以上两组数列均为质数列 故分子 ?=>7 分母 ?=>7 再把推出的分子和分母重新组合还原本数字项=>7.7 以上是个人的拙见,还望高人能够指点一二.......这些数全可以被2除尽!!那低人就乱说一通啦~~呵呵:)
1、这个题没有分数,谈不上分子分母的问题,我想一定是笔误了。
2、个人觉得,把小数点左边的3、5、13、7和小数点右边的3、7、5、7看成奇数,也许能好些,因为,从做题来看,凡是质数列都是连续的,如2、3、5、7、11、13。。,而奇数有不连续的情况。
3、我也选A,同意你的想法~!并且我搜了一下,答案也是A的。仅供参考喽~:)
(4)33.1,88.1,47.1,()A.29.3 B.34.5 C.16.1 D.28.9
我选C 小数点左边:33、88、47、16成奇、偶、奇、偶的规律 小数点右边:1、1、1、1 等差 仅供参考~:)
1,312,514,()
A.718,B.716,C.819,D.518
答案为B B,中间都是1,然后第一个数字比最后一个数字大一 3,5,7 2,4,6 中间夹个1 2、8、24、64、()
A、88
B、98
C、159
D、160 1*2=2 2*4=8 3*8=24 4*16=64 5*32=160 思路二:(8-2)*4=24
(24-8)*4=64 所以(64-24)*4=160 8、8、12、24、60、()
A、240
B、180
C、120
D、80
8*1=8,12*2=24,60*3=180 后项除以前项,1,1.5,2,2.5,3比例递增0、1、2、9、()
A、12
B、18
C、729
D、730 后项等于前一项的立方加1 1 8 9 4()1/6
A 3 B 2 C 1 D 1/3 1的4次方,2的3次方,3的平方,2的一次方,1的零次方等于1 应该是:1的4次方,2的3次方,3的平方,4的一次方,5的零次方等于1,6的负1次方 22 35 56 90()234 A 162 B 156 C 148 D 145
22+35-1=56 35+56-1=90 56+90-1=145
90+145-1=234 两个数字之间分别相差13 21 34 55
而34=13+21
55=21+34
89=34+55
128,243,64,(),1/6 A.5
B.16 C.67 D.10 128=2^7 243=3^5 64=4^3 5=5^1 1/6=6^-1 答案为A,5
5,5,14,38,87,()A A.167 B.168 C.169 D.170 5-5=0
14-5=9
38-14=24
87-38=49
167-87=80 0=1的平方-1
9=3的平方
24=5的平方-1
49=7的平方
3,7,47,2207,()A.4414 B.6621 C.8828 D.4870847 D 3的平方-2=7 7的平方-2=47 47的平方-2=2207 2207的平方-2=
不用具体算 尾数为7的一定是答案
1,8,9,4,(),1/6 A.3
B.2
C.1 D.1/3 这个我会,答案是C 1^4=1 ,2^3=8 ,3^2=9 ,4^1=4 ,5^0=1 ,6^-1=1/6
5,17,21,25,()A.30 B.31 C.32 D.34
80=9的平方-1 是奇数、偶数的问题
第一题 9,15,22,28,33,39,(),61
A 51
B
C 53
D 55 第二题 3/2, 1, 7/10,9/17,(), 3/19
A 11/24 B 11/27
C 11/26 D 15/26
第一题:答案D,不知道对不对。
两个等差数列28-15=13,39-28=11,61-39=22
22-9=13,33-22=11,55-33=22 第二题:答案C,但好像最后一个数有问题吧 3/2,5/5,7/10,9/17,11/26,13/37 分子3,5,7,9,(11),13 分母之差为3,5,7,9,11 1.5
7.5
22.5
()A60
B78.25
C78.75
D80 128
243
()
1/6 A5
B16
C 67
D 10 一题
3÷1.5=2 7.5÷3=2.5 22.5÷7.5=3 78.75÷22.5=3.5
第二题 2^7=128 3^5=243 4^3=64 5^1=5 6^-1=1/6 15,27,59,(),103 A.80 B.81 C.82 D.83 个位(十位做参考,要加上去的): 5.7.9.11.13 十位和百位:1.2.5.?.10(其实是9+1)
那很明显了,要填的数字应该是7(作为十位)和11(作为百位),那答案就是81。所以 B...63 , 26, 7, 0,-2,-9,()A-18,B-20,C-26, D-28 太简单了,N的立方减1,依次是4的立方减1,3的立方减1,2的立方减1,„,所以空格处是-3的立方减1,答案是D 是D,也可这样认为: 63-26=37,26-7=19,7-0=7,0-(-2)=2,-2-(-9)=7,-9-(-28)=19
3,6,21,60,()A.183 B.189 C.190 D.243 3*6+3=21 3*21-3=60 3*60+3=183 9
()
A 81
B80
C 121
D 120 c 用3整除结果为0 1 1,0 1 11、8,8,12,24,60,()
A、90
B、120
C、180
D、2402、2,3,10,15,26,35,()
A、48
B、50
C、52
1。8,8,12,24,60,X 比例 1 所以60*3=180 2。隔项 2,10,26,X 差所以26+24=50 第二题是,1的平方加1,2的平方减1,3的平方加1,4的平方减1,依次来推
1:3,1,5,1,11,1,21,1,()A、43 B、42 C、40 D、41 2:1/11,7,1/7,26,1/3,()A、-1 B、63 C、64 D、62 1 选A 分成两个数列 3 5 11 21 ? 5+3×2=11 11+5×2=21 21+11×2=43 2选b 数列7 26 ? 2的立方-1=7 3的立方-1=26 4的立方-1=63 9,1,4,3,40,(c)A.81 B.80 C.121 D.120 除以3的余数分别是 0 1 1 0 1 1 4,13,22,31,45,54,(),()
A 60,68
B 55,61
C 61,70
D 72,80 答案 C 两两份组,差都是9 只有C满足
D、一题
33, 211, 55,()A 56
B 311
C 66
D 77 第二题 ,24,60,120
A 186
B 200
C 210
D 220 第一:d 3+2=5 3+1+1=5 =》 2+5=7 1+1+5=7 第二题
6,24,60,120 前后相除得4/1,5/2,6/3
可推出下一个为7/4 120×7/4=210选C 第二题规律 N三次方-N 我的思路是: 6×1=6 8×3=24 10×6=60 12×10=120 14×15=210选c 35,710,1115,34,()。A.1930 B.1925 C.2125 D.78-164,316,-54,()。
A.6 B.7 C.8 D.72 第一题我是这么考虑的,感觉不是很对呵呵!
35是3+5=8,710是7+1+0=8,1115是1+1+1+5=8,34是3+4=7,所以下个数也应该是各个位数字和为7,只有B符合
第一题 4个数中除34外除3的余数为2,而答案中只有B除3的余数为2 第二题 三个数个十百三位相加后分别为11 10 9所以我认为答案应该是C -1,0,1,2,9,()答案 11,82,729,730,730 n^3+1 1,5,19,49,109,()
A 120 B 180 C 190 D 200 第二道我发现一定的规律,但没答案可选,希望对解出答案有帮助 1,5,19,49,109分别两者之间的差 为4,14,30,60 4=2^3-4;14=2^4-2;30=2^5-2;60=2^6-4.=>2^7-2=126 =>109+126=235 56,66,78,82,()? 9,1,4,3,40,()? 第一题:
56-5-6=45=5*9
66-6-6=54=6*9
78-7-8=63=7*9
82-8-2=72=8*9
98-9-8=81=9*9 40.甲、乙两人从400米的环形跑道的一点A,背向同时出发,8分钟后,两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点,与A点沿跑道上的最短距离是多少?
A.166 B.176 C.224 D.234(2000年题)答案稍后送上
甲每秒多走0.1米,那么8分钟多走0.1*(8*60)=48米 设甲距A点X米,乙距A点Y米,X+Y=400 X-Y=48 X=223 Y=176 答案:B 因为甲比乙速度快,8分钟内甲比乙多跑了48。而在前面的二圈内二个人都是跑了八百米,差距只是在第三圈。
这题不必用一元方程式,二元就更没有必要了!!一共8分钟,每秒0.1米,那么甲多跑了48米!那么两人在第3圈相遇时距离中点(起点对称点)就是48的一半,那么此处距离起点的最近距离就是200减24=176了!!
第一题
1.5
7.5
22.5()第二题
()
第三题
()22
53=4*3+31 31=3*3+22 22=2*3+16 16=1*3+13 第二题: 2×7+7=21 6×7+7=49 12×7+7=91 20×7+7=147 3,1,5,1,11,1,21,1,()。两列 3 5 11 21 3x2+5=11 5x2+11=21 11x2+21=43 43 3*2-1=5 5*2+1=11 11*2-1=21 21*2+1=43 1,33,65,12,?
A.7
B.12
C.9
D。8 假如把各个数字分开看,如下: 1 3-------相差2 3 6-------相差3 5 1-------相差4 2 7-------相差5 我选A 9,1,4,3,40,(c)A.81 B.80 C.121 D.120 看除3的余数
11011 2000年一道真题
25. 18()1/6
A.3
B.2
C.1
D.1/3 2002年(A)一道真题 2、20,22,25,30,37,()
A.39
B.45
C.48
D.51 2.题是一个差数列并且还是质数,差分别是 2,3,5,7,11,所以括号里填 37+11=48(此题也在黑龙江省2005年4月份行测中出现过)第一个题应该是 8 9 4()1/6 1是1的4次方,8是2的3次方,9是3的2次方,4是4的1次方,由此推知,空缺项应为5的0次方即1,且6的-1次方为1/6 0,6,78,(),15620 A 240 B 252
C 1020
D 7771 0=1*1-1 6=2*2*2-2 78=3*3*3*3-3 ?=4*4*4*4*4-4 15620=5*5*5*5*5*5-5
答案是1020 选C 1。1.01,2.02,3.04,5.07,(),13.16
A.7.09 B.7.01 C.8.10 D.8.11 2.3,1,5,1,11,1,21,1,()
A.43 B.42 C.40 D.41 3.6,7,19,33,71,()A.127 B.130 C.137 D.140 4.1/11,7,1/7,26,1/3,()A.-1 B.63 C.64 D.62 5.-2/5,1/5,-8/750,()
A.11/375 B.9/375 C.7/375D.8/375 请大家帮忙做哦`答案我知道我想知道解题思路!奉上客案给各位作参考哈~~` 1.D 2.A 3.C 4.B 5.A 1整数部分是 第一项和第三项的和 除以2 小数部分是12345的等差
2.3*2-1,5*2+1,11*2-1,所以下面是21*2+1 第3题是前项*2加后项等于第三项
第4题只有7=2的三次方-1,26=3的3次方-1,那么63=4的3次方-1 5 d 两项两项
3,7,47,2207,()
A.4414B.6621C.8828D.4870847 后项=前项^2-2 第1题:
1,3,6,12,()A.20 B.24 C.18 D.32 第2题: 7、5、3、10、1、()、()
A、15、-4 B、20、-2 C、15、-1 D、20、0 第3题:
124,3612,51020,()
A、7084 B、71428 C、81632 D、91836 第二题,偶数项是等比数列,奇数项的差是等差数列,答案是D 第二题D 7 3
0
相减后为 4 第2题我知道了。分两列,选 D。
第一个括号里必须是 15 或 20。第一个括号里必须是 0 或 1。所以只能选 D。第一题24是么? 3-1=2 6-3=3 12-6=6 2*6=12 12+12=24 124 是 1 2 4 3612是 3 6 12 51020是 5 10 20 下一个应是7开头 因为成等差 7 14 28
5,12,24,36,52,()A 58 B62 C 68 D 72 2 ,57,17,59.()A 77 B 89 C 329 D501 3
行测数量计算题技巧 篇6
2014下半年宁德事业单位招聘行测答题技巧:资料分析题基础
术语
宁德公务员局网:根据往年事业单位考试时间安排推测:2014下半年宁德事业单位招聘公告预计在2014年9月份下旬发布,报名时间为10月下旬期间,准考证打印时间为11月中旬,笔试时间为11月中旬,面试时间与资格复审时间待定。各位考生可以时刻关注宁德公
务员局网,我们将会第一时间更新相关信息。
【导语】在事业单位行测考试中,合理运用数学思想巧解数学运算题不失为解题一大法宝。福建事业单位招聘网为考生带来行政职业能力测试答题技巧:资料分析题基础术语。
一、GDP和GNP
GDP(国内生产总值):指一个国家(或地区)所有常住单位在一定时期内生产的最终产品和服务价值的总和。
GNP(国民生产总值):指一个国家(或地区)所有国民在一定时期内生产的最终产品和服务价值的总和。
二、基尼系数与恩格尔系数
基尼系数:国际上通用的、用以衡量一个国家或地区人民收入差距的常用指标。基尼系数介于0-1之间,越接近0就表明收入分配越是趋向平等,反之,收入分配越是趋向不平等。按照国际一般标准,0.4以上的基尼系数表示收入差距较大,当基尼系数达到0.6以上时,则表示收入差距很大。
恩格尔系数:指食品支出总额(生活必需品,非奢侈品)占家庭或个人消费支出总额的百分比例,是国际上通用的、用以衡量一个国家或地区人民生活水平的常用指标。这个比例越低、一般反映这个地区人民生活水平越高。
三、顺差和逆差
顺差:在一个时期内,一个国家(或地区)的出口商品额大于进口商品额,叫做对外贸易顺差(又称出超),其差额即贸易顺差额。贸易顺差的大小在很大程度上反映一国在特定年份对外贸易活动状况。通常情况下,一国不宜长期大量出现对外贸易顺差,因为此举很容易引起与有关贸易伙伴国的摩擦。
宁德事业单位备考群:320163697
逆差:在一个时期内,一个国家(或地区)的出口商品额小于进口商品额,叫做对外贸易逆差(又称入超,有时也称为“贸易赤字”),其差额即贸易逆差额。
【例题】2010年,我国进出口贸易总额为29727.6亿美元,同比增长34.7%。其中,国有企业出口总额为2343.6亿元,增长22.7%;进口总额为3875.5亿元,同比增加34.3%。
2010年,我国机电产品出口9334.3亿美元,同比增加30.9%;高新技术产品出口4924.1亿美元,同比增加30.7%。船舶、汽车零部件出口保持较快增长,其中船舶出口同比增长44.5%,汽车零部件出口同比增长44.1%。2010年,机电产品进口额达到6603.1亿美元,同比增长34.4%,高新技术产品进口额达到4126.7亿美元,同比增长33.2%。
下列关于2010年我国进出口贸易的表述正确的是()。
A.高新技术产品逆差约为800亿美元
B.国有企业进出口总额同比增速为28.5%
C.机电产品出口额占出口总额的一半以上
D.船舶出口同比增长金额高于汽车零部件
【解析】本题中,我们可以很容易就判断出高新技术产业为顺差,A项错误。B项计算较为复杂,可以先看C项,机电产业出口额占出口总额的,C项正确。因此,本题正确答案为C。
四、三次产业
(一)三次产业来源
根据社会生产活动历史发展的顺序对产业结构的划分,产品直接取自自然界的部门称为第一产业,初级产品进行再加工的部门称为第二产业,为生产和消费提供各种服务的部门称为第三产业。它是世界上通用的产业结构分类。
(二)三次产业划分规定
第一产业是指农、林、牧、渔业(不含农、林、牧、渔服务业)。
第二产业是指采矿业(不含开采辅助活动),制造业(不含金属制品、机械和设备修理业),电力、热力、燃气及水生产和供应业,建筑业。
第三产业即服务业,是指除第一产业、第二产业以外的其他行业。第三产业包括:批发和零售业,交通运输、仓储和邮政业,住宿和餐饮业,信息传输、软件和信息技术服务业,金融业,房地产业,租赁和商务服务业,科学研究和技术服务业,水利、环境和公共设施管理业,居民服务、修理和其他服务业,教育,卫生和社会工作,文化、体育和娱乐业,公共管理、社会保障和社会组织,国际组织,以及农、林、牧、渔业中的农、林、牧、渔服务业,采矿业中的开采辅助活动,制造业中的金属制品、机械和设备修理业。
2014年下半年宁德市事业单位考试招考信息和备考资料请关注宁德公务员
宁德事业单位备考群:320163697
局网:http://ningde.offcn.com/html/shiyedanwei/5506
行测数量计算题技巧 篇7
关键词:新课标,创新思维方式,技巧
新课标注重学生的研究性学习, 要求学生通过研究性活动的思维训练, 最终使学生达到“参与研究探究的体验, 形成善于质疑、乐于探究、努力求知的积极态度和情感;形成学生自主发现和提出问题、收集、分析和利用信息以及解决问题等多方面的探究能力;形成实事求是的科学态度和严谨求实、不断追求的责任性”的终极目标。这就要求教师在新课程的教学中要注重学生的创新思维能力培养。而创新思维是指人类在探索未知领域的过程中, 不受常规的现成的思路约束, 寻求对问题的全新的独特的解决方法的思维过程。然而, 人类在从事思维活动时容易受一些因素的影响, 出现一些偏差, 阻碍了我们完成创新活动, 这种创新思维障碍主要有两大类:一类是偏见思维, 一类是定式思维。正因如此, 培养学生的创新思维显得十分重要。综观新课程高考化学考查的热点内容, 不难发现, 创新思维方法和技巧的考查是重点, 笔者通过实际教学尝试并体验, 觉得通过化学计算题的解题专题训练培养学生的创新思维方法和技巧是一条有效的途径。
在中学化学计算题中, 最具特色的题是一题多解题, 从以下例题的分析中可以看出, 由于解答不同计算题时的思维方式不同, 即使同一类题型, 其解法也不完全相同。
一、求同思维
求同思维又称聚合思维或收敛思维, 就是从同一来源材料出发, 井井有条地探求正确的答案的思维过程和方法。在解答化学计算题时, 常见的“多题一解”即是此种思维方式的体现。
例1:有Cu和Cu O的混合物100g, 在H2气流中充分加热后得残余物为96g, 求混合物中有氧化铜多少克?
例2:有KCl和KI的混合物2g, 制成溶液后, 通入适量氯气, 充分反应后, 将溶液蒸干, 得残渣1.65g, 求反应中用去氯气多少克?
例3:有CO和CO2的混合气体16m L, 在盛有30m L氧气的密闭容器中燃烧, 反应后总体积为34m L, 求混合气体中CO为多少毫升?
分析以上三个例题, 可看出反应前后都存在固体 (或气体) 质量 (或体积) 的差量, 因而可采用同一种方法, 即“差量法”求解。这就是常见的“多题一解”。
二、求异思维
求异思维又称扩散思维或发散思维, 就是从同一来源材料出发探求不同答案的思维过程和方法。它有众多表现形式, 例如结构发散、因果发散、属性发散、关系发散、功能发散等多种形式。它不同于收敛思维, 两者既矛盾又统一。发散思维用于创造新点子和新想法, 提供更多的选择, 形成更多的方案, 经过收敛思维的加工整理, 形成最佳的方案, 两者相辅相成, 结合使用创造出更新的解决方案。常见的“一题多解”的方法解答化学计算题就是此种思维方式的最佳表现。
例4:在溶液中含有铁的氯化物1g, 使其和过量的硝酸银溶液反应, 可得沉淀物2.65g, 求此氯化物是Fe Cl2还是Fe Cl3?
此题有五种解法, 如采用比例法、代数法或十字交叉法等进行求解, 都会殊途同归, 得到同一答案。
三、转向思维
转向思维又称等效思维或迁移思维, 是一种变通思维能力, 是指在化学计算中, 依据已知条件、未知求问, 能做出恰当的等效或迁移变换, 提出不同的巧妙解法。
例5:在一定质量的Ba Cl2溶液中, 逐滴地加入密度为1.45g/cm3的硫酸, 当加入的硫酸与Ba Cl2恰好完全反应时, 所得溶液的质量与原溶液的质量相等, 计算硫酸溶液物质的量浓度是多少?
分析:在这个计算题中发生的化学反应为:Ba Cl2+H2SO4=BaSO4↓+HCl。当H2SO4和Ba Cl2恰好完全反应时, 所得溶液为盐酸, 依据题意存在以下关系:
Ba Cl2溶液质量=盐酸溶液质量
把上述关系依据质量守恒定律迁移变换为:
H2SO4溶液的质量=Ba SO4的沉淀质量
使已知条件和未知求问直接建立联系, 能使解题具有技巧性。此解法中设物质的量浓度为cmol/L, 加入H2SO4溶液体积为1L, 则
四、逆向思维
从前向后的思维方法称为正向思维, 从后向前依次倒推的思维方法叫逆向思维。逆向思维是不采用通常思考问题的思路, 从相反的方向去思考问题, 通常逆向思维能出奇制胜, 取得突破性解决问题的方法。逆向思维是一种重要的科学思维方法, 解化学计算题时, 既要用正向思维, 也要用逆向思维, 这样可以培养思维的辩证性。但长期正向思维往往会导致思维定式, 因此着意培养逆向思维能力会克服这一弊端。
例6:将0.8 mol CO2通入1.0 mol NaOH的溶液中, 充分反应后生成Na2CO3、NaHCO3各多少?
分析:运用正向思维解题的过程是:2NaOH→Na2CO3→NaHCO3
1.0mol NaOH生成0.5mol Na2CO3, 耗用0.5mol CO2, 剩余0.3mol CO2, 又耗用0.3mol Na2CO3, 生成0.6mol Na HCO3, 最后得到0.2mol Na2CO3。
若运用逆向思维, 则解题的过程为:CO2→Na HCO3→N a2CO3
0.8 mol CO2生成0.8 mol Na HCO3, 耗用Na OH 0.8 mol, 剩余0.2 mol Na OH又与0.2 mol Na HCO3反应, 生成0.2 mol Na2CO3, 最后得到0.6 mol Na HCO3。
通过以上两种不同解法对比, 可以看出, 正向思维的常规解法, 层次清晰, 但较为麻烦;逆向思维的反常解法, 计算简便, 且可迅速获得答案。
刍议遗传学计算题的解题技巧 篇8
【关键词】遗传;计算题;技巧
遗传计算题的基础是遗传基本规律和概率计算。这部分知识是高考的热点和核心知识。遗传计算涉及基因、碱基配对,计算多设计一些公式,需要多方法记忆。由于题目灵活,同学们很容易算错。下面我根据自己的经验介绍几种技巧。
1.思维导图法
1.1方法
根据题目要求,将题目最终要求的内容浓缩写在纸上;围绕主题进行思考,同时在纸上写上内容发散的条件;将这些条件与题目已知条件相对照,找出解题方法。
1.2例子
例1.某基因内含有990个脱氧核苷酸,这些脱氧核苷酸控制合成的多肽的相对分子质量为13548,那合成多肽的氨基酸的平均分子量为( )
A.41 B.59 C.82 D.100
思路:分析一下这个题目,找到最后的落脚点是氨基酸平均分子量,这就是主题。平均分子量=总的分子量/分子数。总分子量=多肽分子量+失去的水分子量。建立思维导图
氨基酸平均分子量-多肽-氨基酸数-mRNA/3-碱基数/2-水分子量*18
那么这个问题就是990个脱氧核苷酸-mRNA是495个核糖核苷酸-165个氨基酸-失去164个水分子-水分子分子量2952-多肽13548,那么平均分子量=(13548+2952)/165=100,所以选D。
例2.某蛋白质分子由2条肽链构成,形成蛋白质失水3.0*10-21g水,控制合成该蛋白的基因至少多少脱氧核苷酸?
A.612 B.306 C.204 D.606
思路:最后找的是脱氧核苷酸的数目,这是所求。水的分子数由化学知识求得,根据水分子计算氨基酸数目,最后得到脱氧核苷酸数。建立思维导图
脱氧核苷酸数-氨基酸数-肽链数-失水重量-水的相对分子质量-阿伏伽德罗常数-水分子数
失水质量3.0*10-21g-/18gmol-1*6.02*1023≈100又肽链数目2,所以氨基酸数102,脱氧核苷酸102*6=612,答案选A。
2.棋盘法
2.1方法
棋盘法速度快,漏掉的可能性低。根据后代基因或表现,再组合得到子代基因。这种方法适用性好。
2.2例子
例3.牡丹的花色很多,白色牡丹不含花青素,深红色的牡丹含有较多花青素。花瓣颜色的深浅由花青素决定,这是两对独立遗传基因控制,A、a、B、b。A、B使花青素增加,增加的量相同,且颜色深度可累加。一白色牡丹和一深红色牡丹
杂交,得到中等红色牡丹。若这些中等牡丹自交,后代花色种类及数量比?
A.3种;9:6:1 B.4种:9:3:3:1
C.5种:1:4:6:4:1 D.6种;1:4:3:3:4:1
思路:F1中等红色为AaBb,自交后代由棋盘法表示,A、B越多,颜色越深,根据A、B表示
从这个表中显示,有五种花色,比例1:4:6:4:1,答案为C。3.结语
由以上可知,遗传概率计算的解题方式有很多种,只要对题型有了充分的认识,就可以做到以不变应万变。生物遗传概率计算的理解一定要到位,对题目的范围要有充分的理解。遗传学的概念一定要搞清楚,对计算原理做到充分理解。总之,遗传概率计算虽然计算过程并不复杂,但推理过程却有一定难度。一不留神,就会对计算结果造成错误。要做好生物遗传概率计算题就要做到:重视遗传知识的学习,正确理解有关概念;对题目的前提和范围有一个较透彻的理解;对概率的原理概念有多加练习,加深对题目的熟悉程度,做好题目的分类总结,避免发生同样的错误。
【参考文献】
[1]高小琼.高中生物遗传与变异教学的常见问题探究[J].新课程(下),2016(05)
[2]李伟.高中生物遗传题解题突破策略[J].新高考(高三理化生),2013(11)
[3]曹潇潇,谢凯.生物遗传题中的数学原理[J].考试周刊,2007(36)
【行测数量计算题技巧】推荐阅读:
公务员考试数量计算11-05
数学教案幼儿园:计算感知5以内的数量07-25
行测数量关系常见题型06-05
公考行测数量关系公式06-06
黑龙江银行招聘行测数量关系11-16
粉笔2018年省考第3季行测数量模拟题09-15
2024年国考备考之数量关系题锦囊妙计09-09
化学计算题的解题技巧10-11
数量规划07-07
数量标准07-22