六年级数学下册教案推荐(共12篇)
六年级数学下册教案推荐 篇1
六年级是五年级和七年级之间的年级,也是六年制小学中最重要的一个年级,下面是小编帮大家整理的六年级数学下册教案,希望大家喜欢。
一、教学内容:
北师大版六年级数学下册第一单元《圆锥的体积》。
二、教学目标:
1、知识技能目标:
通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。
使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:
提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。
3、情感态度目标:
使学生在经历中获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:
重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题
难点:探索圆锥体积的计算方法和推导过程。
四、教具准备:
1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。
五、教学过程:
(一)创设情境,导入新课
投影出示圆锥形小麦堆。
师:看,小麦堆得像小山一样,小麦丰收了。张小虎和爷爷笑得合不拢嘴。这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?
这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。
【设计意图】通过学习感兴趣的情境,巧妙至疑,激发学生的学习欲望。
(二)互动新授
1、提出问题。
教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢?
根据学生的各种猜想,教师进一步引导学生思考,我们学过那些图形的体积计算?圆锥的体积与那种图形的体积有关?
进一步观察、比较、猜测。教师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想想它们的体积之间会有什么关系?
学生可能会猜测:圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。
2、实验探究。
(1)教师布置实验任务。
出示教材例2.① 从准备好的圆柱、圆锥体容器中找出等底、等高的圆柱和圆锥体容器来。
② 用倒水的方法量一量等底、等高的圆柱体积和圆锥体积之间的关系。
布置实验要求:各组根据需要选用实验用具,小组成员分工合作,轮流操作,做好实验数据的收集整理。(每组发一张实验记录单)
一号圆锥 二号圆锥 三号圆锥
次数
与圆柱是否等底、等高
(2)开展实验探究。
① 找出等底、等高的圆柱和圆锥形容器。
② 实验研究。
教师巡视指导。
学生一边实验,一边收集整理数据,完成实验记录单。
(3)分析数据,作出判断。
① 各组说说各种实验结果。
② 观察分析数据,你发现了什么?
(发现大多数情况下,圆柱能装下三个圆锥的水,也有两次或四次等不同的结果)
③ 进一步观察分析,什么情况下圆柱刚好能装下三个圆锥的水?
(各组互相观察各组的圆柱圆锥,发现只要是等底等高,圆柱的体积都是圆锥体积的3倍,也就是说在等底等高的情况下,圆柱体积是圆锥体积的3倍。)
④ 是不是所有符合等底等高条件的圆柱、圆锥都具备这样的关系呢?(教师用标准教具装水实验一次)
(4)总结结论
结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。
结论2: 圆柱的体积V等于和它等底等高的圆锥体积的3倍。
3、启发引导 推导公式
师:对于同学们得出的结论,你能否用数学公式来表示呢?
生:因为圆柱的体积计算公式V=sh;所以我们可以用1/3 sh表示圆锥的体积。
师:其他同学呢?你们认为这个同学的方法可以吗?
生:可以。
师:那我们就用1/3 sh表示圆锥的体积。
计算公式:V= 1/3 sh
师:(1)这里Sh表示什么?为什么要乘1/3?
(2)要求圆锥体积需要知道哪两个条件?
学生回答,师做总结
4、简单应用 尝试解答
例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?
(学生独立列式计算全班交流)
(三)巩固练习,运用拓展
1、试一试
一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?
2、练一练
计算下面各圆锥的体积:
3、实践性练习
师:请你们将做实验时装在圆柱容器里的水换成沙(或米)试一试,看结论是否一样。然后把它倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。
4、开放性练习
一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)
(四)整理归纳,回顾体验
1、上了这些课,你有什么收获?(互说中系统整理)
2、用什么方法获取的?你认为哪组表现最棒?
3、通过这节课的学习,你有什么新的想法?还有什么问题?
【设计意图】通过组织学生对圆锥体积计算方法进行猜测、验证、交流,从而发现圆锥体积的计算方法。整个探究过程充分体现了学生的主体地位,调动了学生的学习积极性。在解决问题的过程中感受到数学知识的价值。
六、板书设计:
圆锥的体积
圆锥的体积等于和它等底等高的圆柱体积的1/3。
六年级数学下册教案推荐 篇2
关键词:新授课,练习课,家庭作业,车轮直径
望课堂内外, 小组忙忙;大组小组, 讨论声声。您瞧:三个一群, 五个一伙, 小组成员忽多忽少;您听:三句讲一题, 五句指迷津, 小组声音忽有忽无。在这样的课堂中, 提高了自己发现问题、解决问题的能力, 在小组的讨论探究中成就了学生互帮互助的合作能力。在各项活动中, 我班孩子都能“巧”然应对, 展现出他们独有的自信, 洋溢出幸福的笑脸。这些成绩的取得, 都源于教师的“懒”。
一懒:在新授课中要适时适课而“懒”
学生能自学的新课, 教师不抢着讲;学生能讲清楚的, 教师不重复讲。经过四年级一年的培养与训练, 各小组已经养成了很好的合作习惯, 所以, 在五年级的很多课中, 我都是放手让学生自学。比如:刚学完“圆的认识”这节课时, 由于刚认识圆规, 学生迫不及待地想一展它的神威, 也想认识一下“圆”这位新朋友。刚宣布完学习内容, 学生已翻开课本看了起来———圈画重要知识点, 找出疑问之处。我在教室里巡视, 观察各小组的反应, 只听第二小组组长说:“你们看完了吗?”她先选的4 号种子选手李×, 让她说出自己圈画的重点。李×说:“我知道圆也是平面图形, 但它是由曲线围成, 没有顶点。我还知道怎么画圆, 将圆规两脚分开, 针尖固定, 另一只脚转圈, 边说边画。”孙×同学快速补充说道:“你们看我画的圆, 针尖的地方叫圆心, 用字母‘O’来表示, 半径用字母‘r’来表示, 直径用字母‘d’来表示。”———就这样你一言我一语, 把书上的知识点快速地复述了一遍。
二懒:在练习课、试卷讲评课中要适时适题而“懒”
在练习课中, 采用多种形式, 让练习课首先具有趣味性, 其次是大胆放手, 让学生自练、自查与自纠, 充分发挥学生的自主能力。例如:异分母分数的加减法练习, 选用闯关练习法, 看哪一小组先闯过所有关, 到达胜利的彼岸, 摘得一颗智慧星, 要求小组成员无掉队。教师根据小组长的汇报和自己在巡视中发现的问题, 做出机智讲解。这样每个学生都有事可做, 再也不会走神了, 真是事半功倍。试卷讲评课往往是比较枯燥乏味的, 教师在上面讲得是抑扬顿挫、口若悬河;而孩子们却是无精打采、昏昏沉沉。改变这种现状的方法是, 老师“懒”一些, 把课堂交给孩子, 让每个孩子都有事做。具体做法是:先小组内自纠, 纠正因马虎而错的马虎题目;再针对自己的实际情况, 向本小组成员请教;本小组都错的题目, 可通过跨组学习来解决。这样既培养了学生的自查自纠能力, 又培养了一部分学生的讲解能力, 还使学生的团结互助能力得到了发展。例如, 小学数学五年级下册第六单元“圆的单元测试”, 发下试卷后, 先进行试卷总评, 表扬一些表现突出的同学, 鼓励大家向他们学习。各小组按上述方法订正完成后, 进行汇报, 提出试卷中的疑问之处。一堂试卷讲评课, 看不到教师在三尺讲台上滔滔不绝“演讲”的身影, 下课后却收上来一张张用红笔圈画的试卷。
三懒:在家庭作业的批阅中要“懒”出成效
努力让学生对每一次作业都产生兴趣, 这是作业设计的出发点也是设计原则, 只有这样才能让学生感受到家庭作业的乐趣所在。每次的家庭作业布置, 一定要做到题精而量少, 便于组长批阅、讲解、汇报。
例如: (6月16日家庭作业)
1.只列式不计算。
(1) 在一个长4 厘米, 宽3 厘米的长方形里, 画一个最大的圆, 这个圆的周长是多少厘米?
(2) 一个圆形花圃, 它的直径是12 米, 用一半的地方种一串红, 种一串红的面积是多少平方米?
(3) 一根铁丝, 正好可以做成一个边长是157 厘米的正方形。如果把它做成一个圆, 这个圆的半径是多少厘米?
(4) 一张圆桌的半径是40 厘米, 在它的周围加上一圈铁丝, 至少需要铁丝多少米?
2.小明骑自行车通过一座长816.4 米的大桥。已知车轮直径约是0.65 米, 车轮平均每分钟转80 圈, 求小明通过这座大桥需要多少分钟?
……
五个小组长互对答案批阅后, 再给自己的组员批阅, 对本小组的书写和正误情况做简单的汇报 (带着作业纸) 。第3 小组徐×× (冠军组、优秀组长双重头衔, 对工作认真负责, 原来我班的学困生——李××, 经常不认真完成作业, 成绩可想而知, 在她的管理和影响下, 家庭作业能按时完成, 成绩有了很大进步。) 说:“老师, 今天的课外作业, 做得有点不好, 特别是计算错误率高, 张××错的最多, 你看这几题……”我听了各组长的汇报, 并看了他们的批改情况, 对学生的掌握情况有了一定的了解, 对教案做了及时的调整, 把两道错误率高的题目加进了下次练习和重点讲解的行列。这样重点突出了, 难点更容易突破。老师“懒”了, 学生“勤”了, 学生能力有了, 教学效果增强了, 何乐而不为。
老师让一步, 就可能让出学生讲题的精彩瞬间;老师退一步, 就可能退出学生思维碰撞的火花;老师慢一步, 就可能慢出学生自我探索的沃土。
参考文献
小学数学六年级下册综合试卷 篇3
2.40= 8400=3.5+5.3=7-2.7=
5=18++=1-+=
二、计算(能简便计算的要用简便方法计算)
三、解方程
0.8x- 0.4= 1.2x-= =
四、填空
1.在直线下面的括号里填上适当的数。
2. 9个亿和900个万组成的数是(),改写成用“亿”作单位的数是(),省略“亿”位后面的尾数是()。
3.去年2月,张叔叔把1000元存入银行,存期一年,年利率4.14%。到期时应得利息()元,缴纳5%的利息税后,实得利息()元。
4. 3∶4=()∶12= =()%
5.下图表示一辆汽车在公路上行驶的时间与路程的关系,这辆汽车行驶的时间与路程成( )比例。照这样计算,5.5小时行驶()千米。
6.在○ 里填上“>”或“<”。
0.444 ○○7.9580 ○ 320
7.把下图所示的长方形铁皮卷成一个深2分米的圆柱形铁桶的侧面,铁桶的底面直径大约是()分米,加上底面后,铁桶的容积是()升。(铁皮的厚度忽略不计)
8.300立方分米=()立方米 2公顷=( )平方米
45秒=( )分 1.8吨=()千克
9.下图中轮船在灯塔的( )偏( )( )€胺较颍?)千米处。
10.右图是一个等腰三角形,它的一个底角是()度,面积是()平方厘米。
五、选择正确的答案,在它右边的□里画“√”
1.10个百分之一是多少?
千分之一 □百分之一 □
十分之一 □
2.把一根长2米的绳子剪成相等的6段,每段的长是这根绳子的几分之几?
□□ □
3.有男、女生各3人,任选1人去浇花,选到男生的结果怎么样?
一定选到男生 □
选到男生的可能性比女生小 □
选到男生的可能性和女生相等 □
4.从右面看虚线左边的物体,看到的形状是右边的哪一个图形?
5.红旗面数是黄旗的,红旗面数和两种彩旗总数的比是几比几?
5 : 4 □ 5 : 9 □9 : 5 □
6.涂色部分的面积大约占圆面积的百分之几?
40% □ 25% □12.5% □
六、画图
1.把图中的长方形绕A点顺时针旋转90点的位置用数对表示是( , )。
2.按边长2∶1的比画出三角形缩小后的图形。缩小后的三角形的面积是原来面积的 。
3.如果1个小方格表示1平方厘米,在方格纸上设计一个面积是10平方厘米的轴对称图形,并画出对称轴。
七、解决实际问题
1.小明打算16天看完一本故事书,平均每天看15页。现在要10天看完,平均每天应看多少页?
2.一套衣服56元,裤子的价钱是上衣的60%。上衣和裤子各多少元?
3.甲地到乙地的公路长250千米,一辆客车和一辆货车同时从甲地开往乙地,客车每小时行100千米,货车每小时行80千米。客车到达乙地时,货车离乙地还有多少千米?
4.一个圆锥形零件,底面半径3厘米,高5厘米。每立方厘米铁块重7.8克,这个零件重多少克?
5.下面是某旅游景点去年接待游客情况统计图。
(1)根据图中的数据,把统计表填写完整。
(2)平均每月接待游客多少万人?
(3)最多时一个季度接待游客的人数比最少时多百分之几?
六年级数学下册教案推荐 篇4
孙云峰
一、试题分析
1、试卷结构合理,题型全面
本次调研试卷从试卷结构与题型与市实验小学的单元练习完全相同,由于本学期是义务教育阶段第二学段的最后一个学期,内容涵盖范围较广,考查范围覆盖本册所学内容,难度适中,知识结构分配均衡;从题型来看,主要设置填空题、判断题、选择题、计算题、操作题、解决问题,灵活多样的题型能够较全面地考察学生运用知识的能力。
2、试卷内容覆盖了本册八个单元所有内容,考查内容也贴近学生的生活实际,体现了以教材为主的特点,考试内容紧扣《课程标准》,将教材中的内容展现在学生的试卷中,试卷题目中,注重对基础知识基本技能的考验,既结合本学期学习内容,又注重学生活学活用,灵活解决问题的能力。
二、考情分析
第一题填空题,第1、2小题考查学生读数写数及因数、倍数等基本概念的掌握;第3题考查分数、除法和比之间的联系。第5、6、9两题考查圆柱、圆锥等知识;第7、8两题为比例尺部分的内容;第10题考查比的基本性质和比例的基本性质,强调灵活性。从答题得分情况来看,第5、6、9题失分偏多,主要是计算错误。数的基本知识、比例和比例尺部分得分状况较好。由此可见,学生对基础概念掌握较为牢靠,计算能力亟需加强,要注重培养学生细心计算的良好习惯。
第二题判断题和第三题选择题各5小题,主要考查学生易混淆或产生错误的相关、相近、相似的问题,有些内容如三角形三个角之间的关系,等腰三角形底角与顶角之间的关系,由于按目前的复习进度,尚未复习到图形部分的内容,部分学生已经遗忘,体现了学生以前学得不扎实。
第四题计算题分为三个子题:第一部分直接写出得数,正确率较高,只是最后一题学生受思维定势的影响,草率地以为答案为0,说明学生易受此类题的“误导”。第二部分解比例,学生均能根据比例的基本性质,正确地将比例转化为乘法运算的方程,但仍有部分学生计算失误,主要原因是粗心大意。第三部分计算下面各题(能简算的要用简便方法算),其中第1、3两题分别出现12.5%和37.5%与分数的互化,有一部分学生化的过程中出现错误,最后一题应用乘法分配律进行简便运算,但由于本学期对计算练习较少,一部分学生对乘法分配律记忆不够清晰,运用不够熟练,此题错误率在诸题中是最高的。
第五题动手操作部分考查图形的放大缩小,确定方向和位置。这部分内容是本学期最近学习的,学生掌握效果较好,正确率较高。
第六题,解决实际问题部分,第一部分,只列式不计算。税后利息一题学生将税后利息和利息税相混淆,导致相当一部分将利息税误以为是税后利息,还有一部分学生忘记时间:3年。“出席率”一题,部分学生对“出席”一词的含义不能准确理解,将到校人数当作全班人数即应到人数,导致错误。第二部分解决下列各题1、2题关于应用所学知识解决稍复杂的分数方面的实际问题,绝大多数均能找准单位“1”,确定基本的数量关系。第3题 应用比例尺有关知识解决两地之间的实际距离,学生对这部分内容掌握较透彻,离学习时间间隔不长,学生印象较深,因而正确率较高。第4题关于圆柱体的表面积,容积等实际应用,本题错误率与其他题相比较高,有以下几个原因:从池口周长推算底面积时的差错,计算抹水泥面积误当作是表面积,说明学生在具体应用时,仍受表面积公式的影响。还有计算失误的情况发
生。第5题,部分学生计算圆锥形钢锭体积时忘记“除以3”,与计算圆柱体积相混,是此题失误的原因之一,此外与第4题类似,计算错误也是原因之一,由此可见加强学生计算能力的培养是十分必要的。
三、反思与建议
通过此次测试,从学生的试卷中发现一些问题,结合六年级下册数学教材编排内容的特点,在今后的教学工作中,需要加强以下几方面的教学工作:
1、六年级下册是对小学数学内容的集大成和彻底的疏理,为学生进入下一学段的学习打下坚实的基础,因此除要求学生复习基本概念以外,更需要从逻辑层面加强知识之间的联系,融会贯通。
2、进一步加强数学知识与实际的紧密联系,提高学生应用所学知识解决实际问题的能力。
3、强化对学生计算能力的培养,如小数乘除法的法则,部分学生已经遗忘。尤其是圆柱和圆锥部分计算错误较多,鼓励学生计算时细心,用各种方法进行验算,以提高正确率。
4、加大对学困生的辅导,部分学生对有些内容的掌握较为薄弱,从此次测试中也可看出部分学生掌握得不够满意的“点”或“面”,因此有针对性地对这部分学生进行辅导是十分必要的,而且学生经过这些内容的学习,虽说掌握不好,但毕竟有一定的基础,如果辅导恰当及时,真正地做到“因材施教”,相信应该会取得一定的效果。
关于此次试卷的命题,有以下几点不成熟的想法:
1、按照《课程标准》的要求,学生应学会正确使用计算器并在数学学习过程中运用。然而在教学实践中,对于学生是否可以在计算或考试使用计算器颇有争议,本试卷填空题第11题,找规律填空,即使不用计算器,学生亦可直接观察出本题的规律。能否在以后的命题直接设定用计算器进行运算的题目?计算题第2部分题型单调,对整数、小数的计算和除乘法分配律以外的其他运算法则基本未涉及,1、3两题12.5%和37.5%,可能命题者的主观意识是想考察学生对常用分数、小数和百分数的互化的熟练程度,分数、百分数混算在小学生的数学实践中很少出现,很容易引起学生错误,从学生答题状况也验证了我的担忧,另外,此两题有重复之嫌。
六年级数学下册教案 篇5
1.在整理与复习中回顾整个第一学段的相关知识。
2.结合生活中的实际运用复习有关万以内数的数的读写法,比较大小等,培养学生的数感。
3.会计算万以内有加减法,小数和分数的加减法,会计算一位数乘三位数、两位数乘两位数的乘法运算,会一位数除三位数的除法运算。以及两步运算为主的四则混合运算和解决简单的实际问题。
教学重点:
巩固万以内数的读写法,会比较数的大小;结合生活实际,会估一估。准确地进行计算。
教学难点:
比较数的大小,掌握数的基本计算。
教学过程:
一、我的成长足迹。
1.师:同学们,三年的学习生活不知不觉已经过去了,我相信你们肯定有很多话要对同伴和老师说一说吧,谁愿意说一说三年来你在数学上有了哪些收获?
2.学生发表自己的看法和意见。
3.作品欣赏。
将上学期在数学活动周中获奖的优秀学生作品《数学小报》进行展示。
学生的优秀作业本进行展示。
4.学生自评、互评。
自我评价:说一说自己三年来在课堂上、作业方面、数学兴趣等等方面的优点与不足,以及说一说自己在学习过程中的体会与进步。
同桌互评:同桌之间或者比较了解的同学之间进行互相评价。
二、计算。
1.简单地复习有关加减乘除的有关计算方法,进行简单的练习。
2.让学生说一说在计算过程中应注意的地方或者说有什么地方要提醒其他同学的。
学生发言
教师小结,把学生作业中错误率比较高的题目和类型进行讲解。
3.完成书本上课后习题:要求直接写出下面各题的得数。
学生独立完成,完成后教师要求学生进行检查,完成后让学生说一说自己是怎么检查的。从而提高学生检查的意识和能力。
二、基本练习。
1.在你认为正确的答案下画钩。
(1)两个数相乘,积比1000大一些,比20xx少得多,可能是( );
3270 4819 2151
(2)38与23的积可能是:
863 874 594
这题可以让学生说一说自己是怎么判断的?然后老师进行概括。如第二题,可以先判断积是个位是几,因为两个乘数的个数是8和3,所以积的个位肯定是4,因此排除863,再进行估算选出合适的答案。
2.找规律填数。
(1)20xx 2090 20xx ( ) ( )
(2)1200 1100 1000 ( ) ( )
先找到一组数之间的关系,然后根据规律填写下一个数。
3.在括号内填上>、<或=。
认识符号>、<、=的意义,能够用符号和词语来描述万以内数的大小;对于常见的量的单位,能进行简单的换算。
4.复习克、千克质量单位。
让学生回顾所学的有关质量单位之间的关系。
让学生回想一下:哪些物体大约重1克、1千克。
在具体生活情境中,感受并认识克、千克。
5. 1200张纸大约有多厚?1200名学生大约能组成多少个班级?1200步大约多长?
解决这类问题,一般先确定一个标准,再估算。
第一个问题:100张纸大约厚1厘米,1200张纸大约厚12厘米;
第二个问题:一个班大约40人,1200名学生大约能组成30个班。
第三个问题:10步大约7米,1200步大约1207=840米。
不同的纸张厚度不同,不同的人步长也不一样,实际教学时可请学生选实际量一量,再估算。
总结:
比较分数大小:
同分母分数,分子大的分数就大,分子小的分数就小;
同分子分数,分母大的分数反而小,分母小的分数反而大。
代数运算法则:
加法交换律;A+B=B+A
乘法交换律:AB=BA
加法结合律:A+(B+C)=(A+B)+C
乘法结合律:A(BC)=(AB)C
分配律:A(B+C)=AB+AC
作业:
1.直接写出得数。
1028+998= 20xx-619= 1830= 96060= 0.37+0.73=
1.4-0.5= 0.30.04= 80.01= 2.29229= 82+62=
+ = 20-1 = = 1 = 9.1 =
0 = 12.2+8%= 812.5%= 50%= 1010%=
2.脱式计算,能简算的要简算。
800-(287+365) 71799+717 20xx-172832
88434+1721 1593-[(4419+44)5] 125208050
六年级数学下册教案推荐 篇6
一、教学内容 抽屉原理。
二、教学目标
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过“抽屉原理”的灵活应用感受数学的魅力。
三、具体编排 1.例1及“做一做”。
例1借助把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔的情境,介绍了一类较简单的“抽屉问题”。为解释这一现象,教材呈现了两种思考方法:“枚举法“与“反证法”或“假设法”。
教学时,教师可适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。
“做一做”中安排了一个“鸽巢问题”,学生可利用例题中的方法迁移类推。2.例2及“做一做”。
本例介绍了另一种类型的“抽屉问题”,即“把多于个的物体任意分放进个空抽屉(是正整数),那么一定有一个抽屉中放进了至少(+1)个物体。”教材提供了把5本书放进2个抽屉,不管怎么放,总有一个抽屉里至少放3本书的情境。仍用枚举法及假设法探究该问题,并用有余数除法的形式5÷2=2……1表达出假设法的思路,并在此基础上,让学生类推解决“把7本书、9本书放进2个抽屉的问题”。
教学时,引导学生理解假设法最核心的思路是把书尽量多地“平均分”给各个抽屉。“做一做”中“抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。3.例3。
例3是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。教学时,先引导学生思考这个问题与“抽屉原理”有怎样的联系,可先让学生自由猜测、再验证。逐步将“摸球问题”与“抽屉问题”联系起来,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。
四、教学建议
1.应让学生初步经历“数学证明”的过程。
在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式进行“就事论事”式的解释。教学时可以鼓励学生借助学具、实物操作或画草图的方式进行“说理”。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2.应有意识地培养学生的“模型”思想。
“抽屉问题”的变式很多,应用更具灵活性。但能否将这个具体问题和“抽屉问题”联系起来,能否找到问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在关系是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。
3.要适当把握教学要求。
六年级下册数学教案 篇7
比例尺的意义。
教学难点:
将线段比例尺改写成数值比例尺。
教学过程:
一、引入
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?
请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。
二、教学比例尺的意义。
1.什么是比例尺(自学书上内容,学生交流汇报)
出示图例1
在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2.介绍数值比例尺
让学生看图。
“我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。
3.介绍线段比例尺
还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”
4.介绍放大比例尺
出示图例2
“在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“
学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1
比较这个比例尺与上面的比例尺有什么相同点,什么不同点。
相同点:都表示图上距离与实际距离的比。
不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。
5、总结
比例尺书写特征。
(1)观察:比例尺1:100000000
比例尺1/5000000
比例尺2:1
(2)看一看,比例尺书写形式有什么特征。
为了计算方便,通常把比例尺写成前项或后项是1的比。
6、比例尺的化简和转化
“我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”
说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。
“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作
“50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。
“现在单位统一了,是多少比多少,怎样化简?”
图上距离:实际距离=1:5000000
教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。
最后教师指出
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。
三、巩固练习
1、做一做。
过程要求
(1)学生独立完成。(要求写出数值比例尺)
(2)同学之间互相交流。
(3)汇报交流结果。
2、完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。
四、课堂小结
(本课要点:1、比例尺的意义;2、线段比例尺和数值比例尺的互化;3、注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的关系。)
教学目标:
1、理解比例的意义,会根据比例的意义组成比例。
2、经历引导学生参与知识的形成过程,发现过程和运用过程,体验数学与日常生活的紧密联系。
3、感受生活中处处有数学,激发学习数学的兴趣。
教学重、难点:理解比例的意义。
教学方法:自主合作,讨论交流。
教学过程:
一、复习旧知,目标展示。
1、上学期,我们学习了有关比的知识,你能说说什么是比吗?举例说明比各部分的名称。
2、今天,我们要在比的基础上学习一个新知识(板书:比例)。
3、看到这个数学新名词——比例,你的脑子里产生出哪些问题?
【老师有选择地板书如:什么是比例(或比例的意义),比例的组成及名称,比和比例的区别等。】
4、同学们提的这些问题都很有价值。这节课,我们就来研究这些问题。
二、合作交流,探究新知。
〈一〉教学比例的意义。
1、我们从学习数学开始,几乎天天都用到等号,你能说出几个含有等号的式子吗?说说等号在式子中的作用是什么?(连接左右两边相等的两部分)
2、自主探究,初步形成印象。
(1)两个比相等可以用等号连接吗?
(2)你能在练习本上写出两个可以有用等号连接的比吗?
(3)和你小组内同学交流你写出的式子,并说明理由。
(4)学生汇报。
3、形成概念。
(1)像黑板上我们所列出的这些式子叫做比例。
(2)你能用自己的话说说什么是比例吗?
(3)老师小结:表示两个比相等的式子叫做比例。
4、深化概念,巩固练习。
(1)你认为组成比例的关键是什么吗?(两个比的比值相等)
(2)你能抓住这个关键写几个比例式吗?(2分钟的时间看谁写得多,并且和别人的不一样。)
〈二〉教学比例各部分的名称。
1、比例各部分有自己的名称?你知道吗?
(预设:学生如果不清楚的话,教师说明比例各部分的名称)
2、找出黑板上这几个比例的内、外项。
3、比可以写成分数的形式,比例也可以写成分数形式。
(1)把黑板上的这几个比例式写成分数形式。(先小组讨论,再全班交流)
(2)找出它们的内、外项。
(3)你发现什么规律了吗?
〈三〉比和比例的区别。
1、小组讨论、交流。
2、全班交流。
3、小结:比例是由两个相等的比组成的式子。比例有4项,比有2项。
三、巩固练习。
1、填空。
(1)、表示的式子叫做比例。
(2)、判断两个比能否组成比例,要看它们的()是不是相等。
(3)、写出比值是的两个比():()和():(),写成比例是()。
(4)、选取48的4个因数组成一个比例是()。
2、课本32页国旗尺寸成比例吗?
3、课本33页“做一做”第2题。(用右图中的4个数据可以组成多少个比例?)
(1)学生独立思考后,小组交流。
(2)全班交流。
六年级数学下册教案推荐 篇8
一、我会填。(20分)
1、0.4∶2化成最简整数比是()∶()
2、把0.5×80=4×10改写成比例式,可能是()。
3、如果3x=4y,那么x:y=():()。
4、圆的半径和周长成()比例。
5、在一张精密零件图纸上(比例尺为5∶1),量得零件长40毫米,这零件实际长()。
6、在一个比例式中,两个比的比值等于2,比例的外项为1.4和5,这个比例式是()。
7、甲、乙两地相距100千米,在一幅地图上量得两地距离是10厘米,这幅地图的比例尺是(),如果甲、乙两地的距离在地图上量得是20厘米,那么甲、乙两地的实际距离是()千米。
8、在一个比例尺里,两个外项的积是最小合数,一个内项是8,另一个内项是()。
9、在比例35:10=21:6中,如果将第一个比的后项增加30,第二个比的后项应该加上()才能使比例成立。
二、我会判断。(对的画 √,错的画 ×,共10分)
1、比例尺只有数值比例尺。()
2、如果4b=5a,那么a:b=4:5()
3、在比例里,两个内项和外项的积的比值一定是1。()
4、分数值一定,分子和分母成正比例关系。()
5、比的前项和后项同时乘上同一个数,比值不变。()
6、平行四边形的面积一定,它的底和高成正比例。()
7、零件总数一定,已生产的零件和还要生产的零件个数成反比例。()
三、我会选。(10分)
1、在100克水中放2克盐,盐与盐水的比是()。
A、1:50B、1:51C、50:1D、51:12、被减数一定,减数与差()。
A、成反比例B、成正比例C、不成比例
3、在比例尺是8:1的图纸上量的一个零件的长度是12厘米,这个零件实际长()。
A、1.5 厘米B、0.96米C、9.6厘米
4、比例尺是1:500000,表示实际距离是图上距离的()。
A、1/500000B、500000 倍C、5倍
5、在一幅地图上,用20厘米的线段表示30千米的实际距离,那么这幅地图的比例尺是()。
A、1∶1500B、1∶15000C、1∶150000D、1∶15000006、表示c和a成反比例关系的式子是()。
A、c+a=0B、ca=15C、c= a7、两个正方形的棱长之比是1 :2,那么,它们的体积之比是()。
A、1∶2B、1∶4C、1∶8D、1∶168、甲数比乙数多80%,乙数与甲数的比是()。
A、5∶4B、4∶5C、9∶5D、5∶94、一辆汽车要从甲地开往乙地,2小时行了1605、食堂里的一批煤,如果每天烧0.6吨,可以烧千米,照这样的速度,再行3小时能到达乙地。24天;如果每天少烧0.12吨,这批煤可以烧多甲、乙两地相距多少千米?(用比例方法解答)少天?(两种方法解答)(6分)
六年级下册数学总复习教案 篇9
比例的意义
教学目标:
使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
教学重点:
比例的意义。
教学难点:
找出相等的比组成比例。
教学过程:
一、旧知铺垫
什么是比?什么叫比值?怎样求比值?
2.求下面各比的比值。
12:16
3/4:1/8
4.5:2.7
二、探索新知
1.教学例1。
(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)
①说一说各幅图的情景。
②图中有什么相同之处?
(2)这几面国旗的形状一样,但长和宽却各不相同。请大家算一算它们长和宽的比,看看能发现什么?
(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?
学生回答教师板书:
60:40=3/2
操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?
学生回答长、宽比值。
2.4:1.6=3/2
两面国旗的长和宽的比值相等。
板书:2.4:1.6=60:40
也可以写成:2.4/1.6.=60/40
(4)找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成等式?
如:5:10/3=15:10
5:10/3=2.4:1.6
15?10=2.4/1.6
15/10=60/40
(5)什么是比例?
表示两个比相等的式子叫做比例。
(6)1:2是是比例吗?你能把它组成一个比例吗?
(7)完成教材“做一做”。
第1题。
什么样的比可以组成比例?
把组成的比例写出来。
说一说你是怎么找的。
同学之间互相交流,检验各自所写的比例。
第2题。
学生独立写比例,看谁写得多。
同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
3.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
三、巩固练习
六年级数学下册教案推荐 篇10
设计理念
本课通过让学生在简单的操作中逐渐发现问题的复杂性,激发学生的探究欲望。在小组合作与个人独立思考的探究过程中寻求并发现解决问题的办法,达到解决问题的目的。接着,又引导学生举一反三,利用所掌握的数学思想方法来解决类似的数学问题,使学生从“学习知识”向“掌握技能”转变,养成解决问题的意识、习惯和方法。
教学内容
人教版小学数学六年级下册第91页例5及练习十八相应习题。
学情与教材分析
人教版小学数学教材,从一年级下册开始,每一册都安排有一个单元“找规律”或“数学广角”的内容。其中“找规律”是让学生探索给定图形或数字中简单的排列规律。“数学广角”中渗透了排列、组合、集合、等量代换、逻辑推理、统筹优化、数学编码、抽屉原理等方面的数学思想方法。而六年级下册中所安排的《数学思考》则是让学生回顾自己所学会的各种数学思想方法,并能运用数学思想方法解决问题。而本文所描述的案例是教学《数学思考》中的例题5。例5体现了找规律对解决问题的重要性。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。
教学目标
1.通过例5的问题解决,使学生经历从不知到知,从毫无头绪到懂得化难为易的思考问题的过程,初步学会用“举例子”的方法(枚举法)探索解决问题策略。
2.渗透“化难为易”的数学思想方法,能运用一定规律解决较复杂的数学问题。
3.培养学生归纳推理探索规律的能力和不怕困难勇于思索的数学学习习惯。
教学重、难点
重点:引导学生从简单的问题入手,通过观察、探究、发现规律,解决相对较难的问题。
难点:例5中发现规律后的进一步理解本因。
教具、学具准备
多媒体课件、学生操作卡(探索卡)。
教学过程
一、故事引入,点明中心
曹冲称象的故事大家听过吗?要称一头大象的重量,在当时来讲本来是一件很„„(难)的事。曹冲却利用浮力原理,变称大象为称石头。使这件事情变得很„„(易)。今天,我们就来学习本册的“数学思考”(板书课题)。学习如何用数学思想方法,使原本困难复杂的问题,变得简单容易。
【设计意图:通过学生熟悉的故事,让学生初步感受到遇到困难的问题,只要善于思考,同样可以化难为易,使问题迎刃而解。】
二、实践探究,感受思想 ㈠画一画、数一数
1.四点:教师提供给每生一张画有四个点的练习纸。要求每两个点都用一条线段连接(也就是说,每各点都要和其他点连接,不能重复,不能遗漏),并数一数,一共可以连几条线段?(6条)
2.八点:同样的要求,试一试,并汇报感受。(28条)生:太乱了、太花了、很容易重复画、很可能漏掉„„
【设计意图:简单的操作过后,学生基本理解题目的意思,也初步感受到问题的困难所在。这样的挑战对学生具有很强的吸引力和刺激作用。为探究和解决问题打下基础。】
㈡设疑激趣,引发思考
1.设疑:课件出示20个点。跟刚才同样的要求,你做得到吗?(如果不画出来,能说出一共几条线段也行。)(190条)
2.激趣:看来,这个问题目前对同学们来讲确实很难,需要同学们寻找并利用数学方法来解决哦。有没有信心挑战?
【设计意图:当学生在第一个环节获得一点成功,同时又产生了一些困惑时,强烈的问题冲击,使学生“试着数数看”的想法彻底打消。同时也迫切需要寻求简便的办法来解决,从而激发了探究欲望。】
㈢动手尝试,发现规律
1.四人小组合作,完成“探索卡1”。
要求:做好分工,一人画、两人检查、一人记录。2.小组交流讨论,寻找奥妙。3.小组汇报,教师板书。
总结经验。
5.解决问题:6点、8点、20点。
【设计意图:本环节重在让学生通观察,发现规律,推广运用,与第一环节的目的不同。虽然学生在本环节中获得的“方法”只是肤浅的、表面的,却足以解决问题。】
三、深入挖掘,理解方法
1.提出要求:同学们已经找到了解决问题的办法了。但是,我们不光要知其然,还要知其所以然。你们知道为什么会出现这样的规律吗?我们只是通过几种简单例子来推理,是不是一定正确呢?让我们来进一步了解。
2.学生独立思考,完成“探索卡2”。3.学生汇报,集体补充。
4.回顾:我们是怎样解决问题的?运用了哪些方法?
5.小结:遇到较困难的问题,我们可以通过“举例子”、“找规律”等方法,使问题变得容易。
【设计意图:学生如果只停留在发现“数字规律”那不是我们教学的本意,应该让学生真正理解“为什么这样”。】
四、综合运用,体验成功 1.教师提供两道思考题:
① ②
有几条线段? 有几个角?
2.要求:结合今天学习的方法,试一试能不能找到解决问题的简单办法。要求汇报时,重点讲如何发现方法的。
3.分组练习:一二组完成第一题的探索,三四组完成第二题的探索。4.各选一代表汇报。(如果时间不够,可以作为家庭作业。如果时间剩余,就做课本94面第三题。)
【设计意图:这样的问题举不胜举,不可能带着学生一一解决,唯一的办法就是,让他们学会自己探索,正是所谓的“授之与渔”了。】
五、总结回顾,深化认知 1.今天你学会了什么本领?
2.通过今天的学习,你有什么感受?
设计思路
一、乐“渔”
学生更喜欢从老师那里获取知识,而主动探究的欲望则需要师者来调动。数学思想方法本身对学生而言并没有太大的吸引力。而能抓住学生的,除了“兴趣”就是“好奇”。简单的操作过后,学生基本理解题目的意思,也初步感受到问题的困难所在。当学生在第一个环节获得一点成功,同时又产生了一些困惑时,强烈的问题冲击,使学生“试着数数看”的想法彻底打消。同时也迫切需要寻求简便的办法来解决,从而激发了探究欲望。在上述片段中,教师尝试着让学生“碰钉子”。“画到手软,算到眼花”使学生自发的提出要求寻找“办法”来解决。可以说,就调动学生的积极性而言是成功的。我们想要“授之以渔”,也要看学生乐不乐意。好的开始是成功的一半。学生“乐渔”了,才能真正的学会“渔”。
二、解“渔”
让学生通观察,发现规律,推广运用,与第一环节的目的不同。虽然学生在本环节中获得的“方法”只是肤浅的、表面的,却足以解决问题。学生找到了解决问题的办法,体验了成功,更加确信好的数学思想方法在解决问题中的重要作用。为今后采用这样的方法处理问题打下基础。在这一片段中,教师要向学生“授渔”。却没有手把手的教,而是让学生自己摸索、自己“解渔”。真正经历了寻求方法的过程,避免了纸上谈兵的思想灌输。
三、释“渔”
“知其然,而知其所以然”。学生如果只停留在发现“数字规律”那不是我们教学的本意,应该让学生真正理解“为什么这样”。明白刚才我们的发现,并不是巧合,而是数学本身蕴涵的有趣规律。学生豁然开朗,更加坚信数学蕴涵的无穷魅力和数学方法的重要性。教师在这里巧妙的把问题的解决过程一分为二,先是通过“探索卡一”找到规律,再通过“探索卡二”理解方法。对于小学生来说,这样做法是符合认知规律的。
四、善“渔”
荷兰著名数学教育家弗赖登塔尔指出:“反思是数学思维活动的核心和动力。”进行了经验总结之后,放手让学生进行尝试性的方法迁移,无疑起到了巩固推广的作用。因为,类似这样的问题举不胜举,不可能带着学生一一解决,唯一的办法就是,让他们学会自己探索,正是所谓的“授之与渔”了。当学生掌握
六年级数学下册教案推荐 篇11
【教学内容】 圆锥的体积
【教学目的】 会运用圆锥的体积公式计算圆锥的体积,培养学生观察、比较、分析、综合的能力及初步的空间观念。
【教具准备】 等底等高的圆柱和圆锥各一个,比圆柱体积多的沙土,直尺,卷尺等。
【教学过程】
一、复习旧知导入新课
1、圆锥有什么特征?
2、圆柱体积的计算公式是什么?
使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
练习题:
(1)底面积为160cm2,高为5 cm。
(2)半径为10 m,高为20 m。
(3)底面周长为12.56 dm,高为4dm。
我们已经学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积
二、新授
1、教学圆锥体积的计算公式。
教师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
教师:那么圆锥的体积该怎样求呢?能不能也通过已学过的知识来求呢?
先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
计算圆柱的体积:
3、导入新课
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
接着,教师边演示边叙述:现在圆锥和圆柱里都是空的。我先在圆锥里装满沙土,然后倒入圆柱。请大家注意观察,看看能够倒几次正好把圆柱装满? 问:把圆柱装满一共倒了几次?
学生:3次。
教师:这说明了什么?
学生:这说明圆锥的体积是和它等底等高的圆柱的体积的演示
sh =1π r2h
3(1)一个圆柱的体积是一个圆锥体积的3倍速。
()(2)把一个圆柱削成最大的圆锥,削去部分占圆柱体体积的。()(3)一个圆锥体的体积是和它等底等高的圆柱的体积的()二.填空题
(1)一个圆柱的体积为78 cm3,和它等底等高的圆锥的体积是()cm3。
(2)一个圆锥的体积为45 cm3,和它等底等高的圆柱的体积是()cm3。
2313三.计算下列圆锥体的体积(1)S底 = 30cm h =10cm(2)S底 = 20cm h =18cm 22
3、教学例2
一堆圆锥形黄沙,底面半径是4m,高3m,每立方米黄沙重1.2吨,这堆黄沙有多少立方米?重多少吨?(得数两位小数学)
分析过程略
4、组织学生讨论,怎样测量生活中遇到的圆锥物体的直径和高?
讨论后,先让学生说出自己的想法。然后教师再介绍一下测量的方法:测量底面直径时。可以用两根竹竿平行地放在圆锥物体两侧,测量出两根竹竿间的距离就是底面直径:也可以用绳子在底部圆的周围围上一圈量得圆锥物体的周长,再算出直径,测量圆锥物体的高。可用两根竹竿,将一根竹竿圆锥物体的顶部水平放置,另一根竹竿竖直与水平的竹竿成直角即可量得高。
四、小结(略)
【板书设计】
圆 锥 的 体 积
圆柱的体积=底面积×高 底面积: 3.14×4=50.24(cm)等底等高的圆锥和圆柱,圆锥的体积是圆柱体积的圆锥的体积=1/3 × 圆柱体积 体积:1312π rh 3
231
3×50.24×3=50.24(cm)3圆锥的体积= 1/3 ×底面积×高 黄沙的重量:50.24×1.2=60.288(吨)V=sh =
五、课后练习。
1、一个圆锥形沙堆,底面直径8m,高3m,每立方米沙重1.7吨。(1)这堆沙重多少吨?(得数保留整数)
(2)如果用一辆载重5.2吨的汽车去运,几次可以运完?
2、一个圆锥形的黄沙堆,底面周长25.12m,高3m,每立方米黄沙重1.4吨,求这堆黄沙堆重多少吨?(得数保留整数)
六年级数学下册教案圆柱的体积 篇12
教学目标
1.经历同桌合作,测量、计算圆柱形物体体积的过程。
2.会测量圆柱形物体的有关数据,能根据圆柱的高及底面直径或周长计算圆柱的体积。
3.能与同伴合作寻找解决问题的有效方法,能表达解决问题的大致过程和结果。
教学重点
能根据学生自己测量的数据进行圆柱体积的计算。
教学难点
给出圆柱底面周长如何计算圆柱的体积。
教具准备
学生自备的茶叶筒或露露瓶。
教学过程
一、测量茶叶筒的体积
1.师:同学们,我们要想计算这个茶叶筒的体积,应该首先知道哪些数据?
生:茶叶筒的高,底面直径或半径。
师:很好,那么我们就来亲手量一量你们手里的圆柱体的各个数据,并计算出它们的体积。
学生同桌合作测量并计算。
2.交流测量数据的方法和计算的结果。
3.刚才同学大部分都测量的是茶叶筒的高和直径或半径,有没有测量茶叶筒的底面周长的?如果有,就说说是怎么测量和计算的。如果没有,就提示大家,如果给出了圆柱底面周长,怎样计算圆柱的体积呢?
生:利用周长先求出半径,再进行计算。
师:你们会不会测量茶叶筒的底面周长呢?如果已经忘记,就进行一下提示:在圆柱的底面上做一标记,然后把圆柱体在直尺上进行滚动。或用皮尺测量。请大家实际测量一下底面周长,并进行计算,看看和刚才计算的结果是否一致。
二、巩固练习
1.一根圆柱形水泥柱子,它的底面周长是6.28分米,高200分米,求它的体积?
2.独立完成练一练的1-3题。
三、家庭作业
1.练一练的第4小题。
2.①一个圆柱的的体积是141.3立方厘米,底面半径3厘米,它的高是多少厘米?
②一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?
圆柱的体积
第三课时 容积
教学目标
1.结合具体事例,经历探索容积计算问题的过程。
2.掌握计算容积的方法,能解决有关容积的简单实际问题。
3.在解决容积问题的过程中,体验数学与日常生活的密切联系。
教学重点
利用体积公式计算保温杯的容积。
教学难点
计算容积所需要的数据是容器内壁的高、底面直径或半径,如何获得这些数据。
教学过程
一、复习旧知
1.求下列圆柱的体积(口答列式)。
(1)底面积3平方分米,高4分米;
(2)底面半径2厘米,高2厘米;
(3)底面直径2分米,高3分米。
追问:圆柱的体积是怎样计算的?(板书:V=Sh)
2.复习容积。
提问:什么是容积?它与物体的体积有什么区别?我们是按什么方法计算容积的?
3.引入新课。
我们已经学习过圆柱的体积计算,知道了容积和容积的计算方法。这节课,就在计算圆柱体积的基础上,学习圆柱的容积计算。(板书课题)
二、教学新课
1.教学例题。
出示例题,读题。提问:这道题求什么?你能计算它的容积吗?请大家仔细看一下题目,解答这道题还要注意些什么?(统一单位或改写体积单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。同时注意是怎样统一单位和取近似值的。
2.注意体积单位和容积单位的区别,以及它们之间的换算:
1立方分米=1升 1立方厘米=1毫升
3.注意保温杯内壁的厚度应该减去几个才是内壁的直径,高应该减去几个厚度才是内壁的高?
4.学生独立完成。然后进行全班交流。
三、新课小结
1.提问:求圆柱形容器的容积要怎样计算?如果知道圆柱底面的半径或直径,怎样求圆柱的体积?
2.计算容积与计算体积有什么相同点和不同点?
四、提高练习
把6个这样的保温杯倒满水,大约需要多少千克水?
注意大头蛙的话:1毫升水重1克。
五、巩固练习
1.拿一个水杯,量出它的内直径和高,算一算这个水杯大约可以装多少水?
注意:如果给出水杯的外壁直径、杯壁厚度和高,怎么计算?(内壁就减两个厚度,高减一个厚度,因为水杯没有盖。)
2.练一练1:求水杯的水有多少是求水杯的容积吗?水杯的高度与计算容积有关吗?需要用哪个数据来计算?(杯中水的高度)
3.练一练第4小题。怎么钢管的体积?
1)钢管体积=大圆柱体积-小圆柱体积
【六年级数学下册教案推荐】推荐阅读:
六年级下册数学教案06-05
六年级数学下册数学广角公开课教案12-16
5-11六年级数学下册教案06-08
六年级下册数学广角第一课时教案08-24
六年级数学下册 折扣问题 1教案 苏教版09-21
六年级下册数学教案人教版及反思10-16
(苏教版)六年级数学下册教案数的运算11-29
小学数学六年级下册第二单元教学教案01-14