放缩法证明不等式例题

2024-06-20

放缩法证明不等式例题(通用8篇)

放缩法证明不等式例题 篇1

放缩法证明数列不等式

主要放缩技能: 1.11111112 nn1n(n1)nn(n1)n1n

1144112()

22n4n1(2n1)(2n1)2n12n1n24

2. 2)

 





 4.2n2n2n1115.n (21)2(2n1)(2n2)(2n1)(2n11)2n112n16.n22(n1)n11 n(n1)2n1n(n1)2n1n2n(n1)2n1

x2xn*c(nN)例1.设函数y的最小值为,最大值为,且abnnn2x1

(1)求cn;(2)证明:

例2.证明:161

例3.已知正项数列an的前n项的和为sn,且an

2(1)求证:数列sn是等差数列; 11117 444c14c2c3cn417 12sn,nN*; an

(2)解关于数列n的不等式:an1(sn1sn)4n8

(3)记bn2sn,Tn331111Tn

,证明:1 2b1b2b3bn

例4.已知数列an满足:n2anan1; 是公差为1的等差数列,且an1nn

(1)求an;(2

2 例5.在数列an中,已知a12,an1an2anan1;

(1)求an;(2)证明:a1(a11)a2(a21)a3(a31)an(an1)3

2n1an例6.数列an满足:a12,an1; n(n)an22

5112n

(1)设bn,求bn;(2)记cn,求证:c1c2c3cn 162n(n1)an1an

例7.已知正项数列an的前n项的和为sn满足:sn1,6sn(an1)(an2);

(1)求an;

(2)设数列bn满足an(2n1)1,并记Tnb1b2b3bn,b

求证:3Tn1log2n

(a3)(函数的单调性,贝努力不等式,构造,数学归纳法)

例8.已知正项数列an满足:a11,nan1(n1)an1,anan1

记b1a1,bnn[a1

(1)求an;

(2)证明:(1

2111](n2)。222a2a3an11111)(1)(1)(1)4 b1b2b3bn4

放缩法证明不等式例题 篇2

一、对通项公式的放缩

而n=1时, 1<2成立。

这是一类放缩成裂项相消求和的题目, 应尝试着多种放缩方式。

这两个变式题采用了从第三项开始拆项放缩的技巧, 放缩拆项时, 不一定从第一项开始, 须根据具体题型分别对待, 既不能放得太宽, 也不能缩得太窄, 真正做到恰倒好处。

这是一类放缩成等比数列求和的题目, 一般需要将有限项和放缩成无穷等比数列的所有项和, 这就提供给我们一个发挥想象的空间, 针对右边的常数, 去设想所需要的等比数列的公比。

二、对递推公式进行放缩

例:设an数列满足:an+1=an2-nan+1, n=1, 2, 3, …当a1≥3时,

证明: (Ⅰ) (可用数学归纳法证明) 略。

(Ⅱ) 由an+1=an (an-n) +1及 (Ⅰ) , 有an+1≥2an+1,

放缩法证明不等式例题 篇3

关键词:数列型不等式;放缩法;策略

证明数列型不等式最重要的方法为放缩法. 放缩法的本质是基于最初等的四则运算,利用不等式的传递性,对照着目标进行合情合理的放缩. 但放缩程度很难把握,裂项技巧性又太强,常常因找不到放缩、裂项的途径而导致证明的失败. 如何找到放缩、裂项的一般途径呢?放缩过程中最难处理的是减小放缩的误差,这又如何处理呢?

对通项进行化简,先求和再放缩

例1 已知数列an=,设数列{an}的前n项和为Sn,求证:Sn<.

分析:对于这道题,思考的问题是先放缩还是先求和,看看条件中{an}的通项公式,分母中有递推式:n2,(n+2)2,那么,就可以改写成“递推相减”的形式,所以,此题应采用先求和后放缩.

这里的变量r、i与q称为控制变量,作为误差调整的手段,还要兼顾从第几项开始实施放缩. 对于前三种的处理方法,显然第三种处理方法要烦一点,从前面的分析中,我们要学会如果来选择变量控制误差,以及变量取什么值. 从目标入手,目标驱动想法,这种分析问题的意识很重要.

想法二:放缩成“裂项相消型”,如何恰到好处地放缩成“裂项相消型”,思维着力点:把原式放缩成一个具有递推关系的结构,通常是将分式结构中的分母放缩成递推式,然后裂成“递推相减”的形式.

在问题研究的过程中,放缩的方向就是朝着“可求和”数列进行放缩,在“裂项相消型”的放缩中,问题的关键是将分母朝着“递推式”进行放缩. 在控制误差方面,一方面可以考虑延后放缩,另一方面可以考虑待定系数引入参数控制误差,而引入参数的方法不唯一,所以此类问题处理也比较灵活.

构造递推不等式(等差型,等比型)

我们前面研究的“数列和”不等式的题型,条件中的通项都是给出的. 如果条件给出的是递推公式,研究“数列和”不等式,那么我们首先要考虑的是,能否将数列的通项公式求出,如果通项公式求不出,那么我们常见的想法就是从目标入手,对题目中的目标进行研究,将递推公式朝着等差数列进行放缩,或者朝着等比数列进行放缩,总之,也是朝着“可求和”的数列进行放缩. 如果是朝着等差数列进行放缩,通过对目标的研究,得到放缩的公差是多少,假设公差为d,也就是说,我们放缩成类似于:an+1≥an+d形式,那么,由递推关系,便得到:an≥a1+(n-1)d,且Sn≥na1+d. 如果是朝着等比数列进行放缩,也是通过对目标的研究,得到放缩的公比是多少,假设公比为q(q>0),也就是说,将递推公式放缩成类似于:an+1≥an·q形式,那么,同样由递推关系,我们便得到:an≥a1·qn-1,且Sn≥(1-qn). 下面举例说明.

从上述例题,看出递推放缩的数列与不等式的综合题,解决的关键在于放缩,放缩是一种不等变形,没有目标的指向,很难有效放缩,如果我们将其放缩成等差数列、等比数列,再从目标研究,放缩的公差、公比是多少,那么放缩的指向性明显加强,从而降低了此类问题的解决难度. 此外,根据对目标的分析,确定放缩的目标,可以利用比较法(作差或作商)来解决,在思维上也降低了难度.

本文对数列与不等式的综合题的处理方法作了分析与研究,数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其他多种数学思想方法. 处理数列型不等式最重要的方法就是放缩法. 放缩过程中,我们需要考虑是先求和还是先放缩,如果通项能求和,这样问题还是容易处理,如果通项不能求和,就需要先放缩再求和,朝着“可求和”的数列进行放缩,常见的是朝“等比型”和“裂项相消型”进行放缩,在放缩过程中经常会出现放缩过大,那么需要减少误差,在两种减小误差的方法中,相对而言引入恰当参数控制误差方便一些. 当然,我们也可以根据数列的特征,构造函数,利用函数的单调性等方法进行放缩. 对于条件给出的是递推公式的数列不等式,我们应该朝着等差数列或等比数列进行放缩,但如果我们能对目标进行恰当的分析,找到需要放缩的目标,直接采用比较法将问题解决,相当方便一些. 只有正确把握了放缩法的方法思路和规律特征,我们在证明数列型不等式的压轴题时,就会豁然开朗,快速找到突破口.

利用放缩法证明不等式举例 篇4

高考中利用放缩方法证明不等式,文科涉及较少,但理科却常常出现,且多是在压轴题中出现。放缩法证明不等式有法可依,但具体到题,又常常没有定法,它综合性强,形式复杂,运算要求高,往往能考查考生思维的严密性,深刻性以及提取和处理信息的能力,较好地体现高考的甄别功能。本文旨在归纳几种常见的放缩法证明不等式的方法,以冀起到举一反三,抛砖引玉的作用。

一、放缩后转化为等比数列。

例1.{bn}满足:b11,bn1bn(n2)bn

3(1)用数学归纳法证明:bnn

(2)Tn

解:(1)略

(2)bn13bn(bnn)2(bn3)

又bnn

bn132(bn3),nN

迭乘得:bn3

2n1211111...,求证:Tn 3b13b23b33bn2*(b13)2n1 11n1,nN* bn32

Tn1111111 ...234n1n12222222

2点评:把握“bn3”这一特征对“bn1bn(n2)bn3”进行变形,然后去

掉一个正项,这是不等式证明放缩的常用手法。这道题如果放缩后裂项或者用数学归纳法,似乎是不可能的,为什么?值得体味!

二、放缩后裂项迭加

例2.数列{an},an(1)

求证:s2nn11,其前n项和为sn

n

2解:s2n1

令bn11111 ...2342n12n1,{bn}的前n项和为Tn 2n(2n1)

1111()2n(2n2)4n1n当n2时,bn

s2nTn

111111111111()()...()

212304344564n1n71 104n2

点评:本题是放缩后迭加。放缩的方法是加上或减去一个常数,也是常用的放缩手法。值得注意的是若从第二项开始放大,得不到证题结论,前三项不变,从第四项开始放大,命题才得证,这就需要尝试和创新的精神。

例3.已知函数f(x)axbc(a0)的图象在(1,f(1))处的切线方程为 x

yx

1(1)用a表示出b,c

(2)若f(x)lnx在[1,)上恒成立,求a的取值范围

(3)证明:1

解:(1)(2)略

(3)由(II)知:当a111n ...ln(n1)23n2(n1)1时,有f(x)lnx(x1)2

111令a,有f(x)(x)lnx(x1).22x

11且当x1时,(x)lnx.2x

k111k1k111令x,有ln[][(1)(1)], kk2kk12kk1

111即ln(k1)lnk(),k1,2,3,,n.2kk1

将上述n个不等式依次相加得

ln(n1)

整理得 11111(), 223n2(n1)

1111nln(n1).23n2(n1)

点评:本题是2010湖北高考理科第21题。近年,以函数为背景建立一个不等关系,然后对变量进行代换、变形,形成裂项迭加的样式,证明不等式,这是一种趋势,应特别关注。当然,此题还可考虑用数学归纳法,但仍需用第二问的结论。

三、放缩后迭乘

例4

.a11,an11(14annN*).16

(1)求a2,a3

(2)

令bn{bn}的通项公式

(3)已知f(n)6an13an,求证:f(1)f(2)f(3)...f(n)

解:(1)(2)略 1 2

21n1n1()() 3423

13231f(n)nn2nn11n 42424

111211(1n)(1n1)1nn2n11n11n11141n11n11n1444

11nf(n)1n14

11111121n1n...1f(1)f(2)...f(n)11111122

n144由(2)得an

放缩法证明不等式例题 篇5

【学习目标】

能熟练运用反证法与放缩法来证明不等式。

【新知探究】

1.反证法的一般步骤:反设——推理——导出矛盾(得出结论);

2.放缩法:欲证AB,可通过适当放大或缩小,借助一个或多个中间量使得,要注意放缩的适度,BB1,B1B2...A(或AA1,A1A2...B)

常用的方法是:①舍去或加上一些项;②将分子或分母放大(或缩小).





1n21n(n1);1

n21n(n1)

【自我检测】

1.设a,b是两个实数,给出下列条件:①a+b>1; ②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1,其中能推出:“a、b中至少有一个实数大于1”的条件是____________.2.A1

nN)的大小关系是.

【典型例题】

例1.已知x,y0,且xy2,求证:

变式训练:若a,b,c都是小于1的正数,求证:(1a)b,(1b)c,(1c)a不可能同时大于

–“学海无涯苦作舟,书山有路勤为径” 1x1y中至少一个小于2。,yx1

4例2.已知实数a,b,c,abc0,abbcca0,abc0,求证:a0,b0,c0.变式训练:课本P29页,习题2.3第4题 例3.已知a,b,cR,求证1aabdb

bcac

cbdd

dac2.变式训练:

xy

1xy

32设x0、y0,A例4.求证:1

122,B1n2x1xy1y,则A、B大小关系为________。2(nN)

例5.已知f(x)x2pxq,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不少于 12。

放缩法证明不等式例题 篇6

江苏省包场高级中学张巧凤2261

51数列求和不等式的证明,历来是高考数学命题的热点与重点,并且往往出现在压轴题的位置上,扮演着调整试卷区分度的角色。笔者发现对这类问题的处理方法中,以放缩法较为常用,而学生在运用放缩法时普遍感到难以驾驭,本文重点谈谈通项放缩与舍项放缩两种放缩技巧在证明数列求和不等式中的应用。

1、通项放缩,转化为可以求和的数列 1、1放缩通项,利用等差数列求和

1、已知nN,求证:

(n+1)

2

n+(n+1)2n

1

352n1



222

=

n2n2

n2n1

(n1)2

n+12n1、2放缩通项,利用等比数列求和 例

2、数列an中,a1=2,an+1=(1)求数列an的通项公式;(2)设bn=

an

22an(nN+)

16n-an,若数列bn的前n项的和为Tn,求证:Tn<

12。

(1)用迭代累乘或者构造新的等比数列(2)证明:bn

an1n-11n-2an

a()即an()可以求得,1nn22n

an

16n-an

14

1n

当n=1时,T1=<2;

3当n2时,∵4n1(31)n-1=(3nCn13n-11)13n,∴bn

11n

1()

1111n11331

1()<∴Tn=+b2++bn<2n

133332321

3∴对一切正整数n,都有Tn<

141

n

n

.注:本题将数列从第二项起开始放缩,放缩成以b1为首项,为公比的等比数列,转化为等比数列求和。

事实上,也可以利用

141

n

14

4n

n-1

134

n-1,将数列放缩成以为首项,3

114

为公比的11n1()

41n4134

等比数列,易得Tn1()<<

194921,放缩的关键在于合理与适度。

1、3放缩通项,利用裂项相消求和 对于例2,也可以这样证明:bn

an

216n-an

14

1n

(21)(21)

n

n

当n=1,2时,2n2n,当n3时,2n(11)n=Cn0Cn1Cnn1Cnn2(n1)>2n ∴对一切正整数n,都有bn∴Tn

12(1

131315

12n1

(21)(21)

12n1)

n

n

(2n1)(2n1)

12n1)<

=

12n1

12n1

=(1。

注:此法将通项放缩成两项之差,转化为用裂项相消求和。1、4放缩通项,利用叠加求和 例

3、已知数列an中,a1=1,an=an-1

n=2,3,4), an-1

1求证:

an2004年重庆卷改编)证明:由递推关系式得:an2=an-12

1an-1

+2>an-1+2,即an-an-1>2,于是有a22-a12>2,a32-a22>2,…an2-an-12>2,这n-1个不等式两边相加可得

ana1>2(n-1),即an>2n-1,又an>0,故an。

1、5放缩通项,利用各项重新组合求和 例

4、数列an满足a1=1且an+1=(1+

1n+n)an+

n1).n

2(1)用数学归纳法证明an2(n2)

n1),(2)已知不等式ln(1+x)<x对x>0,成立,证明an<e(其中无理数e=2.71828…

(2005年重庆卷)

证明:(1)略.(2)由递推关系式及(1)的结论有an+1=(1+两边取对数,且由ln(1+x)<x得

+lnan

2nn+n21111+n(-)+n 故lnan+1-lnan<

n(n+1)2nn+12

n+n

1n+n)an+

n

(1+

1n+n

+

n)an,lnan+1ln(1+

+

n)+lnan<

+

上式中n分别取1,2,…,n-1求和可得

11111111

lnan-lna1<(1-)()(-)+()2n-1223n-1n222

(1-)+(1=

n

112

n-1)<2

n1)即lnan<2,故an<e(.2、写出和式,舍项放缩2、1裂项相消,各项重新组合,舍项放缩 对于例2,还可以这样证明:bn当n=1时,T1=<2;

31141

n

(21)(21)

n

n

221

(n

121

n)

当n2时,∴Tn=(1

221

121

121

121



121

n

121

n)

=1 (12)(3)(n-1n)n

22121212121212121∵

2n-1

111111

1

121

n

242(2

n-1

n

1)(21)

n

0,∴Tn

221

(

121

n)

∴对一切正整数n,都有Tn<

n+1n2、2错位相减,各项重新组合,舍项放缩 例

5、数列an中,a1=2,an+1=2((1)求数列an的通项公式;(2)设bn=

nan

n)an(nN+),求证:bi<

i=

1172

4。,即ann22n

anann

2是以2为公比的等比数列,可以求得

2nn

n1

(2)证明:bn n

ann2

(1)易知

n

i=1

bi

n

112

122

132



1n2

n

n

i=1

bi

n

12

112



322n(

12321342

1)2n

1n(n1)2

1n(n1)2

nn

n+1

2

ni=1

bi

i=1

122124



1n21n2

n+1n+1)

∴bi1=

1724(14

(

342



1n(n1)2

n

1n2)<n+117242、3迭代相加,各项重新组合,舍项放缩 对于例

3、也可以这样证明:由已知得:an2=an-12于是有a22-a12

1a

11an-1

+2,即an-an-11an-11an-

222

1an-1

+2,+2,a3-a2

1a2

+2,…,an2-an-12

1an-1

+2,1a1

这n-1个等式两边相加可得an2a12=2(n-1)+(即an2=2n-1+(1an-1

+),+

1an-2



1a1)>2n-1,又an>0,故an20、(本题满分16分)

在数列an中,已知a1p0,且,nN(1)若数列an为等差数列,求p的值。(2)求数列an的前n项和Sn

n

当n2时,求证:

i1

2a

i

放缩法证明不等式例题 篇7

类型1 利用裂项相消

【评析】 对数列的通项进行适当的放缩, 使得放缩后的数列可以通过裂项求和。

类型2 利用二项式定理

例2 (2011 年高考浙江卷·理19) 已知公差不为0的等差数列{an}的首项a1为a (a∈R) 。设数列的前n项和为Sn, 成等比数列。

(1) 求数列{an} 的通项公式及Sn;

解: (1) 设等差数列{an} 的公差为d,

因为d≠0, 所以d=a1=a。

所以

所以当x>0时, f (x) >f (0) =0,

同理可证当x > 0 时, ln (1 + x) < x。

(1) 求a3的值;

(2) 求数列{an}的前n项和Tn;

当n=1时, S1=1<2+2ln 1显然成立。

综上所述, 满足Sn<2+2ln n, n∈N*。

【评析】 此类题目属于综合性较强的难题, 学生只有对重要不等式十分熟悉才能运用它解决这类问题。

类型4 其他

【评析】 观察所证不等式的两边形式可以联想到放缩成相应数列的通项。

例5 (2014 年高考新课标全国卷·理17) 已知数列{an}满足a1= 1, an + 1= 3an+1。

【评析】 放缩的原则是在完成放缩的同时还需要确保放大后的数列可以求和, 结合本题数列的通项可知放大成一个等比数列的通项。

放缩法证明不等式例题 篇8

(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证

(2)综合法是由因导果,而分析法是执果索因换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法换元法主要放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法 凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法 典型题例

例1证明不等式1

121

31

n2n(n∈N*)知识依托 本题是一个与自然数n有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等 例2求使xy≤axy(x>0,y>0)恒成立的a 知识依托 该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a>0,b>0,且a+b=1求证(a+11)(b+)ba证法一(分析综合法)证法二(均值代换法)证法三(比较法)证法四(综合法)证法五(三角代换法)巩固练习已知x、y是正变数,a、b是正常数,且ab=1,x+y的最小值为xy设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则ad与bc的大小关系是 若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,则m、n、p、q的大小顺序是__________ 已知a,b,c为正实数,a+b+c=1求证1(2)a23b2c2≤6

312已知x,y,z∈R,且x+y+z=1,x2+y2+z2= x,y,z∈[0,] 23(1)a2+b2+c2≥证明下列不等式bc2ca2ab2z≥2(xy+yz+zx)xyabc

yzzxxy111(2)若x,y,z∈R+,且x+y+z=xyz,则≥2()xyzxyz(1)若x,y,z∈R,a,b,c∈R+,则

已知i,m、n是正整数,且1<i≤m<n(1)证明 niAi

m<miAi

n(2)(1+m)n>(1+n)m

若a>0,b>0,a3+b3=2,求证 a+b≤2,ab≤1不等式知识的综合应用

典型题例

例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h米,盖子边长为a米,(1)求a关于h的解析式;(2)设容器的容积为V立方米,则当h为何值时,V最大?求出V的最大值(求解本题时,不计容器厚度)

知识依托本题求得体积V的关系式后,应用均值定理可求得最值

例2已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤

1(1)|c|≤1;

(2)当-1 ≤x≤1时,|g(x)|≤2;

(3)设a>0,有-1≤x≤1时,g(x)的最大值为2,求f(x)

知识依托 二次函数的有关性质、函数的单调性,绝对值不等式

例3设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2(1)当x∈[0,x1)时,证明x<f(x)<x1;

(2)设函数f(x)的图象关于直线x=x0对称,证明 x0<

x

1巩固练习

定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等

式,其中正确不等式的序号是()

①f(b)-f(-a)>g(a)-g(-b)②f(b)-f(-a)<g(a)-g(-b)③f(a)-f(-b)>g(b)-g(-a)④f(a)-f(-b)<g(b)-g(-a)①③

B②④

C①④

②③

下列四个命题中①a+b≥

2ab②sin2x+

4≥4③设x,y都是正数,若则x+y的最小值是12④=1,2

xysinx

若|x-2|<ε,|y-2|<ε,则|x-y|<2ε,其中所有真命题的序号是__________

已知二次函数 f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两实数根为x1,x2

(1)如果x1<2<x2<4,设函数f(x)的对称轴为x=x0,求证x0>-1;(2)如果|x1|<2,|x2-x1|=2,求b的取值范围

设函数f(x)定义在R上,对任意m、n恒有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<

1(1)f(0)=1,且当x<0时,f(x)>1;

(2)f(x)在R上单调递减;

(3)设集合A={(x,y)|f(x2)·f(y2)>f(1)},集合B={(x,y)|f(ax-g+2)=1,a∈R},若A∩B=,求a的取值范围

2x2bxc

已知函数f(x)=(b<0)的值域是[1,3],2x1

(1)求b、c的值;

(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;(3)若t∈R,求证 lg

711≤F(|t-|-|t+|)≤566数列与不等式的交汇题型分析及解题策略

【命题趋向】

数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.【典例分析】

题型一 求有数列参与的不等式恒成立条件下参数问题

求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D,则当x∈D时,有f(x)≥M恒成立f(x)min≥M;f(x)≤M恒成立f(x)max≤M;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.11

1【例1】等比数列{an}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+an>…恒成立的正整数n的取

a1a2an值范围.【例2】(08·全国Ⅱ)设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.

(Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式;(Ⅱ)若an+1≥an,n∈N*,求a的取值范围.【点评】 一般地,如果求条件与前n

项和相关的数列的通项公式,则可考虑Sn与an的关系求解

题型二 数列参与的不等式的证明问题

此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例3】 已知数列{an}是等差数列,其前n项和为Sn,a3=7,S4=24.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设p、q都是正整

1数,且p≠q,证明:Sp+q<(S2p+S2q).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)

2因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】(08·安徽高考)设数列{an}满足a1=0,an+1=can3+1-c,c∈N*,其中c为实数.(Ⅰ)证明:an∈[0,1]对任意n∈N*11成立的充分必要条件是c∈[0,1];(Ⅱ)设0<c<,证明:an≥1-(3c)n1,n∈N*;(Ⅲ)设0<c<,证明:a12+a22+…+an

2332

>n+1-n∈N*.1-3c

题型三 求数列中的最大值问题

求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【例5】(08·四川)设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为______.【例6】 等比数列{an}的首项为a1=2002,公比q=-.(Ⅰ)设f(n)表示该数列的前n项的积,求f(n)的表达式;(Ⅱ)当n

取何值时,f(n)有最大值.

题型四 求解探索性问题

数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【例7】 已知{an}的前n项和为Sn,且an+Sn=4.(Ⅰ)求证:数列{an}是等比数列;(Ⅱ)是否存在正整数k,使

【点评】在导出矛盾时须注意条件“k∈N*”,这是在解答数列问题中易忽视的一个陷阱.【例8】(08·湖北)已知数列{an}和{bn}满足:a1=λ,an+1=n+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整

3数.(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.数列与不等式命题新亮点

例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数„,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23)„,则第50个括号内各数之和为_____.点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求.例2 设A.bn

Sk+1-2

>2成立.Sk-2

an是由正数构成的等比数列, bnan1an2,cnanan3,则()

S

cnB.bncnC.bncnD.bncn

点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系.例3 若对x(,1],不等式(m

m)2x()x1恒成立,则实数m的取值范围()

A

B

D

A.(2,3)B.(3,3)C.(2,2)D.(3,4)

例4四棱锥S-ABCD的所有棱长均为1米,一只小虫从S点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n米后恰好回到S点的概率为Pn(1)求P2、P3的值;(2)求证: 3Pn1Pn

例5 已知函数

1(n2,nN)(3)求证: P2P3„Pn>6n5(n2,nN)

4fxx2x.(1)数列

an满足: a10,an1fan,若

1对任意的nN恒成立,试求a1的取值范围;2i11ai,Sk为数列cn的前k项和, Tk为数列cn的1bn

n

(2)数列

bn满足: b11,bn1fbnnN,记cn

Tk7

.10k1SkTk

n

前k项积,求证

例6(1)证明: ln

1xx(x0)(2)数列an中.a11,且an1

11

an2;n1

2n1n

2①证明: an【专题训练】

7n2②ane2n1 4

aaD.a6a8()D.bn≤cn

()

1.已知无穷数列{an}是各项均为正数的等差数列,则有

aaA.<

a6a8

aaB.

a6a8

aaC.>a6a8

2.设{an}是由正数构成的等比数列,bn=an+1+an+2,cn=an+an+3,则

A.bn>cn

B.bn<cn

C.bn≥cn

3.已知{an}为等差数列,{bn}为正项等比数列,公比q≠1,若a1=b1,a11=b11,则()

A.a6=b6 A.9 A.S4a5<S5a4

B.a6>b6 B.8 B.S4a5>S5a4

C.a6<b6 C.7 C.S4a5=S5a4 S

(n+32)Sn+1

1C.

D.a6>b6或a6<b6()D.6 D.不确定()

150

4.已知数列{an}的前n项和Sn=n2-9n,第k项满足5<ak<8,则k=

5.已知等比数列{an}的公比q>0,其前n项的和为Sn,则S4a5与S5a4的大小关系是()

6.设Sn=1+2+3+…+n,n∈N*,则函数f(n)=

A.

120

B.

130

D.

7.已知y是x的函数,且lg3,lg(sinx-),lg(1-y)顺次成等差数列,则

A.y有最大值1,无最小值B.y有最小值

()

1111

C.y有最小值,最大值1D.y有最小值-1,最大值11212

()

D.(-∞,-1∪3,+∞)

8.已知等比数列{an}中a2=1,则其前3项的和S3的取值范围是

A.(-∞,-1

B.(-∞,-1)∪(1,+∞)C.3,+∞)

9.设3b是1-a和1+a的等比中项,则a+3b的最大值为()

A.1()

A.充分不必要条件 11.{an}为等差数列,若

A.11

B.必要不充分条件C.充分比要条件

D.既不充分又不必要条件

()

B.2

C.

3D.4

10.设等比数列{an}的首相为a1,公比为q,则“a1<0,且0<q<1”是“对于任意n∈N*都有an+1>an”的a1,且它的前n项和Sn有最小值,那么当Sn取得最小正值时,n= a10

B.17

C.19

D.21

12.设f(x)是定义在R上恒不为零的函数,对任意实数x、y∈R,都有f(x)f(y)=f(x+y),若a1=an=f(n)(n∈N*),则数列{an}的前n项和Sn的取值范围是

1A.,2)

B.[,2]

()1

C.1)

D.[1]

S13.等差数列{an}的前n项和为Sn,且a4-a2=8,a3+a5=26,记Tn=,如果存在正整数M,使得对一切正整数n,Tn≤M都

n

成立.则M的最小值是__________.

14.无穷等比数列{an}中,a1>1,|q|<1,且除a1外其余各项之和不大于a1的一半,则q的取值范围是________.(a+b)

215.已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是________.cd

A.0

B.1

C.2

D.

416.等差数列{an}的公差d不为零,Sn是其前n项和,给出下列四个命题:①A.若d<0,且S3=S8,则{Sn}中,S5和S6都是

{Sn}中的最大项;②给定n,对于一定k∈N*(k<n),都有ank+an+k=2an;③若d>0,则{Sn}中一定有最小的项;④存在k∈N*,使ak-ak+1和ak-ak1同号 其中真命题的序号是____________.17.已知{an}是一个等差数列,且a2=1,a5=-5.(Ⅰ)求{an}的通项an;(Ⅱ)求{an}前n项和Sn的最大值.

18.已知{an}是正数组成的数列,a1=1,且点(an,an+1)(n∈N*)在函数y=x2+1的图象上.(Ⅰ)求数列{an}的通项公式;(Ⅱ)

若列数{b}满足b=1,b=b+2an,求证:b ·b<b2.n

n+1

n

n

n+2

n+1

19.设数列{an}的首项a1∈(0,1),an=

3-an1

n=2,3,4,….2

(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=a3-2an,证明bn<bn+1,其中n为正整数. 20.已知数列{an}中a1=2,an+1=(2-1)(an+2),n=1,2,3,….(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{an}中b1=2,bn+1=

3bn+4

n=1,2,3,….2<bn≤a4n3,n=1,2,3,… 2bn+

321.已知二次函数y=f(x)的图像经过坐标原点,其导函数为f(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函

数y=f(x)的图像上.(Ⅰ)求数列{an}的通项公式;

1m

(Ⅱ)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m

20anan+1

22.数列,是常数.(Ⅰ)当a21时,求及a3的值;(Ⅱ)2,)an满足a11,an1(n2n)an(n1,数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求的取值范围,使得存在正整数m,当nm时总有an

一、利用导数证明不等式

(一)、利用导数得出函数单调性来证明不等式

0.

利用导数处理与不等式有关的问题

某个区间上导数大于(或小于)0时,则该单调递增(或递减)。因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的。

1、直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减)区间,自变量越大,函数值越大

(小),来证明不等式成立。

x2例1:x>0时,求证;x-ln(1+x)<02、把不等式变形后再构造函数,然后利用导数证明该函数的单调性,达到证明不等式的目的。例2:已知:a,b∈R,b>a>e, 求证:ab>b a,(e为自然对数的底)

(二)、利用导数求出函数的最值(或值域)后,再证明不等式。

导数的另一个作用是求函数的最值.因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立。从而把证明不等式问题转化为函数求最值问题。例

3、求证:n∈N*,n≥3时,2n >2n+1 例

4、g

x2(b1)2的定义域是A=[a,b),其中a,b∈R+,a

(x)(1)Aax

若x1∈Ik=[k2,(k+1)2), x2∈Ik+1=[(k+1)2,(k+2)2)

3、利用导数求出函数的值域,再证明不等式。例5:f(x)=

3x-x, x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤

二、利用导数解决不等式恒成立问题

不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为m>f(x)(或m

a

(9(aR),对f(x)定义域内任意的x的值,f(x)≥27恒成立,求a的取值范围

x

nn

1例

7、已知a>0,n为正整数,(Ⅰ)设y=(xa),证明yn(xa);

n

(Ⅱ)设fn(x)=xn-(xa),对任意n≥a,证明f ’n+1(n+1)>(n+1)f ’n(n)。

6、已知函数f(x)

三、利用导数解不等式 例8:函数

上一篇:2023年4月份国内国际时事政治下一篇:论孝散文