不等式的证明技巧

2024-05-18

不等式的证明技巧(精选13篇)

不等式的证明技巧 篇1

均值定理证明不等式的方法技巧

1. 轮换对称型。

例1.若a,b,c是互不相等的实数,求

证:a

b

c

abbcac.2

策略:所证不等式是关于a,b,c的轮换对称式,注意到ab即可。

证明:a,b,c是互不相等的实数,a

2ab,然后轮换相加

b

2ac,b

c

2bc,ac

2ac.b

将上面三个同向不等式即a

相加得:2a

c

2ab

bcac。

b

c

abbcac.点评:分段应用基本等式,然后整体相加(乘)得结论,是证明轮换对称不等式的常用技

巧。

2. 利用“1”的代换型。

例2.已知a,b,cR,且 abc1,求证: 策略:做“1”的代换。证明:

1a1b1c

abc

a

abc

b

abc

c

1a

1b

1c

9.acacbb

332229.bacbca

3.逆向运用公式型。

策略:为脱去左边的根号,将a

12,b

12转换成1

1a

2

1,1b

2

,然后逆向运

用均值不等式: 若a,bR

则 ab

ab2

.例3.已知a,bR,ab1求证: a

b

2.证明:a

1212

34

1

a

2b2b

1232

1a

1234a2.同理b12

于是有 a

ab2.点评:依据求证式的结构,凑出常数因子,是解决此类问题的关键。

4. 挖掘隐含条件证明不等式。

例4.已知a,bR,ab1求证:1

1111.ab9

a,bR,ab1

12

ab说明a,bR,ab1的背后隐含策略:由于ab

4ab

2

着一个不等式ab

.14

证明:a,bR,ab1ab。

11111ab12

而 11111189.abababababab11

119.ab

5. 用均值不等式的变式形式证明不等式。例5.已知a,b,cR,求证: a2b2

b

c

c

a

2abc.策略:本题的关键在于对a2b2,b2c2,c2a2的处理,如果能找出

a

b与ab间的关系,问题就可以

解决,注意到

a

b

2ab2a

b



ab

2a

b



ab 其中a,b,cR即可。

证明:a,b,cR

222222

ab

abc

bc。a

b

c

c

a

三式相加得:a2b2

b

c

c

a

2abc

a

点评:解题时要注意ab2ab的变式应用。常用

b2

ab2

(其中

a,bR)来解决有关根式不等式的问题。

不等式的证明技巧 篇2

一、通项放缩, 构造等比数列

运用转化思想, 将数列问题转化为基本数列或应用基本数列的相关方法研究.

例1 (2006年福建高考) 已知数列{an}满足a1=1, an+1=2an+1 (n∈N+) .

(Ⅰ) 求数列{an}的通项公式; (Ⅱ) 证明:undefined

(Ⅰ) 解:因为an+1=2an+1 (n∈N*) , 所以an+1+1=2 (an+1) , 所以{an+1}是以a1+1=2为首项, 2为公比的等比数列.

所以an+1=2n.即an=2n-1 (n∈N*) .

(Ⅱ) 证明: 因为undefined.

所以undefined.

因为undefined.

所以undefined.

所以undefined

点评:数列教学重点是研究基本数列 (等差、等比数列) 的相关问题, 对非基本数列问题通过化归思想, 采用合适的方法, 将其转化为基本数列.

二、利用函数的单调性进行放缩

对于一些具有函数特征的数列不等式证明, 可以利用函数的单调性进行放缩, 充分体现了数列也是一种特殊的函数.

例2 (2006年湖南高考) 已知函数f (x) =x-sinx, 数列{an}满足:0

证明: (Ⅰ) 先用数学归纳法证明0

(i) 当n=1时, 由已知显然结论成立.

(ii) 假设当n=k时结论成立, 即a

由 (i) 、 (ii) 可知, 0

又因为0

0

(Ⅱ) 设函数undefined.由 (Ⅰ) 知, 当0

所以g (x) 在 (0, 1) 上是增函数.又g (x) 在[0, 1]上连续, 且g (0) =0, 所以当00成立.于是g (an) >0.即undefined.故undefined.

点评:用导数解决函数的单调性问题一直是高考的重点, 解决此类问题的策略是, 若证明不等式f (x) >g (x) , x∈ (a, b) , 可以转化为证明:F (x) =f (x) -g (x) 在 (a, b) 上是增函数.

三、分项讨论放缩证明数列不等式

例3 (2004年全国高考) 已知数列{an}的前n项和Sn满足Sn=2an+ (-1) n, n≥1. (1) 写出数列{an}的前三项a1, a2, a3; (2) 求数列{an}的通项公式; (3) 证明:对任意的整数m>4, 有undefined

(Ⅰ) 略 (Ⅱ) undefined.

(Ⅲ) 由于通项中含有 (-1) n, 很难直接放缩, 考虑分项讨论:

当n≥3且n为奇数时

undefined (减项放缩) , 于是

①当m>4且m为偶数时undefined

②当m>4且m为奇数时undefined (添项放缩) 由①知undefined.由①②得证.

不等式证明技巧 篇3

关键词: 不等式    证明    技巧

不等式是研究数学问题的重要工具,它渗透在数学的各个分支学科,有重要的应用。不等式的证明方法灵活多样,它可以和很多内容相结合,对不等式的证明进行探讨无疑是十分有益的。本文通过实例说明不等式证明的某些技巧,提高分析问题与解决问题的能力。

例1:设x,y,z是不全为零的实数,求证:

5x +y +5z >8xz-4xy+4yz.

证明:设二次型f(x,y,z)=5x +y +5z -8xz+4xy-4yz,则f的矩阵是

A=5       2    -42       1    -2-4    -2    5.

因为A的各阶顺序主子式为:

|5|=5>0;5    22    1=1>0; 5      2    -4 2      1    -2-4    -2    5=1>0;

所以,A正定,从而,二次型f(x,y,z)正定,当x,y,z不全为零时f(x,y,z)>0.即5x +y +5z -8xz+4xy-4yz>0,

因此5x +y +5z >8xz-4xy+4yz.

例2:求证:n x  ≥( x ) .

证明:令f(x ,x ,…,x )=n x  -( x ) ,则f为二次型,其矩阵为

A=n-1    -1    …    -1      -1-1     n-1    …    -1     -1…     …      …    …      …-1     -1      …    n-1    -1-1     -1      …    -1     n-1,

将第2,3,…,n列加到第1列,则第1列元素全为零,故|A|=0;用同样的方法可求出A的i阶主子式为(n-i)n >0(i=1,2,…,n-1).

因为A的主子式都大于或等于零,所以A是半正定的;从而二次型f(x ,x ,…,x )半正定,所以f(x ,x ,…,x )≥0,即

n x  ≥( x ) .

例3:设A,B,C是一个三角形的三个内角,证明对任意实数x,y,z,都有

x +y +z ≥2xycosA+2xzcosB+2yzcosC.

证明:记f(X)=X′AX=x +y +z -2xycosA-2xzcosB-2yzcosC,其中

X=(x,y,z)′,P=    1       -cosA    -cosB-cosA       1        -cosC-cosB    -cosC        1,A+B+C=π,cosC=-cos(A+B).

对P做初等行变换得:

P~1    -cosA    -cosB0     sinA      -sinB0        0            0,

于是P的特征值為0,1,sinA,从而得二次型f(X)是半正定的,即对于任意实数x,y,z,f(X)≥0,即x +y +z ≥2xycosA+2xzcosB+2yzcosC成立.

例4:设A是实对称矩阵,其特征根为λ ≤λ ≤…≤λ ,则对任意的实向量X有

λ X′X≤X′AX≤λ X′X.

证明:A是实对称矩阵,存在正交矩阵T,使

T AT=λ                                 λ                                 ?埙                                λ ,

于是T AT-λ I特征根非负,即矩阵A-λ I半正定.这样

X′(A-λ I)X≥0.

因此

X′AX≥λ X′X.

同理可证

X′AX≤λ X′X.

例5:设a ∈R,(i=1,2,…,n)证明:

n(a  +a  +…+a  )≥(a +a +…+a )

证明:设D=n(a  +a  +…+a  )-(a +a +…+a ) ,只要证D≥0.

由于

D=a  +a  +…+a      a +a +…+a a +a +…+a                 n

= a      a +a +…+a a                 n

=  a      a a     1=  a a     a 1    1

所以

D=  a a     a 1    1=  (-a )a     a 1    1,

因此

2D=D+D=  (a -a )a     -a 1    1=  (a -a ) ≥0.

這就证明了D≥0.

参考文献:

[1]张荣.辅助函数在不等式证明中的应用[J].数学的实践与认识,2007,37(20):224-226.

[2]高淑娥.不等式证明中辅助函数的构造[J].甘肃联合大学学报(自然科学版),2013,27(1):79-81.

[3]梁波.例谈行列式的几个应用[J].毕节学院学报,2006(04):27-29.

不等式的证明 篇4

教学目标

1.知识与技能

(1).理解绝对值的几何意义并能用其证明不等式和解绝对值不等式.(2).了解数学归纳法的使用原理.(3).会用数学归纳法证明一些简单问题.(4).了解证明不等式的常用方法.2.过程与方法

通过自主学习、课上讨论、提问、分析点评,让学生更加熟练解决有关不等式证明有关的问题.3.情感、态度和价值观

(1)培养学生分析、探究问题的能力,进一步培养学生学习数学的兴趣及综合运用基本知识解决问题的能力.(2)培养他们合作、交流、创新意识以及数形结合、抽象理解能力,使学生学会数学表达和交流,发展数学应用意识.学法与教具

(1)学法:课下自主复习、课堂上合作探究.(2)教具:教学案、多媒体.一、【知识梳理】

不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容.1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述.(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:、放缩法、反证法、函数单调性法、、数形结合法等.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.(1)反证法的一般步骤:反设——推理——导出矛盾(得出结论);(2)放缩法:“放”和“缩”的方向与“放”和“缩”的量的大小是由题目分析、多次尝试得出,要注意

放缩的适度。常用的方法是:

131

①添加或舍去一些项,如:a1a,n(n1)n,aa

242

②将分子或分母放大(或缩小)如:

1n

n(n1)n

ab),2

1n(n1)

③真分数的性质:“若0ab,m0,,则

ambm(lg

④利用基本不等式,如:lg3lg5(n(n1)

lg3lg

2)(lg

2)

(lg4)

lg4;

n(n1)

.⑤利用函数的单调性

⑥利用函数的有界性:如:sinA1,AR;2x0,xR.⑦利用常用结论: Ⅰ、1K1K

2K2K1k(k1)1k

K

2K

2K1k

K1K

12(K1K)(kN,k1)

*

K

2(KK1)(kN,k1)

*

Ⅱ、1k



1k

1 ;

1k

1k(k1)

1k1

1k

1k1

(程度大)

Ⅲ、1k

1

(k1)(k1)

2k1

();(程度小)

⑧绝对值不等式:ababab;

nn1n1

⑨应用二项式定理.如:2(11)1CnCn12(n1)(n4)

3构造法:通过构造函数、方程、数列、向量或不等式来证明不等式.二、【范例导航】

例1.设不等式2x11的解集为M.(I)求集合M;(II)若a,b∈M,试比较ab+1与a+b的大小.

解:(I)由2x11解得0x1.所以Mx0x1(II)由(I)可知aMbM,故0a1,0b1 所以(ab1)(ab)(a1)(b1)0故ab1ab

例2.已知a、b、c∈R+,且abc1求证:(1a)(1b)(1c)8(1a)(1b)(1c).剖析:在条件“abc1”的作用下,将不等式的“真面目”隐含了,给证明不等式带来困难,若用“abc”换成“1”,则还原出原不等式的“真面目”,从而抓住实质,解决问题.证

a,b,cR且abc

1

∴要证原不等式成立,即证

(abc)a(abc)b(abc)c8(abc)a(abc)b(abc)c

也就是证

(ab)(ca)(ab)(cb)(ac)(bc)8(bc)(ca)(ab)1

∵(ab)(bc)2(ab)(bc)0,(ac)(bc)2(ac)(bc)0(ab)(ac)2(ab)(ac)0,三式相乘得①式成立.故原不等式得证.例3.证明不等式1

1213

1n

2n(nN)

证:对任意nN,都有: 1k

2k12k13

2k

k11n

2(kk1),2)2(n

n1)2n.因此122(21)2(3

例4.证明

:(1)(1)(1

112n1)

2n12n1

75

2n12n1

2n1

3

2n1

2证明方法

一、1

(1

13)(1

512n

1

2n2n1)

43

65

(2n1)(2n1)2n12n1



2n2n1

53)(1

5476

2n176

证明方法

二、设B则AB又因为所以A

435465

2n2n

12n1



2n

2n12n,2n1

32n2n1

2n12n

2n1

4,A

2n1

2AB

2n13

例5.已知:a,b,c都是小于1的正数;求证(1a)b,(1b)c,(1c)a中至少有一个不大于.证明:假设(1a)b

14,(1b)c

14,(1c)a

1232,14,则有

12,(1c)a

∵a,b,c都是小于1的正数,(1a)b从而有(1a)b

(1b)c

(1c)a

(1b)c

1bc

1ca

32

但是(1a)b(1b)c(1c)a

1ab

故与上式矛盾,假设不成立,原命题正确.

【说明】反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法.

三、【解法小结】

1.综合法就是“由因导果”,从已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.分析法就是“执果索因”,从所证不等式出发,不断用充分条件替换前面的不等式,直至找到成立的不等式.3.探求不等式的证法一般用分析法,叙述证明过程用综合法较简,在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程,以适应学生习惯的思维规律.有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证题目的.4.由于高考试题不会出现单一的不等式的证明题,常常与函数、数列、三角、方程综合在一起,所以在教学中,不等式的证明除常用的三种方法外,还需介绍其他方法,如函数的单调性法、判别式法、换元法(特别是三角换元)、放缩法以及数学归纳法等,在放缩法中一定要注意放缩的尺度问题不能过大也不能过小.四、【布置作业】

必做题:

1.不等式x3x1a3a对任意实数x恒成立,则实数a的取值范围为()

A.,14,2.设an

sin1

2sin22

B.,25,C.1,2D.,12,

sinn2

n

, 则对任意正整数m,n(mn), 都成立的是()

mn2

A.anam

mn2

B.anam C.anam

n

D.anam

n

3.(陕西长安二中2008届高三第一学期第二次月考)设

1ba

()()1,那么()222

A.aaabbaB.aabaabC。abaabaD.abbaaa

4.(2012,四川文)设a,b为正实数,现有下列命题:

① 若a2b21,则;ab1 ②若③若

1b1a

1,则ab1;

ab1,则ab1;

④若a3b31,则ab1.其中的真命题有___________(写出所有正确的题号)必做题答案:

1.A解析:因为x3x1a3a对任意x恒成立,又因为x3x1最大值为4所以 a3a4解得a4或a

sinn12

n

12.C

anam

sinn22

n2



sinm21

m

sin(n1)2

n1

sin(n2)2

n2



sinm2

m

n1

n2



m

n1

n2



m

12

n1

m1

n

m

n

1

故应选C

16.答案C17、①④

选做题:(辽宁2011理21)已知函数f(x)lnxax2(2a)x.(I)讨论f(x)的单调性;(II)设a0,证明:当0x

1x

时,f(1a

x)f(1a

x);

(III)若函数yf(x)的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f(x0)0. 解:(I)f(x)的定义域为(0,), f(x)

1x

2ax(2a)

(2x1)(ax1)

x

)(i)若a0则f(x)0,所以f(x)在(0,单调增加.(ii)若a0则由f(x)0得x

1a

且当x(0,)时,f(x)0,当x

a

11a

时,f(x)0,1单调增加,在(,)单调减少.所以f(x)在(0)a

a

(II)设函数g(x)f(a1ax

1x

1a

x)f(1a

x)则g(x)ln(1ax)ln(1ax)2ax

1a

g(x)

a1ax

2a

1a

2ax

1ax

1a,当0x时,g(x)0,而g(0)0,所以g(x)0.故当0x时,f(x)f(x)

(III)由(I)可得,当a0函数yf(x),的图像与x轴至多有一个交点,11

,且f0不妨设aa

1ax

2故a0,从而f(x)的最大值为f

A(x1,0)B(x20),0x1x2,则0x1

2a

1a

1a

由(II)得f(x1)f(

x1)f(x1)0从而x2

2a

x1,于是x0

x1x2

1a

由(I)知,f(x)0

五、【教后反思】

不等式的证明练习 篇5

A级

一、选择题 1.2+7与3+6的大小关系是()A.2+≥+B.2+7≤3+6 C.2+>+6D.2+7<3+ 6

3332.设a、b、c∈R且a、b、c不全为0,则不等式a+b+c≥3abc成立的一个充要条件是

()

A.a、b、c全为正数B.a、b、c全为非负实数

C.a+b+c≥0D.a+b+c>0

3.若实数ab满足0

A.2B.a+bC.2abD.a

4.设实数a、b满足a+b=3,则2+2的最小值是()

A.6B.42C.22D.26

5.已知a>0且a≠1,M=loga,N=loga则M与N的大小关系是()

A.M

C.M>ND.不确定随a的变化而变化

二、填空题

226.已知x+y=4,则2x+3y的取值范围为.(a31)(a21)ab

ba

7.若不等式a+b>2成立,则a与b满足的条件是.8.b克糖水中有a克糖(b>a>0),若再添上m克糖(m>0),则糖水就变甜了,试根据事实提炼一个不等式.三、解答题

(ab)2ab(ab)

29.已知a>b>0.求证:8a<2-ab<8b.10.已知a,b,c∈(0,1).求证:(1-a)b,(1-b)c,(1-c)a不可能都大于4.AA级

一、选择题

1.已知下列不等式:

2+①x+3>2x(x∈R)

553223②a+b≥ab+ab(a,b∈R)

22③a+b≥2(a-b-1)

其中正确的个数是()

A.0B.1C.2D.3+2.设x,y∈R,且xy-(x+y)=1,则()

A.x+y≥2(2+1)B.xy≤+

12C.x+y≤(2+1)D.xy≥2(2+1)

11a23.设M=a+(2

A.M>NB.M=NC.M

1+

4.设a,b,c∈R,则3个数a+b,b+c,c+a()

A.都大于2B.都小于

2C.至少有一个不大于2D.至少有一个不小于2

5.为适应社会发展的需要,国家决定降低某种存款的利息,现有四种降息方案: 方案Ⅰ先降息p%,再降息q%(其中p、q>0且p≠q)方案Ⅱ先降息q%,后降息p%

pqpq

方案Ⅲ先降息2%,后降息2%

方案Ⅳ一次降息(p+q)%

在上述四种方案中,降息最少的是()

A.方案ⅠB.方案ⅡC.方案ⅢD.方案Ⅳ

二、填空题

x

6.实数y=x-y,则x的取值范围是.ab

7.若a>b>c>1,p=2(2-ab)

abc

3θ=3(-abc),则p与θ中的较小者是.11k

8.若a>b>c,则不等式ab+bc≥ac成立的最大的k值为.三、解答题

cab

39.已知:a≥0,b≥0,c≥0.求证:ab+bc+ca≥

2111111

110.证明:n1(1+3+„+2n1)>n(2+4+„+2n)(n≥2)

【素质优化训练】

一、选择题

11(x)6(x66)

11(x)3(x33)

xx,则()1.若x>0,f(x)=

A.f(x)≥10B.f(x)≤2C.f(x)≥8D.f(x)≥6

+

2.设a,b,c∈R,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R”同时大于零的()

A.充分而不必要条件B.必要而不充分条件 C.充分且必要条件D.即不充分也不必要

+

3.已知a,b∈R,则下列各式中成立的是()

222a2b(a+b)

A.cosθ·lga+sinθ·lgblg

C.a

cos2

·b

sin2

=a+bD.a

cos2

·b

sin2

>a+b

aaa

4.设a1>a2>a3>„>a2000>a2001,且m=a1a2+a2a3+„+a2000a2001,n=

4106

a1a2001,则m与n的大小关系是()

A.mnC.m≤nD.m≥n

5.连结直角三角形的直角顶点与斜边的两个三等分点所得的两条线段长分别为sinα

和cosα(0<α<2),则斜边的长为()

4A.B.C.3D.5二、填空题

n2

5m

16.已知m,n∈R,则3616-n+3(用“≥”或“≤”号连接).11

27.若x-1=2(y-1)=3(Z-2),则S=x+y+z的最小值为.6m

8.设三角形三边长为3,4,5,P是三角形内的一点,则P到达这个三角形三边距离乘积的最大值是.三、解答题

x2111

29.已知a∈(-1,1),求证ax2xa的值不可能在a1与a1之间.10.已知二次函数y=ax+2bx+c,其中a>b>c,且a+b+c=0.(1)求证:此函数的图像与x轴交于相异的两个点.(2)设函数图像截x轴所得线段的长为l,求证:

2222

1.设m+n=a,x+y=b.(其中a、b是不相等的正整数),则mx+ny的最大值是()

a2b2ababA.2B.abC.abD.2.已知0

b

a

a

b,log

1b

a的大小关系是.222

23.设x,y∈R,且x+y≤1,求证|x+2xy-y|≤2.+3

34.已知p,q∈R且p+q=2,求证:p+q≤2.参考答案

A级

1.D 2.A 3.B 4.B 5.D

ama

6.[-2,2] 7.ab>0且a≠b 8.bm>b

(ab)2ab[(ab)(a)]2(a)2

8a-(2-)=28a9.证明:-=

(ab)2ab)24a]

8a,∵a>b>0,∴ab<2a,∴(ab)<4a,∴

(ab)2ab

8a(ab)-4a<0,又(ab)>0,8a>0,∴-(2-ab)<0,即(ab)2ab(ab)2ab

8a<2-ab.同理可证:8a>2-ab,∴原不等式成立.111

110.证明:假设三个式子同时大于4,即(1-a)b>4,(1-b)c>4,(1-c)a>4,三式相乘

1a1a132

2得:(1-a)a·(1-b)·b·(1-c)·c>4 ①,又因为0

同理0

盾,所以假设不成立,故原命题成立.AA级

1.C 2.A 3.A 4.D 5.C

6.(-∞,0)∪[4,+∞] 7.P 8.4cababcabcabc

9.证明:∵ab+bc+ca=ab+bc+ca-3=

1111111

(a+b+c)(ab+bc+ca)-3=2[(a+b)+(b+c)+(c+a)][ab+bc+ca]-3

33

(ab)(bc)(ca)

≥2·3cab3

ab+bc+ca≥2成立.11193



abbcca-3=2-3=2,即

111()

111111111n10.证明:∵2=2,3>4,5>6,„„,2n1>2n,又2>,111111n1

将上述各式两边分别相加得1+3+5+„+2n1>(2+4+„+2n)·n,∴1111111n1(1+3+„+2n1)>n(2+4+„+2n)

【素质优化训练】

1.D 2.C 3.A 4.C 5.D

5916

6.≤ 7.14 8.1

5x21122

9.证明:设y=ax2xa,则(ay-1)x+2yx+ay-1=0,若y≠a,由x∈R,得△≥

0.即4y-4(ay-1)≥0,∴[(1-a)y+1][(1+a)y-1]≥0,因a∈(-1,1),所以1-a>0,1+a>0

11111111

且a1>a1,所以y≤a1或y≥a1,若y=a,由a(a1, a1),原命题也

正确.综上所述,原命题成立.22

10.证明:(1)令ax+2bx+c=0,则Δ=4b-4ac,由a+b+c=0且a>b>c,∴a>0,c<0,∴ac<0,故Δ>0,即函数的图像与x轴交于相异的两点.(2)设函数图像截x轴于A、B两点,4b24(ac)24c2bcc22

a2其坐标为x1,x2,则x1+x2=-a,x1x2=a,∴l=a-4·a=-a=4

ccc13bbc22

[(a)+a+1]=4[(a+2)+4],又a+b+c=0且a>b>c,∴|a|<1,即-1

=a=-1-a∈(-2,0),∴3

1.B2.logb>loga>log>log

2222

3.证明:设x=rcosθ,y=rsinθ,且|r|≤1,则|x+2xy-y|=r|cosθ+2cosθ

a

b

1a

b

1b

a

222

sinθ-sinθ|=r|cos2θ+sin2θ|=2r|sin(2θ+4)|≤2

4.证明:假设p+q>2,则(p+q)>8,∴p+q+3pq+3pq>8,又p+q=2,∴pq(p+q)>2=p+q,2222

证明基本不等式的方法 篇6

●教学目标:

1、理解综合法与分析法证明不等式的原理和思维特点.2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤.●教学重点:综合法与分析法证明不等式的方法与步骤

●教学难点:综合法与分析法证明不等式基本原理的理

●教学过程:

一、复习引入:

1、复习比较法证明不等式的依据和步骤?

2、今天学习证明不等式的基本方法——分析法与综合法

二、讲授新课:

1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法 综合法又叫顺推证法或由因导果法。

用综合法证明不等式的逻辑关系是:例

1、已知a,b,c是不全相等的正数,求证:.分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明)

解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③

因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号.由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。

(2)在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧.变式训练:已知a,b,c是不全相等的正数,求证: 例

2、已知 且,求证: 分析:观察要证明的结论,左边是 个因式的乘积,右边是2的 次方,再结合,发现如果能将左边转化为 的乘积,问题就能得到解决。

2、分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法 这是一种执果索因的思考和证明方法。

①用分析法证明不等式的逻辑关系是: ②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真,而已知A为真,故B必真。

例3. 求证: 分析:观察结构特点,可以利用分析法。

点评:①分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通!

②证明某些含有根式的不等式时,用综合法比较困难,常用分析法.③在证明不等式时,分析法占有重要的位置.有时我们常用分析法探索证明的途径,然后用综

合法的形式写出证明过程,这是解决数学问题的一种重要思想方法.例

4、已知,求证: 分析:要证的不等式可以化为 即 观察上式,左边各项是两个字母的平方之积,右边各项涉及三个字母,可以考虑用

三、课堂练习:

1、已知a,b,c,d∈R,求证:ac+bd≤ 分析一:用分析法

证法一:(1)当ac+bd≤0时,显然成立(2)当ac+bd>0时,欲证原不等式成立,只需证(ac+bd)2≤(a2+b2)(c2+d2)

即证a2c2+2abcd+b2d2≤a2c2+a2d2+b2c2+b2d2即证2abcd≤b2c2+a2d2即证0≤(bc-ad)

2因为a,b,c,d∈R,所以上式恒成立,综合(1)、(2)可知:原不等式成立 分析二:用综合法 证法二:(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=(a2c2+2abcd+b2d2)+(b2c2-2abcd+a2d2)

=(ac+bd)2+(bc-ad)2≥(ac+bd)

2∴ ≥|ac+bd|≥ac+bd故命题得证 分析三:用比较法

证法三:∵(a2+b2)(c2+d2)-(ac+bd)2=(bc-ad)2≥0,∴(a2+b2)(c2+d2)≥(ac+bd)2

∴ ≥|ac+bd|≥ac+bd,即ac+bd≤ 点评:用分析法证明不等式的关键是,寻求不等式成立的充分条件.因此,经常要对原不等式进行化简,常用的方法有:平方、合并、有理化、去分母等,但要注意所做这些变形是否可以逆推,若不能逆推,则不可使用.2、已知 且 求证:(分析法)

四、课堂小结:

综合法与分析法证明不等式的方法与步骤

五、课后作业:

课本P25—26习题2.2—2,3,4,5,6,7,8,9

不等式的证明技巧 篇7

关键词:微分学,不等式证明,思路,技巧

不等式证明是微分学中的一个常见问题, 是微分学中的重点和难点, 在各类考试中经常出现。而不等式证明历来是学生最感到困惑的问题之一。由于微分学中涉及能够证明不等式的方法很多, 所以, 如何准确、快捷地选择恰当的证明方法往往成为同学们关注的问题。

本人结合教学实践, 归纳了微分学中常见的不等式证明的常用证法、相关思路及技巧, 以帮助学生熟练掌握不等式证明的常用方法, 以期对学生准确、快捷地证明不等式, 提供正确的辨析和解题指导。

一、微分学中不等式证明的思路与技巧

(一) 中值定理法

1) 思路。这里的中值定理通常指的是中值定理。我们通常利用中值定理的结论将不等式中较复杂的函数 (或表达式) 换成较简单的函数而进行函数大小的比较。

2) 技巧。这里使用lagrange中值定理的关键是函数和区间的确定。我们通常利用观察法来确定这两个要素, 在例1中, 由于1n (b/a) 较复杂, 故选取函数f (x) =1nx;另外注意到1n (b/a) =1n (b/a) -1n1, 故取定了区间[1, b/a]。

(二) 利用函数的单调性

1) 思路。其主要思想是将不等式进行等价变形, 通过构造辅助函数, 借助于所构造函数的单调性, 达到证明的目的。

例2:已知x>0, 求证:1n (1+x)

分析:将不等式移项, 构造函数f (x) =1n (1+x) -x, 由于f (0) =0, 只须证明f (x) 在[0, +∞]为减函数, 即得结论。证明过程略。

例3:设b>a>0, 证明:1n (b/a) >a+b2 (b-a) 。

证明:令f (x) = (1nx-1na) (a+x) -2 (x-a) , 显然f (a) =0。以下证函数f (x) 在[a, +∞]为单调增函数。

2) 技巧。利用函数单调性证明不等式的关键在于构造函数。常用的构造方法如下:对所要证明的不等式进行移项, 将不等式右端变为零, 构造左端部分为f (x) , 如例1。但我们要注意到采取这种构造方法证明例3时, 经移项之后, 不等式左端的函数关系无法确定, 从而无法证明。以例3为例, 遇到这种到情况 (不等式中没有出现自变量x) , 通常采取以下的函数构造方法:将不等式移项后变形为最简单的表达形式, 得 (1nb-1na) (a+b) -2 (b-a) >0, 将其中的某一个常量换为自变量x, 构造函数f (x) = (1nx-1na) (a+x) -2 (x-a) 。按照此方法, 例3也可构造函数为f (x) = (1nb-1nx) (x+b) -2 (b-x) , 通过证明该函数 (0, b) 在单调增加, 最终得到证明。

(三) 利用函数的凹凸性

1) 思路。利用函数的凹凸性证明不等式的关键是通过构造辅助函数, 借助于所构造函数的凹凸性, 达到证明的目的。

2) 技巧。若遇到所证明不等式中出现有x, y两个变量及x2+y的表达式时, 该题往往需要使用函数的凹凸性进行证明, 可按以下步骤:第一步, 观察各项的共同特征, 构造函数F (t) ;第二步, 利用定理:若在 (a, b) 内, F'' (t) >0, 则F (t) 在 (a, b) 是凹的;若在 (a, b) 内, F'' (t) <0, 则F (t) 在 (a, b) 是凸的。说明函数的凹凸性;第三步, 借助函数凹凸性的定义, 取定义中任意的x1和x2分别为x和y, 即得证不等式。

(四) 利用泰勒公式

1) 思路。泰勒展开式证明不等式, 常用的是将函数f (x) 在所给区间端点或一些特定点 (如区间的中点, 零点) 展开, 通过分析余项在ξ点的性质, 而得出不等式。

证明:所讨论的不等式等价于。求函数ln (1+x) 与ln (1-x) 的泰勒展开式得

2) 技巧。应用泰勒公式的关键是确定在哪一点以及关于哪一点求函数的展开式, 进而通过对余项的估计来推出所证明的不等式。

二、结语

不等式证明是微分学学习中的一个重点内容, 因而, 在诸多证明不等式的方法中, 准确、快捷地选取恰当的证法显得尤为重要。以上对不等式证明中常用的方法进行了归纳梳理、比较分析。在微分学的学习与应试中, 务必要因题而宜, 明悉观察, 抓主要特点, 以便恰当地选用证明方法, 准确、快捷地解决问题。

参考文献

[1]谢明文.微积分教程 (第四版) [M].成都:西南财经大学出版社, 2005.

利用导数证明不等式的方法 篇8

题目2:P是曲线y=f(x)=ex上的动点,Q是曲线y=g(x)=lnx上的动点,求PQ的最小值。

分析:本题主要考查反函数的相关知识,导数的几何意义,而在本题中所体现出的两类不等式是我们在利用导数证明不等式问题中特别常用到的放缩手段。

解:因为y=ex与y=lnx互为反函数,而反函数的图象关于直线y=x轴对称,所以我们可以转化为将直线y=x向上平移和向下平移,使得直线分别与y=ex与y=lnx相切,此时两个切点之间的距离即为我们所要求的最小值。f′(x)=ex,令f′(x)=ex=1可得,切点坐标为(0,1);同理可求g′(x),令g′(x)=1可得,切点坐标为(1,0)。所以可以得到PQ的最小值为。

注:我们主要是想从本题解答过程中得到一组不等式:

(1)当x>0时,ex>x+1;变形:ex>x;ex-1>x

(2)当x>0时,x-1>lnx;变形:x>lnx;x>ln(x-1)

下面通过一个实例体会该不等式的应用。

题目3:已知f(x)=lnx,g(x)=ex。求证:当x>0时,f(x)

分析:本题的基本思路仍然是一个函数的思想,但是在操作中必须进行适当的放缩才能证明出该不等式。

解:F(x)=g(x)-f(x)-2=ex-lnx-2,则F′(x)=ex-2;则F′(x)单调递增,再根据零点存在性判定定理知F′(1)>0,F′()<0,所以F′(x)=0在(,1)上有根记为t,从而可知F(x)在(0,t)单调递减,在(t,+∞)单调递增,所以F(x)>F(t)=et-lnt-2,下面我们必须能证明F(t)=et-lnt-2>0恒成立即可。此时又回到本题最初的形式,在这种情况下我们可以对F(t)=et-lnt-2进行放缩,其基本思想是此时et和lnt同时存在我们无法研究导数的零点,因此我们可以把二者之一利用放缩的方式处理掉。具体操纵如下:

F(t)=et-lnt-2>t+1-lnt-2=t-lnt-1(利用ex>x+1进行放缩),下面可以构造函数g(t)=t-lnt-1,下面我们可以证明g(t)>0恒成立即可。而我们知道ex>x也成立,但此时如果我们选择ex>x进行放缩根本不能证出我们的结论;由此可以放缩必须要把握度,不能放得太多,也不能放得太少。

另外,我们可以考虑将lnt处理掉,可以利用lnt与一次式之间的关系(x-1>lnx)进行放缩,则F(t)=et-lnt-2>et-t+1-2=et-t-1,下面可以构造函数h(t)=et-t-1,只需证明h(t)>0恒成立即可。

除此之外,我们还经常涉及两个函数的思想来证明不等式的问题,其基本理念为:

若f(x)min>g(x)max成立,则f(x)>g(x)恒成立;

若f(x)>g(x)恒成立,不一定要f(x)min>g(x)max成立,我们只需保证对于f(x)和g(x)两个函数在每一个自变量处都满足f(x)的函数值大于g(x)的函数值即可。

题目4:证明:ex+x2>sinx+x

常用均值不等式及证明证明 篇9

这四种平均数满足HnGn

AnQn

、ana1、a2、R,当且仅当a1a2

an时取“=”号

仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)由以上简化,有一个简单结论,中学常用

均值不等式的变形:

(1)对实数a,b,有a

2b22ab(当且仅当a=b时取“=”号),a,b02ab

(4)对实数a,b,有

aa-bba-b

a2b2

2ab0

(5)对非负实数a,b,有

(8)对实数a,b,c,有

a2

b2c2abbcac

abcabc(10)对实数a,b,c,有

均值不等式的证明:

方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序

不等式法、柯西不等式法等等

用数学归纳法证明,需要一个辅助结论。

引理:设A≥0,B≥0,则ABAnnAn-1B

n

注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0(用数学归纳法)。

当n=2时易证;

假设当n=k时命题成立,即

那么当n=k+1时,不妨设ak1是则设

a1,a2,,ak1中最大者,kak1a1a2ak1 sa1a2ak

用归纳假设

下面介绍个好理解的方法琴生不等式法

琴生不等式:上凸函数fx,x1,x2,,xn是函数fx在区间(a,b)内的任意n个点,设fxlnx,f

证明不等式的种种方法[定稿] 篇10

莫秋萍

茂名学院师范学院数学系

第一章 引言(绪论)

第二章 文献综述

第三章 不等式的证明方法

1、初等代数中不等式的证明

(1)比较法

(2)分析法

(3)反证法

(4)数学归纳法

(5)换元法

(6)放缩法

(7)调整法

(8)构造法

(9)利用已知的不等式证明

(10)利用一元二次方程的判别式

(11)用几何特性或区域讨论

(12)利用坐标和解析性

(13)利用复数

(14)参数法

(15)利用概率证明

(16)利用向量证明

(17)面积法

(18)化整法

(19)步差法

(20)通项公式法

(21)转化成数列然后证明数列的递增递减

(22)增量法

(23)裂项法

2、高等代数中不等式的证明

(1)由函数的上、下限证明

(2)由柯西不等式证明

(3)由Taylor公式及余项证明

(4)由积分的性质证明

(5)由拉格朗日中值定理证明

(6)利用求函数的最值证明

(7)利用曲线的凹凸性证明

第四章 几个著名不等式的证明、推广及其应用

1、三角形不等式

2、贝努利不等式

3、排序不等式

4、柯西不等式

5、闵可夫斯基不等式

6、赫尔德不等式

7、切比晓夫不等式

8、琴生不等式

等式或不等式的概率方法证明 篇11

等式或不等式的证明是数学中常见的问题, 其证明方法可谓多种多样, 但在以往证明中我们一般只对等式或不等式左右两边的具体数字或符号感兴趣, 如果把数字或符号形象化、具体化, 给它们建立起一个形象直观的数学模型, 不但使等式或不等式加以证明, 而且得到式子存在的数学意义, 加深对等式或不等式的理解。以下将从概率论中的基本概念和定理出发, 利用概率方法完成对等式或不等式的证明。

1 运用加法定理证明等式

2 运用数学期望证明不等式

3 运用随机变量及其分布函数证明不等式

4 结束语

从以上过程可以看出, 运用概率方法来证明等式或不等式是具有优越性的, 不仅证明过程简洁, 更重要的是建立了具体的数学模型, 便于理解。同时, 我们也能看到, 在运用概率方法时, 往往不是单独的一个知识点就能解决问题的, 常常需要几个知识一起运用, 如分布函数结合了期望, 概率结合数学分析中的一些定理, 体现了数学知识联系的紧密性。

参考文献

[1]梁之舜, 邓集贤, 等.概率论及数理统计[M].高等教育出版社.2002

[2]盛骤, 谢式千, 等.概率论与数理统计[M].北京:高等教育出版社.2001

[3]薛留根.概率论解题方法与技巧[M].北京:国防工业出版社.1996

构造函数证明不等式的方法探究 篇12

构造函数证明不等式的方法探究

作者:赵久勇 常国庆

来源:《新高考·高三数学》2013年第06期

3.4.1 基本不等式的证明 篇13

3.4.1 基本不等式的证明(1)

江苏省靖江高级中学杨喜霞

教学目标:

一、知识与技能

1.探索并了解基本不等式的证明过程,体会证明不等式的基本思想方法;

2.会用基本不等式解决简单的最大(小)值问题;

3.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握 定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

4.理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几 何解释.

二、过程与方法

1.通过实例探究抽象基本不等式;

2.本节学习是学生对不等式认知的一次飞跃.要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点.变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础.两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质.

三、情感、态度与价值观

1.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣;

2.培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力.

教学重点:

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程. 教学难点:

理解基本不等式 等号成立条件及 “当且仅当时取等号”的数学内涵.

教学方法:

先让学生观察常见的图形,通过面积的直观比较抽象出基本不等式;从生活中实际问题还原出数学本质,可积极调动学生的学习热情;定理的证明要留给学

生充分的思考空间,让他们自主探究,通过类比得到答案.

教学过程:

一、问题情景

a

b

2ab2.的几何背景: 21.提问:

如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系).

二、学生活动

问题1 我们把“风车”造型抽象成上图.在正方形ABCD中有4个全等的直角三角形.设直角三角形的长为a、b,那么正方形的边长为多少?面积为多少呢?

a2b2.问题2 那4个直角三角形的面积和呢?

生答 2ab.问题3 好,根据观察4个直角三角形的面积和正方形的面积,我们可得容易得到一个不等式,a2b22ab.什么时候这两部分面积相等呢?

生答:当直角三角形变成等腰直角三角形,即xy时,正方形EFGH变成一个点,这时有a2b22ab.三、建构数学

1.重要不等式:一般地,对于任意实数 a、b,我们有a2b22ab,当且仅当ab时,等号成立.

问题4:你能给出它的证明吗?(学生尝试证明后口答,老师板书)

证明:a2b22ab(ab)2,当ab时,(ab)20,当ab时,(ab)20,所以a2b22ab

注意强调:当且仅当ab时, a2b22ab

注意:(1)等号成立的条件,“当且仅当”指充要条件;

(2)公式中的字母和既可以是具体的数字,也可以是比较复杂的变量式,因此应用范围比较广泛.

问题5:将a降次为a,b降次为b,则由这个不等式可以得出什么结论?

2.基本不等式:对任意正数a、b,有

立.(学生讨论回答证明方法)

证法1:a

b11

222

0当且仅当222ab当且仅当ab时等号成2. ab时,取“”

a

b,只要证a

b,只要证0ab,ab只要证0

2成立,当且

2证法2

ab时,取“=”号.

证法3:对于正数a,b

有20,ab

0ab

说明: 把ab2a

ba,b的算术平均数和几何平均数,上述2

不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.

注意:(1)基本不等式成立的条件是:a0,b0;

(2)不等式证明的三种方法:比较法(证法1)、分析法(证法2)、综合法(证法3);

(3)abab的几何解释:(如图1)以ab为直径作圆,在直径AB上

2取一点C,过C作弦DDAB,则CD2CACBab,从而CDab,而半abCDab

径2

abB 几何意义是:“半径不小于半弦”;

(图1)

(4)当且仅当ab时,取“”的含义:一方面是当ab时取等号,即 ab

ababab; ;另一方面是仅当a

b时取等号,即22

(5)如果a,bR,那么a2b22ab(当且仅当ab时取“”);

(6)如果把ab看作是正数a、b的等差中项,ab看作是正数a、b的2等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.

四、数学运用

1.例题.

ba1例1设a,b为正数,证明下列不等式成立:(1)2;(2)a2.aba

baba证明(1)∵a,b为正数,∴,也为正数,由基本不等式得2abab∴原不等式成立.

(2)∵a,立.

例2已知a,b,c为两两不相等的实数,求证:a2b2c2abbcca.证明 ∵a,b,c为两两不相等的实数,∴a2b22ab,b2c22bc,c2a22ca,11均为正数,由基本不等式得a2,∴原不等式成a

a以上三式相加:2(a2b2c2)2ab2bc2ca,所以,a2b2c2abbcca.

例3已知a,b,c,d都是正数,求证(abcd)(acbd)4abcd.证明 由a,b,c,d都是正数,得:

∴abcdacbd

0,0,22(abcd)(acbd)abcd,即(abcd)(acbd)4abcd.42.练习.

(1)已知x,y都是正数,求证:(xy)(x2y2)(x3y3)8x3y3;

(2)已知a,b,c都是正数,求证:(ab)(bc)(ca)8abc;

(3)思考题:若x0,求x

五、要点归纳与方法小结

本节课学习了以下内容: 1的最大值.x

1.算术平均数与几何平均数的概念;

2.基本不等式及其应用条件;

3.不等式证明的三种常用方法.

小结 正数的算术平均数不小于它们的几何平均数.

六、课外作业

上一篇:最让我佩服的爷爷作文下一篇:小学34年级体育教案