考研不等式证明

2024-10-14

考研不等式证明(共9篇)

考研不等式证明 篇1

考研数学重点:不等式的证明

历年考研数学中,不等式的证明这个题型考查频率高达百分之九十以上,同时这也是为数较多的考生极其费解的一类问题。不等式的证明方法有很多,比如利用微分中值定理证明不等式、利用单调性证明不等式、利用极值和最值证明不等式、利用曲线凹凸性证明不等式、利用泰勒公式证明不等式等等,本文主要讨论运用函数单调性证明不等式。

单调函数是一个重要的函数类,函数的单调性应用广泛,可利用它解方程、求最值、证明等式与不等式、求取值范围等,并且可使许多问题的求解简单明快。下面主要讨论函数单调性在不等式证明中的.应用。

在此,提醒考生们,不等式证明的关键在于辅助函数的构造。可以直接将不等式右端移到左端构造辅助函数;也可以先将要证的不等式作适当的变形,再将右端移到左端,构造辅助函数,这时候应注意使得变形后的辅助函数的导数容易确定符号。因此,大家在复习备考时需要着重加强辅助函数构造的灵活方法及解题正确率的训练。

考研不等式证明 篇2

一、作差比较法

作差比较法:比较两个实数大小的关键是,判断差的正负,常采用配方法、因式分解法、有理化等方法.常用的结论有x2≥0,-x2≤0,|x|≥0,-|x|≤0等.“作差法”的一般步骤是:①作差;②变形;③判断符号;④得出结论.

例1 若0|loga(1+x)|(a>0且a≠1).

分析:用作差法来证明.需分为a>1和0

证明:(1)当a>1时,因为0<1-x<1,1+x>1,

所以|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)>0.

(2)当01.

所以|loga(1-x)|-|loga(1+x)|=loga(1-x)+loga(1+x)=loga(1+x2)>0.

综合(1)(2)知|loga(1-x)|>|loga(1+x)|.

二、作商比较法

例2 设a>b>0,求证:aabb>abba.

分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式.

因为a>b>0,所以,a-b>0.

又因为abba>0,所以aabb>abba.

说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.

三、换元法

换元法:换元法是指结构较为复杂、量与量之间关系不很明了的命题,通过恰当引入新变量,代换原题中的部分式子,简化原有结构,使其转化为便于研究的形式.用换元法证明不等式时一定要注意新元的约束条件及整体置换策略.三角代换是最常见的变量代换,凡条件为x2+y2=r2或x2+y2≤r2或等均可三角换元.围绕公式sec2θ-tan2θ=1来进行.常用的换元法有:(1)若|x|≤1,可设x=sinα,α∈R;(2)若x2+y2=1,可设x=cosα,y=sinα,α∈R;(3)若x2+y2≤1,可设x=rcosα,y=rsinα,且|r|≤1.

例3(1)设x,y∈R,且x2+y2≤1,求证:|x2+2xy-y2|≤槡2;(2)设a,b,c∈R,且a+b+c=1,求证:.

证明:(1)设x=rsinθ,y=rcosθ,且|r|≤1.

因为a+b+c=1,所以α+β+γ=0.

思维点拔:(1)本题运用了三角换元法.(2)换元法是不等式证明中的重要变形方法,常用的换元手段除三角换元法外,还有平均值代换、比值代换、对称代换、增量代换.

四、放缩法

放缩法:即缩小或放宽不等式的范围的方法,常用在多项式中“舍掉一些正(负)项”,使不等式之和变小(大),或“在分式中放大(缩小)分式的分子或分母”,“在乘积中用较大(较小)的因式”等效法,来证明不等式.放缩法:欲证A>B,可通过适当放大或缩小,借助一个或多个中间量,使得B

分析:不等式的两端是绝对值,需对a,b是同号和异号进行讨论.

五、构造法

构造法:构造二次方程用“Δ”,构造函数用函数单调性,构造图形用数形结合方法.

例5设,判断f(x)在[0,+∞)上的单调性.

所以f(x)在[0,+∞)上为增函数

又0≤|a+b|≤|a|+|b|,

所以f(|a+b|)≤f(|a|+|b|).

思维点拔:用分析法解决含绝对值问题是常规方法;根据特征不等式的结构,构造恰当的函数,再利用函数的单调性来进行证明,这是构造函数法的特点,在证明过程中不一定能一步到位,常需要与其他方法相结合,如本例中还借助了放缩法.

六、判别式法

实系数一元二次方程ax2+bx+c=0有两个不等实根、有两个相等实根、没有实根的充要条件是:b2-4ac>0、b2-4ac=0、b2-4ac<0.记Δ=b2-4ac,称其为方程是否有实根的判别式.同时也是与方程对应的函数、不等式的判别式.

例6已知x+y+z=5,x2+y2+z2=9,求证:x,y,z都属于.

证明:由已知得:z=5-x-y,

代入x2+y2+z2=9中得:

x2+(y-5)x+y2-5y+8=0,

因为x∈R,所以△≥0,

即(y-5)2-4(y2-5y+8)≥0,解得

同理可证.

说明:在比较法、综合法无效时,如果能利用主元素法把原式整理成关于某函数的二次式,可考虑用判别式,要注意根的范围和题目本身的条件限制.

七、反证法

反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法.

例7已知0

分析:此命题的形式为否定式,宜采用反证法证明.假设命题不成立,则(1-a)b,(1-b)c,(1-c)a三数都大于,从这个结论出发,进一步去导出矛盾.

证明:假设(1-a)b,(1-b)c,(1-c)a三数都大于,

又因为0

以上三式相加,即得:

显然①与②相矛盾,假设不成立,故命题获证.

说明:一般情况下,如果命题中有“至多”、“至少”、“都”等字样,通常情况下要用反证法,反证法的关键在于“归谬”,同时,在反证法的证明过程中,也贯穿了分析法和综合法的解题思想.

不等式证明技巧 篇3

关键词: 不等式    证明    技巧

不等式是研究数学问题的重要工具,它渗透在数学的各个分支学科,有重要的应用。不等式的证明方法灵活多样,它可以和很多内容相结合,对不等式的证明进行探讨无疑是十分有益的。本文通过实例说明不等式证明的某些技巧,提高分析问题与解决问题的能力。

例1:设x,y,z是不全为零的实数,求证:

5x +y +5z >8xz-4xy+4yz.

证明:设二次型f(x,y,z)=5x +y +5z -8xz+4xy-4yz,则f的矩阵是

A=5       2    -42       1    -2-4    -2    5.

因为A的各阶顺序主子式为:

|5|=5>0;5    22    1=1>0; 5      2    -4 2      1    -2-4    -2    5=1>0;

所以,A正定,从而,二次型f(x,y,z)正定,当x,y,z不全为零时f(x,y,z)>0.即5x +y +5z -8xz+4xy-4yz>0,

因此5x +y +5z >8xz-4xy+4yz.

例2:求证:n x  ≥( x ) .

证明:令f(x ,x ,…,x )=n x  -( x ) ,则f为二次型,其矩阵为

A=n-1    -1    …    -1      -1-1     n-1    …    -1     -1…     …      …    …      …-1     -1      …    n-1    -1-1     -1      …    -1     n-1,

将第2,3,…,n列加到第1列,则第1列元素全为零,故|A|=0;用同样的方法可求出A的i阶主子式为(n-i)n >0(i=1,2,…,n-1).

因为A的主子式都大于或等于零,所以A是半正定的;从而二次型f(x ,x ,…,x )半正定,所以f(x ,x ,…,x )≥0,即

n x  ≥( x ) .

例3:设A,B,C是一个三角形的三个内角,证明对任意实数x,y,z,都有

x +y +z ≥2xycosA+2xzcosB+2yzcosC.

证明:记f(X)=X′AX=x +y +z -2xycosA-2xzcosB-2yzcosC,其中

X=(x,y,z)′,P=    1       -cosA    -cosB-cosA       1        -cosC-cosB    -cosC        1,A+B+C=π,cosC=-cos(A+B).

对P做初等行变换得:

P~1    -cosA    -cosB0     sinA      -sinB0        0            0,

于是P的特征值為0,1,sinA,从而得二次型f(X)是半正定的,即对于任意实数x,y,z,f(X)≥0,即x +y +z ≥2xycosA+2xzcosB+2yzcosC成立.

例4:设A是实对称矩阵,其特征根为λ ≤λ ≤…≤λ ,则对任意的实向量X有

λ X′X≤X′AX≤λ X′X.

证明:A是实对称矩阵,存在正交矩阵T,使

T AT=λ                                 λ                                 ?埙                                λ ,

于是T AT-λ I特征根非负,即矩阵A-λ I半正定.这样

X′(A-λ I)X≥0.

因此

X′AX≥λ X′X.

同理可证

X′AX≤λ X′X.

例5:设a ∈R,(i=1,2,…,n)证明:

n(a  +a  +…+a  )≥(a +a +…+a )

证明:设D=n(a  +a  +…+a  )-(a +a +…+a ) ,只要证D≥0.

由于

D=a  +a &nbsp;+…+a      a +a +…+a a +a +…+a                 n

= a      a +a +…+a a             &nbsp;   n

=  a      a a     1=  a a     a 1    1

所以

D=  a a     a 1    1=  (-a )a     a 1    1,

因此

2D=D+D=  (a -a )a     -a 1    1=  (a -a ) ≥0.

這就证明了D≥0.

参考文献:

[1]张荣.辅助函数在不等式证明中的应用[J].数学的实践与认识,2007,37(20):224-226.

[2]高淑娥.不等式证明中辅助函数的构造[J].甘肃联合大学学报(自然科学版),2013,27(1):79-81.

[3]梁波.例谈行列式的几个应用[J].毕节学院学报,2006(04):27-29.

不等式证明 篇4

不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型.证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下: 不等式的性质:abab0,abab0.这是不等式的定义,也是比较法的依据.对一个不等式进行变形的性质:

(1)abba(对称性)

(2)abacbc(加法保序性)

(3)ab,c0acbc;ab,c0acbc.(4)ab0anbn,nanb(nN*).对两个以上不等式进行运算的性质.(1)ab,bcac(传递性).这是放缩法的依据.(2)ab,cdacbd.(3)ab,cdacbd.(4)ab0,dc0,含绝对值不等式的性质:

(1)|x|a(a0)x2a2axa.(2)|x|a(a0)x2a2xa或xa.(3)||a||b|||ab||a||b|(三角不等式).(4)|a1a2an||a1||a2||an|.ab,adbc.cd 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.例题讲解 1.a,b,c0,求证:ab(ab)bc(bc)ca(ca)6abc.abc32.a,b,c0,求证:abc(abc)

abc.a2b2b2c2c2a2a3b3c3.3.:a,b,cR,求证abc2c2a2bbccaab

4.设a1,a2,,anN*,且各不相同,求证:1

12131aa3ana12..n2232n25.利用基本不等式证明a2b2c2abbcca.446.已知ab1,a,b0,求证:ab1.8

7.利用排序不等式证明GnAn

8.证明:对于任意正整数R,有(1

1n1n1)(1).nn11119.n为正整数,证明:n[(1n)1]1n(n1)nn1.23n

1n 课后练习

1.选择题

(1)方程x-y=105的正整数解有().(A)一组(B)二组

(C)三组

(D)四组

(2)在0,1,2,„,50这51个整数中,能同时被2,3,4整除的有().(A)3个(B)4个

(C)5个

(D)6个 2.填空题

(1)的个位数分别为_________及_________.4

5422(2)满足不________.等式10≢A≢10的整数A的个数是x×10+1,则x的值(3)已知整数y被7除余数为5,那么y被7除时余数为________.(4)求出任何一组满足方程x-51y=1的自然数解x和y_________.3.求三个正整数x、y、z满足

23.4.在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?

5.求的整数解.6.求证可被37整除.7.求满足条件的整数x,y的所有可能的值.8.已知直角三角形的两直角边长分别为l厘米、m厘米,斜边长为n厘米,且l,m,n均为正整数,l为质数.证明:2(l+m+n)是完全平方数.9.如果p、q、、都是整数,并且p>1,q>1,试求p+q的值.课后练习答案

1.D.C.2.(1)9及1.(2)9.(3)4.(4)原方程可变形为x=(7y+1)+2y(y-7),令y=7可得x=50.223.不妨设x≢y≢z,则,故x≢3.又有故x≣2.若x=2,则,故y≢6.又有,故y≣4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≢y≢4,y=3或4,z都不能是整数.4.可仿例2解.5.分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换的方法...

略解:a2b22ab,同理b2c32bc,c2a22ca;三式相加再除以2即得证.评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.22xnx12x2如x1x2xn,可在不等式两边同时加上x2x3x1x2x3xnx1.再如证(a1)(b1)(ac)3(bc)3256a2b2c3(a,b,c0)时,可连续使用基本不等式.ab2a2b2)(2)基本不等式有各种变式

如(等.但其本质特征不等式两边的次22数及系数是相等的.如上式左右两边次数均为2,系数和为1.6.8888≡8(mod37),∴8888333

3222

2≡8(mod37).2222

27777≡7(mod37),7777≡7(mod37),8888238+7=407,37|407,∴37|N.22

3+7777

3333

≡(8+7)(mod37),而

237.简解:原方程变形为3x-(3y+7)x+3y-7y=0由关于x的二次方程有解的条件△≣0及y为整数可得0≢y≢5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).8.∵l+m=n,∴l=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l,n-m=1.于是2222l=n+m=(m+1)+m=2m+1,2m=l-1,2(l+m+1)=2l+2+2m=l+2l+1=(l+1).即2(l+m+1)是完全平方数.222

229.易知p≠q,不妨设p>q.令(4-mn)p=m+2,解此方程可得p、q之值.=n,则m>n由此可得不定方程

例题答案:

1.证明:ab(ab)bc(bc)ca(ca)6abc

a(b2c22bc)b(a2c22ac)c(a2b22ab)

a(bc)2b(ca)2c(ab)2

0

ab(ab)bc(bc)ca(ca)6ab.c

评述:(1)本题所证不等式为对称式(任意互换两个字母,不等式不变),在因式分解或配方时,往往采用轮换技巧.再如证明a2b2c2abbcca时,可将a2b2

1(abbcca)配方为[(ab)2(bc)2(ca)2],亦可利用a2b22ab,2b2c22bc,c2a22ca,3式相加证明.(2)本题亦可连用两次基本不等式获证.2.分析:显然不等式两边为正,且是指数式,故尝试用商较法.不等式关于a,b,c对称,不妨abc,则ab,bc,acR,且

ab,,bca都大于等于1.caabbcc(abc)abc3a2abc3b2bac3c2cab3aab3aac3bba3bbc3cca3ccb3

ab3a()bb()cbc3a()cac31.评述:(1)证明对称不等式时,不妨假定n个字母的大小顺序,可方便解题.(2)本题可作如下推广:若ai0(i1,2,,n),则a11a22anaaan(a1a2an)a1a2ann.(3)本题还可用其他方法得证。因aabbabba,同理bbccbccb,ccaacaac,另aabbccaabbcc,4式相乘即得证.(4)设abc0,则lgalgblgc.例3等价于algablgbalgbblga,类似例4可证algablgbclgcalgbblgcclgaalgcblgbclga.事实上,一般地有排序不等式(排序原理): 设有两个有序数组a1a2an,b1b2bn,则a1b1a2b2anbn(顺序和)

a1bj1a2bj2anbjn(乱序和)a1bna1bn1anb1(逆序和)

其中j1,j2,,jn是1,2,,n的任一排列.当且仅当a1a2an或b1b2bn时等号成立.排序不等式应用较为广泛(其证明略),它的应用技巧是将不等式两边转化为两个有序数组的积的形式.如a,b,cR时,a3b3c3a2bb2cc2aa2ab2bc2c

a2b2c2111111abbcca;abca2b2c2a2b2c2bcabcaabc222.3.思路分析:中间式子中每项均为两个式子的和,将它们拆开,再用排序不等式证明.111111,则a2b2c2(乱序和)cbacab111111a2b2c2(逆序和),同理a2b2c2(乱序和)abccab111a2b2c2(逆序和)两式相加再除以2,即得原式中第一个不等式.再考虑数abc111333组abc及,仿上可证第二个不等式.bcacab

222不妨设abc,则abc,4.分析:不等式右边各项

ai1a;可理解为两数之积,尝试用排序不等式.i22ii设b1,b2,,bn是a1,a2,,an的重新排列,满足b1b2bn,又1111.22223nanbna2a3b2b3.由于b1,b2,bn是互不相同的正整数,b122222n2323nb3bnb11故b11,b22,,bnn.从而b12,原式得证.12222n23n所以a1评述:排序不等式应用广泛,例如可证我们熟悉的基本不等式,a2b2abba,a3b3c3a2bb2cc2aaabbbcccaabcbaccab3abc.5.思路分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换的方..法.a2b22ab,同理b2c32bc,c2a22ca;三式相加再除以2即得证.评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.22xnx12x2如x1x2xn,可在不等式两边同时加上x2x3x1x2x3xnx1.再如证(a1)(b1)(ac)3(bc)3256a2b2c3(a,b,c0)时,可连续使用基本不等式.ab2a2b2)(2)基本不等式有各种变式

如(等.但其本质特征不等式两边的次数及22系数是相等的.如上式左右两边次数均为2,系数和为1.6.思路分析:不等式左边是a、b的4次式,右边为常数式呢.44要证ab1,如何也转化为a、b的4次811,即证a4b4(ab)4.8833评述:(1)本题方法具有一定的普遍性.如已知x1x2x31,xi0,求证:x1 x211133求证:x1x2x2x3 x3.右侧的可理解为(x1x2x3).再如已知x1x2x30,3332+x3x10,此处可以把0理解为(x1x2x3),当然本题另有简使证法.38(2)基本不等式实际上是均值不等式的特例.(一般地,对于n个正数a1,a2,an)

调和平均Hnn111a1a2an 几何平均Gnna1a2an 算术平均Ana1a2an

n22a12a2an平方平均Qn

2这四个平均值有以下关系:HnGnAnQn,其中等号当且仅当a1a2an时成立.7.证明: 令biai,(i1,2,,n)则b1b2bn1,故可取x1,x2,xn0,使得 Gnb1

xxx1x,b22,,bn1n1,bnn由排序不等式有: x2x3xnx1b1b2bn

=xx1x2n(乱序和)x2x3x1111x2xn(逆序和)x1x2xn x1

=n,aaa2ana1a2nn,即1Gn.GnGnGnn111,,各数利用算术平均大于等于几何平均即可得,GnAn.a1a2an 评述:对8.分析:原不等式等价于n1(1)1平均,而右边为其算术平均.n11nn1,故可设法使其左边转化为n个数的几何n111111n21(1)n(1)(1)1(1)(1)11.n1nnnnnn1n1n个n1 评述:(1)利用均值不等式证明不等式的关键是通过分拆和转化,使其两边与均值不等式形式相近.类似可证(11n11n2)(1).nn1(2)本题亦可通过逐项展开并比较对应项的大小而获证,但较繁.9.证明:先证左边不等式

111(1n)123n1111n123n (1n)n

n111(11)(1)(1)(1)123n (1n)nn34n1223nn1n(*)

nn[(1n)1]121n1n111123n

n 34n123nn234n1nn1.n23n (*)式成立,故原左边不等式成立.其次证右边不等式

1111n(n1)nn1

23n1 n1n1n(1111111)(1)(1)(1)23nn1123n n1nn112n1123n

(**) n1nn1

用均值不等式证明不等式 篇5

【摘要】:不等式的证明在竞赛数学中占有重要地位.本文介绍了用均值不等式证明几个不等式,我们在证明不等式时,常用到均值不等式。要求我们要认真分析题目,本文通过几个国内外竞赛数学的试题,介绍用均值不等式证明初等不等式的基本方法及技巧。

【关键词】:均值不等式;不等式;方法;技巧

均值不等式

设 a1、a2、、an 是 n 个 正数,则不等式H(a)G(a)A(a)Q(a)称为均值不等式[1].其中

H(a)

n

1a

11a

2

1an,G(a)

a1a2a1aan,A(n)

a1a2an

n

22,2

Q(n)

a1a2an

n

、an 的调和不等式,几何平均值,算术平均值,均方根平均分别称为 a1、a2、值.

例1设a1、a2、…、an均为正,记

(n)n(a1a2an

n

a1a2an)

试证:(n)(n1),并求等号成立的条件.

证明由所设条件,得

(n)(n1)

=n(a1a2an

n

n

a1a2an)(n1)(a1a2an

1n1

n1

a1a2an1)

=a1a2annna1a2an(a1a2an1)(n1)n1a1a2an1

=an(n1)(a1a2an1)n1n(a1a2an)n,n1

(a1a2an1)n1,有 将G(a)A(a)应用于n个正数:an,(a1a2an1)



n1个

an(n1)(a1a2an1)n1

n

(a1a2an)n,即

an(n1)(a1a2an1)n1n(a1a2an)n.

所以(n)(n1),当且仅当an(a1a2an1)立.

n1,即ann1a1a2an时等号成1

此题不只是公式的直接应用.代表了均值不等式中需要挖掘信

、an 的一类题. 息找a1、a2、例2设xyz0,求证:6(x3y3z3)2(x2y2z2)3. 证明当xyz0时不等式显然成立.

除此情况外,x、y、z中至少有一正一负.不妨设xy0,因为

z(xy),所以

I6(xyz)6[xy(xy)]6[3xy(xy)]54xyz

若由此直接用G(a)A(a)(n3),只能得到较粗糙的不等式

I54xyz54(xyz

2)2(xyz),3222

3如果改用下面的方法,用G(a)A(a),便得

I54xyz

222

216

xy2

xy2

z

xyxy2z

(2z22xy)3,2163

再注意到x2y2(xy)22xyz22xy,因而2z22xyx2y2z2,于是即得欲证的不等式.

此题解题的关键在于构造a1、a2、、an通常需要拓宽思路多次尝试,此类也属均值不等式的常考类题. 例3设x0,证明:2

x

2

x

22

x

.(第16届全苏数学竞赛试题[2])

证明此不等式的外形有点像均值不等式. 由G(a)A(a),得

x2

x

x

2

x

22

x

2

x

22,又

x2

x

1111

(x12x4)2x6,即得要证的不等式.

结语

有些不等式则可以利用某个已经证明成立的不等式来证明(因此多熟悉几个比较常见的不等式是有好处的);有些不等式还要用数学归纳法来证明等等.而且在一个题目的证明过程中,也往往不止应用一种方法,而需要灵活运用各种方法.因此,要培养和提高自己的证题能力。

参考文献

[1]陈传理等编.数学竞赛教程 [M].北京:高等教育出版设,1996,(10):

133-134.

不等式证明方法讲义 篇6

一、比较法

1.求证:x2 + 3 > 3x

2.已知a, b, m都是正数,并且a < b,求证:ama bmb

ab

23.已知a, b都是正数,并且a  b,求证:a5 + b5 > a2b3 + a3b2作商法1.设a, b  R,求证:ab(ab)+ababba

二、综合法

1.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明2.用综合法证明不等式的逻辑关系是:AB1B2BnB

3.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证例题:已知a,b,c是不全相等的正数,求证:a(bc)b(ca)c(ab)6abc

例题:已知a,b,c都是正数,且a,b,c成等比数列,求证:abc(abc)

例题:a , b, cR,求证:1(abc)(***19)92(abc)() abcabbcca

2三、分析法

例题: 求证37

2例题:已知a,b,c,d∈R,求证:ac+bd≤(ab)(cd)

例题:用分析法证明下列不等式:

(1)求证:571(2)求证:x1

(3)求证:a,b,c∈R,求证:2(+2222x2x3x4(x≥4)ababcab)3(abc)2

3四、换元法 三角换元:

若0≤x≤1,则可令x = sin(0

22)或x = sin2(222若xy1,则可令x = cos , y = sin(02 代数换元:“整体换元”,“均值换元”,例题: 求证:11xx2 2

2例题: 已知x > 0 , y > 0,2x + y = 1,求证:11322 xy

2例题:若xy1,求证:|x2xyy|2222

五、放缩法与反证法

abcd2 abdbcacdbdac

1111例题:求证:22222 123n例题:若a, b, c, dR+,求证:1

例题:(用反证法)设0 < a, b, c < 1,求证:(1  a)b,(1  b)c,(1  c)a,不可能同时大于

例题:已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a, b, c > 0

4六、构造法

22222222例题:已知0 < a < 1,0 < b < 1,求证:ab(a1)ba(b1)(a1)(b1)2

2习题精选精解

例题:正数x,y满足x2y1,求1/x1/y的最小值。

例题:设实数x,y满足x(y1)1,当xyc0时,求c的取值范围。

例题:已知函数f(x)axbx(a0)满足1f(1)2,2f(1)5,求f(3)的取值范围。

例题:已知abc,求证:abbccaabbcca

例题:

222222222

例题:设fxxx13,实数a满足xa1,求证:fxfa2a1 2

注:式的最后一步省略了对a

0,a0,a0的详细分析,正式解题时不能省。分析过程用 a,b同号|ab||a||b|||a||b|||ab|;a,b异号|ab||a||b|||a||b|||ab| 例题:a、b、c(0,),abc1,求证:

例题:xy1,求证:2xy

例题:已知1≤x+y≤2,求证:

论利用导数证明不等式 篇7

拉格朗日中值定理是微分学中最主要的定理, 它的意义在于建立了导数和函数之间关系, 证明不等式是它的一个简单应用。

例1:设f (x) 在[0, c]上连续, 其导数f′ (x) 在 (0, c) 内存在且单调减少, 且f (0) =0, 试证明不等式f (a+b) ≤f (a) +f (b) 其中0≤a≤b≤a+b≤c。

分析:由所给的条件和所要证明的不等式不难看出, 只要在[0, a]和[a, a+b]上分别使用拉格朗日中值定理, 则不难得出所要证明的不等式。

证明:令a≠0在[0, a]上使用拉格朗日中值定理, 则至少存在一点ξ使得f (a) -f (0) =f′ (ξ) a, 在[b, a+b]上使用拉格朗日中值定理, 则至少存在一点ζ使得f (a+b) -f (b) =f′ (ζ) a, 由条件f′ (x) 在[0, c]内存在且单调减少, 知f′ (ξ) >f′ (ζ) , a>0;

所以f′ (ζ) a-f′ (ξ) a=f (a+b) -f (a) -f (b) +f (0) <0。

由条件f (0) =0于是有f (a) +f (b)

当a=0时, f (a+b) =f (a) +f (b) 故f (a) +f (b) ≤f (a+b) 。

解决这类问题的一般步骤是:第一步, 分析要证明的不等式, 通过适当的变形后, 选取辅助函数f (x) 和区间[a, b]。第二步, 根据拉格朗日中值定理得到undefined。第三步, 根据导函数f′ (x) 在 (a, b) 上的单调性, 把f′ (ξ) 作适当放大和缩小, 从而推证要证明的不等式。

利用拉格朗日中值定理, 一般要考虑导函数f′ (x) 的单调性, 但有时不一定要求导函数具有单调性, 如果能断定导函数在所讨论的区间上不变号, 从而确定函数的单调性, 也可以推证出不等式。

2 利用函数单调性证明不等式

利用函数单调性来证明不等式是不等式证明的一个重要方法, 我们来看下面的例子。

例2:设b>a>0证明不等式undefined。

分析:该不等式不是含有变量的函数不等式, 但又不符合拉格朗日中值公式中的基本公式, 我们把公式中的b换成x, 使之转化为函数不等式, 然后用单调性方法给出证明。

证明:设函数undefined;

undefined。

所以函数f (x) 在[0, +∞) 上单调增加, 当x>a>0,

f (x) >f (a) =0于是b>a>0, f (b) >f (a) =0, 即undefined。

3 利用函数极值 (最值) 证明不等式

如果所设函数不是单调函数, 我们可以考虑利用函数的极值 (最值) 证明不等式。

例3:证明:若p>1则对于[0, 1]中的任意x有undefined。

证:构造函数f (x) =xp+ (1-x) p (0≤x≤1)

则有f′ (x) =pxp-1-p (1-x) p-1=p (xp-1- (1-x) p-1) ,

令f′ (x) =0, 可得xp-1= (1-x) p-1, 于是有x=1-x, 从而求得undefined。

由于函数f (x) 在闭区间[0, 1]上连续, 因而在闭区间[0, 1]上有最小和最大值。

由于函数f (x) 在[0, 1]内只有一个驻点, 没有不可导点, 又函数f (x) 在驻点undefined和闭区间端点 (x=0, x=1) 的函数值为undefined。

所以f (x) 在[0, 1]上的最小值为undefined, 最大值为1, 从而对于[0, 1]中的任意x有undefined, 即有undefined。

4 利用函数的泰勒展开式证明不等式

若函数f (x) 在有x0的某区间有定义, 并且有直到n-1阶的各阶导数, 又在点x0处有n阶导数f (n) (x0) , 则有展开式:

undefined (x) 。

在泰勒公式中, 取x0=0, 变为麦克劳林公式

undefined (x) 。

分析:使用泰勒展开式证明不等式主要是针对形如undefined等形式的函数不等式的证明, 当这样的形式出现时候, 观察一下不等式的变化, 优先考虑使用泰勒展开式证明不等式。使用泰勒展开式证明不等式, 取相应的前几项, 很容易得出所要证明的结果。

例5:证明不等式undefined。

证:令f (x) =ln (1+x) , 则

undefined

于是f (x) 在x=0处的三阶泰勒展开式:

undefined

由于undefined, 所以undefined。

分析:用此公式证明不等式就是要把所证明不等式化简, 其中函数用此公式, 再把公式右边放大或者缩小得到所证明的不等式。

例6:证明不等式:当undefined时, undefined。

分析证明:由于undefined, 故undefined。

显然undefined

即undefined, 故undefined当undefined时成立。

5 利用函数图形的凹凸性证明不等式

若函数y=f (x) 的图形在区间 (a, b) 是凹 (凸) 的, 则对 (a, b) 内任意两点x1和x2, 利用函数凹凸性证明不等式主要是函数的凹凸性结论,

当f″ (x) ≥0, f (x) 为凸函数, 且undefined;

当f″ (x) ≤0, f (x) 为凹函数, 且undefined, 以此来证明结论。

例7:证明不等式undefined观察欲证明不等式, 容易发现其等价不等式为undefined, 从而容易想到应构造辅助函数f (t) =tlnt (t>0) 。

证明:令undefined所以f (t) 在 (0, +∞) 内是凸的, 于是对于任给x, y∈ (0, +∞) x≠y, 都有undefined,

所以undefined。

参考文献

[1]尚肖飞, 贾计荣.利用导数证明不等式的若干方法[J].太原教育学院学报, 2002.

不等式证明的若干方法 篇8

关键词:不等式;证明;若干方法

G634.6

一、不等式证明的重要性

数学是大家对客观世界定性掌握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛运用的进程。数学能够协助大家非常好地讨论客观世界的规则,并对现代社会中很多纷繁复杂的信息作出恰当的选择与判断。在高中数学教学中,作为不等式知识的重要内容,不等式的证明是教学中的重点和难点地方。不等式的证明是高中数学的一个重要内容,高考中通常呈现在问答题中,涉及到代数运算、函数思路、数列、几何、逻辑推理等知识,证法多样,思路谨慎,若能根据标题特征,灵敏地运用相应的数学方法,通常能快速断定解题思路,然后使问题简捷、精确地获解。

二、不等式证明的概述

17世纪之后,不等式的理论变成数学理论的重要组成部分。根据高斯、柯西、切贝晓夫等对不等式问题的研讨,该理论得到非常快的发展,大家也一直在对不等式进行不断的完善,获得很多重要作用。不等式不仅有重要的理论含义,在实践方面运用于工程技术领域对生产有很大的作用。证明不等式的方法不仅有丰富的逻辑推理、还需要对不等变形和恒等技巧问题进行思考,为何不等式证明的问题教师觉得难讲、学生不会做呢?很大的因素是因为我们常见和常用的方法经常不知道怎样用,因而,我想有必要对不等式的证明方法进行总结概括。

三、不等式证明的若干方法

(一)比较法

这是一种证明不等式的最基本的方法,具体有“作差法”和“作商法”两种。此法表现了简化了思路方法,其基本证明思路是把难以比较的式子变成其差与0比较,或者其商与1比较。通常状况下,若求证的不等式两头是分式时,常用作差法;若求证的不等式两头是乘积方式或幂指数方式时,常用作商法来比较。

(二)归纳法

由已知条件出发,凭借某些现已证明过的不等式和不等式的性质及其有关定力,根据逐渐的逻辑推理,处处所要证明的不等式建立。此法的特点是“由因导果”,即从“已知”看“已知”。

(三)研究法

研究法是用研究证明,“若A则B”这个问题模式是:欲证B的真,只需证明B1的真,然后又……,只需证明A为真,故B真。可见研究法是拿果索因,步步寻求上一步建立的充分条件。

这即是假定不等式建立,然后运用不等式的基本条件,逐渐推演,变形,最终得到一个简单显着建立或已证明建立的不等式;而推证又可逆,我们就能够断定不等式建立,这种方法是我们证明不等式的基本方法之一。

总结:从求证的不等式出发,研究使这个不等式建立的充分条件,把证明不等式转化为断定这些充分条件是否建立的问题。如果能够相应这些充分条件建立,那么就能够判断原不等式建立,这即是研究法。通常状况是直接推理不容易,就从定论找条件来推理。

(四)换元法

这是一种使很多实践问题处理中化难为易,化繁为简的方法,有些问题直接证明较为困难,若根据换元的方法去解则很简便,常用于条件不等式的证明,常见的是“三角换元法”和“比值换元法”。

①三角换元法:这是一种常用的换元方法,在处理代数问题时,运用适当的三角函数进行换元,把代数问题转化为三角问题,再充分运用三角函数的性质去处理问题;②比值换元法:此法对于在已知条件中富含很多个等比式的问题,通常可先设一个辅佐不知道数表明这个比值,然后代入要求证的式子即可。

(五)放缩法

这种方法是在证明不等式时,把不等式一边适当扩展或减小,运用不等式的传递性来证明不等式。此法是证明不等式的重要方法,技巧性强。通常用到的技巧有:①舍去一些正项或负项。②在和或积中换大或换小某些项。③扩展或减小分式的分子或分母等。

(六)反证法

某些不等式从正面出发,不容易下手,能够思考反证法。即先否定定论不建立,然后再根据已知条件及其有关概念、定理、正义等,逐渐推导出与这些相或自相的定论,然后相应原有定论是准确的。通常状况下,但凡呈现“最少”、“仅有”或者富含否定的出题,适用反证法。此法的过程为:反设定论找出相应定论。

(七)数学概括法

此法通常用来证明与自然数N有关的不等式,在证明进程中需求分两个过程,这两个缺一不可。

(八)判断式法

此法凭借于二次函数中,判断式恒小于0,得出二次函数恒大于0,或者恒小于0。

(九)运用函数单调性证明

理论根据:若函数在区间内可导,则在內单调递加(或单调递减)的充要条件是(或)。

因为不等式与函数有密切关系,因而,据求证的不等式构造出函数,运用函数的单调性能够证明某些不等式,此方法特别适用于函数不等式的证明。

运用定积分的性质证明不等式。理论根据:设f,g为概念[a,b]在上两个可积函数,若,则有。

定积分是凭借于积分学的知识,证明不等式的一种方法,它重要运用积分的基本公式、基本性质、基本定理证明不等式。

四、结束语

不等式的证明是多变的,因题而异。但万变不离其宗,大都需从运用概念及基本性质下手,寻求处理之道。在平时教学中,高中数学教师仍是要根据很多的练习,协助学生掌握常见的方法的运用。希望这篇文章在这方面能起到抛砖引玉的作用。文章总结了运用高等数学的知识证明不等式的若干方法,指出每一种方法的适用范围和运用时应注意的事项及具体过程。

参考文献:

[1]蔡兴光,郑列.高等数学应用与提高[M].北京:北京科学出版社,2012.

不等式的一些证明方法 篇9

不等式的一些证明方法

[摘要]:不等式是数学中非常重要的内容,不等式的证明是学习中的重点和难点,本文除总结不等式的常规证明方法外,给出了不等式相关的证明方法在具体实例中的应用.[关键词] 不等式;证明;方法; 应用

不等式在数学中占重要地位,由于其本身的完美性及证明的困难性,使不等式成为各类考试中的热点试题,证明不等式的途径是对原不等式作代数变形,在初等数学中常用的方法有放缩法、代换法、归纳法、反证法等等.因而涉及不等式的问题很广泛而且处理方法很灵活,故本文对不等式的证明方法进行一些探讨总结.一、中学中有关不等式的证明方法 1.1中学课本中的四种证明方法 1.1.1理清不等式的证明方法

(1)比较法:证明不等式的基本方法,适应面宽.①相减比较法—欲证AB,则证AB0.②相除比较法—欲证A>B(A>0,B>0),则证>1.(2)综合法:利用平均不等式、二次方程根的判别式、二项式定理、数列求和等等。此方法灵活性大,需反复练习.(3)分析法:当综合法较困难或行不通时,可考虑此法,但不宜到处乱用.第1页(共13页)

AB

数学系数学与应用数学专业2009级年论文(设计)(4)数学归纳法:凡与自然数n有关的不等式,可考虑此法,但有时使用起来比较困难,应与前面几种方法配合应用.1.1.2选择典型范例,探求解题途径

例1.1.1 求证 12x42x3x2

分析 用相减比较法证明AB0.一般应将AB变形为[f(x)]

2、(f(x)g(x),其中f(x),g(x)同号),或变形为多个因子的[f(x)]2[g(x)]

2、乘积、平方式.本题可化为两个完全平方式的和或化为一个完全平方式与一个正因式的积.证: 2x42x3x212x3(x1)(x1)(x1)

(x1)(2x3x1)(x1)(2x32xx1)

132(x1)2[(x)2]

442x42x3x210

当xR时,即 12x42x3x2

例1.1.2 证明 n(n1)n1....(n1).分析 题中含n,但此题用数学归纳法不易证明,通过变形后可采用平均不等式来证.11111(11)(1)(1)23n2n nn34n12n>n23.4...n1=nn1(再变形)=2323nn11111n1....(11)(1)....(1)23n2n

证:

nnn11n12131n第2页(共13页)

数学系数学与应用数学专业2009级年论文(设计)

2 1n34n1....23nn234....n1nn1

n23n131n所以 n(n1)n1....

例1.1.3 求证:

1112+

11+„+>n(n1,n为自然数)2n 分析 与自然数有关的问题,可考虑用数学归纳法.设nK时成立,需证nK1时也成立,需证明K+K+

1>K1,可采用“凑项”的方法: K1KK11KK1K11=>==K1

K1K1K1K1111221222,右边2,所以, 2 证:(1)当n2时,左边左边右边.(2)假设nK时, 1111+

11+„+>K成立,则当nK1时, 2K+

1111+„++ K+

K12K1KKK11K1 =>

KK1K1K1K1K1

综上所述: 1.2关于不等式证明的常规方法(1)利用特殊值证明不等式

11+

11+„+>n 2n特殊性存在于一般规律之中,并通过特例表现出来.如果把这种辩证思想用于解题之中,就可开阔解题思路.第3页(共13页)

数学系数学与应用数学专业2009级年论文(设计)例1.2.1 已知ab,b0,ab1.求证(a+)(b+)≥

121a1b25.412112211125只需证明当ab时,(a+)(b+)≥.故可设ax

ab2411b x,(|x|且x0)22证:考虑a与b都去特殊值,既当ab时有(2)(2)=4则

a21b21(a21)(b21)(ab1)2111(a+)(b+)=== abababab33(x2)21(x2)2125=4>4=.114x244故原不等式得证.(2)利用分子有理化证明不等式

分母有理化是初中数学教材中重要知识,它有着广泛的应用,而分子有理化也隐含于各种习题之中,它不但有各种广泛的作用,而且在证明不等式中有它的独特作用.例1.2.2[1] 求证13-12<12-11.证:利用分子有理化易得:13-12=1312>12+11 1131211312,12-11=

11211, <

11211

即 13-12<12-11.(3)应用四种“平均”之间的关系证明不等式

四种“平均”之间的关系,既调和平均数H(a)≤几何平均数G(a)≤

第4页(共13页)

数学系数学与应用数学专业2009级年论文(设计)算数平均数A(a)≤平方平均数Q(a).写得再详细些就是:若a1,a2,a3,an都是正实数,则:

111aa121≤na1a2an≤

a1a2ann≤

a21a2ann22

an(注:这一串不等式在不等式证明中起着举足轻重的作用.)例1.2.3 已知ab,求证a+证:a+

1≥3(ab)b111=(ab)+b +≥3×3(ab)b3

(ab)b(ab)b(ab)b(4)充分利用一些重要结论,使解题简捷

①对实数a,b,c,d有

a2b2≥2ababba;a2b2c2abbcca;a2b2c2d2abbccdda.②若a,b同号,则≥2;

若a,b,c均为正数,则≥3.a2b2ab2 ③若是正数,则≥≥ab≥(当且仅当ab时等号

1122abbaabbacbac成立)

a2b2c2abc3 若a,b,c是正数,则≥3abc≥

11133abc(当且仅当abc时等号成立)

例1.2.4 若a,b,c0,且abc1,求证 9

第5页(共13页)

1a1b1c

数学系数学与应用数学专业2009级年论文(设计)分析 证法较多,但由abc1与之间的联系,考虑算术平均与调和平均的关系式简便.证:由算术平均数和调和平均的关系可知

abc3 1113abc1a1b1c所以 abc99, 又abc1得 1

111111abcabc1a1b1c即 9.(5)利用式的对称性证明不等式

形如xy,a2b2c2的式子中任意两个量交换位置后结果仍不变,这就是“式”对称,可以用对称关系来解决一些不等式的证明.例1.2.5 设a,b,c,d是正数,且满足abcd1,求证 4a14b14c14d16

证:由4a1944a12942a13 注意到对称有:

94(abcd)1317(4a14b14c14d1)

422即 4a14b14c14d16 故原命题得证.(6)用“双十字法”证明不等式

例1.2.6 已知x,y0并且xy1 求证:

x23xy2y22xy32x221xy11y24x21y2

证:因 x23xy2y22xy3(x2y)(xy)2xy3

第6页(共13页)

数学系数学与应用数学专业2009级年论文(设计)=(x2y3)(xy1)0 类似的,2x221xy11y24x21y2(2xy2)(x11y1)0 故结论成立.(7)用恒等变形推导

例1.2.7[2] 求证:对于任意角度,都有58cos4cos2cos3≥0

证:58cos4cos2cos3

=58cos4(2cos21)(4cos33cos)

=15cos8cos24cos3(1cos)(4cos24cos1)=(1cos)(2cos1)20

(8)分解为几个不等式的和或积

例1.2.8[2] 已知a,b,c是不全相等的正数,求证:

a(b2c2)b(c2a2)c(a2b2)6abc

证: b2c22bc,a0,a(b2c2)2abc

2222b(ca)2abc,c(ab)2abc.同理

a,b,c不全相等,所以上述三式中,等号不能同时成立.把三式相加

a(b2c2)b(c2a2)c(a2b2)6abc

(注:这里把不等式的各项分别考虑,然后利用不等式的性质和推论,证得所求不等式.)

例1.2.9 设是锐角,求证:(111)(1)5.sincos 证: 是锐角,0sin1,0cos1,0sin21, 这时 1121,1,2.sincossin2第7页(共13页)

数学系数学与应用数学专业2009级年论文(设计)(111112)(1)15.sincossincossin2(9)利用极限证明不等式

例1.2.10[2]证明:当x2(1+2)时,有

(2x1)2(2x3)3(2x5)....xx3

证: 在x0的情况下讨论,令

f(x)(2x1)(2x3)3(2x5)....x,g(x)x3

则 f(x)x(x1)(2x1),6x(x1)(2x1)f(x)16于是 lim limxg(x)x3x3按极限的定义,对于,取2(12)当|x|2(12)有

f(x)11 , g(x)3414即 0f(x)71 从而f(x)g(x),故结论成立.12g(x)12(10)利用平分法证明不等式

例1.2.11 若x0,i1,2,3,且xi1,则

i1311127 2221x11x21x310 证:因为12111911x时有,所以,且当 x1ii22331xi1xi101119273 222101x11x21x310故

1.3关于不等式证明的非常规方法(1)换元法

这种方法多用于条件不等式的证明,换元法主要有三角代换和均值代

第8页(共13页)

数学系数学与应用数学专业2009级年论文(设计)换两种.三角代换时已知条件特征明显.在结构上必须和三角公式相似.例1.3.1 已知x2y21,求证:| x2+2xy-y2|≤2.证:令xrcos,yrsin

则 | x2+2xy-y2|=|r2(cos22sincossin2| =r2|cos2sin2| = r2|2sin(2450)|≤12×1=2

例1.3.2[4]设a,b,cR 且abc1,求证:a2b2c2≥.证:a=+α,b=+β,c=+γ, 因为abc1,所以 0

于是有a2b2c2=+()+(222)≥.(2)反证法

先假设所要证明的不等式不成立,即要证的不等式的反面成立,然后从这个假设出发进行正确的推理,最终推出与已知条件或已知真命题相矛盾的结论,从而断定假设错误,进而确定要证明的不等式成立.例1.3.3[5]求证:由小于1的三个正数a,b,c所组成的三个积(1-a)b,(1-b)c,(1-c)a,不能同时大于

证:(反证法)假设(1-a)b,(1-b)c,(1-c)a都大于

则有(1-a)b(1-b)c(1-c)a>

2***31314141 ① 641aa1但由01-a)a≤条件,即有,0(1-a)a≤.24同理有0(1-b)b≤,0(1-c)c≤.即(1-a)b(1-b)c(1-c)a≤② 64

1414第9页(共13页)

数学系数学与应用数学专业2009级年论文(设计)①与②产生矛盾,从而原命题成立.(3)构造法

在证明不等式时,有时通过构造某种模型、函数、恒等式、向量、对偶式等,完成不等式的证明.例1.3.4 求证 证: 设A=1212342n11.2n2n132n1242n,B=,352n142n12342n12n由于,,,,因此AB,23452n2n113242n1242n2n1)()A, 2n352n12n12n1所以A2AB(故 (4)判别式法

12342n11 2n2n1适用于含有两个或两个以上字母不等式,而另一边是关于某字母的二次式时,这时可考虑用判别式法.例1.3.5[6]x2x113求证:≤2≤.x122x2x1 证: 设f(x)y2,则(1y)x2x1y0,所以xR,x1当y1时,Δ=b24ac≥0,即14(1y)2≥0,所以 |y1|≤,即≤y≤.又当y1时,方程的解x0,x2x113故 ≤2≤.x122121232(5)放缩法

第10页(共13页)

数学系数学与应用数学专业2009级年论文(设计)为了证明不等式的需要,有时需舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性达到目的.例1.3.6[5]设a,b为不相等的两个正数,且a3-b3=a2b2.求证1ab.证: 由题设得a3-b3=a2b2a2abb2ab, 于是(ab)2 a2abb2ab,则(ab)1,又(ab)24ab,(ab)2 而(ab)a2abbababab

422243即(ab)2ab,所以(ab), 综上所述, 1ab(6)向量法

向量这部分知识由于独有的形与数兼备的特点,使得向量成了数形结合的桥梁,在方法和理论上是解决其他一些问题的有利工具.对于某些不等式的证明,若借助向量的数量积的性质,可使某些不等式较易得到证明.例1.3.7 求证:求证1≤ 1x2x≤2

9.三、小结

证明不等式的途径是对原不等式作代数变形,在初等数学中常用的第11页(共13页)

1a1b1c

数学系数学与应用数学专业2009级年论文(设计)方法大致有放缩法、代换法、归纳法、反证法等等.然而涉及不等式的问题很广泛而且处理方法很灵活,仅在中学教科书上就有很多方法,但还不足以充分开拓人们的思维,为此,我们要进一步探究不等式的证明方法,并给出了在实例中的应用.参考文献

[1] 段明达.不等式证明的若干方法[J].教学月刊(中学版),2007(6).[2] 彭军.不等式证明的方法探索[J].襄樊职业技术学院学报,2007(4).[3] 周兴建.不等式证明的若干方法[J].中国科教创新导刊,2007(26).[4] 郭煜,张帆不等式证明的常见方法[J].高等函授学报(自然科学版),2007(4).[5] 王保国.不等式证明的六种非常规方法[J].数学爱好者(高二版),2007(7).[6] 赵向会.浅谈不等式的证明方法[J].张家口职业技术学院学报,2007(1).[7] 豆俊梅.高等数学中几类不等式的证明[J].中国科技信息,2007(18).[8] 刘玉琏,傅佩仁.数学分析讲义[M].北京:高等教育出版

第12页(共13页)

上一篇:方文同志优秀共产党员先进事迹材料下一篇:辽宁高考满分作文赏析:科技改变生活