初一奥数题50道及答案(精选7篇)
初一奥数题50道及答案 篇1
三年级下册数学计算题50道
一.计算题(共50题,共343分)
1.用竖式计算。
(1)58÷7=
(2)29÷3=
(3)28÷5=
(4)74÷8=
2.脱式计算。
430+124÷4
3500-65×26
33×7-210
3.列竖式计算。(带☆的要验算)
12.5+7.8=
21.3-15.6=
32×16=
☆409÷3=
321÷6=
45×76=
4.计算下面图形的面积。
5.蝴蝶该落在哪朵花上?
6.填一填。
7.估算。
79÷8≈()
412÷8≈()
627÷9≈()
190÷9≈()
34÷5≈()
812÷9≈()
542÷6≈
()
427÷6≈()
8.计算。
48÷4=
98÷7=
95÷5=
72÷6=
472×6=
360×5=
957÷3=
513÷4=
9.口算。
23×4=
25×20=
52×200=
18×300=
640÷8=
14×50=
270+90=
64×20=
360÷6÷3=
240÷(2×4)=
10.列式计算。
(1)291除以3的商是多少?
(2)被除数是183,除数是4,商是多少,余数是多少?
11.计算。
312÷6=()
217×3=()
726÷6=()
702÷9=()
175÷5=()
294÷7=()
419÷9=()
448÷7=()
12.用竖式计算,除法要验算。
307×6=()
360×8=()
985×8=()
98÷4=()
75÷3=()
84÷4=()
13.用竖式计算。
(1)37÷8=
(2)50÷6=
(3)73÷9=
(4)39÷4=
14.用竖式计算。
(1)65÷7=
(2)37÷5=
(3)46÷9=
(4)56÷8=
15.括号内最大能填几?
5×()<235
6×()<370
8×()<350
7×()<500
4×()<230
9×()<620
16.直接写得数。
390÷3=
40×80=
0.3+0.9=
0÷23=
2.5+6.6=
5.7-0.6=
33×30=
400÷5=
17.直接写得数。
350÷7=
20×50=
70×40=
420÷3=
1.3-0.1=
2+0.7=
0.3+4.8=
5.4-2.4=
214÷7≈
29×11≈
301÷6≈
102×11≈
18.计算。
26÷2=()
85-6=()
35÷7=()
11×3=()
60÷6=()
45+6=()
36÷6=()
4×7=()
19.脱式计算。
108÷4÷3
900÷(3×2)
15×69÷5
20.用竖式计算。
(1)66÷7
(2)43÷8
(3)57÷9
(4)39÷6
21.计算。
36÷3=()
85÷5=()
72÷4=()
563÷7=()……()
22.直接写得数。
160÷8=
3600÷6=
240÷4=
0÷125=
120÷3=
350÷7=
720÷8=
300÷5=
329÷3≈
203÷5≈
238÷6≈
137÷7≈
23.列竖式计算。
73×21=
35×73=
85×57=
19×36=
21×48=
66×77=
24.直接写得数。
0.6+0.4=
3.2+2.7=
1.5-0.4=
5.6+0.2=
3-0.8=
6.2-0.2=
3+8.8=
4+4.1=
3.8+0.2=
4.5-0.5=
0.8+1.1=
3.3-2.2=
25.用竖式计算。
①75÷8=
②66÷5=
③99÷8=
④93÷9=
⑤65÷6=
⑥82÷7=
⑦69÷2=
⑧50÷4=
26.口算。
4×7-7=
(24+6)÷5=
8-1×8=
593+412≈
5千克=()克
400克+600克=()千克
27.直接写出得数。
500×4=
8×200=
86÷2=
900×2=
80×4=
270÷9=
70×6=
320÷4=
300÷3=
200÷5=
540÷9=
60×5=
70×7=
21×4=
13×2=
720÷8=
28.小白兔做口算。
29.选择填空。
(1)260÷2
(2)402÷2
(3)412÷4
(4)900÷5
(5)840÷7
(6)505÷5
30.用竖式计算。
(1)894÷6
(2)926÷3
(3)570÷3
(4)804÷3
31.看图回答。
32.在空格里填上合适的时刻或时间。
33.直接写得数。
160×4=
560÷7=
17×50=
119÷6≈
40÷3=
50×80=
82÷2=
21×39≈
34.计算。
26÷2=_______
85-6=_______
35÷7=_______
11×3=_______
60÷6=_______
45+6=_______
36÷6=_______
4×7=_______
35.口算。
0÷4=()
810÷9=()
600÷6=()
250÷5=()
8×0=()
400÷8=()
80×8=()
306÷3=()
36.开火车。
37.算一算。
34÷2=________
45÷9=________
11×6=________
25÷5=________
63÷9=________
15×4=________
38.根据要求填写下表。
39.直接写出答案。
4×50=
26÷2=
26×2=
48÷3=
9+6×3=
5+4×7=
8÷2+9=
8+5×6=
40.直接写出得数,看谁算得又对又快。
42÷6×3=
27-13+16=
3×9+10=
4+0.2=
5×9-20=
83-7×9=
14+72÷8=
9-5.72=
41.口算。
540-360=________
17+13×2=________
18-9×1=________
30×23=________
84×0+27=________
(85-85)×26=________
42.用竖式计算。
86×9=()
507×8=()
450×8=()
98÷7=()
56÷5=()
97÷4=()
43.9除72的商加11与12的积,再除以4,商是多少?
44.9除72的商加11与12的积,再除以4,商是多少?
45.看谁算得又对又快。
(1)120+80=________
(2)60×10=________
(3)5×14=________
(4)77+23=________
46.直接写出下面各题的得数。
20×12=
140÷7=
8-0.3=
100×25=
47.计算。
0÷29+71=()
14+86÷2-50=()
7×9÷7×9=()
72÷8-4=()
8×4+60=()
72÷8×9=()
48.直接写得数。
30×9=
90÷3=
22×4=
200÷4=
55÷5=
3+400=
62-7=
6×700=
0÷800=
42×2=
360÷9=
3×6+4=
49.已知37-15=22,48+12=60,22×60=1320,把这三个算式列成一个综合算式。
50.填一填。90○9○5=?
(1)请在○里填入两种不同的运算符号,使它成为同一级运算,并计算。
(2)请在○里填入两种不同的运算符号,使它成为含有两级运算的混合运算,并计算。
参考答案
一.计算题
1.(1)58÷7=8……2(2)29÷3=9……2(3)28÷5=5……3(4)74÷8=9……2
2.461;1810;21
3.20.3;5.7;512;136……1;53……3;3420
4.3×3-1×2=7(平方厘米);8×6-(8-3)×2=38(平方厘米)
5.如下:
6.68;156;34;615;99
7.10;50;70;20;6;90;90;70
8.12;14;19;12;2832;1800;319;128……1
9.92,500,10400,5400,80,700,360,1280,20,30
10.(1)解:291÷3=97
答:291除以3的商是97。
(2)解:183÷4=45……3
答:商是45,余数是3。
11.52;651;121;78;35;42;46……5;64
12.1842;2880;7880;24……2;25;21
13.(1)37÷8=4……5
(2)50÷6=8……2
(3)73÷9=8……1
(4)39÷4=9……3
14.(1)65÷7=9……2
(2)37÷5=7……2
(3)46÷9=5……1
(4)56÷8=7
15.46;61;43;71;57;68
16.130;3200;1.2;0;9.1;5.1;990;80
17.50;1000;2800;140;1.2;2.7;5.1;3;30;300;50;1100
18.13;79;5;33;10;51;6;28
19.9;150;207
20.(1)66÷7=9……3(2)43÷8=5……3(3)57÷9=6……3(4)39÷6=6……3
21.12;17;18;80;3
22.20;600;60;0;40;50;90;60;110;40;40;20
23.1533;2555;4845;684;1008;5082
24.1;5.9;1.1;5.8;2.2;6;11.8;8.1;4;4;1.9;1.1
25.①75÷8=9……3②66÷5=13……1③99÷8=12……3④93÷9=10……3
⑤65÷6=10……5⑥82÷7=11……5⑦69÷2=34……1⑧50÷4=12……2
26.4×7-7=21
;(24+6)÷5=6
;8-1×8=0;593+412≈1000;
5千克=5000克;
400克+600克=1千克
27.500×4=2000;8×200=1600;86÷2=43;900×2=1800;80×4=320;270÷9=30;70×6=420;320÷4=80;300÷3=100;200÷5=40;540÷9=60;60×5=300;70×7=490;21×4=84;13×2=26;720÷8=90
28.2500;2400;840;1800;840;12000;5000;6600;5000;920;3500;900
29.商中间有0的:(2)(3)(6)商末尾有0的:(1)(4)(5)
30.(1)149
(2)308……2
(3)190
(4)268
31.5元;1元5角;7角;80元
32.13:46;12小时45分;12:40;18小时40分
33.640;80;850;20;80;4000;41;800
34.13;79;5;33;10;51;6;28
35.0;90;100;50;0;50;640;102
36.2……6;9……3;9……1;6……1;5……2;9……4
37.17;5;66;5;7;60
38.如下:
39.200;13;52;16;27;33;13;38
40.21;30;37;4.2;25;20;23;3.28
41.180;43;9;690;27;0
42.774;4056;3600;14;11……1;24……1
43.(72÷9+11×12)÷4=35
44.(72÷9+11×12)÷4=35
45.(1)200
(2)600
(3)70
(4)100
46.240;20;0.5;2500;
47.71;7;81;5;92;81
48.270;30;88;50;11;403;55;4200;0;84;40;22
49.根据运算顺序列出综合算式是:(37-15)×(48+12)=1320
50.(1)90+9+5=104或90-9+5=86或90÷9×5=50或90÷9÷5=2
(2)解:90÷9+5=15或90÷9-5=5
50道小学二年级奥数题 篇2
1、一辆公共汽从东站开到西站,开一趟。如果这辆车从东站出发,开了11趟之后,这辆车在东站还是西站?
2、龙龙用4元买一个菠萝,用买一个菠萝的钱可以买1千克香蕉。买1千克香蕉的钱可以买4个梨。每个梨多少元?
3、13只鸡排成一队,其中有只大公鸡,从前面数,它站在第8,它的后面有几只鸡?
4、13只鸡排成一队,其中有只大公鸡,它的前面有8只鸡,它的后面有几只鸡?
5、妈妈买回一些鸭蛋和12个鸡蛋,吃了8个鸡蛋后,剩下的鸡蛋和鸭蛋同样多,问妈妈一共买回几个蛋?
6、6个小朋友分一袋苹果,分来分去多2个,问这袋苹果至少有几个?
7、一只猫吃一只老鼠用5分钟吃完,5只猫同时吃5只同样大小的老鼠,需要几分钟才能吃完?
8、小敏到商店买文具用品。她用所带钱的一半买了1支铅笔,剩下的,一半买了1支圆珠笔,还剩下1元钱。小敏原来有多少钱?
9、强强和小华打了2小时的乒乓球,每人打了多少小时?
10、草地上有10只羊,跑走了3只白山羊,又来了7只黑山羊,现在共有几只羊?
11、哥哥送给弟弟5支铅笔后,还剩6支,哥哥原来有几支铅笔?
12、淘气有300元钱,买书用去56元,买文具用去128元,淘气剩下的钱比原来少多少元?
13、一只猫吃掉一条鱼需要1分钟。照这样,100只猫同时吃掉100条鱼需要几分钟?
14、一根60米长的绳子,做跳绳用去12米,修排球网用去30米,这根绳子少了多少米?
15、小明全家早上、中午、晚上各吃4个苹果。一天中,小明家吃了多少个苹果?
16、6个小朋友分一袋苹果,分来分去多2个,问这袋苹果至少有几个?
17、日落西山晚霞红,我把小鸡赶进笼。一半小鸡进了笼,还有5只在捉虫,另外5只围着我,叽叽喳喳闹哄哄。小朋友们算一算,多少小鸡进了笼?
18、有35颗糖,按淘气-笑笑-丁丁-冬冬的顺序,每人每次发一颗,想一想,谁分到最后一颗?
19、小林吃了8块饼干后,小林现在有4块饼干,小林原来有多少块饼干?
20、14个同学站成一队做操,从前面数张兵是第6个,从后数他是第几个?
21、欢欢和乐乐去买练习本,欢欢买了4本,乐乐买了6本,欢欢比乐乐少花1元钱,一本练习本多少钱?
22、5只猫吃5只老鼠用5分钟,20只猫吃20只老鼠用多少分钟?
23、小明和小亮想买同一本书,小明缺1元7角,小亮缺1元3角。若用他们的钱合买这本书,钱正好。这本书的价钱是多少?他们各带了多少钱?
24、猫妈妈给小白5条鱼,给小花4条鱼,小白和小花共吃了6条,它们还有几条?
25、有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?
26、一只小黑羊排在小白羊队伍里,从前面数小黑羊是第7只,从后面数小黑羊是第4只。这队小羊一共有多少只?
27、商场运回28台电视机,卖出一些后还剩15台,卖出多少台?
28、5个小朋友同时吃5个苹果需要5分钟,照这样,10个小朋友同时吃10个苹果需要几分钟?
29、13个小朋友玩“老鹰抓小鸡“的游戏,已经抓住了5只“小鸡“,还有几只没抓住?
30、第二中队有8名男同学,女同学的人数跟男同学同样多,第二中队共有多少名同学?
31、小华有10个红气球,小花有8个黄气球。小华用4个红气球换小花3个黄气球,现在小华、小花各有几个球?
32、芳芳做了14朵花,晶晶做了8朵花,芳芳给晶晶几朵花,两人的花就一样多?
33、小虎学写毛笔字,第一天写6个,以后每天比前一天多写3个,四天一共写了多少个?
34、30名学生报名参加美术小组。其中有26人参加了美术组,17人参加了书法组。问两个组都参加的有多少人?
35、大华和小刚每人有10张画片,大华给小刚2张后,小刚比大华多几张?
36、小云今年8岁,奶奶说:“你长到12岁的时候,我62岁。“奶奶今年多少岁?
37、同学们到体育馆借球,一班借了9只,二班借了6只。体育馆的球共减少了几只?
38、天色已晚,妈妈叫小明打开房间电灯,可淘气的小明一连拉了9下开关。请你说说这时灯是亮还是不亮?拉20下呢?拉100下呢?
39、小力有18张画片,送给小龙3张后,两人的画片同样多。小龙原来有几张画片?
40、最小的三位数减去最小的两位数,再减去最小的一位数,所得的结果是多少?
41、小青有9本故事书,小新有7本连环画,小青用3本故事书换小新2本连环画,现在小青、小新各有几本书?
42、妈妈从家里到工厂要走3千米,一次,她上班走了2千米,又回家取一很重要工具,再到工厂。这次妈妈上班一共走了多少千米?
43、小花今年6岁,爸爸对小花说:“你长到10岁的时候,我正好40岁。“爸爸今年多少岁?
44、明明从布袋里拿出5个白皮球和5个花皮球后,白皮球剩下10个,花皮球剩下5个。布袋里原来有多少个白皮球,多少个花皮球?
45、小明今年10岁,妈妈今年38岁,当小明15岁时,妈妈多少岁?
46、张老师带有60元钱,正好买一个足球和两个排球。如果只买两个排球,还剩28元。一个足球多少钱?一个排球多少钱?
47、小明和小红都集邮票。小明给了小红6枚后,两人的邮票同样多,原来小明的邮票比小红的多多少枚?
48、动物园里有只长颈鹿,它的年龄数是用最大的两位数减去最小的两位数,再减去最大的一位数后所得的数。这只长颈鹿有多少岁?
49、哥哥4个苹果,姐姐有3个苹果,弟弟有8个苹果,哥哥给弟弟1个后,弟弟吃了3个,这时谁的苹果多?
四年级奥数题及答案 篇3
1、乒乓球练习馆里,有20名乒乓球运动员在练球,第一个女运动员和七个男运动员练过球;第二个女运动员和八个男运动员练过球;第三个女运动员和九个男运动员练过球;这样一直到最后一个女运动员,她和全体男运动员都练习过球。请你算一算,这20个运动员中,男女运动员各多少名?
2、用大豆榨油,第一次用去大豆1264千克,第二次用去大豆1432千克,第二次比第一次多出油21千克,两次共出油多少千克?
六年级奥数题及答案 篇4
考点:简单的行程问题。
专题:行程问题。
分析:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇.即可求甲比乙每小时快多少千米.
解答:解:4×2÷4
=8÷4
=2(千米)
答:甲每小时比乙快2千米。
小学六年级奥数题及答案 篇5
工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解:
1/20+1/16=9/80表示甲乙的工作效率 9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满 答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 解:
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
解:由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1 1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2 又因为1/乙=1/17 所以1/甲=2/17,甲等于17÷2=8.5天
5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 答案为300个
120÷(4/5÷2)=300个 可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水 最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天? 答案为6天 解:
由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量 即:甲乙的工作效率比是3:2 甲、乙分别做全部的的工作时间比是2:3 时间比的差是1份 实际时间的差是3天 所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期 方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1 解得x=6
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟? 答案为40分钟。解:设停电了x分钟 根据题意列方程
1-1/120*x=(1-1/60*x)*2 解得x=40
二.鸡兔同笼问题
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只? 解:
4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?
4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)
372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只 100-62=38表示兔的只数
三.数字数位问题
1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少? 解:
首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。解题:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次类推:1~1999这些数的个位上的数字之和可以被9整除
10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除
同样的道理,100~900 百位上的数字之和为4500 同样被9整除 也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;
同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少***320042005 从1000~1999千位上一共999个“1”的和是999,也能整除; ***320042005的各位数字之和是27,也刚好整除。最后答案为余数为0。
2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...解:
(A-B)/(A+B)=(A+B2 * B/(A+B)前面的 1 不会变了,只需求后面的最小值,此时(A-B)/(A+B)最大。对于 B /(A+B)取最小时,(A+B)/B 取最大,问题转化为求(A+B)/B 的最大值。
(A+B)/B = 1 + A/B,最大的可能性是 A/B = 99/1(A+B)/B = 100(A-B)/(A+B)的最大值是: 98 / 100
3.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少? 答案为6.375或6.4375 因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
当是102时,102/16=6.375 当是103时,103/16=6.4375
4.一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476 解:设原数个位为a,则十位为a+1,百位为16-2a 根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198 解得a=6,则a+1=7 16-2a=4 答:原数为476。
5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24 解:设该两位数为a,则该三位数为300+a 7a+24=300+a a=24 答:该两位数为24。
6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少? 答案为121 解:设原两位数为10a+b,则新两位数为10b+a 它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11 因此这个和就是11×11=121 答:它们的和为121。
7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714 解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x 根据题意得,(200000+x)×3=10x+2 解得x=85714 所以原数就是857142 答:原数为857142
8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963 解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9 根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察 abcd 2376 cdab 根据d+b=12,可知d、b可能是3、9;
4、8;
5、7;
6、6。
再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。先取d=3,b=9代入竖式的百位,可以确定十位上有进位。根据a+c=9,可知a、c可能是1、8;
2、7;
3、6;
4、5。再观察竖式中的十位,便可知只有当c=6,a=3时成立。再代入竖式的千位,成立。得到:abcd=3963 再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。
9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.解:设这个两位数为ab 10a+b=9b+6 10a+b=5(a+b)+3 化简得到一样:5a+4b=3 由于a、b均为一位整数 得到a=3或7,b=3或8 原数为33或78均可以
10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分? 答案是10:20 解:
(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20
四.排列组合问题
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A 768种 B 32种 C 24种 D 2的10次方中 解:
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。2 若把英语单词hello的字母写错了,则可能出现的错误共有()A 119种 B 36种 C 59种 D 48种 解:
5全排列5*4*3*2*1=120 有两个l所以120/2=60 原来有一种正确的所以60-1=59
五.容斥原理问题
1. 有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是()A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种
2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是()A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+ a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。
然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。
故只解出第二题的学生人数a2=6人。
3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)
87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)100-29=71(及格的最少人数,其实都是全对的)及格率至少为71%
六.抽屉原理、奇偶性问题 1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)答:最少要摸出9只手套,才能保证有3副同色的。
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样? 答案为21 解:
每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样: 当有21人时,才能保证到少有3人取得完全一样.3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球? 解:需要分情况讨论,因为无法确定其中黑球与白球的个数。当黑球或白球其中没有大于或等于7个的,那么就是: 6*4+10+1=35(个)如果黑球或白球其中有等于7个的,那么就是: 6*5+3+1=34(个)
如果黑球或白球其中有等于8个的,那么就是: 6*5+2+1=33 如果黑球或白球其中有等于9个的,那么就是: 6*5+1+1=32
4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)不可能。
因为总数为1+9+15+31=56 56/4=14 14是一个偶数
而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。
七.路程问题
1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它? 解:
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。
根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。可以得出马与狗的速度比是21x:20x=21:20 根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米? 答案720千米。
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟? 答案为两人跑一圈各要6分钟和12分钟。解:
600÷12=50,表示哥哥、弟弟的速度差 600÷4=150,表示哥哥、弟弟的速度和
(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数 600÷100=6分钟,表示跑的快者用的时间 600/50=12分钟,表示跑得慢者用的时间
4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间? 答案为53秒
算式是(140+125)÷(22-17)=53秒
可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米? 答案为100米
300÷(5-4.4)=500秒,表示追及时间 5×500=2500米,表示甲追到乙时所行的路程
2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒 算式:1360÷(1360÷340+57)≈22米/秒
关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
正确的答案是猎犬至少跑60米才能追上。解:
由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完
8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟? 答案:18分钟
解:设全程为1,甲的速度为x乙的速度为y 列式40x+40y=1 x:y=5:4 得x=1/72 y=1/90 走完全程甲需72分钟,乙需90分钟 故得解
9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米? 答案是300千米。
解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米
从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米
10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
解:(1/6-1/8)÷2=1/48表示水速的分率 2÷1/48=96千米表示总路程
11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。解:
相遇是已行了全程的七分之四表示甲乙的速度比是4:3 时间比为3:4 所以快车行全程的时间为8/4*3=6小时 6*33=198千米
12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米? 解:
把路程看成1,得到时间系数 去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30 两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时 去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75 路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
八.比例问题
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快 答案:甲收8元,乙收2元。解:
“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。
而甲乙两人吃了的价值都是10元,所以 甲还可以收回18-10=8元 乙还可以收回12-10=2元 刚好就是客人出的钱。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几? 答案22/25 最好画线段图思考:
把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。所以,今年的成本占售价的22/25。
3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米? 解:
原来甲.乙的速度比是5:4 现在的甲:5×(1-20%)=4 现在的乙:4×(1+20%)4.8 甲到B后,乙离A还有:5-4.8=0.2 总路程:10÷0.2×(4+5)=450千米
4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少? 答案为64:27 解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。根据“体积增加1/3”,可知体积是原来的4/3。体积÷底面积=高
现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27 或者现在的高:原来的高=64/27:1=64:27
5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨? 第二题:答案为65吨 橘子+苹果=30吨 香蕉+橘子+梨=45吨
所以橘子+苹果+香蕉+橘子+梨=75吨
小学六年级奥数题及答案 篇6
有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解答
首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
2、牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?
解答
这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。 如果设每个人每小时的淘水量为“1个单位”.则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30. 船内原有水量与8小时漏水量之和为1×5×8=40。 每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。 船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。 如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。 从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量.有了这两个量,问题就容易解决了。
3、奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
【题-004】整除问题:(中等难度)
用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?
解答
∵被除数=除数×商+余数,即被除数=除数×40+16。由题意可知:被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856。答:被除数是856,除数是21。
4、灌水问题:(中等难度)
公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.
解答
如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水.不合题意. 如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,应在打开甲管后15分钟灌满一池水.比较第二周和第三周,发现开乙管1小时和丙管45分钟的进水量与开丙管、乙管各1小时加开甲管15分钟的进水量相同,矛盾. 所以第一周是在开甲管1小时后灌满水池的.比较三周发现,甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2.
5、队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?
解答
当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角.补充人后,扩大的方阵每边上有(10+15+1)÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数169-15=154人
6、分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?
解答
除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).
为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.
如果得60分至79分的有60人,共占分数3×(60+61+ …+ 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.
7、行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?
解答
汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4得出:汽车速度=自行车速度的2倍. 汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟).
8、跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
解答
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3乘7x米=21x米,则狗跑5乘4x=20x米。可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
9、排队:(中等难度)有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )
解答
根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种综合两步,就有24×32=768种
10、分数方程:(中等难度)
若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?
解答
设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.现在变成:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?
因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.
11、自然数和:(中等难度)在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.
解答
(1) 请写出只有3种这样的表示方法的最小自然数.(2)请写出只有6种这样的表示方法的最小自然数.关于某整数,它的“奇数的约数的个数减1”,就是用连续的整数的和的形式来表达种数.根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;根据(2)知道,有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),有连续的2,3、6、9、10、27个数相加:364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40
六年级数学分数奥数题
1、把甲乙丙三根木棒插入水池中,三根木棒的长度和为 360 厘米,甲有 3/4 在水外,乙有 4/7在水外,丙有 2/5 在水外。水有多深?
【答案】
设水深x厘米,则甲长 4x,乙长 7x/3,丙长 5x/3
4x+7x/3+5x/3=360
x=45
水有 45cm 深
2、小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?
【答案】
考点:逆推问题.分析:本题需要从问题出发,一步步向前推,小刚剩的 2 本书加上 3 本就是小明借走后的一半, 那么就可以求出小明借走后的数量, 同理可以求出小华借走后的数量,进而可求小明原有的数量.解答:解:小峰未借前有书:
(2+3) ÷(1-1/2 )=10 (本),
小明未借之前有:
(10+2)÷(1-1/2 )=24 (本),
小刚原有书:
(24+1)÷(1-1/2 )=50 (本).
答:小明原有书 50 本.
故答案为:50.
3、甲数比乙数多 1/3,乙数比甲数少几分之几 ?
【答案】
乙数是单位“ 1”,甲数是:
1+1/3= 4/3
乙数比甲数少:
1/3÷4/3=1/4
4、有梨和苹果若干个 ,梨的个数是全体的 5/3 少 17 个,苹果的个数是全体的 7/4 少 31 个,那么梨和苹果的个数共多少?
【答案】
解:设总数有 35X 个
那么梨有 35X乘3/5-17=21X-17 个
苹果有 35X乘4/7-31=20X-31 个
20X-31+21X-17=35X
41X-48=35X
6X=48
X=8
所以梨有21×6-17=109 个,苹果有 20× 6-31=89个。
5、有一个分数,它的分母比分子多 4,如果把分子、分母都加上 9,得到的分数约分后是 9 分 之 7,这个分数是多少?
【答案】
设分子为 X ,分母为 X+4,
则(X+9)/( X+ 13)= 7/9;
解之,得 X=5
答:该分子为 5/9
6、把一根绳分别折成 5 股和 6 股, 5 股比 6 股长 20 厘米,这根绳子长多少米 ?
【答案】
这根绳子长 20÷( 1/5-1/6)=600cm
7、小萍今年的年龄是妈妈的 1/3,两年前母女的年龄相差 24 岁。四年后小萍的年龄是多少岁?
【答案】
解:设小萍今年 X 岁,则妈妈今年 3X 岁
3X-2=X-2+24
3X=X+24
2X=24
X=12
最终答案:12+4=16 (岁)
8、有一篮苹果,甲取一半少一个,乙取余下的一半多一个,丙又取余下的一半,结果还剩下一个。如果每个苹果值 1 元 9 角 8 分,那么这篮苹果共值多少元?
【答案】
丙又取其余的一半,结果还剩一个,说明丙取前是 1+1=2 个
乙取余下的一半多一个,则乙取前是 (2+1)x2=6 个
甲取其中的一半少一个,则甲取前时 (6-1)x2 = 10 个
因此,原来有 10 个
下面是解题过程:设这袋苹果原来 X 个,则
甲取走苹果的个数为 X/2-1
乙取走苹果的个数为( X-X/2+1)/2+1
丙取走苹果的个数(也是剩余的个数)为:总数 -甲取走 -乙取走,即
【X-X/2+1-(X-X/2+1)/2-1 】/2=1
解方程得 X=10
9、小辉乘飞机参加世界少年奥林匹克数学金杯赛。机窗外市一片如画的蔚蓝大海。他看到云海占整个画面的 1/2,并遮住一个海岛的 1/4,露出的海岛占整个画面的 1/4.求被遮住的海岛占应看见的整个海面的几分之几?
【答案】
设海岛为 x,整个画面为 y,遮住海面为 z,
根据题意,
3/4乘x=1/4乘y
y=3x
则海面为 3/4乘x
z=1/2乘3x-1/4乘x=5/4乘x
又海面为 2x …………y-x=3x-x=2x
所以比例为 5/8
除了不用 XY,只用算数,不行的话,只有 X 也行
海岛占整个画面 =1/4÷3/4=1/3
海面占整个画面 =1-1/3=2/3
遮住的海面占整个画面 =(1/2-1/4乘1/3)=1/2-1/12=5/12
遮住的海面占应看见的整个海面 =5/12÷2/3=5/8
即:被遮住的海面占应看见的整个海面的八分之五
10、一只猴子摘了一堆桃子:
第一天吃了这堆桃子的七分之一;
第二天吃了余下桃子的六分之一;
第三天吃了余下桃子的五分之一;
第四天吃了余下桃子的四分之一;
第五天吃了余下桃子的三分之一;
第六天吃了余下桃子的二分之一;
这时还剩下 12 个桃子,那么第一天和第二天猴子所吃桃子的总数是多少个?
【答案】
设桃子总数为 x
1/7x 乘以 6/7x 乘以 5/6x 乘以 4/x5 乘以 3/4x 乘以 2/3x 乘以 1/2x=12
1/7x=12
x=84
第一天 84X1/7=12
第二天 72X1/6=12
12+12=24
11、甲从 A 地到 B 地需要 5 小时,乙从 B 地到 A 地,速度是甲的 5/8.现在甲、乙两人分别从A,B 两地同时出发,相向而行。在途中相遇后继续前进。甲到 B 地后立即返后,乙到 A 地后也立即返回,他们在途中又一次相遇。如果两次相遇点相距 72 千米,则 A,B 两地相距多少千米?
【答案】
解:设 AB两地的距离是单位 1
则甲的速度是 1/5 ,乙的速度是( 1/5 )x(5/8 )=1/8
甲乙的速度比是 甲:乙 =(1/5 ):( 1/8 )=8/5
即第一次相遇时甲行了全程的 8/ (8+5)=8/13
乙行了全程的 5/13
第二次相遇时两人共行 3 个全程,
那么甲行了 3x8/13=24/13
离行完 2 个全程差 2-24/13=2/13
所以 AB两地相距 72/ (8/13-2/13 )=156
答:A、B两地相距 156 千米。
12、把 100 个人分成四队,一队人数是二队人数的 4/3 倍,一队人数是三队人数的 5/4 倍,那么四队有多少人?
【答案】
设第一队为 1,第二队为 3/4,第三队为 4/5,则三队和为 1+3/4+4/5=51/20 ,可知,第一队人数应为 20 的倍数。
第一队为 20 时,20+15+16+49=100 ;
第一队为 40 时,40+30+32>100 舍去。
所以, 20+15+16+49=100 为唯一解,即:第四队有 49 人。
ps:也可将第一队设为 k 人,三队之和 =51k / 20 ;显见, k 应为 20 的倍数。
只有 k=20 时有解。
13、足球赛门票 15 元一张,降价后观众增加了一半,收入增加了五分之一,每张门票降价多少元?
【答案】
观众增加一倍,即原来只有一个人来看,现在是两个人来看。收入增加 1/5 ,即现在两个人的总票价比原来一个人时单人票价多 1/5 ,为 15×(1+1/5 )=18元
平均每人 18/2=9 元
比原来降低了 15-9=6 元
降低了 6/15=40%
答:解:15-15 ×[ (1+1 /5 )÷( 1+1 /2 )
=15-15 ×[6 /5 ÷3 /2 ]
=15-15 ×[6/ 5 ×2 /3 ]
=15-15 ×4/ 5
=15-12
=3 (元)
小学三年级奥数题及答案_精选 篇7
一
绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天?
二
3个笼子里共养了78只鹦鹉,如果从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里的鹦鹉一样多.求3个笼子里原来各养了
多少只鹦鹉?
三
某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?
四
晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?
五
有黑白两种棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚 或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。那么在全部棋子中,白子共有多少枚?
六 有一列由三个数组成的数组,它们依次是(1,5,10);(2,10,20);(3,15,30);……。问第 个数组内三个数的和是多少?
七 一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000 .问:这个被多加了一次的页码是几?
八
小明家先后买了两批小猪,养到今年10月。第一批的3头每头重66千克,第二批的5头每头重42千克。小明家养的猪平均多重?
九
三年级的老师给小朋友分糖果,如果每位同学分4颗,发现多了3颗,如果每位同学分5颗,发现少了2颗。问有多少个小朋友?有多少颗糖?
十老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了 14本;如果每人分7本,则多了2本;优秀少先队员有几人?买来多少本练习本?
十一
一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?
十二
装了神秘礼物的方形箱子上有一幅图画,要在图中的七个小区中分别涂上颜色,要求每个小区涂一种颜色,相邻的小区颜色不能相同,并且使用的颜色最少才能打开箱子,那么最少要用多少种颜色?
十三
三年级二班共有42名同学,全班平均身高为132厘米,其中女生有18人,平均身高为136厘米。问:男生平均身高是多少?
十四
一个学生为了培养自己的数学解题能力,除了认真读一些书外,还规定自己每周(一周为7天)平均每天做4道数学竞赛训练题。星期一至星期三每天做3道,星期四不做,星期五、六两天共做了13道。那么,星期日要做几道题才能达到自己规定的要求?
十五
有位小学生特别喜爱数学,他要求自己在一周内平均每天练8道数学题。星期一至星期四每天都已练9道,星期五参加钢琴比赛没有练数学,星期六练10道题,那么,这个星期日要练几道才达到要求?
十六
有2个班,每班的学生数相等。其中一个班平均每人9岁,另一个班平均每人11岁。那么这两个班的学生平均每人几岁?
十八
小敏期末考试,数学92分,语文90分,英语成绩比这三门的平均成绩高4分。问:英语得了多少分?
十九
一小组六个同学在某次数学考试中,分别为98分、87分、93分、86分、88分、94分。他们的平均成绩是多少?
二十某一淡水湖的周长1350米,在湖边每隔9米种柳树一棵,在两棵柳树中间种2棵杨树,可种柳树多少棵?可种杨树多少棵?两棵杨树之间相距多少米?
二十一 把40千克苹果和80千克梨装在6个筐内(可以混装),使每个筐装的重量一样。每筐应装多少千克?
二十二
如下图所示,有七张写有数字的卡片,A、B、C 三人分别取其中的两张。
A说:“我所取的卡片,合起来为12。”
B说:“我所取的卡片,合起来为10。”
C说:“我所取的卡片,合起来为22。”
那么剩下的一张卡片上写着几呢?
二十三
哪吒是个小马虎,他在做一道减法题时,把被减数十位上的7错写成8,减数个位上的7错写成2,最后所得的差是577,那么这道题的正确答案应该是多少呢?
二十四
小元在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问小元这次考试的各科成绩应是多少分?
二十六
甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?
二十七
两个数的和是682,其中一个加数的个位是0,若把0去掉则与另一个加数相同,这两个数分别是多少?
二十八 某班有45人,先是4人站成一排,最后不够4人的另外站成一排,那么共需要站多少排?
二十九
东东、明明两个人的平均年龄是14岁,明明、亮亮两个人的平均年龄是17岁,那么亮亮比东东大几岁? 三十
【初一奥数题50道及答案】推荐阅读:
初一奥数题附答案07-11
六年级奥数题100道及答案09-02
初一奥数题精选05-21
初中奥数题及答案09-05
小学奥数题及答案详解12-04
六年级奥数题及答案军训a05-27
奥数题及答案(小学四年级上学期)09-20
初中奥数题11-30
小六奥数题09-07
二年级奥数题10-10