六年级数学数与形习题

2025-02-12|版权声明|我要投稿

六年级数学数与形习题(精选10篇)

六年级数学数与形习题 篇1

六年级数学《数与形》评课稿

听了郑老师的教学片断。我们能深刻地体会到数形结合是相互印证的。形的问题中包含着数的规律,数的问题也可以用形来帮助解决,教学时,让学生通过解决问题体会到数与形的完美结合,通过数与形的对应关系,相互印证结果,发现“和”都是“平方数”,再通过图形的规律理解“平方数”(即正方形数)的含义,并让学生大胆说出自己发现的其他规律。例如从第一个图到第三个图,怎样列式,每次增加多少个小正方形,加数都是连续奇数,这些奇数是怎么排列的,从而对规律形式更直观的认识。

前面我们试教了两次加上今天,一共上了三次,下面我就对三次课堂上出现的`问题提出来和大家一起来讨论一下。

在第一次试教中发现。郑老师问:“9的平方为什么要从1加到17?”学生心里有想法,但不会表达,也就是学生对规律中,“奇数的个数”理解不到位。我们组员认为:摆出来的图形没有层次感,所以对正方形的颜色做了调整,由原来的同桌各剪10个边长是4厘米的正方形改成了一生剪1个黄色和7个绿色,另一生剪3个红色和5个蓝色的正方形。

在第二次试教中发现。学生对数与形结合的思想体会不深刻。在计算1+3+5+7+5+3+1=时,学生不会说算理。我们组员认为:在郑老师教学“1+3+5+7=时,还没有总结出完整的规律,受一学生得影响,过早的出现最外层的算法,过分的强调最外层的算法,而忽略了图形的作用。所有对计算题做了调整删去1+3+5+7+5+3+1=,只计算1+3+5+7+9+11+13+11+9+7+5+3+1=?师:你有简便算法吗?

经过了前面两节课的试教和调整,今天这节课上得和成功。学生不但能从不同的角度探索数与形的通用模式,而且还能归纳、总结出通用模式,并加以熟练地应用,从而体会和掌握归纳推理的思考和方法。

六年级数学数与形习题 篇2

共12分)1.(2分)小明妈妈从家出发到超市,购物若干时间后再回到家。下面比较准确地描述了这件事的图是(),A.B.C.D.2.(2分)星期六小明和家人从家中出发,乘车0.5小时后,来到离家10千米远的植物园,游览1小时后,走出植物园,休息1小时,然后乘车0.5小时返回家中。下面的折线统计图中,()描述了这一活动的过程。

A.B.C.3.(2分)下图的阶梯有三级,是由6个长方体砖组成的,若组成类似的八级台阶,需要()个长方体。

A.8    B.14    C.36    D.64    4.(2分)甲、乙、丙住同一个单元,甲家在一楼,乙家在三楼,丙住五楼。昨天下午,甲先到乙家,等乙扫完地后,他们去找丙;

刚上五楼就遇到抱着篮球的丙,于是三人立即一起下楼去玩。下面()比较准确地描述了甲的活动。

A.B.C.D.5.(2分)找规律 A.B.C.D.6.(2分)找规律。

(),括号里应该填()。

A.B.C.二、填空题(共10题;

共17分)7.(1分)如图中每一个图形都是由一些小△组成的,从第一个图形开始,小△的个数分别是1,4,9…,那么第八个图形的小△个数共_______个。

8.(2分)观察点阵的规律,下一个点阵的点数是_______。

9.(2分)找出下面各数排列规律,并在方框内填上适当的数.(从上到下,从左到右填写)_______ 10.(1分)仔细观察下面的点子图,根据每个图中点子的排列规律,想一想,可以怎样计算每个图中点子的总个数?请你把下表填写完整. 序号 1 2 3 4 … 表示点子数的算式 1 1+4 … 点子的总个数 1 … 观察表中数据,如果用A表示第n个图形中点子的个数,A和n之间的关系可以表示成:

A=_______. 11.(1分)计算有多少个正方形,可观察下面的图形. 根据这一规律,图中正方形的个数是_______. 12.(2分),按这个规律,第6个图形共有_______个小圆点,第n个图形共有_______个小圆点。

13.(2分)将一些半径相同的小圆按如图所示的規律摆放:第1个图形中有6个小圆,第2个形中有10个小圆,第3个图形中有16个小圆,第4个图形中有24个小圆,…依此律,第6个图形有_______个小圆. 14.(2分)如下图所示,姗姗用小棒搭房子,她搭3间房子用13根小棒。

(1)照这样,搭10间房子要多少根小棒?(2)搭n间房子要用多少根小棒? 15.(2分)观察算式与图形之间的联系,找规律填空。

(1)从1起,连续20个奇数的和是_______。

(2)从1起,连续n个奇数的和是_______。

16.(2分)下图是8路公共汽车从学校到图书馆的行驶情况。

(1)汽车的最高速度是_______千米/时,保持了_______分。

(2)从学校到图书馆共用了_______分。

三、解答题(共1题;

共7分)17.(7分)想一想有什么规律,再填数。

(1)(2)参考答案 一、选择题(共6题;

共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题(共10题;

共17分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、14-2、15-1、15-2、16-1、16-2、三、解答题(共1题;

新人教版六年级数与形单元教案 篇3

课程标准相关要求:

8.经历与他人交流各自算法的过程,并能表达自己的想法。

(五)探索规律

探索给定情境中隐含的规律或变化趋势(参见例31,例32)。

2.结合实际情境,体验发现和提出问题、分析和解决问题的过程。数与行教材分析: 1.教材重视“数”“形”之间的联系,重视找到解题规律。

教学伊始,从观察、分析例1中图与算式的关系入手,引导学生探究算式左边的加数与大正方形右上角的小正方形和其他“L”形图形所包含的小正方形个数的关系,发现“数”“形”之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。

2.教材借助“数”“形”之间的关系,解决相关问题。

教学例2时,从观察抽象的算式特点开始,先通过简单的计算找到得数规律,再借助多种几何图形直观验证计算过程及结果,使学生在初步了解、运用“数形结合”思想方法的同时,体验到数学的极限思想。

3.教材通过举一反三,培养数学能力。

在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。

数形结合是一种非常重要的数学思想,把数与行结合起来解决问题可使复杂的问题变得更简单,使抽象的问题变得更直观。

学情分析:

小学生死记硬背 的较多、能触类旁通举一反三的较少,比葫芦画瓢的有百分之五十。原因是小学生思维的抽象程度还不够高.他们的抽象思维能力还不够强经常需要借助直观模型来帮助理解。那么用“形”来解决“数”的问题更显得重要。教学目标:

1.使学生通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律。2.使学生会利用图形来解决一些有关数的问题。

3.使学生在解决数学问题的过程中,体会和掌握数形结合、归纳推理、极限等基本的数学思想。

重难点:找规律、用规律、灵活解决问题 课时:2课时

第一课时

等差数列之和与正方形的关系

教学内容:课本107页例1及108做一做

1、等 学习目标:

1.使学生通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律。2.使学生会利用图形来解决一些有关数的问题。

3.使学生在解决数学问题的过程中,体会和掌握数形结合、归纳推理等的数学思想。重难点:发现图形中隐藏着的数的规律,会利用图形来解决一些有关数的问题。评价任务:

1.能画出指定的图形(如画出例1中第10个图形)

2.会求连续奇数的和(如求:17+19+21+23+25+27+29+31+33+35+37+39+41+…99)3.记住理解从1开始的连续奇数的和是这些奇数个数的平方 教学过程: 学习例1 师(出示下图):我们一起来看看这些图中图2和图3各有多少个像图1这样的小正方形?

生:图二中有4个图一这样的小正方形,图三中有9个这样的小正方形。师:同学们动动脑,尝试用算式表示出每个图中小正方形的个数。生:图一:1×1=1;图二:2×2=4;图三:3×3=90 师:观察这几个图形与计算出的得数(1、4、9)。你还有什么发现? 生:从图一开始小正方形个数是在前一图基础上分别加

3、加5。根据学生的回答,把图中小正方形涂上不同的颜色进行演示。

师:如果我们把刚才同学们表示图中小正方形个数而列出的不同算式综合起来,会是什么样的呢?

师:在这里“形”能直观解释“数”的计算。同学们想一想,按照这样的规律“图四”会是什么样子?有几个这样的小正方形?同桌两人合作,仿照黑板上算式,一人说等号左边部分怎么写,一人说等号右边部分怎么写,有困难可以在草稿上画一画图。学生合作交流,并利用规律完成例1下面题目。师:观察例1中的这些题目,你有什么发现? 生1:大正方形左下角的小正方形和其他“每行或每列小正方形个数的平方。

生2:左边加法算式里的加数都是奇数。

”形图形所包含的小正方形个数之和正好是

生3:有几个数相加,和就是几的平方。

生4:第几个图形就有几个数相加,和就是几的平方。

师:根据这个同学的发现,想一想,第10个图中有多少个小正方形?第100个图中呢? 学生汇报。

师:同学们非常善于观察和思考,学习中我们利用计算求出了图形中小正方形的个数,反过来直观的图形也更好地帮助我们理解了计算中各数的含义。小结:你学到了那些新知识?会计算连续奇数的和吗? 做一做第1题 课后小记:

第二课时 求等比数列的和

教学内容:课本107页例2 学习目标:

1.经历观察、操作、归纳等活动,帮助学生借助“形”来直观感受与“数”之间的关系,体会有时“形”与“数”能互相解释,并能借助“形”解决一些与“数”有关的问题。2.通过数与形结合来分析思考问题,从而感悟数形结合、极限的思想,提高解决问题的能力。

教学重难点: 借助“形”(面积模型、线段图、直角坐标系等)感受与“数”之间的关系,培养学生用“数形结合”的思想解决问题是重点。教学难点是:从图形中总结规律及让学生体会极限思想。评价任务: 教学过程: 学习例2 师(出示例2):观察这个算式你能发现什么规律? 生1:从左往右看这些分数越来越小。

生2:这些分数的分子都是1,分母都是偶数。生3:从第二个数开始,每个数是前一个数的。

师:算式右边省略号表示什么意思?你准备怎样计算这道题?

生:意思是按照这样的规律写下去,加数有无数个。我准备先求出前两个加数的和,再用和去加第三个加数,得数再去与第四个加数相加,依此类推。学生尝试进行计算。

师:谁再来说说你加到了第几个加数,得数是多少? 学生汇报,板书:3163127

3264128师:观察这些算式的得数,你有什么发现? 生1:得数的分子与分母相差1。

生2:得数的分子与分母都越来越大,说明等分的份数越来越多,取的份数也越来越多,分子比分母只少一份。

生3:如果一直加下去,等号右边的分数会越来越接近1。

师:有同学提出这些分数不断加下去,总和会越来越接近1,有没有道理呢?除了依靠计算来理解,我们还可以画图来帮助思考,现在就请同学们在草稿上通过画图来说明。学生活动,汇报。

生1:我画的是用一个圆形表示“1”,先取它的一半就是圆的 是这个圆的1,再取剩下部分的一半就211,接着又取剩下部分的一半就是这个圆的,往后又再取剩下部分的一半,48这样每次都取走剩下部分的一半,没有取的空白部分就越来越小,几乎看不到了,而取走部分几乎占满了一个整圆。

生2:我画的是用一条线段表示“1”,先把它平均分成两份,在左边表示出线段的下的部分我又平均分成两份,在靠左的部分表示出线段的分别表示出线段的,剩21,后面的线段都照这样的方法41111

„„越往后剩下的线段越短,最后就接近是整条线8163264段了。

师:听了同学们的汇报,从同学们画的这些图中我们可以看出,这些分数不断加下去,总和就是1。对于这种借助画图来帮助我们理解问题的方法,你有什么感受? 生:有些问题通过画图,解决起来更直观。

数学广角 数与形教学设计 篇4

南昌市定山小学 李佳

教学目标:

1、通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律。

2、会利用图形来解决一些有关于数的问题。

3、在解决数学问题的过程中,体会和掌握数形结合的基本数学思想。教学重点:

探究发现图形中隐藏着的数的规律 教学难点:

体会和掌握数形结合的基本数学思想 教学准备:

小正方形若干个、多媒体课件 教学过程:

一、激趣导入

1、同学们,老师最近掌握了一项很神奇的本领。我能很快的计算出从1开始连续几个奇数相加的和,例如:1+3;1+3+5;你们信吗?

请两生出题(说明要求:从1开始,连续,奇数),另外同学用计算器计算,比较速度,验证得数。

2、导入新课

你们想不想也学会这种神奇的本领呢?老师是借助图形来思考的,今天我们就一起来学习“数与形”。

二、探究新知

1、师:复杂的问题都是从简单的开始思考的,我们先来用图形表示1+3,用小正方形表示加数,在黑板上展示,同时解释一下原因。

2、小组合作,摆一摆1+3+5,并在小组内说一说你发现了什么规律。师巡视,参与小组讨论。

3、请小组汇报,并说一说发现了什么规律。

4、举例验证规律。

5、得出结论:从1开始的连续奇数的和正好是这串数个数的平方(课件演示)。

三、知识运用

这种方法你们都掌握了吗?现在老师来考考你了。

1、你能利用规律直接写一写吗? 1+3+5+7=()2 1+3+5+7+9+11+13 =()()=9

可以直接报出答案,说明理由。集体回答。

2、请根据例1的结论算一算。1+3+5+7+5+3+1 =()

1+3+5+7+9+11+13+11+9+7+5+3+1=()学生独立思考后,汇报。

3、请生上来指一指,或者画一画。

4、利用刚刚的规律我们解决这么多问题,利用图形解决问题真方便,那么图形的问题里面会不会也蕴含了数的问题呢?请看教材第108页做一做第2题。A:先观察

B:找到变化规律(课件)C:完成问题答案 D:解释其中的道理

四、知识拓展

思考:运用例1学到的思考方法,能直接算出下面式子的结果吗? 2+4+6+8+10+12+14+16+18+20=()

五、今天你有什么收获?

板书设计:

数与形 1=12

1+3=2 1+3+5=3

六年级数学数与形习题 篇5

1、经历自主回顾和整理“数的认识”的过程。

2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。

3、积极参加自主整理的活动,获得成功的学习体验。

课前预习:

小组合作,交流整理:

回顾以前学过那些数,各举五例。分析不同类数之间有何关系。

教学过程:

一、结合实例,引导学生回忆数的认识

1、回顾数的意义。

师:你学过那些数?

(生回答)

师出示卡片,生齐读。师:举例说明这些数可表示什么?

(生回答)

2、数的分类。

完成问题(1)。

师:把上面的数填到合适的位置

(生回答)

师:每种类型的数,除了上面几种类型,你还能举出其它的吗?

(生回答)

3、数的互化

师出示问题(2)

呈现表格,完成数的互化,交流做法。

4、数的大小比较。

师出示问题(3)

学生自主完成。

5、适时小结。

师:通过刚才的练习,我们复习到数的哪些知识?

(生回答)

二、整理回顾有关倍数和因数的知识

1、引出问题。

师:小明的爸爸年龄数的十位上是最小的合数,个位上的数既不是质数也不是合数,且年龄是小明的五倍,同学们能猜出小明和他爸爸的年龄吗?

(生回答)

以上问题,我们运用了哪些数学知识呢?(倍数和因数)

明确:我们一起回顾和整理倍数和因数。

2、小组合作,梳理知识。

师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组整理的更加完整、科学合理。全班交流。

整理完善知识结构。

师:在这一部分中我们为什么先学因数和倍数?

组织学生讨论和交流

师:倍数和因数是基础,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。

三、复习正数和负数

师出示亮亮家4月份收支情况记录。

学生阅读题目内容。

出示问题(1)。

提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)

出示问题(2)。

让学生举例说明什么是正数和负数。

学生自主完成问题(2)。

全班交流。

交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。

四、人民币上的号码

1、让学生拿出自己身上的人民币。

2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。

五、课堂小结

这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?

六、课堂作业

第二课时

教学目标

1、 经历自主回顾和整理整数、小数、分数四则运算的过程。

2、 能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。

3、 体验自主整理数学知识的乐趣,提高计算能力。

课前回顾:

我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。

教学过程:

一、引导学生回顾和整理四则运算

1、师:回想一下我们学过哪些计算?

生回答。

小组长汇报 本组在课前练习中出现的问题。

2、议一议

出示问题(1)生归纳整理。

出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。

生整理汇报。(注意提示0不能做除数)

3、各部分间的关系。

师:加法各部分间有什么关系?

生回答。

引导学生自己总结减法各部分间的关系。

师归纳出加减法互为逆运算。

同样的方法总结乘除法的关系。

说一说

师:上述关系在计算中有哪些应用?

启发学生回答,(进行验算、解方程等)

二、复习四则运算和运算律

1、师:我们学过的运算律有哪些?

小组讨论,自主总结,并写出字母表达式。

2、出示问题(2)

先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。

3、 估算。

(1) 出示问题(1)

先让生独立思考并判断,再回答是如何判断的。

(2) 出示问题(2)

师生共同讨论怎样想,需要几个步骤。

计算问题(2)时可用竞赛的方式,看谁算得又对又快。

三、课堂总结

《数与形》教学反思 篇6

湖北省仙桃市新生街小学 胡春萍

这节课是人教版六年级数学上册第八单元《数学广角》中的内容,《新课标》在原有基础知识、基本技能的基础上增加了基本思想和基本活动经验,这体现了数学教学中培养学生数学素养的重要性。数形结合的思想是一种重要的数学思想,本节课就是以这一思想为主题的数学课。在设计课程时,我力求做到以下几点。

1、领会编者意图,准确定位教学目标

从孩子数学学习开始,数与形的思想就一直伴随在数学教与学的过程中,如果说过去数形结合思想是深藏不漏地渗透在知识技能的教学中,那么在本节课,数形结合思想则由幕后走到了台前,成为了教学的对象与核心。我认为编者在编排这一内容的时候,他的目的不在于掌握某个具体的知识和技能,而在于促进学生对数形结合思想的体验进一步总结与自觉应用。因此,我将本课的教学目标定位为:①体会数与形的联系,进一步积累数形结合的活动经验,培养学生数形结合的数学思想意识。②体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力,积累活动经验,体验思想方法的价值,激发兴趣是本节课教学的重点。

2、环节清晰,螺旋递进

数和形是客观事物不可分离的两个数学表象,两者既是对立的又是统一的,数与形的对立统一主要表现在数与形的互相转化和互相结合上,围绕着数与形的互相转化与结合,我们将数形结合思想的教学分解为:以形助数、以数解形、数形结合3个环节逐渐展开。

第一个环节:以形助数,教学例1 从1开始连续奇数相加的和除了用加法的交换律和结合律来计算,还可以有怎样的简便方法,为了探索新的算法,将数转化为图形,根据加数的拿出相应个数的图形排列成正方形,通过观察数与形之间的关系找到了其中的规律,那就是算式的和等于排列成正方形图形的个数,图形的个数等于正方形每边的个数相乘,每边的个数等于加数的个数,这样借助图形,通过等式的传递性,最终得到了算式的和等于加数个数的平方的简便新算法。这个环节,通过将数转化为形,探究出了新的计算,引导学生体验图形可以帮助计算的优越性。

第二个环节,以数解形,教学P108做一做第2题。

怎样可以算出蓝色正方形和红色正方形的个数,观察和寻找图形排列中数的规律,发现运用这一规律计算和解决问题,这个环节,引导学生体验有的图形中蕴含数的规律,运用规律进行计算可以很清晰地解决图形问题,体验计算解决图形问题的优越性。

第三个环节,数形结合,突显有趣。

在这一环节中,有练习二十二第2题的教学,还有对例题1的回顾,借助三角形数、正方形数,借助这些特殊的数与特殊的形让学生进一步看到数与形之间有趣的联系,感受到数形之间结合与变化的魅力。

3、给予学生探究的时间和空间,让学生充分经历和体验。

在例题1的教学中,我让学生亲自动手,根据算式摆图形,学生在动手摆的过程中经历了将数转化为形的过程,体验了数与形的联系,探索发现了简便算法,感受到了成功的乐趣。

在做一做2的教学中,我并没有满足于答案的获得,而是进一步追问:是怎么想的?说一说其中的道理?在这里红色图形的规律及计算方法较为复杂,我给予学生充分的时间观察、交流和讨论,学生不仅发现了红色正方形两个两个相加的排列规律,更发现了红色正方形与蓝色正方形的数量关系,那就是红色正方形的数量=蓝色正方形的数量×2+6,有时孩子们还能发现红色正方形的数量=(蓝色正方形的数量×3+6)-蓝色正方形数量,这就构建了求红色正方形数量的模型,正因为我们给予了学生充分的时间去探索,学生才有了如此精彩的表现。

在练习二十二第2题的教学中,我先是放手让学生画和填写第4、5、6个图和数,然后让他们在画图和填数的过程中,体验三角形数每排列的三角形个数之间的规律。

4、沟通知识的内在联系,唤醒学生的活动经验,强化活动体验。

本单元《数与形》的教学建立在学生过去学习经验基础之上,通过引导学生回忆过去学习经验中数形结合的例子。如:利用实物图理解计算,利用平面图形理解分数乘法的算理,利用线段图理解问题解决的数量关系等,有意唤醒学生相关活动经验的记忆,沟通本节课与过去学习经验的内在联系,让学生感受到了原来数形结合的思想并不陌生,一直伴随着我们的学习,强化了对数形结合思想价值的体验。

5、关注学生情感,激发学习兴趣。

“知之者不如好知者,好知之不如乐知者。”为了调动学生的学习积极性在尊重教材的基础上做了以下处理,那么长的算式却能很快算出得数,老师是怎么算的?这激发了学生强烈的好奇心,从而引发学生探索新算法的欲望。在中间环节,每个小节结束教师都引导学生回顾,“是谁帮了我们?”唤发学生对数形结合优势的感悟。课的结束部分,拓展升化,将趣与情推向高潮。本节课的例题是以正方形数为素材,而练习二十二第2题是以三角形数进行练习。课末我还对这两题进行了拓展,介绍“正方形数”,“三角形数”,以及它们之间的关系。最后还引用了数学家华罗庚的话:“数形结合百般好,隔离分家万事休”,让孩子们与数学家产生共鸣,更强化了数形结合的意识。

《数与形》教学设计 篇7

1、通过自主探究,学生经历“由形到数”和“由数到形”的过程,体会数形结合思想在解决问题中的重要价值。

2、学生在探究过程中,能发现图形中的规律,会用图形解决有关数的问题,体会数形结合思想。

3、在解决问题的过程中,感受数学的直观与抽象,激发学习数学的兴趣。

教学重点

感受数与形可以相互转化,树立数与形结合是数学解题思想方法。

教学难点:

寻找和发现数与形相互转化的途径与方法,通过数与形的转化,认识到数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维。

教学过程:

一、创设情境,明确目标

1、谈话:同学们,老师有一个神奇的本领,就是从1开始的连续奇数相加,我都能脱口而出,你们相信吗?

2、你们想知道我是怎样计算的吗?这节课我们就来探究“数与形”。

【设计意图】通过趣味口算,挑起了学生强烈的好奇心,把计算器引进课堂,让学生感受到有时候人脑由于电脑,从而激发学生探究新算法的欲望。

二、导学探究,建立模型

(一)导学探究,解决问题

出示算是1+31+3+51+3+5+7

1、导学提示,明确方向

(1)根据算式中的加数,拿出若干个小正方形,把这些图形摆成一个大正方形。

(2)观察图形和算式之间的关系,你能发现什么规律?

2、自主学习,解决问题

(二)展示交流,建立模型

1、学生汇报,重点释疑

1=121+3=221+3+5=32

1+3+5+7=42

2、归纳小结,建立模型

从1开始的连续奇数相加,和是加数个数的平方。

【设计意图】明确探究方向和任务,提高学生的学习效率。体会数与形的.结合。体现出以学生为主体,同时提高学生合作交流的能力。

三、练习检测,巩固应用

1、填空

1+3+5+7=()2

1+3+5+7+9+11+13=()2

―――――――――――――=92

【设计意图】学生体会,理解数形结合的思想。

2、计算

1+3+5+7++5+3+1=()

1+3+5+7+9+11+13+11+9+7+5+3+1=()

【设计意图】巩固学生应用数形结合的思想进行计算。

四、回顾总结,反思提升

数与形的教学反思 篇8

《数与形》教学反思

本堂课是六年级上册的数学广角的内容,其重点是让学生探索规律并体会数形结合的思想。在设计过程中我调整了顺序,先让学生探索“从1开始n个连续奇数相加的和是多少”规律,突显出数的抽象性,然后借助形来理解,让学生感受形的直观性。接着用一个图形问题来体现形的局限性,需要用数来解决。相辅相成的两个问题体现了数形结合的思想让学生充分的体验到了数形结合的优势。在教学的学生过程中我通过小组合作,算一算,摆一摆,让所有学生经历猜想与验证的过程,感受数形思想的在数学中的充分运用。

不足之处也有不少。首先是自己的备课还不充足,临场反应慢,急不可待的只想听到想到的答案,没让学生体会到答案的多样性,没有充分利用课堂的生成作用。在摆一摆的环节,首先摆出的第一个正方形,应强调说一说这是表示算式1也可以表示一行一列1²。这样在后面的第二个,第三个算式的摆放时学生会去有意识的摆成正方形。但是这样其实也局限了学生的思维,会导致学生一律只考虑摆成正方形而不再去探索其他的图形是否也能有次结论。最后是在教学的设计中还可以加入“正方形数”“三角数”拓展教学,在小结还可以加入这样的问题”在所学的数学知识有哪些是运用了数形结合思想的?”

徐长青数与形名师课堂实录 篇9

师:那现在这个面有多少个正方形呢?

生7:这个面一共有25个正方形,其中红色的一个,黄色的3个,5个绿色的,7个蓝色的,还有9个紫色的,1+3+5+7+9就是25个

生8:老师,我发现这个面是一个5×5的大正方形,所以一共有25个小正方形。

师:正方体一共有几个面呢?

生合:6个

师:你们能不能才出后面的面会有多少个小正方形呢?

生16:我觉得下一个面会有36个小正方形,在1+3+5+7+9的基础上,在加一个11,因为后一个数比前一个数大2,加在一起就是36

生19:我觉得下一个面也是有36个小正方形,因为之前是2×2,3×3一直到5×5的正方形,所以第6个面应该是一个6×6的正方形,所以是36个。

师:同学们真厉害,一下就发现了这其中的规律,你们能不能将我们发现的规律总结一下呢,我们现在以小组为单位进行讨论。

(学生开始讨论)

生:我发现连续的奇数相加,就等于一个数的平方

生1:我发现这些奇数要从1开始加

生7:我发现等于的数是奇数的个数的平方

(大屏幕展示发现的规律,并进行相关的练习)

师:在这个问题中,我们将不好解决的数字问题与图形结合在了一起,运用图形来解决数字的问题。

三、点拨互动,应用提升。

师:这样的题目已经难不倒同学们了,我们来看看,这样的题目,该如何来解决呢?

(出示“1+3+5+7+5+3+1”类型的题目)

生5:我把这些数分为了两部分,一部分是1+3+5+7,另一部分是1+3+5,这样,前一部分是4的平方,后一部分是3的平方,就是16与9的和,所以是25

师:非常好,那下面这样的难题,我们该怎样来解决呢?

(出示“1+3+7+9”类型的题目)

六年级数学(上册)习题训练 篇10

1.天平是根据( )的原理称物体的重量的。

2.图中竹竿右边袋子里应入( )kg物体才能保持平衡。

3.如果要反映小英6~13岁的身高变化情况,选( )统计图比较合适。

4.一种汽车的方向盘的直径是40cm,它的周长是( )。

5.一个圆形餐桌的直径是3m,它的周长是( )米,它的面积是( )平方米,如果一个人需要0.5m的位置就餐,这张餐桌大约能坐( )人。

6.邮政局信件邮寄标准为每20g收费1.2元,小明寄一封48g的信给朋友。他需要贴( )元的邮资。

7.一次朗诵比赛中,十位选手的最后成绩分别是80分、95分、85分、88分、95分、81分、85分。这组数据的众数是( ),中位数是( )、平均数是( )。

8.做一道判断题,小明实在无法判断它是对还是错,于是随便判断一下,这道题他做对的可能性是( ),做错的可能性是( )。

二、选择。

1.表示x和y成反比例的式子是( )。

A、x-y=8

B、x×y=8

C、x︰y=8

2.下面的3个长方形是完全相同的。在阴影表示的3个三角形中,( )的面积是相等的。

A、①和②

B、①和③

C、①、②、③

3.要使 是假分数, 是真分数,那么 应是( )。

A、7

B、8

C、9

4.小明用20元钱去买笔记本、铅笔、圆规三种学具。下面哪种情况使用估算比精确计算有意义?( )

A、当收银员数小明付的钱时

B、当收银员将每种学具的价格输入收银机时

C、当小明试图确认20员钱够不够时

5.下列图形中,只有一条对称轴的图形是( )。

A、平行四边形

B、等腰梯形

C、等边三角形

6.一个圆柱的底面的高是18.84厘米,半径是3厘米,它的侧面展开图是 ( )。

A、正方形

B、长方形

C、圆

三、判断。

1. 6kg的5倍与5kg的6倍一样重。()

2. 因为路程=速度×时间,所以速度和时间成反比例。()

3. 长度分别是4cm、6cm、10cm 的三根小棒,可以围成一个三角形。()

4. 在同一幅地图上,甲、乙两地的图上距离越长,两地的实际距离也就越长。()

四、计算。

1.直接写出得数。

12.25-0.5=0.6÷2=8+1.9=

1÷50%=0.9+99×0.9= 1/2×18=

2.解方程或比例。

χ+ 35 χ= 1617

五、动手操作。

1.要使竹竿平衡,在竹竿的另一侧的什么位置放几个棋子?把你的方案都画出来。

2. 学校正东方向200m是电信公司,电信公司正北方向600m是镇府大楼,镇府大楼正西方向500m是喜乐福商场,喜乐福商场正南方向300m是汽车站。先确定比例尺,再画出上述地点的平面图。

六、解决问题。

1.妈妈的年龄是陈俊年龄的4倍,三年后,妈妈比陈俊大6岁,陈俊和妈妈各多少岁?

2.架线班要架设一条通讯线路,计划每天架设100米,42天完成。实际每天架设120米,多少天可以完成?

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:小学生战狼观后感下一篇:山东旅游营销方案

付费复制
期刊天下网10年专业运营,值得您的信赖

限时特价:7.98元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题