液压伺服测试系统(精选8篇)
液压伺服测试系统 篇1
摘要:随着液压阻尼器在核电站、高层建筑和大跨度桥梁中的广泛应用,对其进行动态性能测试显得越来越重要。本文以实际需求为前提,根据阻尼器负载功率大,试验要求精度高等特点,采用液压伺服系统设计开发出一套液压阻尼器动态性能试验台。将虚拟仪器与液压伺服技术相结合,充分发挥各自的优势,完成了一系列的测控任务。考虑控制优化问题,建立了系统数学模型,研究了经典的 PID 控制和模糊控制算法,并将其运用到实际系统中对控制算法进行了仿真试验。
关键词:液压伺服,虚拟仪器,LabVIEW PID,模糊控制
引言
随着国民经济的快速提高和科学技术的飞速发展,人们在空间拓展和核能利用等伺服液压系统具有控制功率大,易于实现直线运动,速度刚度大、配置柔性大,动力传输和控制方便等优点,非常适合作为阻尼器测试系统的动力元件。液压测试系统中包含了信号的采集与控制、信号的分析与处理、结果的表达与输出。传统仪器的这些功能块都是以硬件的形式存在的。虚拟仪器系列化软件将传统仪器的三大功能块全部放在PC机上来实现,在PC机上插数据采集卡,然后用软件在屏幕上生成仪器面板,用软件来进行信号分析,在软件生成的界面上显示结果,实现传统仪器功能。与传统仪器相比,虚拟仪器具有巨大的优越性.因此将虚拟仪器和伺服液压控制技术相结合的开发应用模式也将成为今后的发展方向。
1 系统硬件选择
1.1 信号比较、放大部分的选用
考虑到系统响应速度和可靠性等因素,本系统采用计算机外反馈形式。通过实际考察由MOOG公司生产的G122-824型PI伺服放大器兼具PI控制和放大器的功能,具有稳定、可靠的特点完全适合本系统。
放大器内的选择开关可以选择比例(P)、积分(I)或两者的结合(P&I)。用内部开关可以选择多种不同的放大器特性,这样能使一个放大器应用在许多不同的场合。所提供的设置选项是MOOG公司多年设计和调试闭环系统经验积累的结果,具有很强的代表性。伺服放大器采用模拟电子器件,它接受三个输入信号,其中两个为单端信号,另一个为差动信号。由上述输入信号得到偏差信号,然后对其进行比例放大和积分控制。比例和积分信号共同作用成为驱动伺服阀的电流或电压输出。前面板上的调节电位器、LED指示灯和测试点便于快速方便的设置和帮助解决突然出现的故障。
1.2 传感器测量系统的选用
1.2.1 位置传感器
根据技术协议,位移传感器必须稳定可靠,具有较高的精度等级。BALLUFF公司的新一代BTL5系列微脉冲位置传感器不仅有较高的精度等级,其形状尺寸也便于内嵌于油缸内,不仅提高了安全系数又能减小振动误差,是一种比较理想的反馈元件。
该传感器的检测元件(波管)由特种镍铁合金制成,内径0.5mm,外径0.7mm。管内设有一根铜导线。由一个瞬时电流脉冲启动检测过程,该电流产生了一个围绕波导管旋转的圆形磁场。在被测位置作为标示块的永磁铁,其磁力线垂直于电磁场。在两个磁场交会的波导管中,由于磁致伸缩效应使波导管(在极小范围内)产生了一个弹性形变,并以机械波的形式沿波导管同时向两个方向传播。在波导管中,机械波的传播速度为2830 m/s,几乎不受环境的影响(如温度、冲击、污染等)。到达波导管远端的机械波在那里衰减,而到达信号转换器的机械波由磁致伸缩的反效应转换为电信号。从波发生点到信号转换器机械波传播的时间与磁铁到信号转换器的距离直接对应。通过检测时间,可以高精度地测出距离。
1.2.2 力传感器
由于力传感器要求量程大、精度高,采用进口产品价格比较昂贵,通过选择比较系统中选用了某研究所生产的BK系列传感器,通过二次标定完全满足系统要求。
该传感器是以电阻应变计为转换元件的电阻应变式测力传感器。传感器由弹性体、电阻应变计、测量电桥组成。传感器弹性体上粘贴有电阻应变计,并组成惠斯登电桥。在被测力或重力作用下,弹性体产生与其成正比的弹性变形,在弹性体特定部位上粘贴的电阻应变计将应变转换成与其成正比的电阻变化,给由电阻应变计组成的惠斯登电桥施加激励电压,即可以得到与被测力成线性关系的电压变化,通过对电压变化的测量即可测出力或重力。由电阻应变计组成的电桥构成了电阻应变式传感器的基本测试电路,但对于现代力或重力传感器,特别是高精度产品,必须采用电路补偿技术,以改善性能。BK系列传感器就是这种技术的产物。
由于采用了补偿技术传感器性能得到很大提升,检定结果重复性误差为0.02%,直线度误差为0.05%,滞后0.09%。同时,为了便于使用传感器本身内置了放大器将m V的电压信号转换为需要的电源输出。
2 控制算法及其应用仿真
2.1 控制算法实现
Lab VIEW和Matlab在测控领域进行仪器控制和数据处理应用最为广泛,他们都有自己的特点和优势。简单的讲LabVIEW为图形化编程环境,易学易用,具有强大的高质量硬件支持,可以方便的搭建出能够灵活使用的虚拟仪器,在仪器控制和数据采集领域具有很大的优势,但是数据计算和数据分析功能就比Matlab稍逊一筹,虽然LabVIEW也集成了大量的数据计算和数据分析工具包,仍然无法轻易达到Matlab的计算能力,同时大量的数据计算必然会占用大量的系统资源,从而对数据采集和仪器控制的速度造成一定影响。如果将数据计算全部交给Matlab处理就必然要在LabVIEW的控制程序运行的同时运行Matlab程序,再在控制程序中调用Matlab的计算结果,这样也势必浪费大量的系统资源。因此如何将LabVIEW和Matlab有机的结合起来达到最好的使用效果是一个值得思考得问题。本文为了充分发挥LabVIEW和Matlab的技术优势,合理使用系统资源,将控制程序中使用到的算法计算直接使用Lab VIEW工具包实现,而将静态的结果分析放在Matlab中。这样既发挥了Matlab强大的计算功能,又避免了在Lab VIEW控制程序中调用Matlab,从而使系统资源得到合理利用。以下对某些特定功能在Matlab和LabVIEW中的实现方法作了详细比较。
2.2 模糊控制算法的实现
由于模糊控制在控制领域的迅速发展,尤其对非线性系统表现出的优越性,作为通用开发平台的LabVIEW也添加了Fuzzy Logic Control Toolkit工具包。该工具包可以根据用户需要设计独立的模糊控制器,并方便的应用于控制程序中。但是Fuzzy Logic Control Toolkit所能设计的控制器有以下限制:
(1)最多只能有4个语言变量;
(2)每个语言变量的最多只能有9个语言值;
(3)隶属度函数只能是最为常用的三角形和梯形(包括Z型、Λ型、Π型和S型,见图1)。
当然,这些限制对大多数工程问题不会造成影响,一般都能得到圆满的解决。
下面简述一下用LabVIEW设计及使用模糊控制器的一般步骤。
(1)利用Fuzzy Logic Controller Design中的Project Manager工具建立一个模糊控制工程,并以*.fc后缀保存,用以存储后面设计的模糊控制器数据。
(2)利用Fuzzy Set Editor工具定义语言变量并根据实际要求设计每个语言变量的隶属度函数。
(3)利用Rules Base Editor定义并设计模糊控制规则库,同时也要选择反模糊的方法。
(4)测试控制器的输入/输出特性,满足要求后保存控制器数据。用数据操作手柄模拟输入信号,从而得到多点输出值,划出输入输出特性曲线。
(5)在控制程序中,调用模糊控制器。
Fuzzy Logic Control Toolkit带有的Load Fuzzy Controller.vi、Fuzzy Controller.vi和Test Fuzzy Control.vi三个子程序,专用于控制程序中模糊控制器的调用。Load Fuzzy Controller.vi可以根据指定路径加载设计好的模糊控制器,并把控制器参数等信息传输给Fuzzy Controller.vi进行控制计算,并提供控制输出。Test Fuzzy Control.vi则可以在线测试控制器,并显示控制器的各项参数。
从整个操作过程可以看出,LabVIEW中设计模糊控制器的方法与Matlab非常接近,具有同样的操作简便性。但是Matlab对控制器几乎没有任何限制,可以设计、计算庞大的控制系统。当然,过多的控制变量必然要求更高的计算机性能。对于Matlab模糊逻辑工具箱的应用方法已有较多文献资料作了详细介绍,这里就不再赘述。
2.3 系统分析及控制算法仿真
模糊控制算法的实现用Lab VIEW工具包Fuzzy Logic Controllor Design设计。模糊控制器实际为双输入单输出系统,输入为误差E、误差变化EC,输出分别为KP、KI。本文将输入变量模糊状态设为7个,分别为负大(NB)、负中(NM)、负小(NS)、零(ZE)、正小(PS)、正中(PM)、正大(PS),输出量设为4个模糊状态,分别为零(ZE),正小(PS),正中(PM)、正大(PS)。它们的隶属度函数采用梯形和三角形两种形式,输入的量化因子和输出的比例因子是控制器的重要参数.它决定了控制器的静态和动态特性。两个输入的量化等级均采用21级,即[-10,10],输入变量的论域均为[-20,20],因此输入的量化因子为0.5。输出的量化等级取为11级,即[0,10],KP的论域取为[0,10],KI的论域取为[0,1],因此KP的比例因子为1,KI的比例因子为0.1。
解模糊策略采用重心法,如下式:
在Lab VIEW中使用Simulation Module工具包对加入了Fuzzy-PI控制器的系统性能进行了仿真。仿真程序中两次调用模糊控制器分别产生KP、KI两个系数供PID控制器调用,仿真结果与原来闭环系统的阶跃响应,可以看出系统的响应速度得到了很大的改善。
3 软件的总体结构
用LabVIEW图形化编程工具开发实际的测控系统时经常会遇到这样的情况:测试量庞大,另外还要进行数据分析处理、报表生成打印和数据库建立查询等任务。面对如此繁多的任务,无法用一个人机截面来实现,这时通常将一个完整的测试系统按完成的具体任务不同分成几个功能模块,每个功能模块分别设计成不同的子程序(子VI),并且每个子程序都有自己的用户界面。在测控系统中首先提供一个友好的用户界面,在此界面上把上述功能模块组织起来供用户调用。
在实际使用中发现利用子面板显示往往会限制子程序面板的显示空间,影响子程序面板的控件布置,对交互界面的设计造成了一定的影响;使用控件调用子程序面板又不符合常用操作系统的使用风格,许多用户感觉不习惯。鉴于这种情况本文设计开发了菜单式交互界面,既给子程序界面足够的设计空间,又与windows操作风格相统一,解决了用户的个性化要求。
通过菜单调用子VI也有两种方法。一种是添加事件结构,将触发事件设置为Menu Selection(App),通过事件参数(事件框内左边的一列)Item Tag或者Item Path+Case structure来判断是单击了哪一个菜单项,然后在对应的Case内调用子VI。另一种方法是使用节点包:Functions→Dialog and User Interface→Menu下的Current VI's Menubar+Get Menu Selection获得选中的菜单项信息,同样是通过Case Structure来判断并处理,但该方法仅适用于User Menu的选择使用。本次程序系统就采用了后一种方法。程序中首先调用Current VI's Menubar获得当前程序菜单的参考号,然后通过Get Menu Selection获得选中的菜单项信息,并由CASE结构做出判断响应对应的操作。CASE结构中通过Invoke Node节点打开指定路径下的子程序面板,完成子程序调用。
4 结论
本文介绍了液压阻尼器动态性能试验台的总体结构,详细阐述了系统硬件的工作原理和基本特性以及软件平台的功能细节,并使用控制算法对系统进行了仿真试验,首次将LabVIEW结合伺服控制技术应用于阻尼器动态性能测试领域,充分发挥了虚拟仪器技术的优势,并将伺服控制技术有机结合起来,得到了良好的控制效果,为以后的工程应用提供了参考。
参考文献
[1]王均功.液压阻尼器研究.液压气动与密封,1998(1):15-21.
[2]张毅,周绍磊,杨秀霞.虚拟仪器技术分析与应用.北京:机械工业出版社,2004.
[3]李福义.液压技术与液压伺服系统.哈尔滨:哈尔滨工程大学出版社,1995.
[4]上海第二工业大学液压教研室.液压传动与控制.上海:上海科学技术出版社,1990.
[5]秦旻.基于虚拟仪器的液压测试分析系统的研究与开发.长安大学硕士研究生毕业论文,2005.5:1-2.
[6]Parker Hannifin GmbH&Co.,KG Hydraulic Controls Division.Catalog,2005.
[7]Atos spa-Joint-stock company.Catalog,2005Edition.
液压伺服测试系统 篇2
1液压伺服系统的组成及工作原理
液压伺服系统由以下一些元件组成:输入元件―――将给定值加于系统的输入端,该元件可以是机械的、电气的、液压的、气动的或者是它们的组合形式;反馈测量元件―――测量系统的输出量并转换成反馈信号;比较元件―――将反馈信号与输入信号相比较,得出误差信号;放大器及能量转换元件―――将误差信号放大,并将各种形式的信号转换成大功率的液压能量;执行元件―――将产生的调节动作加于控制对象上,如液压缸、液压马达等;控制对象―――具有待控物理量的各种各样生产设备及仪器。液压伺服系统也称为液压随动系统。在这个系统中,输出量能自动、快速、准确地跟随输入量而变化,与此同时,输出功率被大幅度地放大。其工作原理图见图1。
2液压伺服系统的特点[1]
液压伺服系统与其他伺服系统相比,特点为:功率质量比大、力矩惯量比大;负载刚度小,系统控制精度高;系统响应快、频宽大;系统的各元件加工精度要求高;在运行当中具有自润滑性。
3液压伺服系统在冶金业中的应用
随着科技的不断发展,对工业设备运行的准确性要求越来越高,对系统控制精确度要求也越来越高。液压伺服控制系统集中、体积小、重量轻,但可控制大功率负载,所以,在冶金工业生产领域得到了广泛的应用,并且取得了良好的效果[1]。目前,在现代化的板带钢材连轧机上,电液伺服已取代了传统的电动―机械的轧辊压下系统。方钢坯连铸机工作示意图见下页图2,方坯从弧形辊道进入水平辊道后需要用校直辊组加力F进行校直,并用剪切机切断。为了使校直力F能跟随计算机给定的校直量,可采用力控制电液伺服系统,见下页图3。为了使剪切机的`水平运动在剪切过程中能与铸坯同步,可采用速度控制电液伺服系统,见下页图4。速度传感器通过压紧轮,感受钢坯的实际水平移动速度V1作为系统的速度给定值。剪切机水平移动速度V2由速度传感器控制。当V1与V2出现偏差时,电液伺服系统对剪切机的移动速度进行调整,以保证钢坯在剪切过程中与剪切机同步,因而不受阻力或推力。
4结语
液压伺服阀自动控制系统 篇3
1 系统组成
本系统主要用于液压部分的电液伺服阀的闭环控制、油缸位置的显示以及系统各部分的压力显示。电液伺服阀控制精度要求高,反应速度快,因此电气部分选用伺服放大器完成对电液伺服阀的闭环控制。数据采集部分则采用研华的PCI板卡,以工控机作为载体,减小外部电磁干扰对主控器的影响,提高了系统的稳定性。另外,PCI总线属于高速并线总线,其传输速率是通常的以太网或其他工业总线几倍,这样使伺服控制器和上位机之间的链接更紧密,通信速率更快,实现了上位机与控制器的一体化。
2 硬件设备
2.1 工控机
工控机主 要参数 :机箱研华IPC510MB ;主板SIMB-A21 ;处理器I32120 ;工作温度 -10 - 50℃。
2.2 伺服放大器
由于本系统采用的是液压伺服系统。电气部分需将油缸的位移传感器输出信号作为反馈信号,与输出信号进行比较后输出较大功率的信号控制电液伺服阀,从而产生随动运动,完成液压的伺服控制。因此我们选用的SVA-III-S带有位置解调器的板卡式电液伺服放大器,将位移传感器输出的小信号进行放大与伺服线圈的内环实现闭环控制,同时具有外环PID控制功能。主要的特性有 :带有LVDT位置传感器的三级伺服闭环控制,通过跳线开关设置选择外环PID控制,输出电流的限定,内环增益可调。其主要技术参数 :独立的±15V电源 ;频率100-2500Hz ;振幅2-11Vpp ;纹波 <40m Vp-p ;增益1-10Vdc/Vp-p ;工作温度范围0℃ ~50℃。
2.3 数据处理部分
液压部分选用的QDY-II的电液伺服阀,该阀具有驱动力大,零点稳定、灵敏度高,分辨率高、反应时间 <10ms。如要将油缸位移数据进行有效处理,我们需要选用采样频率较高的数据采集模块,因此我们选择PCI-1710U多功能数据采集卡。与同类型板卡相比此卡具有更高的可靠性和更多的功能。
3 软件平台
3.1 采集卡编程
采用研华PCI-1710U模拟量多 路采集卡进行数据采集。利用研华自带的Microsoft Visual Studio 6.0例子程序及研华提供的动态链接库 *.dll文件,将大大缩短程序的开发时间及降低编程难度。因此,本系统将采用Microsoft Windows XP操作系统,数据库采用Microsoft SQL SERVER,开发工具使用Microsoft Visual Studio 6.0。采用调用研华提供的系统动态链接库文件进行编程。
3.2 人机界面
画面显示信息主要包括 :用户管理、实时显示画面、报警查询画面、历史数据显示画面等。
用户管理画面主要是对操作用户进行操作管理,防止人员误操作。本系统将用户的操作权限分为2级,即操作用和管理员。操作员能查看显示界面上的数据变化和发出相关控制指令。管理员除具有操作员的权限外,还能对系统的参数进行设置,对历史数据和报警信息进行处理。保证了系统运行的安全性。
实时显示画面显示液压系统关键管路上的压力值、油缸的位置值、油缸的角度值等信息。画面的刷新频率为1S/ 次。
报警查询画面主要将系统运行时发生的滤器堵塞,油温高,油缸液位过低等故障信号进行报警并且将其记录,方便操作人员在系统故障时对故障点的查找,能有效的缩短了故障点的修复时间。
历史数据查询画面中能够通过选择系统的工作时间段,来查询此段时间中油缸工作过程中的振动信号的历史曲线。
4 结束语
液压注塑机伺服控制系统设计 篇4
关键词:注塑机,伺服泵,节能,设计
前言
液压驱动型注塑机的主要组成部分是液压伺服驱动系统和电液控制系统, 研究液压驱动型注塑机的节能技术往往围绕液压伺服驱动技术和电液控制技术两方面相关主题展开。液压伺服泵节能注塑机具有系統油溫低, 控制系统响应快, 重复精度高, 系统稳定性好的特点, 是目前行业的最前沿技术。液压伺服泵节能注塑机应用高精度柱塞泵, 高品质交流伺服电机, 超省电节能, 节能可达30%-80%[1]。本文设计的液压注塑机伺服泵控制系统, 采用压力、流量双闭环控制, 结合了伺服电机快速的无级调速特性和液压油泵的自主调节油压特性, 是一种实现液压驱动注塑机节能的新型液压伺服泵驱动与控制技术。
1 注塑机功率消耗分析
传统注塑机的能耗主要有四个部分:液压驱动系统的耗能达75%-80%;加热控制系统的耗能达10%-15%;冷却控制系统的耗能达5%-10%;其他控制元件的耗能达1%-5%。当注塑机采用定量液压泵时, 液压泵输出流量始终保持不变, 但是注塑机在运行过程中, 其生产工艺的要求是不断变化的。这样, 定量液压泵多余部分的输出流量只能通过溢流阀排回油箱, 注塑机70%以上的能量消耗于液压驱动系统, 从而造成能量的浪费[2,3]。同时, 由于液压油在排回油箱的过程中长期处于全速循环流动, 与相关液压元件、机械零件会产生剧烈磨擦, 造成油温过高、机器寿命缩短等一系列问题。传统液压注塑机的功率消耗情况如图1所示, 在注塑机运行中, 工艺过程有合模、射胶、保压、冷却、熔胶、开模等几个阶段, 每个阶段需要不同的压力和流量。当设定的流量及压力超过生产需求时, 溢流阀或比例阀会调整压力与流量, 这个过程为高压节流。据统计, 采用定量液压泵的注塑机, 溢流造成的能量损失往往高达36%-68%[3]。由图1可以看出, 对于采用定量液压泵的传统液压驱动型注塑机, 当液压缸和液压马达所需的负载和速度发生变化时, 通过液压泵出口的溢流阀和流量控制阀来调节负载压力和流量, 可见, 采用泵控调速系统是实现流量与速度相适应, 并有效减少注塑机液压驱动系统溢流损失的一种方法。
在注塑产品成本的构成中, 电费占了相当的比例, 依据注塑机设备工艺的需求, 传统的注塑机油泵电机耗电占整个设备耗电量的比例高达80%-90%。伺服节能技术应用到注塑机上, 比普通定量泵注塑机节能高达30%-60%, 比变量泵节能最高可达20%-50%, 同时, 可提高生产效率10%左右[4]。因此, 伺服节能技术有着广阔的发展空间。
2 注塑机伺服节能控制系统设计
注塑机成型工艺是借助螺杆推力, 将已塑化好的熔融状态的塑料以高压快速方式, 注射到闭合好的模腔内, 经冷却固化定型后取得制品的工艺过程。
注塑机伺服控制系统是用伺服电机取代原异步电机, 用柱塞泵取代原叶片泵, 另外增加伺服驱动器, 构成注塑机伺服控制系统。注塑机伺服控制系统取代了传统的PQ阀控制, 对生产所需的压力和流量采用闭环控制, 注塑机伺服电液系统的结构如图2所示。
注塑机伺服控制系统工作原理为:液压泵的流量与电机的转速为正比关系, 油路压力也正比于电机的输出扭矩。在油压还没有建立的时候, 用流量正比于转速的方式运转油泵。油压建立起来之后, 利用PID调整出来的转速控制, 由于PID的平衡作用, 油压可以稳定在给定值。总之, 当压力未达到给定值时, 伺服马达转速由流量指令控制;压力到达后, 伺服马达转速由压力指令和压力反馈差值运算出来的速度控制。同时液压伺服泵控制系统通过获取比例压力阀的控制电流信号得到相应的系统压力, 并且使其与电机设定的在不同压力下的最低可靠稳定运行转速曲线相比较, 从而得到在当前压力下电机运行的最低频率, 从而避免出现压力脉动的情况[5]。注塑机伺服液压泵驱动器系统组成如图3所示。
在伺服液压泵注塑机各工艺阶段, 系统的压力和流量是按照工艺要求而变化的。因此, 在每一个注塑周期中, 能保证液压系统压力和流量与之相适应, 系统流量大小、压力输出与负载需求趋于一致。
3 注塑机液压泵伺服系统性能测试
3.1 液压泵伺服系统响应速度及其影响因素
液压泵伺服系统响应速度快慢是衡量液压泵伺服驱动系统和控制系统的重要技术性能指标, 液压泵伺服系统配置的伺服电机的最高转速和液压泵的排量是提高响应速度的两个主要影响因素。相同规格的注塑机液压泵伺服系统配置的电机最大工作转速越低, 液压泵排量越大, 系统的响应速度越快。通过实验表明:液压泵伺服系统响应时间能达到40ms-50ms, 应用高频响应伺服阀的液压泵伺服系统响应时间能达到25ms-40ms。而相同规格的变量泵系统的响应时间能达到70ms-120ms。在额定负载下, 某液压泵伺服系统速度响应曲线如图4所示。由于液压伺服泵采用闭环控制方式, 响应频率高, 注塑机可以获得极高的重复精度, 有利于提高注塑机生产制品的精度以及加工精密制品的能力。可见, 响应速度快能提升注塑机成型精密制品的能力和运行效率, 响应速度快是液压泵伺服驱动和控制系统的技术性能优势之一。
3.2 压力控制精度及其影响因素
在注塑机运行中, 有合模、射胶、保压、冷却、熔胶、开模等过程, 各阶段需要不同的压力。保压及高压锁模是注塑机两个重要的工艺环节, 注塑机需要进行压力控制, 并对压力控制精度有较高的要求。图5是某液压泵伺服系统压力测试曲线。注塑机系统进行压力控制时, 伺服电机转速低至20%-150r/min, 低转速工作条件下, 压力波动较大。通过实际测试发现, 不同系统的压力控制精度相差较大。系统配置双排量柱塞泵时, 可以获得更好的节能效果, 且压力控制更稳定, 与双排量柱塞泵相配合, 系统的性价比得到了提高。同时高精度、高响应的PID算法模块使系统压力非常稳定, 压力波动小, 提高了产品的成型质量。压力控制精度的影响因素主要有压力传感器的检测精度, 液压泵的容积效率, 伺服系统的闭环转矩控制精度以及机器液压油缸的密封性能等。
4 结语
与传统的定量泵和变量泵系统相比, 伺服泵系统采用了压力、流量双闭环控制, 结合了伺服电机快速的无级调速特性和液压油泵的自主调节油压特性, 带来较好的节能潜力。对多种液压泵伺服系统的性能测试实验说明, 伺服泵系统对于降低注塑机能耗, 提高系统响应速度和压力控制精度, 具有明显的技术优势。伺服泵注塑机液压系统具有高精度、高灵敏度、低噪音、比例、伺服控制和微处理器等特点[6]。伺服注塑机是以微机闭环控制为特征的液压注塑机, 随着电子技术和伺服控制技术的提高, 伺服泵控制的应用和其他一系列方法的改进, 液压注塑机越来越节能环保, 同时能够实施过程控制, 从而保证产品的质量。可见, 液压伺服注塑机是注塑机行业的发展新趋势。
参考文献
[1]杜青林.液压注塑机伺服泵控制方法研究[D].2010.
[2]王兴天.注塑工艺与设备[M].北京:化学工业出版社, 2009.
[3]王昌焱.全液压式注塑机液压系统的功率损耗[J].2007 (2) :42-43.
[4]张涛, 李斌礼, 李子玉.基于液压泵伺服驱动的注塑机节能技术研究[J].2010 (8) :73-75.
[5]张毅成.液压式注塑机通用控制器的研究与开发[D].2006.
液压伺服测试系统 篇5
伺服驱动器是一种用于控制方向和高度的驱动机构[1], 广泛用于轮船、汽车、导弹等的伺服控制系统中。为了满足工业和国防的需要, 针对伺服驱动器实验室条件下的加载技术已经越来越重要。尽管伺服驱动器在实际工作中的加载条件十分复杂, 但是在实验室条件下, 一般采用线性加载转矩的方法。
根据驱动模式, 伺服驱动器实验的加载方法大体分为三类:机械加载、电液伺服加载和电动加载[2]。机械加载方法结构简单, 只能应用在一些线性度不高和可重复性很强的加载应用上。而电液伺服加载和电动加载方法虽然线性度很高, 但结构复杂且成本很高。为了克服伺服驱动器加载方法的缺点, 我们对一种伺服驱动器液压比例加载系统进行了研究, 该系统的加载近似线性, 能很好克服以上的缺点。
1 液压比例加载系统的基本原理与组成
液压比例加载系统由比例减压阀、电磁换向阀、节流阀、液压缸、摇杆和液压动力端组成, 如图1 所示。比例减压阀和液压缸是该系统中的主体, 这个系统在摇杆的推拉下产生加载力。单杆液压缸是不对称的, 该液压缸的底部固定, 由液压缸活塞杆通过耳轴与摇杆连接 (C表示图1 中的连接点) 。摇杆的一端与液压缸活塞杆连在一起, 另一端连着伺服驱动器的旋转中心 (图1 中的A点) 。在图2 中位于旋转中心A和液压缸底部B的连接线AB与固定面P垂直。
安装在液压动力端输出处的电动比例减压阀能够调整液压缸的工作压力, 以便调节加载转矩的梯度。由于比例减压阀能够在很大范围内调整压力, 所以在大范围内调整加载转矩梯度也十分方便。蓄能器也安装在比例减压阀输入的附近, 这样做不仅可以稳定系统的压力, 减少压力脉冲的产生, 也可以改善动力负载特性, 提供大量的暂态流。
M型的三位四通电磁换向阀被安装在减压阀和液压缸之间, 它能通过改变液压缸输出力的方向来改变加载转矩的方向。当电磁换向阀在不同状态时, 加载系统就会在不同模式下工作。如果换向阀在中位工作时, 那么液压力就是卸荷, 此时两个腔和液压缸是密封的, 这就意味着加载系统是在锁紧的条件下。如果换向阀在左位工作 (交叉连接) , 液压缸内腔充满着高压油, 输出力的方向和液压缸连杆的伸出方向一致。相反, 如果交换阀在右位工作时 (直接连接) , 输出力的方向与液压缸连杆的方向相反, 液压缸内腔充满高压油。安装在电磁换向阀回油口的节流阀提供回压, 保证液压缸运动的平稳。
在摇杆绕A点旋转过程中, 活塞杆在受到摇杆推拉力作用下在液压缸内作往复运动。如果油压保持不变, 那么推拉力大体会保持不变, 但是由推拉力产生的转矩会随着转角的变化发生变化。当液压缸和摇杆都在同一条直线上时且垂直于水平面P时, 由液压缸产生的负载转矩是零, 因为这个力通过旋转中心。当摇杆转过一定角度后, 在力的方向和摇杆之间会有个释放角, 这样摇杆会获得由垂直于摇杆的组件的力产生的推拉转矩。下面将推导证明推拉转矩和转角在一定的旋转区域内近似线性的关系。
2转角和转矩关系的推导
根据液压缸、摇杆、旋转轴和基座的结构和连接关系, 它们的几何关系示意图如图2所示, 其中△ABC由液压缸的垂直投影、摇杆和它们的支撑件组成。在△ABC中, a是AC的长度 (摇杆) , b是AB的长度。当摇杆转过θ时, BC和AC之间的夹角是β。由余弦定理推导, LBC (液压缸的总长度) 表达式为
根据正弦定律, 在△ABC内可得
如果a=b, LBC和 β 的简化形式可由下式获得:
根据液压缸活塞的受力分析, 液压缸的输出力F可由式 (4) 表达:
式中:P为油提供的压力;Bp为黏滞阻尼系数;M为活塞杆和其他移动部件的总质量;L'BC和L"BC分别为活塞杆的移动速度和加速度。
L'BC的表达式如式 (5) 所示;从式 (5) 能够推导出式 (6) 来表达L"BC:
有效推拉转矩T是F和L的矢积, 即
联立式 (4) ~式 (7) , 可以得到T和 θ 之间的关系:
式 (8) 表示负载转矩由静态转矩Ts和动态转矩Td构成。因为Td远小于Ts, 式 (8) 可以简化为
如果 θ/2 限定在一个很小的范围, 则sin (θ/2) ≈θ/2, 那么式 (9) 能够更加简化为
其中K为转矩梯度。式 (10) 表示负载转矩和旋转角的关系在一定范围内旋转是近似线性的, 并且转矩梯度K由油压、活塞的有效区域和摇杆的长度决定。
负载转矩的线性误差
ET会随着旋转角的增大而变大。例如, 当角度是90°时, ET为10%。
3 结构优化θ
图1所示的电磁换向阀控制液压缸加载进程中, 摇杆的旋转能驱动液压缸一起运动, 这将显著增加驱动器的旋转惯性。因此, 在动力特性测试中, 由于惯性负载的突然增加, 驱动器很容易超程或者振动。为了阻止液压缸的摆动来减少旋转惯性, 液压缸的杆和摇杆不能直接连接, 因此可以改进连接结构解决该问题。在结构被优化后, 液压缸的杆和摇杆通过连杆连接, 设计好安装在液压缸活塞杆的顶部的导轨可以限制液压缸的摆动, 并且用来消除杆承受的横向力。图3为结构优化后的负载原理图。
结构优化后, 负载转矩和旋转角之间的数学关系需要再推导。在图3 所示的△ABC中, 根据正弦定理, 建立等式:
F (液压缸在BC方向的输出力) 和L (F作用点和A点之间的力臂) 可由式 (13) 和式 (14) 表示:
再由式 (12) ~式 (14) 得液压缸产生的有效转矩
在实际应用中, 可以认为和sinx≈x, 因此式 (15) 可以简化为:
式中, K为转矩梯度。在LBC=2a的条件下, 可获得K=
0.5PSa, 并且线性负载误差ET可由式 (17) 表达。例如, 当旋转角为90°, ET为4.5%, 远小于结构未优化之前的值。
4 结语
通过对基于比例减压阀控制油缸的新型的液压比例加载方法的研究可以得出以下结论:1) 简单控制原理和结构的液压比例加载方法能在大范围内为驱动器实验提供近似线性的负载转矩;2) 通过连杆机构的结构优化能消除超程和振动, 对小功率的驱动器具有十分重要的意义。
摘要:推导出伺服驱动液压比例加载系统中负载转矩和旋转角的数学模型, 这种加载原理证明负载转矩和旋转角的关系在一定的旋转角度内为近似线性关系;为了减少旋转惯性, 改善动态性能, 对机构进行优化, 成功地消除了超程和振动。
关键词:液压,伺服驱动,动态性能,结构优化
参考文献
[1]AFSHARI H H, EHRAMIANPOUR M, MOHAMMADI M.Investigation of a nonlinear dynamic hydraulic system model through the energy analysis approach[J].Journal of Mechanical Science and Technology, 2009, 23 (11) :2973-2979.
[2]李跃松, 朱玉川, 吴洪涛, 等.电液伺服阀的研究现状[J].航空兵器, 2010 (6) :20-24.
[3]SANCAKTAR E, GRATTON M.Design, analysis and optimization of composite leaf springs for light vehicle applications[J].Composite Structures, 1999, 44 (2-3) :195-204.
[4]宋晓军, 刘帮成.电液伺服阀测试台液压系统设计[J].机床与液压, 2011 (12) :47-48.
液压伺服测试系统 篇6
四通道静力协调加载系统是产品安全性能试验的平台,其用于试验件的静力加载,可完成轴压、弯曲、压弯剪、拉弯剪试验。而AMESim软件作为多领域仿真集成平台,首先能够在元件设计时将摩擦、环境温度、气体特性、油液等许多非常难以建模的因素考虑在内,进行组件和系统的功能性能仿真及优化;其次也可以仿真包括控制器在环的闭环系统;此外还可以与其他优秀软件接口进行协同仿真和优化,使产品设计充分满足实际应用环境的要求,成为设计液压系统或元件的必要手段。本文采用AMESim软件,通过对加载试验台液压位置伺服系统进行动态仿真研究,来了解试验台液压系统活塞的运行速度、动作时间及活塞的行程等参数以及各元件间的相互影响和作用,从而进一步完善现有技术。
1 基于AMESim的液压位置控制系统仿真
1.1 建立仿真模型
首先进入AMESim的草图模式(Sketch mode),在此模式下为系统搭建仿真模型,见图1。该系统主要包括三位四通液压伺服阀、位移传感器、液压缸、溢流阀、定量泵、放大器和信号源等。该系统是一个典型的闭环控制系统,其工作原理如下:首先执行机构的输出位移通过位移传感器转变为信号,然后此信号与给定的位移信号进行对比,得到闭环控制的误差信号,此差值经放大器进行比例放大后就可驱动液压伺服阀动作,来开启或关闭对执行机构的液压油供应和选择供油方向,以实现控制执行机构位移大小及方向的目的。执行机构的实际输出位移和给定的期望位移之间只要存在偏差,系统就会自动调整输出位移,直至二者之间的偏差为零。
图1中,由左边的分段线性信号源来给出期望位移信号。有了系统模型之后,点击submodel mode进入子模型模式,在此模式中需要根据实际情况为各元件分配一个适当的数学模型也就是子模型。首先可以利用首选子模型(Premier submodel)功能让AMESim自动选择最简单的模型,然后在此基础上进行修改。本系统中只需再将连接液压缸与伺服阀的管道设置为可压缩加摩擦的管道模型HL01(compressibility+friction hydraulic line),以及将连接伺服阀进油口P与液压节点的管道设置为简单可压缩的管道模型HL000(simple compressibility hydraulic line)即可。选择好子模型之后就得到如图2所示伺服系统,然后点击Parameter mode进入参数模式,并设置仿真模型中各元件的参数值。
1.2 设置参数
系统参数设定如下:液压缸活塞直径Φ25mm,活塞杆直径Φ12 m;质量块质量100kg;发动机转速1 500r/min;电液伺服阀的阻尼率2,固有频率50Hz,额定电流40mA;泵转速1 500r/min,排量100mL/r;分段线性信号源设置为0.1。其他参数均使用默认值。
在AMESim中,采用一个二阶振荡系统来表示三位四通液压伺服阀阀芯的动态特性。通过自动控制理论可知,若闭环控制系统的数学模型是由二阶系统来表示的,那么调整二阶系统前置放大器的放大倍数将对该控制系统的动态性能产生较大的影响。在图2中,可通过改变前置放大器即增益k,以观察实际输出的液压缸活塞杆位移的变化。
运用批处理功能设定放大器增益k分别为100、200、500、1 000。
1.3 仿真分析
进入Simulation mode仿真模式中,首先点击set the run parameters,设定运行参数中的仿真运行时间为2s,采样周期为0.01s。设定完成之后点击start a simulation开始仿真。
图3、图4分别为放大器增益k为100、200、500、1 000时批处理运行情况下液压缸活塞杆的位移曲线和速度曲线。
从图3中可以看出改变放大器的增益对活塞杆位移的影响,k=200时,系统在前1.5s的时间内经过偏差比较和调整后达到了稳定状态;而k=500时,活塞位移在0.5s时就达到了稳定状态;k=1 000时更快,活塞位移在0.2s时就基本达到了期望值,但是这时位移曲线却出现了明显的振荡。由图4可看出它对活塞杆速度也有很大影响,在k达到1 000之后速度出现了严重的波动情况,造成系统不稳定。经比较可知k为500时,系统不仅响应快而且振荡也不大,因此k取500较佳。
通过以上分析可看出:增益越大,系统响应速度越快;但增益过大时,仿真后的跟随曲线会出现较大的超调量,这表明系统振荡强烈也就是系统的稳定性很差。因此,考虑到实际应用中通常希望系统的响应既有充分的快速性又有足够的稳定性,我们需要通过精度等具体要求来选择最优增益值。
接下来,设置增益k为500,仿真运行时间为5s,采样周期为0.05s,其他参数不变,然后运用批处理功能设定液压缸油腔死区油量分别为20cm3、50cm3,然后运行仿真,可得到k=500时,液压缸油腔死区油量分别为20cm3、50cm3情况下液压缸活塞杆的位移曲线(见图5)和速度曲线(见图6)。由图5和图6可得出以下结论:液压缸油腔死区油量越大,油的可压缩性也表现得越显著,从而导致系统的稳定性越差。
2 结束语
本文应用AMESim对一典型液压伺服位置系统进行了仿真及分析,结果表明:AMESim的使用步骤简单,其具有可以直接使用的丰富的元件库,使得图形化建模比较容易。此外运用AMESim的批处理功能还可简化参数设置的步骤。总之,AMESim是一个系统建模和仿真的优选平台。
参考文献
[1]付永领,齐海涛.LMS Imagine.Lab AMESim系统建模和仿真[M].北京:北京航空航天大学出版社,2011.
[2]刘海丽.基于AMESim的液压系统建模与仿真技术研究[D].西安:西北工业大学,2006:56-63.
[3]江玲玲,张俊俊.基于AMESim的液压位置伺服系统动态特性仿真[J].机械工程与自动化,2007(1):35-37.
[4]王望良.加工中心托盘自动交换装置液压系统动态特性分析与优化设计[D].重庆:重庆大学,2011:29-33.
[5]周能文,王亚锋,王凯峰.基于AMESim的液压位置控制系统动态特性研究[J].机械工程与自动化,2010(4):82-84.
液压伺服系统给定值的工程实现 篇7
对于通过液压伺服阀控制的运动机械系统, 一般都要求机械运动相对平滑, 冲击较小, 速度稳定。因此对于该类系统的给定信号就要进行相应的处理, 使伺服阀的给定比较平滑, 防止伺服阀工作在满载状态及超调震荡状态, 避免对机械设备造成冲击。本文介绍了伺服阀信号给定的处里原则, 并通过程序图实例进行详解, 以及实际运行效果进行验证。
一、厚板轧机推床动作原理
厚板轧机推床的主要作用是将轧件坯料对中轧制中心线, 防止坯料跑偏, 并使坯料顺利通过轧机, 同时实现轧件的测宽功能, 其机械形式为液压驱动齿轮齿条推拉式。通过伺服阀控制液压缸实现推床的打开与关闭动作。
二、液压伺服阀给定斜坡化处理
2.1惯性环节的引入。液压伺服系统的初始给定一般为阶跃给定, 对于控制系统来说, 阶跃给定信号的跟随性一般不好控制, 极易给系统输出带来超调与震荡, 因此对于系统的初始设定值, 首先要进行斜坡化处理。根据控制原理, 惯性环节是可以实现阶跃信号斜坡化处理的典型环节。又称非周期环节, 其传递函数为
T为惯性环节的时间常数, K为比例系数。
当输入信号为单位阶跃函数时, 其环节的输出为
它是一条指数曲线, 当时间t=3T~4T时, 输出量才接近其稳态值。其响应曲线如图1。因此我们在液压伺服的给定值后认为叠加一个惯性环节来实现给定值的处理。
2.2功能实现。引入惯性环节后的控制原理所示, 通过调节时间常数就能得到合适的惯性曲线, 惯性环节的实现有很多种, 采用的控制系统不同, 传统系多统采用硬件电路, 通过搭建惯性电路并调节电路参数实现该功能。现在的控制系统多为PLC数字控制系统, 而在PLC中一般都有专门的惯性功能块来实现节约给定的斜坡化。这里就不在举例说明。
三、闭环积分控制消除系统泄露
3.1控制原则。根据液压伺服阀的特性, 伺服阀本身存在着一定的泄露, 而且由于现场设备的机械强度及挤压变形等导致最终的运行结果可能存在一定偏差。例如推床开口度最小值很难精确达到。为了满足液压伺服系统的行程精度, 在控制系统必须采用加入比例积分环节的闭环控制来实现。根据自动控制原理可知积分控制可以消除系统的静差。积分环节的传递函数为
在单位阶跃输入的作用下, 积分环节的输出c (t) 为
这表明, 只要有一个恒定的输入量作用于积分环节, 其输出量就与时间成正比地无限增加。积分环节具有记忆功能, 当输入信号突然除去时, 输出总要变化下去。在控制系统设计中, 常用积分环节来改善系统的稳态性能。
同时考虑到积分环节的存在会在一定程度上降低系统的反应速度, 因此, 对于液压伺服的控制, 采用分阶段的积分环节。由于在液压缸运行的初期, 可以运行在较高速度, 所以仅采用比例控制来加快运行速度, 当运行接近至给定值时, 投用积分环节来消除系统的静差。
3.2实现方法。比例积分作为最常用的控制, 实现方法有很多, 本文介绍的分阶段积分控制器原理框图。
根据原理图可知, KP为比例系数, S为积分投用信号, KY为将输出信号转换为相应电流信号的放大倍数。同样该功能可通过搭建硬件电路实现。本文通过西门子PLC的CFC程序图为例进行详解。在CFC程序功能库中的PIA程序块。
通过调节比例系数与积分常数即可获得理想的控制效果。
从现场记录数据看, 这样处理后的液压伺服系统跟随性能较好, 没有静差, 且伺服阀输出最大载60%左右, 没有出现过饱和象限。
四、小结
液压伺服测试系统 篇8
对液压伺服系统的研究主要是对液压工作系统中液体压力、液体流量、传递方程等相关问题进行研究。通过对目标液压工作系统的工作过程分析、数学模型的抽象与建立,实现对液压工作系统工作过程的简化和相关参数关系的量化,在此基础上研究其控制策略和机制,并引入一些以计算机为平台的自动控制原理和算法,比如模糊控制理论、遗传算法等。在整个分析过程中,如何对目标液压工作系统建模与抽象是研究的基础与关键。然而,由于真实系统在工作过程中的情况千差万别,其设计的运行参数也各不相同。如何准确地描述和获取相关运行参数是研究工作的第一步。尤其是有些关键性的参数还难以准确获取,或者由于系统工作过程中存在一些延迟等影响,不能实时获取。此时,为了能够顺利地进行研究和分析,需要进行一些参数近似处理或预测。非常典型的是系统中一些非线性的参数,如正弦函数表示的信号。这些参数如果获取不准确,将可能导致液压伺服系统进行控制和调整过程中存在较大的误差,最终无法进行高精度液压控制。
常规参数在获取过程中不外乎通过直接测量或者建立相关数学模型推导而得。而本文要研究的是液压伺服控制中通过这2种方法均无法正常获取的参数。对此类参数只能采用参数预测或者估计的方式获取。目前,有关参数预测的相关理论或方法主要是借助数学工具贝叶斯估计算法、最小二乘法、极大似然估计算法等。其中,第二种算法采用的是线性计算的方法,计算过程相对比较简单,也易于实现,且预测精度也较高。而另外两种预测算法则是基于概率统计理论,其计算公式较为复杂,在一些简单的微处理器上实现起来也非常复杂,不过其预测精度相对第二种算法更高一些。因此,最小二乘算法比较适合用在精度适中,计算环境和控制能力较为一般的工业应用领域。而另外2种基于概率统计理论的预测算法则适合用在具有较强运算能力的高精度控制场合。本文综合考虑实际的液压工作系统控制精度要求,选择了基于最小二乘算法作为参数预测的主要算法。
2 液压伺服系统参数化模型分析
液压伺服系统参数化模型分析是对液压系统非线性参数预测的基础,只有先对液压系统建立参数化模型,对其运行过程和主要影响因素进行分类、简化和量化之后,才能从待分析的液压系统中提取一些已经运行的参数。以这些参数作为分析的源输入,进行仿真和分析,如果仿真结果离预期目标差距较大,则调整预测模型和条件。将调整后的参数送入参数预测系统进行参数预测,得到初步的参数预测结果,然后对调整后的非线性参数再次进行液压系统工作仿真运行。如此不断进行预测、仿真、分析循环,逐步求精,最终得到液压伺服系统非线性参数的预测结果。整个液压伺服系统非线性参数化预测过程如图1所示。
液压伺服系统参数化模型分析目前主要有2类建模思想:离散型系统建模方法和连续型系统建模方法。顾名思义,离散型系统建模方法的思想是通过对液压系统离散时间点的测量与分析,建立相应的描述模型。而连续型系统建模方法则是对液压系统连续工作状态进行分析与建模。离散型系统建模的方法精度取决于离散时间间隔点:间隔点越小,则建立的模型精度越高;间隔点越大,建立的模型越粗糙,离系统的真实状态相差较大。连续型系统建模则与系统真实情况相差最小。但是,离散型系统建模过程较为容易,尤其适合计算机数字化处理。事实上,在计算上处理的所有连续问题基本都是转换成离散问题后进行分析。而采用纯连续型系统建模方式,只能采用模拟的方式进行分析,而且模型建立过程非常复杂,难以实现。因此,本文研究的液压伺服控制系统虽然也是一个连续型系统,但建模过程采用离散型系统建模方法。
液压系统的离散工作模型可描述为:
液压系统模型进行运算后,可以得到液压系统模型的Z传递函数f(z-1)。
其中,Z代表移位算子,由于Z-1x(k)=x(k-1),加入液压系统中的延时因素,液压模型可简化为:
其中,t为模型结构参数,nm和nn也为模型结构参数。
如果系统分析过程中还需要考虑液压系统工作负载的影响,则模型表达式中还需要加上负载影响式(加入负载因素的液压系统模型数据关系图如图2所示)。此时,液压系统模型的表达式为:
3 液压伺服系统性能参数预测
最小二乘法作为一种有效的实验数据处理工具,由于其原理简单,也不需要数理统计的知识,而且其结果具有无偏性和有效性,因此颇受人们重视,在实际中得到广泛应用。人们在对其的应用中,提出了一些以最小二乘法为基础的改进算法。
最小二乘算法是一种数学优化技术,通常也被称为最小平方计算法,该算法的基本思想是通过最小化误差的平法值反求源函数的最优解。该算法可以比较容易地对一些未知变量进行近似求解,并可以保证所得到的结果与实际的误差的平法之和最小。也正是因为这一特性,最小二乘算法在一些未知参数求解领域得到广泛应用。本文所研究的液压伺服系统非线性参数估计则是属于非常典型的这类问题。因此,本文采用最小二乘算法进行非线性参数预测计算。
液压伺服系统中参数表达式为:
其中,Z(k)为液压系统输出量;aT(k)为液压系统中实际测量值;R(k)为负载影响值。引入负载影响后,最小二乘算法就相当于求解函数f(x)的最小值。基于最小二乘算法的参数实际估计模型如图3所示。
从最小二乘算法的参数估计模型和目标函数f(x)可知,令r(x)=Z(x)-aT(x)λ,则液压模型的目标函数可简化为:
假设存在aT(x)λ使得f(x)的值最小,那么该aT(x)λ称为最优解,即:
则有:
该式进行求偏导运算后可得:
当Zmin为正定矩阵时,xmin即为使得f(x)取得最小值的最优解。
4 参数预测结果实验测试
为了验证液压伺服系统非线性参数预测结果的精度,本文通过实验测试的方法进行了验证与分析。实验测试过程中的液压系统负载采用仿真输入的方法提供。通过设定一个随机函数作为液压系统负载的数据源,产生一个动态变化的液压激励信号。然后,对液压系统的主要性能参数建立实时监测环境,采集液压系统中液压缸、液压阀、溢流阀、液压管壁等主要液压元件的工作参数。从液压系统中所采集的这些参数经转化后被存储下来,作为验证液压伺服系统非线性参数预测结果有效性的依据。
本文重点以液压系统中传动马达的转速作为验证参数预测效果的主要分析对象。如图4所示的实线部分,即为对液压系统中驱动马达转速的实际测量曲线图。在测量的同时,采用本文设计的基于最小二乘法原理的液压参数估计算法,对这些非线性参数进行预估计,估计值与原始测量值均被记录并保存。在图4中的虚线部分就是采用本文设计的预测算法得到的驱动马达预测转速。将2条曲线进行对比后可发现,驱动马达的实际运行转速在外部负载的影响下,数值会出现较大阶跃,所描绘的实际运行转速曲线波动较为剧烈。而估计的驱动马达转速曲线则相对更为平滑,并且该曲线总体上与实际采集的曲线基本重合。由此也证明了基于最小二乘算法的液压伺服控制非线性参数预测的准确性和有效性。
5 结论
对液压伺服系统动态运行参数的预测与估计,可以提高液压伺服系统的控制能力和精度。对液压伺服系统进行准确建模与描述,是研究新型、高精度的液压伺服系统控制的基础和前提。本文从液压工作系统的建模与主要参数的分析入手,研究并提出了一种基于最小二乘算法的参数估计算法,并在实验中验证了参数的预测精度与实际测量的结果基本一致。该方法对于研究和分析一些复杂液压系统中的未知参数有重要的辅助作用。
参考文献
[1]丁子平,周海勇,徐晰,任国强.有限元分析在液压阀块设计中的应用[J].流体传动与控制,2009(5):38-40.
[2]林潇,管成,潘双夏,王冬云.并联式混合动力液压挖掘机参数匹配方法[J].农业机械学报,2009(6):28-32.
[3]黄静,李长春,刘晓东,张金英.非对称液压缸系统的开环系统辨识[J].系统仿真学报,2009(11):3452-3455.
[4]王书翰,徐向阳,刘艳芳.PeterTenberge自动变速器液压系统设计与动态特性仿真[J].北京航空航天大学学报,2009(7):860-864.
[5]苏偌宇,孙永荣,丁佐权.基于LabVIEW的电机工作特性测控系统研究[J].机床与液压,2009(8):135-138.
[6]邓克.变量泵-定量马达容积调速系统优化研究[J].液压气动与密封,2009(5):23-25.
[7]金德华.基于小型PLC的模拟量接口位置伺服系统研究与实践[J].电气传动,2009,39(9):67-70.
[8]任杉,李玮,韩青.基于MATLAB的阀控缸伺服系统仿真分析[J].装备制造技术,2009(9):32-33,41.
[9]向艳旭.酒钢炉卷轧机液压APC系统建模与仿真研究[J].机械工程师,2009(6):54-56.
[10]韩江,余仲元,何高清,翟华.模糊自适应整定PID控制在数控精密校直机电液伺服系统中的应用研究[J].组合机床与自动化加工技术,2009(8):54-56.
[11]曲永印,赵希梅,郭庆鼎,张志锋.永磁同步电动机伺服系统自校正零相位误差跟踪控制[J].电工技术学报,2008,23(1):60-64.