四大推理方法搞定高中证明题

2024-09-21

四大推理方法搞定高中证明题(通用9篇)

四大推理方法搞定高中证明题 篇1

四大推理方法搞定高中证明题

高中数学证明题能有效培养学生数学逻辑推理能力,也是数学课堂里面比较重要的内容,但是现实中很多学生的推理和证明能力比较低,这让很多一线教师苦恼,到底如何提高高中证明题解题能力?小编给大家介绍四大推理方法搞定高中证明题。

一、合情推理

1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;

2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。

二、演绎推理

演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。

三、直接证明与间接证明

直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

间接证明是相对于直接证明说的,反证法是间接证明常用的方法。假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。

四、数学归纳法

数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

高中数学推理与证明测试题 篇2

山东淄博五中孙爱梅

一 选择题(5×12=60分)

1.如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什

么颜色的()

A.白色B.黑色C.白色可能性大D.黑色可能性大

2.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故某奇数(S)

是3的倍数(P).”上述推理是()

A.小前提错B.结论错C.正确的D.大前提错

3.F(n)是一个关于自然数n的命题,若F(k)(k∈N+)真,则F(k+1)真,现已知F

(7)不真,则有:①F(8)不真;②F(8)真;③F(6)不真;④F(6)真;⑤F(5)不

真;⑥F(5)真.其中真命题是()

A.③⑤B.①②C.④⑥D.③④

4.下面叙述正确的是()

A.综合法、分析法是直接证明的方法B.综合法是直接证法、分析法是间接证法

C.综合法、分析法所用语气都是肯定的 D.综合法、分析法所用语气都是假定的5.类比平面正三角形的“三边相等,三内角相等”的性质,可知正四面体的下列哪些性质,你认为比较恰当的是()

① 各棱长相等,同一顶点上的任两条棱的夹角都相等;

② 各个面都是全等的正三角形,相邻两个面所成的二面角都相等;

③ 各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。

A.①B.①②C.①②③D.③

6.(05·春季上海,15)若a,b,c是常数,则“a>0且b2-4ac<0”是“对x∈R,有ax

2+bx+c>0”的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.不充分不必要条件

17.(04·全国Ⅳ,理12)设f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f2

(2),f(5)=()

5A.0B.1C.D.5 2

111118.设S(n)= + + ++„+,则()nn+1n+2n+3n11A.S(n)共有n项,当n=2时,S(2+

311

1B.S(n)共有n+1项,当n=2时,S(2)=+ +

234111

C.S(n)共有n2-n项,当n=2时,S(2 ++

234111

D.S(n)共有n2-n+1项,当n=2时,S(2 ++

4x

9.在R上定义运算⊙:x⊙y=,若关于x的不等式(x-a)⊙(x+1-a)>0的解集

2-y是集合{x|-2≤x≤2,x∈R}的子集,则实数a的取值范围是()A.-2≤a≤2B.-1≤a≤1C.-2≤a≤1D.1≤a≤2

10.已知f(x)为偶函数,且f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2,若n∈N,an=f(n),则a2006=()

A.2006B.4C.D.-4

11.函数f(x)在[-1,1]上满足f(-x)=-f(x)是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是()A.f(sinα)>f(sinβ)B. f(cosα)>f(sinβ)C.f(cosα)<f(cosβ)D.f(sinα)<f(sinβ)

12.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”。四位歌手的话只有两名是对的,则奖的歌手是()A.甲B.乙C.丙D.丁

二 填空题(4×4=16分)13.“开心辞典”中有这样的问题:给出一组数,要你根据规律填出后面的第几个数,现给1131

5出一组数:,-,-,它的第8个数可以是。

228

43214.在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC边上的射影,则AB2=BDBC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为。

15.(05·天津)在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n,n∈N*,S10=____________.16.(05黄冈市一模题)当a0,a1,a2成等差数时,有a0-2a1+a2=0,当a0,a1,a2,a3成等差数列时,有a0-3a1+3a2-a3=0,当a0,a1,a2,a3,a4成等差数列时,有a0-4a

1012

+6a2-4a3+a4=0,由此归纳:当a0,a1,a2,„,an成等差数列时有Cna0-Cna1+Cna2-„+Cnnan=0.如果a0,a1,a2,„,an成等差数列,类比上述方法归纳出的等式为___。三 解答题(74分)已知△ABC中,角A、B、C成等差数列,求证:18.若a、b、c均为实数,且a=x2-2x+

*

x

.11

3+=(12分)a+bb+ca+b+c

πππ

b=y2-2y+c=z2-2z+,求证:a、b、236

c中至少有一个大于0.(12分)

19.数列{an}的前n项和记为Sn,已知a1=1,an+1n+

2n(n=1,2,3,„).n

Sn

证明:⑴数列{Sn+1=4an.(12分)

n

20.用分析法证明:若a>0,则

a22≥a+-2.(12分)

aa

121.设事件A发生的概率为P,若在A发生的条件下B发生概率为P′,则由A产生B的概率为P·P′.根据这一事实解答下题.一种掷硬币走跳棋的游戏:棋盘上有第0、1、2、„、100,共101站,一枚棋子开始在第0站(即P0=1),由棋手每掷一次硬币,棋子向前跳动一次.若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站.直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束.已知硬币出现正、反面的概率相同,设棋子跳到第到第n站时的概率为Pn.(1)求P1,P2,P3;

(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列(12分)

ACAE22.(14分)在ΔABC中(如图1),若CE是∠ACB =.其证明过程:

BCBE作EG⊥AC于点G,EH⊥BC于点H,CF⊥AB于点F

∵CE是∠ACB的平分线,∴EG=EH.又∵

ACAC·EGSΔAEC

=,BCBC·EHSΔBEC

AEAE·CFSΔAEC==,BEBE·CFSΔBEC∴

ACAE=.BCBE

(Ⅰ)把上面结论推广到空间中:在四面体A-BCD中(如图2),平面CDE是二面角A-CD-B的角平分面,类比三角形中的结论,你得到的相应空间的结论是______

(Ⅱ)证明你所得到的结论.B HC

1A

A G

B

2h11C

答案:

一 1 A 2 C 3 A 4 A 5 C 6 A 7 C 8 D 9C10C 11B 12 C

πππ分析:因为锐角三角形,所以α+β>,所以0<-α<β<,222

π

sin(-α)<sinβ,0<cosα<sinβ<1,函数f(x)在[-1,1]上满足是减函数

所以f(cosα)>f(sinβ)。12分析:先猜测甲、乙对,则丙丁错,甲、乙可看出乙获奖则丁不错,所以丙丁中必有一个是对的,设丙对,则甲对,乙错,丁错.∴答案为C.1.二 13-14(S△ABC)2= S△BOC S△BDC15.3

3216a

00n

C

·a

1-C

1n

·a2 n·„·an(-1)nn=1.2C

C

n

[解析]解此题的关键是对类比的理解.通过对所给等差数列性质的理解,类比去探求等比数列相应的性质.实际上,等差数列与等比数列类比的裨是运算级别的类比,即等差数列中的“加、减、乘、除”与等比数列中的“乘、除、乘方、开方”相对应.三 解答题

317(分析法)要证+=

a+bb+ca+b+c

a+b+ca+b+c需证:+ =3

a+bb+c

即证:c(b+c)+a(a+b)=(a+b)(b+c)即证:c2+a2=ac+b

2因为△ABC中,角A、B、C成等差数列,所以B=600,由余弦定理b2= c2+a2-2cacosB 即b= c+a-ca 所以c+a=ac+b

3因此 + =

a+bb+ca+b+c(反证法).证明:设a、b、c都不大于0,a≤0,b≤0,c≤0,∴a+b+c≤0,πππ

而a+b+c=(x2-2y)+(y2-2z+z2-2x+

236

=(x-2x)+(y-2y)+(z-2z)+π=(x-1)+(y-1)+(z-1)+π-3,∴a+b+c>0,这与a+b+c≤0矛盾,故a、b、c中至少有一个大于0.19(综合法).证明:⑴由an+1

2222222

n+2

n,而an+1=Sn+1-Sn得 n

Sn+

1n+12(n+1)n+1Sn∴Sn=Sn+1-Sn,∴Sn+1Sn=2,∴数列{}为等比数列.nnSnn

n

SnSn+1Sn-14an(n-1)⑵由⑴知{2,∴=4·,∴Sn+1=4an.nn+1n-1n-1n+120(分析法).证明:要证

a2+2-≥a+2,只需证

aa

a22+2≥a+aa

∵a>0,∴两边均大于零,因此只需证(a2+22)2≥(a+)2,aa

只需证a2+24+

4a

a2+2≥a2+22+2(a+,aaa

a2+2≥(a+,只需证a2+2≥(a2+2+2),a2aa2aa

即证a2+2≥2,它显然是成立,∴原不等式成立.111131131

521.(1)解:P0=1,∴P1=, P2× +=,P3= ×+× =.2222422428

(2)证明:棋子跳到第n站,必是从第n-1站或第n-2站跳来的(2≤n≤100),所以Pn

Pn-1Pn-2

∴Pn-Pn-1=-Pn-1+Pn-1 Pn-2=(Pn-1-Pn-2),22211

∴an=-an-1(2≤n≤100),且an=P1-P0.22

故{an}是公比为-,首项为-的等比数列(1≤n≤100).2222.结论:

SΔACDSΔAECSΔACDSΔAEDAESΔACD= 或 =SΔBCDBESΔBCDSΔBECSΔBCDSΔBED

证明:设点E是平面ACD、平面BCD的距离分别为h1,h2,则由平面CDE平分二面角A-CD-B知h1=h2.又∵

SΔACDh1SΔACDVA-CDE

= SΔBCDh2SΔBCDVB-CDE

VA-CDEAESΔAEDVC-AED = =BESΔBEDVC-BEDVB-CDESΔACDAE∴ =SΔBCDBE

A G

B

C

2图2 A hB HC

四大推理方法搞定高中证明题 篇3

知识梳理

1.不是直接从命题的条件逐步推得命题成立,这种不是直接证明的方法称为______________(indirect proof).______________就是一种常用的间接证明方法.2.反证法:一般地,假设原命题不成立.经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做______________(reducation to absurdity).3.反证法的证明过程为“否定——______________——______________”.4.反证法的一般步骤:

(1)反设——________________________________________________________.(2)归谬——________________________________________________________.(3)存真——________________________________________________________.知识导学

通过本节课的学习,认识反证法在证明问题中的重要作用,学会用反证法,证明有关命题,并且要注意根据题目的类型,合理选择运用证明问题的方法,学会寻找问题中的矛盾,正确推理.疑难突破

1.对反证法的理解:

从假设结论不成立入手,推出与“已知条件、假设、公理或显然成立的事实”等相矛盾的结果,从而判定假设错误,结论成立,这种方法叫做反证法.反证法证题的特征:是通过导出矛盾、归结为谬误,而使命题得证.反证法的原理是“否定之否定等于肯定”.反证法解题的实质就是否定结论导出矛盾,从而说明原结论正确.即证明命题的逆否命题成立否定结论:对结论的反面要一一否定,不能遗漏;否定一个反面之反证法称为归谬法,否定两个或两个以上反面之反证法称为穷举法,要注意用反证法解题,“否定结论”在推理论证中作为已知使用,导出矛盾是指在假设的前提下,逻辑推理结果与“已知条件、假设、公理、定理或显然成立的事实”等相矛盾.反证法适宜证明存在性、惟一性、带有“至少有一个”或“至多有一个”等字样的一些数学问题.用反证法证明不等式,常用的否定形式有:“≥”的反面为“<”;“≤”的反面为“>”;“>”的反面为“≤”;“<”的反面为“≥”;“≠”的反面为“=”;“=”的反面为“≠”或“>”及“<”.反证法属逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”.其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”,书写格式易错之处是“假设”易错写成“设”.反证法不是去直接证明结论,而是先否定结论,在否定结论的基础上运用演绎推理,导出矛盾,从而肯定结论的真实性.2.应用反证法证明数学命题的一般步骤:

(1)反设:假设命题的结论不成立,即假定原结论的反面为真;

(2)归谬:从反设和已知条件出发,应用正确的推理方法,经过一系列正确的逻辑推理,得出矛盾结果.(3)存真:由矛盾结果、断定反设不真,从而肯定原结论成立.常见的主要矛盾有:①与数学公理、定理、公式、定义或已证明了的结论相矛盾; ②与临时假设矛盾;

③与公认的事实或自相矛盾等.典题精讲

【例1】 如图2-2-4所示,AB、CD为圆的两条相交弦、且不全为直径.求证:AB、CD不能互相平分.思路分析:要证AB与CD不能互相平分,从正面来证明难度很大,所以正难则反,采用反证法,假设AB与CD相互平分,可以找出存在的矛盾.图2-2-4

证明:假设AB、CD互相平分,连结AC、CB、AD、BD则ACBD为平行四边形.所以:∠ACB=∠ADB,∠CAD=∠CBD.因为四边形ACBD为圆内接四边形,所以∠ACB+∠ADB=180°,∠CAD+∠CBD=180°.因此,∠ACB=90°,∠CAD=90°.所以,对角线AB、CD均为直径,与已知矛盾.因此,AB、CD不能互相平分.绿色通道:反证法的关键是,在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾;或与假设矛盾;或与定义、定理、公理、事实矛盾等.反证法常常是解决某些“疑难”问题的有力工具,英国近代数学家哈代曾经这样称赞它:“„„归谬法(反证法)是数学家最有力的一件武器,比起象棋开局时牺牲一子以取得优势的让棋法,它还要高明.象棋对弈者不外乎牺牲一卒或顶多一子,数学家索性把全局拱手让予对方!”.黑色陷阱:在利用反证法证明问题时,一定要分清命题的条件和结论,假设时要对结论进行否定.【变式训练】 如图2-2-5所示,在△ABC中,AB>AC,AD为BC边上的高线,AM是BC边上的中线,求证:点M不在线段CD上.图2-2-5 证明(反证法)

假设M在线段CD上,则BD<BM=CM<DC, 222222且AB=BD+AD,AC=AD+CD, 22222222所以AB=BD+AD<BM+AD<CD+AD=AC, 22即AB<AC,AB<AC.这与AB>AC矛盾,所以点M不在线段CD上.【例2】 若a、b、c均为实数,且a=x-2y+

22

2,b=y-2x+,c=z-2x+, 2362 求证:a、b、c中至少有一个大于0.思路分析:命题以否定形式出现(如不存在,不相交等),并伴有“至少„„”,“不都„„”,“都不„„”,“没有„„”,“至多„„”等指示性语句,在直接方法很难证明时,可以采用反证法.证明:假设a、b、c都不大于0,即a≤0,b≤0,c≤0,则a+b+c≤0, 而a+b+c=x-2y+222222+y-2x++z-2x+=(x-1)+(y-1)+(z-1)+π-3 236

222∵π-3>0,且(x-1)+(y-1)+(z-1)≥0,∴a+b+c>0 这与a+b+c≤0矛盾,因此,a、b、c中至少有一个大于0.绿色通道:在利用反证法证明时的实质是证明它的逆否命题成立,反证法的主要依据是逻辑中的排中律,排中律的一般表现形式是:或者是A,或者非A,即在同一讨论过程中,A和非A有一个且仅有一个是对的,不能有第三种情形出现.222【变式训练】 已知:a、b、c是一组勾股数,即a+b=c 求证:a、b、c不可能都是奇数.证明:假设a、b、c都是奇数.∵a、b、c是一组勾股数, 222∴a+b=c ①

∵a、b、c都是奇数, 222∴a、b、c也都是奇数, 22∴a+b是偶数,这样①式的左边是偶数,右边是奇数,产生矛盾.∴a、b、c不可能都是奇数.【例3】(2006年北京高考卷,理20)在数列{an}中,若a1,a2是正整数,且an=|an-1-an-2|,n=3,4,5, „,则称{an}为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项);

(2)若“绝对差数列”{an}中,a20=3,a21=0.数列{bn}满足bn=an+an+1+an+2,n=1,2,3„,分别判断当n→∞时,an与bn的极限是否存在,如果存在,求出其极限值;(3)任何“绝对差数列”中总含有无穷多个为零的项.思路分析:本题以提出一个新概念的方式来考查数列的概念及极限的问题,背景新颖.解:(1)a1=3,a2=1,a3=2,a4=1,a5=1,a6=0,a7=1,a8=1,a9=0,a10=1(答案不惟一);

(2)解:因为在绝对差数列{an}中,a20=3,a21=0,所以自第20项开始,该数列是a20=3,a21=0,a22=3,a23=3,a24=0,a25=3,a26=3,a27=0, „,即自第20项开始,每三个相邻的项周期地取值3,0,3.所以当n→∞时,an的极值不存在.当n≥20时,bn=an+an+1+an+2=6.所以limn→∞bn=6.(1)证明:根据定义,数列{an}必在有限项后出现零项,证明如下(用反证法): 假设{an}中没有零项,由于an=|an-1-an-2|,所以对于任意的n都有an≥1,从而 当an-1>an-2时,an=an-1-an-2≤an-1-1(n≥3);当an-1<an-2时,an=an-2-an-1≤an-2-1(n≥3).即an的值要么比an-1至少小1,要么比an-2至少小1.3 令Cn=a2n1(a2n1a2n)n=1,2,3„, a2n(a2n1a2n)则0<Cn≤Cn-1-1(n=2,3,4, „)由于a是确定的正整数,这样减少下去,必然存在某项Ck<0,这与Cn>0(n=1,2,3, „)矛盾,从而{an}必有零项.若第一次出现的零项为第n项,记an-1=A(A≠0),则自第n项开始,每三个相邻的项同期地取值0,A、A,即

an3k0an3k1A k=0,1,2,3„, an3k2A所以绝对数列{an}中有无穷多个为零的项.绿色通道:在用反证法证题时,常用的主要矛盾为:与假设矛盾、与数学公理、定理、公式、定义或已被证明了的结论相矛盾,与公认的事实相矛盾.2【变式训练】(2004年太原模拟,20)已知:f(x)=x+px+q(1)求证:f(1)+f(3)-2f(2)=2;(2)求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于证明:(1)f(1)+f(3)-2f(2)=(1+p+q)+(9+3p+q)-2(4+2p+q)=2.(2)假设|f(1)|、|f(2)|、|f(3)|中至少有一个不小于|f(3)|都小于

1.21不成立,则假设|f(1)|、|f(2)|、21,则|f(1)|+2|f(2)|+|f(3)|<2, 2而|f(1)|+2|f(2)|+|f(3)|>f(1)+f(3)-2f(2)=(1+p+q)+(9+3p+q)-(8+4p+2q)=2,这与|f(1)|+2|f(2)|+|f(3)|<2相矛盾.因此假设不成立,从而原命题成立,即|f(1)|、|f(2)|、|f(3)|中至少有一个不小于

1.2问题探究

问题:反证法与直接证法相比较,反证法具有哪些特点呢?

探究:反证法与直接证法相比较,就会发现反证法具有如下特点:

①从推理论证的前提看,反证法增加了“反设”这个新的条件,下述情况常采用反证法.在一门学科开始的阶段,对一些最基本的性质的证明,由于这些基本性质予以成立的条件简明扼要,同时可使用的定理甚少,所以直接证明很困难.另外,在题目中含有“至多„„”,或“至少„„”形式的命题,“惟一性”命运,“否定式命题”,要证明的结论是“无限的”等,均可采用反证法.②从推理论证的目标看,反证法无需专门去证某一特定的结论,只要设法推出一个逻辑矛盾就可以.③从推理论证的方法看,反证法属于演绎推理.反证法具有分析法的特点,它们都是从命题的结论出发.不同的是:一个是从结论开始,另一个是从否定结论开始;一个是得到正确的结果而结束,另一个则是得到不成立的

四大面试技巧让你搞定面试官 篇4

6.对方“请”你时再入座。

二丶握手的礼仪

1.无论男女只有在对方要求握手时,才可把手伸出。而且在握手的同时,男女都要轻轻点头、鞠躬致意。

2.主人、上级或女士,先伸手与人相握。

3.女孩面对男面试官,如果在一米之内对方没有握手的意思,女士则不要主动伸手。

4.握手时保持适当的目光接触,时间控制在3秒以内。

5.不要坐着和对方握手,不要带手套与人握手。不要在握手时另一只手依然拿着简历,或插在口袋里。

6.不要在握手后有意无意地擦自己的手掌。

三丶一些细节礼仪:

1.对其它工作人员以礼相待,主动打招呼或行点头礼。

2.可以适当的轻声于其它应聘者交流信息,这也可以体现出你乐于助人,谦虚好学的品质。

3.等待过程也应该站有站相,坐有坐相。

4.看看随身带来的材料以缓解紧张的心情。

四丶面试后礼仪:

1.可以写一封EMAIL表示感谢。

2.三天后,再打电话,不可过早,能话时间不要超过五分钟。

四大推理方法搞定高中证明题 篇5

在数学中,常用推理和证明来证明一个命题,证明是引用一些真实的命题来确定某一命题真实性的思维形式,在过去的学习中,我们曾经用直接证明或间接证明两类方法证明过许多命题.本节的内容就是学习直接证明的两种方法:综合法和分析法.高手支招1细品教材

一、演绎推理

1.概念:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.2.演绎推理的特点

(1)演绎的前提是一般性原理,演绎所得的结论是蕴涵于前提之中的个别、特殊事实,结论完全蕴涵于前提之中.(2)在演绎推理中,前提与结论之间存在必然的联系.只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的.因而演绎推理是数学中严格证明的工具.(3)演绎推理是一种收敛性的思维方法,它缺少创造性,但却具有条理清晰、令人信服的论证作用,有助于科学的理论化和系统化.状元笔记

演绎推理是由一般到特殊的推理;演绎推理的特征是:当前提为真时,结论必然为真.【示例】判断下列推理,哪些为合情推理,哪些不是合情推理。

(1)a//b,b//c,则a//c;(2)a⊥b,b⊥c,则a⊥c;(3)三角形的内角和为180°,四边形的内角和为360°,五边形的内角和为540°, „„,所以n边形的内角和为(n-2)×180°;(4)今天是星期日,7天之后也是星期日.思路分析:根据实际问题中推理所得问题的真假来判断是否为合情推理.答案:合情推理为(1)(3)(4),不是合情推理的是(2).二、直接证明 1.概念

直接从原命题的条件逐步推得结论成立,这种证明方法叫直接证明.2.答案:直接证明的一般形式

本题条件已知定义本题结论

已知公理已知定理

三、综合法

1.定义:一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种思维方法叫做综合法.综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题.综合法是一种由因导果的证明方法.2.综合法的证明步骤用符号表示为:P0(已知)P1P2„Pn(结论).状元笔记

用综合法证明问题时因果关系要清晰,逻辑表达要明确.综合法所说的“由已知推结论”这里已知是已知的条件和某些数学定义、公理、定理.【示例】设a、b、c>0,求证:

bcacab++≥a+b+c.abc1 思路分析:从不等式的形式看,具有字母轮换性,而且又是齐次式,可考虑用分合思想加以证明,由三个二项式相加而得出.证明:因为bcacbcac+≥2=2c, ababacababbcacababbc≥2≥2=2a,=2b,将以上三个不等式左、右分别相加,bccabcca得:2(bcacabbcacab)≥2a+2b+2c,即≥a+b+c.abcabc

四、分析法

1.定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件吻合为止.分析法也是数学证明中的一种常用直接方法,它先假设所要求证明命题的结论是正确的,由此逐步推出保证此结论成立的必要的判断,而当这些判断恰恰都是已知的命题(定义、公理、法则、公式等)时,命题得证.2.分析法的证明步骤用符号表示为:B(结论)B1B2„BA(已知).状元笔记

分析法就是从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归纳为一个明显成立的条件.使用分析法证明不等式,在分析推理时,要学会正确使用连接有关步骤的关键词,如:“为了证明”“只需证明”等.【示例】如图,SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F,求证:AF⊥SC.思路分析:本题所给的已知条件中,垂直关系较多,不容易确定如何在证明中使用它们,因而用综合法比较困难.这时,可以从结论出发,逐步反推,寻求使当前命题成立的充分条件.在立体几何中,通常可以把证明两条直线互相垂直的问题转化为证明直线与平面垂直的问题.证明:要证AF⊥SC, 只需证SC⊥平面AEF, 只需证AE⊥SC(因为EF⊥SC), 只需证AE⊥平面SBC, 只需证AE⊥BC(因为AE⊥SB), 只需证BC⊥平面SAB, 只需证BC⊥SA(因为AB⊥BC).由SA⊥平面ABC可知,上式成立.所以AF⊥SC.1.区别:由于分析法是执果索因,立足于寻找欲证结论的合适的充分条件,利于思考;分析法确定解题方向比较明确,利于寻找解题思路;综合法是由因导果,立足于寻找已知条件合适的必要条件,证明思路条理清晰,适宜于表述.分析法的特点是:从“未知”看“需知”,逐步向“已知”靠拢,其实际上是找寻它的充 分条件.综合法的特点是:从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是寻找它的必要条件.分析法与综合法各有特点.有些具体的待证命题,用分析法或综合法都可以证明出来,人们往往选择比较简单的一种.2.联系:对于一个新的问题,多半采取先用分析法寻求思路、解法,后用综合法有条理地表述解题过程,实际证题过程,分析与综合是统一运用的,把分析和综合孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也就没有分析.高手支招2基础整理

定积分证明题方法总结 篇6

关键词:积分方法  第一类换元法第二类换元法  分部积分法 不定积分是高等数学中积分学的基础,对不定积分的理解与掌握的好坏直接影响到该课程的学习和掌握。熟练掌握不定积分的理论与运算方法,不但能使学生进一步巩固前面所学的导数与微分的知识,而且也将为学习定积分,微分方程等相关知识打好基础。在高等数学中,函数的概念与定义与初等数学相比发生了很多的变化,从有限到无限,从确定到不确定,计算结果也可能不唯一,但计算方法与计算技巧显得更加重要。这些都在不定积分的计算中体会的淋漓尽致。对不定积分的求解方法进行简单的归类,不但使其计算方法条理清楚,而且有助于对不定积分概念的理解,提高学习兴趣,对学好积分具有一定的促进作用。

1 直接积分法

直接积分法就是利用不定积分的定义,公式与积分基本性质求不定积分的方法。直接积分法重要的是把被积函数通过代数或三角恒等式变形,变为积分表中能直接计算的公式,利用积分运算法则,在逐项积分。

一、原函数与不定积分的概念

定义1.设f(x)是定义在某区间的已知函数,若存在函数F(x),使得F(x)或dF

f(x)

(x)f(x)dx

,则称F(x)为f(x)的一个原函数

定义2.函数

f(x)的全体原函数F(x)C叫做f(x)的不定积分,,记为:

f(x)dxF(x)C

f(x)叫做被积函数  f(x)dx叫做被积表达式C叫做积分常数

其中

”叫做积分号

二、不定积分的性质和基本积分公式

性质1. 不定积分的导数等于被积函数,不定积分的微分等于被积表达式,即

f(x)dxf(x);df(x)dxf(x)dx.

性质2. 函数的导数或微分的不定积分等于该函数加上一个任意函数,即

f(x)dxf(x)C,

或df(x)f(x)C

性质3. 非零的常数因子可以由积分号内提出来,即

kf(x)dxkf(x)dx

(k0).

性质4. 两个函数的代数和的不定积分等于每个函数不定积分的代数和,即

f(x)g(x)dxf(x)dxg(x)dx

基本积分公式

(1)kdxkxC(k为常数)

(2)xdx

1

1

x

1

C

(1)

1

(3)xlnxC

x

(4)exdxexC

(6)cosxdxsinxC (8)sec2xdxtanxC (10)secxtanxdxsecxC (12)secxdxlnsecxtanxC (14)(16)

11x

11x

2

(5)a

x

dx

a

x

lna

C

(7)sinxdxcosxC (9)csc2xdxcotxC

(11)

cscxcotxdxcscxC

(13)cscxdxlncscxcotxC (15)

1x

2

2

xarctanxC

xarcsinxC

xarcsinxC

三、换元积分法和分部积分法

定理1. 设(x)可导,并且f(u)duF(u)C. 则有

f[(x)](x)dxF(u)C

凑微分

f[(x)]d(x)

令u(x)

f(u)du

代回u(x)

F((x))C

该方法叫第一换元积分法(integration by substitution),也称凑微分法. 定理2.设x数F

(t)是可微函数且(t)0,若f((t))(t)具有原函

(t),则

xt换元

fxdx

fttdt

积分

FtC

t

1

x

回代

1

FxC.

四大推理方法搞定高中证明题 篇7

闭区间连续函数性质证明题的解题方法 作者:朱云鹏 张天

来源:《学园》2013年第34期

【摘 要】在高等数学的学习过程中,证明题是非常重要的一类题型,也是让学生感到最棘手的一类题型。尤其是刚刚接触高等数学的初学者,适应和掌握高等数学的证明思路需要一定的积累过程。关于“闭区间上连续函数性质”的证明题,本文给出了“直接证明法”与“辅助函数法”两种方法,对其加以总结并给出了相应例题,希望对初学者与考研复习的同学有所帮助。

【关键词】连续函数性质 证明方法 辅助函数 零点定理 介值定理

【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2013)34-0062-01

三 结束语

对于证明类的题型,在高等数学的整个学习过程中需要反复总结方法,并形成一种证明逻辑,灵活运用定理证明各种问题。当然,读者在看完以上证明方法之后,最好能够总结提炼出自己的方法,能真正在应试和学习的过程中找到适合自己的证明方法,真正掌握连续函数的定义及其性质。

参考文献

[1]同济大学数学系.高等数学[M].北京:高等教育出版社,2007

[2]陈文灯、黄先开.考研数学复习指南[M].北京:北京理工大学出版社,2012

四大推理方法搞定高中证明题 篇8

教案第十三编推理与证明主备人张灵芝总第67期

§13.2 直接证明与间接证明

基础自测

1.分析法是从要证的结论出发,寻求使它成立的条件.答案充分 2.若a>b>0,则a+答案>

3.要证明3+7<25,可选择的方法有以下几种,其中最合理的是(填序号).①反证法 答案②

4.用反证法证明命题:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是.①假设a、b、c都是偶数;②假设a、b、c都不是偶数

③假设a、b、c至多有一个偶数;④假设a、b、c至多有两个偶数 答案②

5.设a、b、c∈(0,+∞),P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R同时大于零”的条件.; 答案充要

②分析法

③综合法

1b

b+

1a

.(用“>”,“<”,“=”填空)

例题精讲

例1设a,b,c>0,证明:

a

2b

b

2c

c

a

≥a+b+c.a

证明∵a,b,c>0,根据基本不等式,有

a

b

+b≥2a,a

b

c

+c≥2b,c

c

a

+a≥2c.三式相加:

b

+

b

c

+

c

a

+a+b+c≥2(a+b+c).即

1a

b

+

b

c

1a

+

a

≥a+b+c.例2(14分)已知a>0,求证: a2证明要证a2

1a

-2≥a+

1a

-2.1a

-2≥a+

1a

-2,只要证a2

+2≥a++2.2分

∵a>0,故只要证



a

1a

12≥(a++a

2),2

6分

427

即a+

1a

+4a2

1a

+4≥a+2+



1a

+22a

1

+2, a

8分

从而只要证2a2

只要证4a

1a

≥2a

1

,a

10分

1112

≥2(a+2+),即a2+≥2,而该不等式显然成立,故原不等式成立.14分 222aaa

例3若x,y都是正实数,且x+y>2,求证:证明假设

1xy

1xy

<2与

1xy

1yx

<2中至少有一个成立.1yx

<2和

1yx

<2都不成立,则有≥2和≥2同时成立,因为x>0且y>0,所以1+x≥2y,且1+y≥2x,两式相加,得2+x+y≥2x+2y,所以x+y≤2,这与已知条件x+y>2相矛盾,因此

1xy

<2与

1yx

<2中至少有一个成立

.巩固练习

1.已知a,b,c为互不相等的非负数.求证:a2+b2+c2>abc(a+b+c).证明∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac.又∵a,b,c为互不相等的非负数,∴上面三个式子中都不能取“=”,∴a+b+c>ab+bc+ac,∵ab+bc≥2ab2c,bc+ac≥2abc2,ab+ac≥2a2bc,又a,b,c为互不相等的非负数,∴ab+bc+ac>abc(a+b+c),∴a2+b2+c2>abc(a++c).2.已知a>0,b>0,且a+b=1,试用分析法证明不等式a

2511

证明要证ab≥

4ab

2511

b≥

4ab

.,只需证ab+

a

bab

1≥

54,只需证4(ab)+4(a+b)-25ab+4≥0,只需证4(ab)+8ab-25ab+4≥0, 只需证4(ab)2-17ab+4≥0,即证ab≥4或ab≤而由1=a+b≥2ab,∴ab≤

14,只需证ab≤



14,成立.显然成立,所以原不等式a

2511

b≥

4ab

3.已知a、b、c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能同时大于.证明方法一假设三式同时大于,即(1-a)b>

4,(1-b)c>

14,(1-c)a>

14,428

∵a、b、c∈(0,1),∴三式同向相乘得(1-a)b(1-b)c(1-c)a>同理(1-b)b≤

41aa

.又(1-a)a≤642

=

14,(1-c)c≤

14,∴(1-a)a(1-b)b(1-c)c≤

164,这与假设矛盾,故原命题正确.14

2方法二假设三式同时大于,∵0<a<1,∴1-a>0,(1a)b

≥(1a)b>=,同理

(1b)c

12,(1c)a

12,三式相加得

32,这是矛盾的,故假设错误,∴原命题正确

.回顾总结知识 方法

思想

课后作业

一、填空题

1.(2008·南通模拟)用反证法证明“如果a>b,那么a>b”假设内容应是.答案a=b或a<b

2.已知a>b>0,且ab=1,若0<c<1,p=logc是.答案p<q

a

b

2,q=logc



1a

,则p,q的大小关系

3.设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列恒成立的等式的序号是.①(a*b)*a=a ③b*(b*b)=b答案②③④

②[a*(b*a)]*(a*b)=a ④(a*b)*[b*(a*b)]=b

4.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则△A1B1C1是三角形,△A2B2C2是三角形.(用“锐角”、“钝角”或“直角”填空)

429

答案锐角钝角

5.已知三棱锥S—ABC的三视图如图所示:在原三棱锥中给出下列命题: ①BC⊥平面SAC;②平面SBC⊥平面SAB;③SB⊥AC.其中正确命题的序号是

.答案①

6.对于任意实数a,b定义运算a*b=(a+1)(b+1)-1,给出以下结论: ①对于任意实数a,b,c,有a*(b+c)=(a*b)+(a*c);

②对于任意实数a,b,c,有a*(b*c)=(a*b)*c;

③对于任意实数a,有a*0=a,则以上结论正确的是.(写出你认为正确的结论的所有序号)

答案②③

二、解答题

7.已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,„),a1=1.(1)设bn=an+1-2an(n=1,2,„),求证:数列{bn}是等比数列;(2)设cn=

an2

n

(n=1,2,„),求证:数列{cn}是等差数列;

(3)求数列{an}的通项公式及前n项和公式.(1)证明∵Sn+1=4an+2,∴Sn+2=4an+1+2,两式相减,得Sn+2-Sn+1=4an+1-4an(n=1,2,„), 即an+2=4an+1-4an,变形得an+2-2an+1=2(an+1-2an)∵bn=an+1-2an(n=1,2,„),∴bn+1=2bn.由此可知,数列{bn}是公比为2的等比数列.430

(2)证明由S2=a1+a2=4a1+2,a1=1.得a2=5,b1=a2-2a1=3.故bn=3·2n.∵cn=

an2

n

(n=1,2,„),∴cn+1-cn=

an12

n1

an2

n

=

an12an

n1

=

bn2

n1

.将bn=3·2n-1代入得

cn+1-cn=(n=1,2,„),由此可知,数列{cn}是公差为

a12

34的等差数列,它的首项c1==

12,故cn=

n-

(n=1,2,„).-2

(3)解∵cn=n-=

(3n-1).∴an=2n·cn=(3n-1)·2n(n=1,2,„)

当n≥2时,Sn=4an-1+2=(3n-4)·2n-1+2.由于S1=a1=1也适合于此公式,所以{an}的前n项和公式为Sn=(3n-4)·2n-1+2.8.设a,b,c为任意三角形三边长,I=a+b+c,S=ab+bc+ca,试证:I2<4S.证明由I2=(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=a2+b2+c2+2S,∵a,b,c为任意三角形三边长,∴a<b+c,b<c+a,c<a+b,∴a2<a(b+c),b2<b(c+a),c2<c(a+b)即(a2-ab-ac)+(b2-bc-ba)+(c2-ca-cb)<0∴a2+b2+c2-2(ab+bc+ca)<0∴a2+b2+c2<2S ∴a2+b2+c2+2S<4S.∴I2<4S.9.已知a,b,c为正实数,a+b+c=1.求证:(1)a2+b2+c2≥

;(2)3a2+ 3b2+3c2≤6.13

证明(1)方法一a2+b2+c2-13

=

(3a2+3b2+3c2-1)=

[3a2+3b2+3c2-(a+b+c)2]

=(3a+3b+3c-a-b-c-2ab-2ac-2bc)=[(a-b)+(b-c)+(c-a)]≥0∴a+b+c≥

.方法二∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤a2+b2+c2+a2+b2+a2+c2+b2+c2 ∴3(a2+b2+c2)≥(a+b+c)2=1∴a2+b2+c2≥

1313

.方法三设a=∴a+b+c=(+,b=

+,c=

+.∵a+b+c=1,∴++=0

+)+(+)+(+)=

+

(++)+++

222

431

=

+2+2+2≥

∴a2+b2+c2≥

.=

3a32

(2)∵3a2=(3a2)1≤

3a21,同理3b2≤

3b32,3c2≤

3c32

∴3a2+3b2+3c2≤

x2x1

3(abc)9

=6∴原不等式成立.10.已知函数y=ax+(a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数;

(2)用反证法证明方程f(x)=0没有负数根.证明(1)任取x1,x2∈(-1,+∞),不妨设x1<x2,则x2-x1>0,由于a>1,∴ax2x1>1且ax1>0, ∴a∴

x2

-ax1=ax1(ax2x1-1)>0.又∵x1+1>0,x2+1>0,-x12x11

x22x21

=

(x22)(x11)(x12)(x21)

(x11)(x21)x22x21

=

3(x2x1)(x11)(x21)

>0,于是f(x2)-f(x1)=ax2-ax1+

x12x11

>0,故函数f(x)在(-1,+∞)上为增函数.x02x01

(2)方法一假设存在x0<0(x0≠-1)满足f(x0)=0,则ax0=-∵a>1,∴0<ax0<1,∴0<-x02x01

.<1,即

<x0<2,与假设x0<0相矛盾,故方程f(x)=0没有负数根.方法二假设存在x0<0(x0≠-1)满足f(x0)=0, ①若-1<x0<0,则②若x0<-1,则

x02x01

<-2,ax0<1,∴f(x0)<-1,与f(x0)=0矛盾.x02x01

14推理证明和复数 篇9

推理证明和复数

一、考纲要求

二、考点考题:

考点1合情推理与演绎推理

题1在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN)成立,类比上述性质,相应地:在等比数列bn中,若b91,则有等式成立.题2观察下列两式:① tan10tan20tan20tan60tan60tan101 ; ②tan5tan10tan10tan75tan75tan51.分析上面的两式的共同特点,写出反映一般规律的等式,并证明你的结论。

题3(在平面几何中,对于RtABC,设ABc,ACb,BCa,则

(1)abc;(2)cosAcosB1;(3)RtABC的外接圆半径为r.2

把上面的结论类比到空间写出相类似的结论。

xxxx,分别计算f(4)5f(2)g(2)和f(9)5f(3)g(3)的值,,g(x)

并由此概括出涉及函数f(x)和g(x)对所有不等于零的实数x都成立的一个等式,并加以证明。

题4已知函数f(x)

222

题5在DEF中有余弦定理:DEDFEF2DFEFcosDFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱ABC-A1B1C1的3个侧面面积与其中两个侧面所成二面角之间的关系式

考点2分析法和综合法考点

题6若a6,.13

1313

·1·

2010届高三第二轮知识点归类

题7若|x|1,|y|1,试用分析法证明:|题8已知:a0,b0,求证:

考点3反证法 xy|1.1xyabab ba

2222题9假设a,b,c,dR,且adbc1,求证:abcdabcd1.题10

考点4复数运算

题11(上海卷3)若复数z满足zi(2z)(i是虚数单位),则z=.1+i 题12(北京卷9)已知(ai)2i,其中i是虚数单位,那么实数a题13(江苏卷3)

21i表示为abia,bR,则ab=. 1i

上一篇:夏宋小学读书笔记评选下一篇:北京密云区----司马台长城导游词