与圆有关的计算证明

2024-09-21

与圆有关的计算证明(精选8篇)

与圆有关的计算证明 篇1

定理是工具方法最重要

与圆有关的问题潘鸿威

一、选择题

1.已知AB、CD是⊙O的两条直径,则四边形ADBC一定是()

A.等腰梯形B.正方形C.菱形D.矩形

2.如图1,DE是⊙O的直径,弦AB⊥ED于C,连结AE、BE、AO、BO,则图中全等三角形有()

A.3对B.2对C.1对D.0对

(1)(2)(3)(4)

3.垂径定理及推论中的四条性质:①经过圆心;②垂直于弦;③平分弦;④平分弦所对的弧.由上述四条性质组成的命题中,假命题是()

A.①②③④B.①③②④

C.①④②③D.②③①④

4.Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,给出下列三个结论:①以点C为圆心,•2.3cm长为半径的圆与AB相离;②以点C为圆心,2.4cm长为半径的圆与AB相切;•③以点C为圆心,2.5cm长为半径的圆与AB相交,则上述结论正确的有()

A.0个B.1个C.2个D.3个

5.在⊙O中,C是AB的中点,D是AC上的任意一点(与A、C不重合),则()

A.AC+CB=AD+DBB.AC+CB

C.AC+CB>AD+DBD.AC+CB与AD+DB的大小关系不确定

6.如图2,梯形ABCD内接于⊙O,AD∥BC,EF切⊙O于点C,则图中与∠ACB相等的角(不包括∠ACB)共有().

A.1个B.2个C.3个D.4个

7.如图3,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:•①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的有()

A.1个B.2个C.3个D.4个

8.如图4,AB是⊙O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F,交⊙O于G.•下面的结论:①EC=DF;②AE+BF=AB;③AE=GF;④FG·FB=EC·ED.其中正确的有()

A.①②③B.①③④C.②③④D.①②④

9.如图5,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC,•垂足是P,DH⊥BH,垂足是H,下

;③AP=BH;④DH为圆的切线,其中一定成立的是()ADBD列结论:①CH=CP;②

A.①②④B.①③④C.②③④D.①②③

(5)(6)(7)(8)

10.如图6,在⊙O中,AB=2CD,那么()

;B.;A.AB2CDAB2CD

;D.AD与2CD的大小关系可能不确定C.AB2CD

二、填空题

11.在⊙O中,若AB⊥MN于C,AB为直径,MN•为弦,•试写出一个你认为正确的结论:_________.

12.已知⊙O1和⊙O2的半径分别为10cm,6cm,OO的长为3cm,则⊙O1与⊙O2的位置关系是_________. 13.如图7,C是⊙O的直径AB延长线上一点,过点C作⊙O的切线CD,D为切点,连结AD、OD、BD,请你根据图中所给的条件(不再标字母或添辅助线),写出一个你认为正确的结论____________. 14.已知⊙O的直径为10,P为直线L上一点,OP=5,那么直线L与⊙O•的位置关系是_______.

15.在△ABC中,∠C=90°,AC=3,BC=4,点O是△ABC的外心,现以O为圆心,•分别以2,2.5,3为半径作⊙O,则点C与⊙O的位置关系分别是________.

16.以等腰△ABC的一腰AB为直径作圆,交底边BC于D,则∠BAD与∠CAD•的大小关系是∠BAD________∠CAD. 17.在△ABC中,AB=5,AC=4,BC=3,以C为圆心,以

AB•的位置关系是____________. 18.如图8所示,A、B、C是⊙O上的三点,当BC平分∠ABO时得结论_________.

三、解答题 19.如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD.

20.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.

21.如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.

22.如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,ABAF,BF和AD交于E,求证:AE=BE.

23.如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.(1)求证:AD=DC.(2)求证:DE是⊙O1的切线.

24.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.

(1)求∠ACM的度数.(2)在MN上是否存在一点D,使AB·CD=AC·BC,说明理由.

25.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.(1)若圆心O与C重合时,⊙O与AB有怎样的位置关系?(2)若点O沿CA移动,当OC等于多少时,⊙O与AB相切?

与圆有关的计算证明 篇2

例1.如图1-1已知在梯形ABCD中, AD∥BC, AB=DC, AG⊥BCG, EF是梯形的中位线, 对角线AC、BD交于O, 且AC⊥BD, 求证EF=AG。

证明:

方法一:如图1-2所示过D作DH∥AC交BC的延长线于H, 则四边形ACHD为平行四边形, ∴AD=CH, AC=DH (平行四边形对边相等) 。又∵EF是中位线, ∴梯形的中位线等于上下底之和的一半) 。又∵AC⊥BD, DH∥AC, AB=DC, ∴∠BDH=90°。∵AG⊥BC于G, ∴。

方法二:如图1-3所示过A作AM∥BD交CB的延长线于M, 则四边形AMBD为平行四边形, ∴AD=MB, AM=DB, AB=DC (平行四边形对边相等) 。又∵EF是中位线, ∴ (梯形的中位线等于上下底之和的一半) 。又∵AC⊥BD, AM∥BD, ∴∠MAC=90°。∵AG⊥BC于G, ∴, ∴EF=AG。

分析:解决梯形相关问题, 常用的辅助线有: (1) 平移一腰, 即从梯形的一个顶点做另一腰的平行线, 把梯形分成一个平行四边形和一个三角形, 如图 (1) 所示。

(2) 过顶点作高, 即从同一底的两端做另一底所在直线的垂线, 把梯形转化成一个矩形和两个直角三角形, 如图 (2) 所示。 (3) 平移一条对角线, 即从梯形的一个顶点做一条对角线的平行线, 把梯形转化成一个平行四边形和三角形如图 (3) 所示。 (4) 延长梯形两腰使它们相交于一点, 把梯形转化成三角形, 如图 (4) 所示。 (5) 过一腰的中线做辅助线:a.过次中点做另一腰的平行线, 梯形转化成平行四边形, 如图 (5) 所示。b.连接一底的端点与一腰的中点, 并延长与另一底的延长线相交, 把梯形转化成三角形, 如图 (6) 所示。 (6) 有底的中点做两腰的平行线, 把梯形转化成两个平行四边形和一个三角形, 如图 (7) 所示。

例2.如图2-1所示在等腰梯形ABCD中, AB∥CD, 点E、F在AB上, 连接CE、DF, EC与DF相交于O, 且OE=OF求证:CE=DF。

证明:

方法一:如图2-1, 平移EC, 使C到D点连接MA, ∵AB∥CD, ∴四边形CDME是平行四边形, ∴DM=CE、∠M=∠CEB (两直线平行同位角相等) 。又∵OE=OF, ∴∠OEF=∠OFE (等角对等边) , ∴∠M=∠DFM, ∴DM=DF (等角对等边) , ∴CE=DF。

方法二:如图2-2, 平移DF, 使D到C点连接BN, ∵AB∥CD, ∴四边形CDFN是平行四边形, ∴DF=CN、∠N=∠DFA (两直线平行同位角相等) 。又∵OE=OF, ∴∠OEF=∠OFE (等角对等边) , ∴∠N=∠CEF, ∴CE=CN (等角对等边) , ∴CE=DF。

例3.如图3所示, 在梯形ABCD中, AD∥BC, ∠B=90°, AB=14cm, AD=18cm, BC=21cm, 点P从点A开始沿AD边向D以1cm/s的速度移动, 点Q从点C开始沿CB边向点B已2cm/s的速度移动, 如果P、Q分别从点A、C同时出发, 求移动时间为多少时, 梯形ABCD为等腰梯形?

分析:由于AD∥BC, 等腰梯形是轴对称图形, 要说明四边形PQCD是等腰梯形, 则可以从QN=MC中得到解决, 特别需要注意的P、Q的运动方向是相反的。

解:设移动时间为ts时, P、Q运动到如图3的位置, 梯形PQCD是等腰梯形, 则PQ=DC。过点P做PN⊥BC于N, 过点D作DM⊥BC于M, ∵AD∥BC, ∴PN=DM, ∴QN=MC=BC-BM=BC-AD=21-18=3 (cm) 。

又∵QN=BN-BQ=AP-BQ=t- (21-2t) =3t-21, ∴3t-21=3, 即t=8。

∴移动时间为8s时, 梯形ABCD为等腰梯形。

因此, 在有关梯形的证明和计算中, 通常都是把梯形通过作辅助线和平移的形式, 转化成三角形、矩形、平行四边形来解决问题, 通过对辅助线作法的总结, 学生就能够很快掌握有关梯形的证明与计算。可见, 在学习过程中, 学生还需要做大量的练习, 才能够熟练掌握梯形辅助线的作法以及辅助线在梯形几何证明和计算中的正确应用。

摘要:中学数学中几何证明与计算是数学学科中的主要部分, 在中考中占有较大的比例, 在中学数学学习中也是一个难点, 特别是涉及辅助线的作法, 更是中学生头痛的问题, 这就需要教师在平时的教学中加强训练, 以提高学生的解题能力。

关键词:数学证明,辅助线,解题方法

参考文献

[1].朱海英.中考备战策略[M].黄河出版社, 2011.

[2].何雨舟.中考全解全练[M].江语文出版社, 2011.

与四边形有关的计算和证明 篇3

■平行四边形

与平行四边形有关的考题重点涉及平行四边形的性质及判定方法,解决有关问题需要熟练掌握平行四边形的性质和判定方法.

■ (2011四川凉山)如图1,E,F是平行四边形ABCD对角线AC上的点,CE=AF,请你猜想:线段BE与线段DF有怎样的关系,并对你的猜想加以证明.

■?摇猜想:BE∥DF,且BE=DF. 因为四边形ABCD是平行四边形,所以CB=AD,CB∥AD. 所以∠BCE=∠DAF. 在△BCE和△DAF中,CB=AD,∠BCE=∠DAF,CE=AF,所以△BCE≌△DAF. 所以BE=DF,∠BEC=∠DFA. 所以BE∥DF. 所以BE∥DF,且BE=DF.

■矩形

与矩形有关的考题通常为矩形折叠问题和矩形的判定,解决折叠问题,需要把折叠的特征、勾股定理及平行线的相关知识综合应用;解决矩形的判定问题应熟练掌握矩形的判定方法,并能根据所给的条件灵活选用.

■ (2011黑龙江大庆)如图2,ABCD是一张边AB长为2、边AD长为1的矩形纸片,沿过点B的折痕将∠A翻折,使得点A落在边CD上的点A1处,折痕交边AD于点E.

(1)求∠DA1E的大小.

(2)求△A1BE的面积.

■?摇(1)由Rt△ABE≌Rt△A1BE知A1B=AB=2,又BC=1,所以∠BA■C=30°. 因为∠BA1E=∠BAE=90°,所以∠DA1E=60°.

(2)在Rt△A1BC中,A1B=2,BC=1,所以A1C=■. 所以A1D=2-■. 设AE=x(x>0),则ED=1-x,A1E=x.?摇 在Rt△A1DE中,A1D2+DE2=A1E2,即(2-■)2+(1-x)2=x2,解得x=4-2■. 在Rt△A1BE中,A1E=4-2■,A1B=AB=2,所以S△A1BE=■×2×(4-2■)=4-2■.

■菱形

与菱形有关的考题重点考查菱形的判定,常以解答题或探索题的形式出现,解决有关的计算题需要将菱形与勾股定理相结合;解决有关的判定题,需从边、对角线两个方面进行判定.

■ (2011福建福州)已知,在矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O. 如图3,连结AF,CE,求证四边形AFCE为菱形.

与圆有关的计算证明 篇4

【学习目标】

1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外d>r;点P在圆上d=r;点P在圆内d

2.理解不在同一直线上的三个点确定一个圆并掌握它的运用. 3.了解三角形的外接圆和三角形外心的概念. 4.了解反证法的证明思想.

【学习过程】

一、温故知新:

(学生活动)请同学们口答下面的问题. 1.圆的两种定义是什么?

2.圆形成后圆上这些点到圆心的距离如何?

3.如果在圆外有一点呢?圆内呢?请你画图想一想.

二、自主学习:

自学教材P97-----P99,思考下列问题:

1、点与圆的三种位置关系:(圆的半径 r,点P与圆心的距离为d)点P在圆外 点P在圆上 点P在圆内

2、自己作圆:(思考)

(1)作经过已知点A的圆,这样的圆能作出多少个?

(2)经过A、B两点作圆,这样的圆能作出多少个?它们的圆心分布有什么特点?

(3)经过A、B、C三点作圆,有哪些情况?三点应符合什么条件才能作圆?

3、什么叫三角形的外接圆?三角形的外心及性质?

4、教材是如何用反证法证明过同一直线上的三点不能作圆?反证法的证明思路是什么?(教师讲解)

三、典型例题:

例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.

(圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心).

四、巩固练习:

教材P100练习

1、作图: 2、3题直接做在教材上。第4题口答

5、(教材P110习题24.2第1题)

五、教学反思:

【拓展创新】

1、A,B,C是平面内的三点,AB=3,BC=3,AC=6,下列说法正确的是()

A.可以画一个圆,使A,B,C都在圆上;

B.可以画一个圆,使A,B在圆上,C在圆外;

C.可以画一个圆,使A,C在圆上,B在圆外;

D.可以画一个圆,使B,C在圆上,A在圆内

2、(07年湖南株洲)已知△ABC的三边长分别为6cm、8cm、10cm,则这个三角形的外接圆的面积为__________cm2.(结果用含π的代数式表示)

3.如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A、B、C•为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,•要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.

AC

【布置作业】 教材 P110习题24.2第2、3题

有关中值定理的证明题 篇5

1、已知函数f(x)具有二阶导数,且limx0f(x)0,f(1)0,试证:在区间(0,1)内至少x存在一点,使得f()0.证:由limf(x),由此又得00,可得limf(x)0,由连续性得f(0)x0x0xf(x)f(0)f(x)f(0)limlim0,由f(0)f(1)0及题设条件知f(x)在[0,1]x0x0x0x上满足罗尔中值定理条件,因此至少存在一点 c(0,1),使得f(c)0,又因为f(0)f(c)0,并由题设条件知f(x)在[0,c]上满足拉格朗日中值定理的条件,由拉格朗日中值定理知,在区间(0,1)内至少存在一点,使得f()0.2、设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)0,证明:存在一点(0,a),使得f()f()0.证:分析:要证结论即为:[xf(x)]x0.令F(x)xf(x),则F(x)在[0,a]上连续,在(0,a)内可导,且F(0)F(a)0,因此故存在一点(0,a),使得F()0,F(x)xf(x)在[0,a]上满足罗尔中值定理的条件,即f()f()0.注1:此题可改为:

设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)0,证明:存在一点(0,a),使得

nf()f()0.)nf()(0给分析:要证结论nf()f()等价于nn1f(nn1n,而nf()f()0即为[xf(x)]x0.nf()f()两端同乘以n1)故令F(x)xf(x),则F(x)在[0,a]上满足罗尔中值定理的条件,由此可证结论.注2:此题与下面例题情况亦类似:

设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)0,x(0,1),有f(x)0,证:nnN,(0,1),使得

nf()f(1)成立.f()f(1)分析:要证结论可变形为nf()f(1)f()f(1)0,它等价于nfn1()f()f(1)fn()f(1)0(给nf()f(1)f()f(1)0两端同乘以fn1()),而nfn1(f)f()(fn1f)(即)为(1)0[fn(x)fx1(x,用罗尔中值定理)]0.以上三题是同类型题.3、已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)0,f()1,证明:(1)存在一点(,1),使f().(2)存在一点(0,),使f()1.(3)存在一点x0(0,),使f(x0)1(f(x0)x0).证:(1)分析:要证结论即为:f()0.12121211111显然F(x)在[,1]上连续,且F()f()0,F(1)f(1)110,2222211因此F(x)在[,1]上满足零点定理的条件,由零点定理知,存在(,1),使F()0,22令F(x)f(x)x,则只需证明F(x)在(,1)内有零点即可。即f().(2)又因为F(0)f(0)00,由(1)知F()0,因此F(x)在[0,]上满足罗尔中值定理条件,故存在一点(0,),使F()0,即f()10,即f()1.(3)分析:结论f(x0)1(f(x0)x0)即就是F(x0)F(x0)或F(x0)F(x0)0,F(x0)F(x0)0ex0[F(x0)F(x0)]0,即[exF(x)]xx00.故令G(x)exF(x),则由题设条件知,G(x)在[0,]上连续,在(0,)内可导,且G(0)e0F(0)0,G()eF()0,则G(x)在[0,]上满足罗尔中值定理条件,命题得证.4、设f(x)在[0,x]上可导,且f(0)0,试证:至少存在一点(0,x),使得f(x)(1)ln(1x)f().证:分析:要证结论即为: f(x)f(0)(1)[ln(1x)ln1]f(),也就是f(x)f(0)f(),因此只需对函数f(t)和ln(1t)在区间[0,x]上应用柯西中值定理1ln(1x)ln11即可.5、设f(x)、g(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,且g(x)0,证明:至少存在一点(a,b),使得f()g()f()g().证:分析:要证结论即为: f()g()f()g()0,等价于

f()g()f()g()0,2g()即就是[即可.f(x)f(x)在区间[a,b]上应用罗尔中值定理]x0,因此只需验证函数F(x)g(x)g(x)

6、设f(x)在[x1,x2]上可导,且0x1x2,试证:至少存在一点(x1,x2),使得x1f(x2)x2f(x1)f()f().x1x2f(x2)f(x1)f(x)()xx2x1x证:分析:要证结论即为: ,因此只需对函f()f()111()xx2x1x数f(x)1和在区间[x1,x2]上应用柯西中值定理即可.xx此题亦可改为:

设f(x)在[a,b]上连续,(a,b)内可导,若0ab,试证:至少存在一点(a,b),使得af(b)bf(a)[f()f()](ab).7、设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)0,试证:(1)(a,b),使得f()f()0;(2)(a,b),使得f()f()0.证:(1)令F(x)xf(x),利用罗尔中值定理即证结论.(2)分析:f()f()0e[f()f()]0[e22x22f(x)]x0,因此令F(x)ex22f(x),利用罗尔中值定理即证结论.8、设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)1,试证:,(a,b),使得e[f()f()]1.[exf(x)]xe[f()f()]证:分析:要证结论即为1,即就是1.xe(e)x令F(x)ef(x),令G(x)e,则F(x)和G(x)在[a,b]上满足拉格朗日中值定理的条件,由拉格朗日中值定理知: xxebf(b)eaf(a)ebea,即就是e[f()f()].(a,b),使得F()babaebeaebea,即就是e.(a,b),使得F()babae[f()f()]因此,有1,即就是e[f()f()]1.e9、设f(x)、g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)g(a),f(b)g(b),试证:(a,b),使得f()g().0.证:分析:要证结论即为[f(x)g(x)]x令F(x)f(x)g(x),(1)若f(x)、g(x)在(a,b)内的同一点处取得相同的最大值,不妨设都在c点处取得最大值,则F(a)F(c)F(b)0(acb),则F(x)分别在[a,c]、[c,b]上满足罗尔中值定理条件,故1(a,c),2(c,b)使得F(1)0,F(2)0.由题设又知,F(x)在[1,2]上满足洛尔定理条件,故存在(1,2),使得F()0,即就是f()g()].(2)若f(x)、g(x)在(a,b)内的不同的点处取得相同的最大值,不妨设f(x)在p点处、g(x)在q点处取得最大值,且pq,则F(p)f(p)g(p),F(q)f(q)g(q)0,由零点定理知,c(p,q)(0,1),使得F(c)0,由此得 F(a)F(c)F(b)0(acb),后面证明与(1)相同.10、设f(x)在[a,b]上连续,在(a,b)内可导,且f(x)0,若极限limxaf(2xa)存在,xa试证:(1)存在一点(a,b),使得

b2a2baf(x)dx22; f()22b(2)在(a,b)内存在异于的点,使得f()(ba)f(x)dx.;

aa证:(1)令F(x)xaf(t)dt,G(x)x2,则F(x)、G(x)在[a,b]上满足柯西中值定理

b2a2ba条件,故存在一点(a,b),使得

b2a2af(t)dtf(t)dta2成立,即就是f()bab222成立,即就是2f(x)dx(ba)f()成立.af(x)dxf()(2)由(1)知,2ba22因此要证f()(ba)f(x)dx(b2a2)f(),2bf(x)dx.,aa即要证f()(ba)221a(b2a2)f(,)即要证f()(a)f(,)由已知

与圆有关的计算证明 篇6

一. 本章节知识点

1、掌握平行四边形的性质定理“平行四边形的两组对边分别相等、平行四边形的对角线互相平分、平行四边形的对角相等”。

2、会应用平行四边形的上述定理解决简单几何问题。

3、通过探索平行四边形的性质,进一步发展学生的逻辑推理能力及条理的表达能力。

4、在以平行四边形为载体为证明线段(或角)相等的问题中,•通常证明这些线段(或角)

所在的四边形是平行四边形,再由平行四边形的性质来证明,而不要仅仅停留在证三角形全等上.在学习时,应熟练掌握平行四边形的性质及判别方法,注意图形变换的一些特征,善于从折叠、旋转等几何变换中寻求已知条件.

二.典型例题

例 1.已知:如图,在中,那么OE、OF是否相等,说明理由.

交于点O,过O点作EF交AB、CD于E、F,分析观察图形,证明:

在,∴

∴,∴,则________,ABCD的周长=______.中,交于O,∴,从而可说明例2.O是ABCD对角线的交点,的周长为59,若与的周长之差为15,则______,解答:ABCD中,.∴的周长

.在ABCD中,的周长-

.∴的周长

ABCD的周长

与的周长的差转化为两条

说明:本题考查平行四边形的性质,解题关键是将线段的差.例3.已知:如图,ABCD的周长是,由钝角顶点D向AB,BC引两条高DE,DF,且

.求这个平行四边形的面积

.解答:设

.∵ 四边形ABCD为平行四边形,∴

.①

又∵四边形ABCD的周长为36,∴∵

.,解由①,②组成的方程组,得∴

.说明:本题考查平行四边形的性质及面积公式,解题关键是把几何问题转化为方程组的问题.例4如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE•与DF

有怎样的位置关系和数量关系?并对你的猜想加以证明.

解析猜想:BE∥DF,BE=DF.

证法一:如图1,∵四边形ABCD是平行四边形,∴BC=AD,∠1=∠2.又∵CE=AF,∴△BCE≌△DAF.∴BE=DF,∠3=∠4,∴BE∥DF.

证法二:如图2,连结BD,交AC于点O,连结DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO.又∵AF=CE,∴AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,∴BE//DF. 三.习题演练

一、选择题

1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()

A.AD∥BC, AD=BCB.AB=DC,AD=BCC.AB∥DC,AD=BC

D.OA=OC,OD=OB

2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和

3B.3和

2C.4和

1D.1和

4E 第2 题图

3.如图,在平行四边形ABCD中,AC,BD相交于点O

.下列结论中正确的个数有()

结论:①OAOC,②BADBCD,③ACBD,④BADABC180. A.1个

B.2个

C.3个

A第3题图

C

D.4个

4.如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)(5,0)(2,3),则顶点C的坐标是()A.(3,7)

二、填空题

B.(5,3)

C.(7,3)

D.(8,2)

x

5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是(添加一个条件即可).

6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______, ∠D=_________。

7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。8.如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC12,BD10,ABm,那么m的取值范围是___________。

三.课后作业

AD

C

第5题图

C

A第7题图

9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD相交于M、N,你认为OM、ON有什么关系?为什么?

10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明BE=CF。

四.参考答案

一、选择题C、B、C、C

二、填空题5.答案不唯一,可以是:ABCD或AD∥BC等。6.130,507.16cm8.1m1

1三、解答题 9.解:OM=ON

证明:∵平行四边形ABCD

∴OB=OD , AB∥CD∴∠ABD=∠CDB

又∵∠BOM=∠DON ∴△BOM≌△DON∴OM=ON。

10.解:∵BD平分∠ABC

∴∠ABD=∠DBC

∵DE∥BC,∴∠EDB=∠DBC ∴∠ABD=∠EDB ∴BE=ED

∵DE∥BC,EF∥AC

与圆有关的计算证明 篇7

义务教育课程标准教科书数学 (人教版) 八年级上册150页第12题:等腰三角形两底角的平分线相等吗?两腰上的中线呢?两腰上的高呢?证明其中的一个结论.显然, 等腰三角形两底角的平分线相等, 两腰上的中线相等, 两腰上的高也相等。它们都很容易用全等三角形证明.由此我们很自然地思考与它们相反的问题:有两条角平分线相等的三角形是等腰三角形吗?有两条中线相等的三角形是等腰三角形吗?有两条高相等的三角形是等腰三角形吗?经过探究会得到结论:有两条角平分线相等的三角形是等腰三角形, 有两条中线相等的三角形是等腰三角形, 有两条高相等的三角形也是等腰三角形.但是证明上述命题, 有难有易.我们很容易用全等三角形证明“有两条高相等的三角形是等腰三角形”, 但是用全等三角形证明“有两条角平分线相等的三角形是等腰三角形, 有两条中线相等的三角形是等腰三角形”却比较困难.令我欣喜的是有学生还根据“三角形的面积等于底乘高的一半”, 很方便地用等式性质证明了“有两条高相等的三角形是等腰三角形, 等腰三角形两腰上的高相等”。这就启发我们, 也可以用等式的性质证明“有两条角平分线相等的三角形是等腰三角形, 有两条中线相等的三角形是等腰三角形.等腰三角形的两底角的平分线相等, 等腰三角形两腰上的中线相等”。

上面的命题的题设和结论都很简单, 分别是三角形角平分线的关系、中线的关系、边之间的关系.如果能得到三角形的中线、角平分线与三角形的三边关系式, 就有可能用等式的性质证明上述命题。

二、三角形的中线、角平分线与三角形三边的关系的公式推导

1、证明余弦定理.

如图1, 在△A BC中, A B=c, BC=a, CA=b, 过点B作BD⊥A C, 垂足为D。在△A BD中, BD=A Bsin A=csin A, A D=A Bcos A=ccos A, CD=A C-A D=b-ccos A。在△BCD中, 用勾股定理得, BC2=BD 2+D C2= (csin A) 2+ (b-ccos A) 2=b2+c2-2bccos A, 即a2=b2+c2-2bccos A.如果垂线段BD不在三角形内部, 同样可以得到结论。

2、证明三角形中线与三边的关系.

如图2, 在△A BC中, A M是中线, 三边BC=a, A C=b, A B=c.由余弦定理得:AM2=AB2+BM2—2AB×BM×cos B=c2+ (2—1a) 2-2*21a*c*2aca2+c2-b2=c2+41a2-21 (a2+c2-b2) =41 (2b2+2c2-a2) 。即得中线A M=Ma=21

3、证明角平分线与三边的关系.

三、等腰三角形的有关性质与判定的证明

1、等腰三角形两腰上的中线相等

如图3, 在△A BC中, AB=AC, BD和CE是两腰上的中线.根据公式得:。又b=c, 所以BD=CE。

2、有两边上的中线相等的三角形是等腰三角形

如图3, 在△A BC中, BD和CE分别是两边A C、A B上的中线, 且BD=CE.根据公式得:

即AB=AC。

3、等腰三角形两底角的平分线相等

如图4在△A BC中, A B=A C, BD和CE是两底角的平分线。根据公式得, 又b=c, 所以, BD=CE。

4、有两条角平分线相等的三角形是等腰三角形

如图4, 在△A BC中, BD和CE分别是∠A BC和∠A CB的角平分线, 且BD=CE.根据公式得

和全等三角形有关的和差式的证明 篇8

全等三角形是证明线段相等、角相等的一个重要工具.随着学习的深入,出现了证明一些线段的和(差)等于某条线段的题目,让学生感到困难.这时,通过恰当添加辅助线,将线段的和差问题转化为线段的相等问题,同时构造全等三角形,成为解决问题的主要手段.

一、与三角形、四边形有关的线段和差问题

例1如图1,△ABC中,∠A=2∠B,CD平分∠ACB.

求证:BC=AD+AC.

思路1:(截长)在BC上截取CE=CA,连接DE.如图2.

易证△ACD≌△ECD(SAS).

∴∠3=∠A=2∠B.

∵∠3=∠B+∠4,

∴∠B=∠4.

∴BE=DE=AD.

∴BC=BE+EC=AD+AC.

思路2:(补短)延长CA到E,使得EC=BC,连接DE.如图3.

由条件推出△CED≌△CBD(SAS).

与思路1相仿,由∠E=∠B,∠BAC=2∠B,得∠4=∠E.AE=AD.下略.

点评:对于线段之间的和差关系,常采用“截长”、“补短”等添加辅助线方法,构造全等三角形,从而转化为两线段间的相等关系.

例2如图4,△ABC中,∠B=2∠C,AD垂直BC于D.

求证:CD=AB+BD.

思路:如图5,在DC上截取DE=DB,连接AE.

易知△ABD≌△AED(SAS).

∴AB=AE,∠2=∠B.

又∠B=2∠C,得∠1=∠C,AE=CE.

∴CD=CE+DE=AE+DE=AB+DE=AB+BD.

点评:本解法是截长的方法.也可用补短的方法去证:延长DB到E,使BE=BA,连接AE.读者不妨自己试试.

例3如图6,等边△ABC中,延长BA到D,延长BC到E.若DC=DE,求证:AD=AC+CE.

思路:如图7,延长BC到F,使EF=BC,连接DF.因EF=BC=AC,故只要证CF=AD即可.

易证△DCB≌△DEF(SAS).

∠F=∠B=60°.

故△DBF是等边三角形.

∴BD=BF.

而BA=BC,故AD=CF=CE+EF=CE+AC.证毕.

点评:本题还可以作以下辅助线证明:作EM∥AC交BD于M.证明△ACD≌△MDE(AAS).

例4如图8,AE∥BC,AD、BD分别是∠EAB、∠CBA的平分线.过点D的直线EC交AE于点E,交BC于点C.求证:AE+BC=AB.

思路1:(截长)在AB上截取AF,使AF=AE,连接DF.如图9.

易证△ADE≌△ADF(SAS).

∴∠E=∠AFD.

∵AE∥BC,

∴∠E+∠C=180°.

又∵∠AFD+∠BFD=180°,

∴∠C=∠BFD.

∴△BDF≌△BDC(AAS).

∴BF=BC.AE+BC=AF+BF=AB.

思路2:(补短)如图10,延长BC交AD的延长线于F.要证AE+BC=AB,只需要证明AB=BF和AE=CF.

由题设∠1=∠F=∠2,△ABF是等腰三角形.

∴AB=BF.

又BD是∠FBA的平分线,由等腰三角形“三线合一”知AD=FD.

∴△ADE≌△FDC(ASA).AE=CF.

∴AE+BC=CF+BC=BF=AB.

二、运动型线段和差问题

例5如图11(1),在正方形ABCD中,点P是CD上一动点,连接PA.分别过点B、D作BE⊥PA,DF⊥PA,垂足分别为E、F.

(1)请探索BE、DF、EF这三条线段长度具有怎样的数量关系,并说明理由.

(2)若点P在DC的延长线上(如图11(2)),那么这三条线段的长度之间又具有怎样的数量关系?请说明理由.

(3)若点P在CD的延长线上(如图11(3)),那么这三条线段的长度之间又具有怎样的数量关系?请说明理由.

简解:(1)结论是:BE-DF=EF.

注意同角的余角相等,易证△ABE≌△DAF(AAS).

所以EF=AF-AE=BE-DF.

(2)结论是:DF-BE=EF.

与(1)类似,易证△ABE≌△DAF(AAS).

所以EF=AE-AF=DF-BE.

(3)结论是:DF+BE=EF.理由略,请读者自行探究.

点评:本题是典型的运动型线段和差问题.在运动过程中,图中某些线段保持相似或相同的数量关系.本题的证明中应用三角形全等的性质,“化解”了线段间的和差关系.一般来说,这类题目的证法基本相同或类似.但在个别情况下,线段间不保持原有的关系.

练习

1. 如图12,在△ABC中,AB=AC,∠A=108°,∠1=∠2.求证:AC+CD=BC.

提示:在CB上截取CE=CD,连接DE.证明△ABD≌△EBD(AAS).

2. 如图13,△ABC中,AD为∠BAC的平分线.M为BC的中点,ME∥AD交BA的延长线于E,交AC于F.求证:CF=BE,AB+AC=2BE.

提示:延长EM到G,MG=FM,连接BG,证△BMG≌△CMF.

3. 在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.

(1)当直线MN绕点C旋转到图14(1)的位置时,求证:DE=AD+BE.

(2)当直线MN绕点C旋转到图14(2)的位置时,求证:DE=AD-BE.

上一篇:驾驶员规范操作检查表下一篇:欧体字楷书捺的写法