政策变量

2024-11-25

政策变量(共6篇)

政策变量 篇1

题目1:运用IS-LM模型分析我国98年扩大内需政策对宏观经济变量的影响。

背景:

1997年,刚刚成功实现了“软着陆”的中国经济,却遭遇了至今仍令许多人记忆犹新的亚洲金融危机。这一发端于东南亚并迅速波及刚刚回归中国的香港的金融**,使中国经济很快又出现了通货紧缩的趋势。作为一项紧急应对之策,中国政府做出了人民币不贬值的决策,同时采取包括增发国债、降低存贷款利率、提高出口退税率等在内的一系列宏观调控政策。

定义:

主要宏观经济变量包括,国民生产总值,国内生产总值,消费量,投资量,储蓄率,货币存量,政府预算,失业率,通货膨胀率,利率,汇率。

IS-LM模型:

IS—LM模型是反映产品市场和货币市场同时均衡条件下,国民收入和利率关系的模型。分析:

从IS-LM图形上看,降低存款利率导致LM曲线下移,表明银行存款减少,市场上用于投资的货币增多;同时,随着出口退税率的提高,人民币不贬值等措施的进行,对外出口的必然加大,进口必然减少。通过发行国债,减少市场的货币流通,降低物价,导致商品的需求加大。因此IS曲线向右边移动,IS曲线和LM曲线相交于另外一个点。在新的平衡点上,产出(Y)加大,利率降低,货币需求减少。

1、消费量(C)

由于利率的下降,通货膨胀的控制,居民用于储蓄的货币减少,用于购买物品的货币增多,消费量加大。

2、投资量(I)

由于政府增发了债券,导致市场上大量的闲散资金用于购买债券,市场上的流通资金减少。政府将募集到的资金的资金用于重点行业的投资,实现了经济平衡发展。同时,由于利率的下降,消费的增长,出口的加大,必然导致投资的加大。

3、居民储蓄和货币存量

由于利率下降,居民用于储蓄的货币必然增多,导致居民储蓄下降。同时,由于银行储蓄的减少,货币存量必然增加(货币存量是指某一时点一国银行体系之外由政府机构、各企事业单位及社会公众持有的现金)。

4、失业率 由于消费增加、出口增大导致产出加大,在短期无法改善技术条件的情况下,劳动人数必然提升,导致失业率下降。

5、通货膨胀率

由于市场的流通资金减少,产出加大,必然导致物价下降,从而通货膨胀减少。

6、汇率

由于外汇的流入增多,国内对货币的需求因为投资的增加而加大,导致出口企业将外汇兑换成本国货币的需求加大,从而导致汇率加大。

7、对GDP的影响

从GDP=C+I+G+X-IM公式来看,C、I、G、X加大,IM减少,故GDP增大。这和99年、01年、02年GDP实际数值比较吻合。

题目2:结合自己的行业谈谈98年扩大内需政策的影响。

本人目前就职的中国银联为银行卡联合组织,本企业的主要职责为促进银行卡的消费,减少现金在市场上的流通。银行信用卡就是其中的重要工具。

由于消费98年扩大内需政策的影响,导致物品价格下降,因此银行将发行更多的信用卡来满足市民的购物投资需要。同时由于信用卡发卡规模的扩大,必然导致市场上的货币增加(信用卡本质上就是一种货币),从而进一步推动物品供应的增加。总上所述,98年扩大内需的政策将导致银行卡发卡量的加大,信用卡信用额度的提升,导致各家银行发行信用卡积极性增加,信用卡在种类、功能等方面与将随之更加丰富。

政策变量 篇2

在我国,货币政策的中介变量和目标变量具有可测性、可控性、相关性。中央银行可以通过汇总统计金融行业的各种报表对M1和M2进行及时的测量,可以运用货币政策调整货币的供应量,达到货币供求平衡。所谓货币政策是指中央银行通过银行体系变动货币供给量来实现其特定经济目标的总称。货币政策包括工具变量、中介变量、目标变量。中央银行利用这三种变量之间的相关性,以货币政策中介变量作为媒介,直接控制工具变量,从而间接影响目标变量。1996年,央行将M1和M2作为货币政策的调控目标,使货币供应量中介变量正式成为中国货币政策体系的一部分。因此,通过对货币政策中介变量和目标变量关系的研究,在中介变量和目标变量可测性、可控性的基础上,可以使央行更好地执行货币政策,从而实现稳定币值和促进国民经济增长的目标 ( 见下图) 。

2 文献综述

何启志、何启粱通过对我国1995年到2012年GDP、M1、M2的年度数据做分析,得出我国的货币供应量与GDP有很强的相关性。董青马、雷洪光、胡正运用VAR模型,研究了我国1978—2009年度货币供应量、价格水平和产出之间的动态关系,从而证明了M2适合做中介目标,而M1则更适合做中央银行的观测目标。而货币主义理论者提出持续的通货膨胀只是单纯的货币现象的观点。

结合我国中央银行货币政策发展执行情况,本文将从货币政策中介变量与目标变量线性相关程度的角度,进一步研究中介变量与目标变量的关系,并提出运用与之相关的货币政策建议。

3 中介变量与目标变量的选择

货币政策中介目标作为一种金融中介变量,是短期经济变化和金融趋势的晴雨表。一国的经济金融条件和货币政策操作能否对经济活动产生最终的影响是选择货币中介目标的重要依据。此外,中央银行选择货币政策中介目标的还应满足如下三个标准: 一是相关性。即作为中介目标的金融指标的变动要与中央银行的货币政策密切相关,能对经济金融的变化发展产生影响。二是可控性。即作为操作指标和中介指标必须是中央银行能够应用货币政策工具对其进行有效控制的金融指标。三是可测性。即中央银行能够迅速获取这些指标的准确数据并进行观察、分析和检测。

按相互间的关系分析,可以分为中介变量、工具变量和目标变量。其中目标变量是指能够实现币值稳定、经济增长、充分就业、国际收支平衡和金融稳定的变量指标;中介变量是指货币政策中介目标的变量指标,主要有利率和货币供应量 ( 包括M0、M1、M2) 等。反映币值稳定状况的目标变量指标是物价指数,可以选择消费者物价指数( CPI) 代替; 体现一国经济增长状况的目标变量指标是真实国内生产总值,可以用国内生产总值 ( GDP) 来代替。可供选择的中介目标主要有贷款量、货币供应量和利率,其中贷款量跟货币供应量具有可替代性,因此,使用比较广泛的、具有典型性的中介变量是货币供应量 ( M0、M1、M2) 和利率 ( R) 。

从实现币值稳定来看,货币供应量M对消费者物价指数的传导,仅通过消费一个变量,并且货币供应量对消费的影响确实很大; 而中介变量利率R对目标变量消费者物价指数的传导,则要经过货币需求的利率弹性和收入弹性,分别对储蓄和投资产生影响,进而传递到物价水平。与利率水平相比,货币供应量对物价水平的传递更直接、弹性力度更强。从实现经济增长来看,货币供应量对国内生产总值的传导仅通过投资一个变量,而利率对投资的传导要由货币供给和货币需求两个方面,进而通过投资实现国内生产总值的增长。可见,货币供应量对国内生产总值变量的传导要比利率对国内生产总值的传导直接得多。

从货币供应量的不同层次来看,主要是如何选择M0、M1、M2的问题。由于与M1、M2相比,M0目前占国内生产总值和货币总量 ( M2) 的比重很小,一般只在11% ~6% ,并且随着信用制度的发展和金融的深化,现金交易的份额将越来越小,所以M0在经济生活中的作用将越来越弱,从而使之独立充当货币政策中介目标的可能性也越来越小。

综上所述,本文选取了货币供应量M1、M2作为中介变量,国内生产总值GDP、消费者物价指数CPI作为目标变量,来研究中介变量与目标变量的关系。

4 目标变量与中介变量相关性分析

本文选取我国1990年至2013年M1、M2、CPI、GDP的年度数据,如表1所示。来分析我国不同层次的货币供应量M1、M2与居民物价消费价格指数、国内生产总值变动关系的密切程度。

数据来源: 中国统计年鉴 ( 2014) 。

分别建立CPI和M1、M2以及GDP和M1、M2的线性回归模型。可以使用双对数模型缩小解释变量与被解释变量变量值之间的差距,运用OLS法估计出参数及模型( 如表2所示) 。

由表2的计量模型分析,我们可以看出所建立的回归模型均通过了t检验,变量系数符合经济意义,模型的拟合优度也很高,解释变量对被解释变量有显著影响,说明目标变量与中介变量之间高度相关。同时我们也可以得出如下两个方面的推论。

第一,由相关性检验指标R2分析,M1 和M2这两个解释变量对消费物价和国内生产总值这两个目标变量都具有很高的显著水平。就M1和M2的相关性显著水平而言,对于消费物价,前者略强于后者; 对于国内生产总值前者与后者接近。这就证明: 就总体而言,M1和M2与目标变量之间都确实存在明显的幂函数相关关系,只是在密切程度上有些微差异。第二,由弹性系数分析,就消费物价和国内生产总值而言,M1每增长1% ,国内生产 总值增长0. 86% 、消费物 价上涨0. 39% ,说明M1的弹性较大; M2对两个变量的弹性要比M1的弱,基本上低将近0. 07和0. 08个百分点。这就意味着相关性检验已达到了较高的显著水平,仅表明M1和M2均基本具备了对目标变量传递的直接性这一作为中介变量的充分条件; 而弹性大小的比较,则更进一步证实了M1对目标变量的传导更直接、效率更高。或者说,尽管M2也基本满足传递的直接性要求,但与M1相比,其对目标变量的弹性要小一些,调控的效果就相对要弱一些。

由此可见,就综合而言,货币供应量M1、M2均具备货币政策中介目标的基本要求,但相比较可以看出,M1的条件更充分一些。因此,在我国社会主义市场经济中,将货币供应量作为货币政策中介变量对于抵御经济波动、维持国民经济的稳定增长是合理有效的。

5 完善我国货币政策中介变量的建议

第一,疏通传导渠道、减少货币供应量调整的阻碍。就中国目前的经济金融发展现状来说,要减少货币政策的时滞效应,疏通从央行到商业银行、企业到居民的传导渠道。第二,积极研究寻找有实质影响和相关关系的新的中介变量,不断完善货币中介变量体系。随着经济全球化的发展,我国金融改革体系的深化,未来利率变动因素对我国货币政策的影响将会加大,因此需要考虑将新的因素引入到货币政策变量中。

摘要:本文运用计量经济学的方法,对我国1990—2013年M1、M2、CPI、GDP的年度数据进行实证分析,并进行相关检验,结果证明M1、M2作为中介变量与目标变量CPI、GDP之间是高度相关的。同时通过理论分析M1、M2的可测性、可控性,进一步说明货币政策中介变量与目标变量的关系,并提出相应的货币政策建议。

关键词:货币政策,中介变量,目标变量,相关性

参考文献

[1]王广谦.中央银行学[M].北京:高等教育出版社,2014.

[2]张鑫鑫.我国货币政策效果的区域差异研究[D].太原:山西财经大学,2014.

[3]贾庆军.改革开放以来中国货币政策理论与实践的演变[D].上海:复旦大学,2005.

[4]侯军强.我国货币中介目标选择的思考[J].甘肃金融,2011(4).

[5]吴俊成.我国货币政策对消费影响的实证分析研究[D].杨凌:西北农林科技大学,2010.

分离变量法习题 篇3

utta2uxx0(0xl,t0)0

u(0,t)0,u(l,t)0,其中(x)v00u(x,0)0,u(x,0)(x)t0xccxc cxl解:用分离变量法:设混合问题的非零解函数为u(x,t)X(x)T(t),则,utt(x,t)X(x)T(t),uxx(x,t)X(x)T(t)

代入混合问题中的微分方程可得:

X(x)T(t)aX(x)T(t)02X(x)X(x)aT(t)T(t)2

由初始条件可得:u(0,t)X(0)T(t)u(l,t)X(l)T(t)0X(0)X(l)0由此可得,X(x)为如下常微分方程边值问题的非零解:

X(x)X(x)0X(0)0,X(l)0(0xl)

若λ<0,则此定解问题的微分方程的通解为 X(x)c1exp(x)c2exp(x),代入边值条件后可得c1c20X(x)0,不符合要求。若λ=0,则此定解问题的微分方程的通解为

X(x)c1c2x,代入边值条件后仍可得c1c20X(x)0,不符合要求。若λ>0,则此定解问题的微分方程的通解为 X(x)c1cos代入边界条件后可得: X(0)c1cos0c2sin0c10X(x)c2sinx,2xc2sinx,X(l)c2sinl0,X(x)0sinnxlnl0,n,l所以可取 X(x)Xn(x)sin

(n1,2,)由T(t)所满足的方程可得:

T(t)a22T(t)0T(t)Tn(t)ancosnatlnatlbnsinnatl,所以,原混合问题的微分方程的满足边界条件的分离变量形式解为 u(x,t)un(x,t)Xn(x)Tn(t)(ancosbnsinnatl)sinnxl,设原混合问题的解函数为 u(x,t)n1(ancosnatlbnsinnatl)sinnxl,则由初始条件可得:0u(x,0)n1ansinnxlan0(n1,2,)

 ut(x,t)n1nalbncosnatlsinnxlnxl, (x)ut(x,0)n1natlbnsinbnna2l0(x)sinnxldx,bnna2ccv0sinnxldx2v0lna22(cosn(c)lnxlcosn(c)l)(*)所以,原混合问题的解为 u(x,t)2 求解混合问题

bn1nsinnatlsin,其中的bn由(*)给出。

utta2uxx0(0xl,t0)

u(0,t)E,u(l,t)0

u(x,0)0,u(x,0)0(E为常数)t解:由于边界条件非齐次,需作函数变换如下:设

v(x,t)u(x,t)El(lx)u(x,t)v(x,t)El(lx),则

vxx(x,t)uxx(x,t),vt(x,t)ut(x,t),vtt(x,t)utt(x,t),2vtt(x,t)avxx(x,t)utt(x,t)auxx(x,t)0,v(0,t)u(0,t)

v(x,0)u(x,0)ElEl(l0)u(0,t)E0,v(l,t)u(l,t)00,(lx)El(lx),vt(x,0)ut(x,0)0,所以,u(x,t)是原混合问题的解的充要条件是:v(x,t)是如下混合问题的解:

2vtt(x,t)avxx(x,t)0(0xl,

v(0,t)0,v(l,t)0Ev(x,0)(lx),vt(x,t)0lt0)

(*)

用分离变量法求解此定解问题,由分离变量法的标准步骤可得:



v(x,t)n1(AncosnatlBnsinnatl)sinnxl,代入初始条件可得:,Bn0,An2llEl0(lx)sinnxldx2En(n1,2,)

所以,v(x,t)n12EncosnatlElsinnxl,原混合问题的解函数为u(x,t)3 求解下列阻尼波动问题的解:

(lx)n12Encosnatlsinnxl

utt2huta2uxx0(0xl,t0)

u(0,t)0,ux(l,t)0

u(x,0)(x),u(x,0)(x)t其中,h为正常数,且ha2l。

解:使用分离变量法,设原定解问题的微分方程有如下分离变量形式非零解函数满足边界条件:

u(x,t)X(x)T(t)

则容易算得:uxx(x,t)X(x)T(t),ut(x,t)X(x)T(t),utt(x,t)X(x)T(t),代入方程后化简可得:

T(t)2hT(t)aT(t)2X(x)X(x)

0u(0,t)X(0)T(t)X(0)0,0ux(l,t)X(l)T(t)X(l)0,T(t)2hT(t)aT(t)0

X(x)X(x)0

,X(0)0,X(l)02由X(x)的非零性可得0,此时,X(x)c1cosxc2sinx,X(0)c1cos0c2sin0c10X(x)c2sinx,取c21得:X(x)sin2n1l0n

2l22x,X(l)cos2n1将代入T(t)所满足的方程可得:T(t)2hT(t)aT(t)0

l

22n12ha0nh2l2(2n1)ah

2l222

ha2l(2n1)a2lnh(2n1)a2hi2l(n1,2,)

从而有:

T(t)Tn(t)eht(AncosntBnsinnt),2n1a2l22其中

nh(n1,2,),(1)

设原混合问题的解函数为:



u(x,t)n1eht(AncosntBnsinnt)sin(2n1)2lx,

(x)u(x,0)ln1Ansinl(2n1)2lx,(2n1)xl(1cosdx,0022l2l22l(2n1)xdx(n1,2,)

(2)所以

An(x)sin0l2l而

sin2(2n1)xdx1ut(x,t)n1eht((hAnnBn)cosnt(hBnnAn)sinnt))sin(2n1)x2l



(x)ut(x,0)1n1(hAnnBn)sin(2n1)x2l,Bnn(hAn2ll0(x)sin(2n1)x2ldx)。

(3)

所以,原混合问题的解是u(x,t)n1eht(AncosntBnsinnt)sin(2n1)2lx,其中的 n,An,Bn分别由(1)式、(2)式、(3)式给出。

4 求解混合问题

uxxLCutt(LGRC)utGRu

u(0,t)0,ux(l,t)0GEu(x,0)E,u(x,0)tC(0xl,t0)

其中L、C、G、R为常数,且LG=RC。(提示:作函数变换u(x,t)exp(Rt/L)v(x,t))

解:记a21LC,bGCRL,混合问题的微分方程两边同除LC,方程可化为

a2uxx(x,t)utt(x,t)2but(x,t)b2u(x,t),a22x(u(x,t)exp(bt))t22(u(x,t)exp(bt)),设v(x,t)u(x,t)exp(bt),则有

a2vxx(x,t)vtt(x,t),而且,vx(x,t)ux(x,t)exp(bt),()0,所以

v(0,t)u(0,t)expbtvt(x,t)ut(x,t)exp(bt)bu(x,t)exp(bt),vx(l,t)ux(l,t)expbt()0,vt(x,0)ut(x,0)bu(x,0)0,(0)u(x,0)E, v(x,0)u(x,0)expb所以,若u(x,t)是原混合问题的解函数,则v(x,t)是如下混合问题的解函数:

vtt(x,t)a2vxx(x,t)0

v(0,t)0,vx(x,t)0v(x,0)E,v(x,t)0t(0xl,t0)

用分离变量法求解此混合问题,设方程的分离变量解形式的满足边界条件的非零解为 v(x,t)X(x)T(t),则

vx(x,t)X(x)T(t),vxx(x,t)X(x)T(t),vxx(x,t)X(x)T(t), X(x)X(x)T(t)aT(t)2

由齐次边界条件可得,X(x)为如下定解问题的解:

X(x)X(x)0X(x)c1cosxc2sinx,X(0)0,X(l)0

X(0)0c10,取c21得X(x)sinx,X(l)T(t)aT(t)2(2n1)cosl0n2lnT(t)Tn(t)Ancos(2n1)x2l2(n1,2,),(2n1)at2l

(2n1)at2lBnsin,X(x)Xn(x)sin(n1,2,),设

v(x,t)n1(Ancos(2n1)at2llBnsin(2n1)at2l)sin(2n1)x2l

代入初始条件可得:An2l0v(x,0)sin(2n1)x2ldx4E(2n1),Bn0,所以

v(x,t)(2n1)n14Ecos(2n1)at2lsin(2n1)x2l

所以,原题目所给的混合问题的解函数为:

u(x,t)exp(bt)n14E(2n1)cos(2n1)at2lsin(2n1)x2l。用固有函数法求解

utta2uxxg(const),

u(0,t)0,ux(l,t)0u(x,0)0,u(x,0)0t(0xl,t0)

解:用分离变量法:设原混合问题的微分方程对应的齐次方程有如下分离变量形式的非零解函数:u(x,t)X(x)T(t),利用分离变量法的标准步骤可求得: (2n1)

n,2l2X(x)Xn(x)sin(2n1)x2l(n1,2,)

将f(x,t)g展开成Xn(x)的广义Fourier级数如下:

fn(t)2ll0f(x,t)Xn(x)dx2ll0gsin(2n1)x2ldx4g(2n1),T(t)a2nT(t)fn(t)16gl(2n1)atT(t)T(t)(1cos)n3322l(2n1)aT(0)0,T(0)02[注:方程T(t)aT(t)fn(t)的通解为

Tn(t)Ancos

(2n1)at2lBnsin(2n1)at2l16gl(2n1)a332,代入初始条件即可得此处的结果。] 所以,题目所给的混合问题的解函数为

u(x,t)Tn(t)Xn(x)n1(2n1)16gl3a32(1cos(2n1)at2lt0))sin(2n1)x2l。

ut(x,t)a2uxx(x,t)06.求解混合问题u(0,t)0,ux(l,t)0u(x,0)u(const)0(0xl,。

解:用分离变量法:设混合问题中的微分方程有如下满足边界条件的分离变量形式的非零解函数:u(x,t)X(x)T(t),则

ut(x,t)X(x)T(t),ux(x,t)X(x)T(t),uxx(x,t)X(x)T(t),代入方程后化简再由边界条件可得:

T(t)aT(t)2X(x)X(x)T(t)aT(t)0,22X(x)aX(x)0

u(0,t)X(0)T(t)0X(0)0,ux(l,t)X(l)T(t)0X(l)0,所以,X(x)为如下常微分方程边值问题的非零解函数:

X(x)X(x)0X(0)0,X(l)0

2(0xl)

(2n1)解之得 n,2lX(x)Xn(x)sin(2n1)x2l(n1,2,),2(2n1)a

T(t)na2T(t)0T(t)Tn(t)Anexp(t)。

2l设原问题的解函数为

u(x,t)n1(2n1)x(2n1)a,Anexp(t)sin2l2l2由初始条件可得:

u0u(x,0)An1nsin(2n1)x2l4u0,由此可得:

An2ll0u0sin(2n1)x2ldx(2n1)2(n1,2,),所以,u(x,t)n1(2n1)x(2n1)a exp(t)sin(2n1)2l2l4u0 7 ut(x,t)a2uxx(x,t)0(0xl,7.求解混合问题u(0,t)0,ux(l,t)u(l,t)0u(x,0)(x)t0)

解:用分离变量法:设混合问题中的微分方程有如下满足边界条件的分离变量形式的非零解函数:u(x,t)X(x)T(t),则

ux(x,t)X(x)T(t),uxx(x,t)X(x)T(t),ut(x,t)X(x)T(t),代入方程后化简,并由边界条件可得:

T(t)a2T(t)0,X(x)X(x)0,u(0,t)X(0)T(t)0X(0)0,ux(l,t)u(l,t)(X(l)X(l))T(t)0X(l)X(l)0,所以,X(x)为如下常微分方程边值问题的解函数:

X(x)X(x)0(0xl)

X(0)0,X(l)X(l)0由u(x,t)是非零解可得:0X(x)c1cos

X(0)0c10X(x)sinxxc2sinx

(letc21),X(l)X(l)设

tanlcoslsinl0tanl(n1,2,),则nn

2

n0所以,X(x)Xn(x)sinnx,22((an)t)

T(t)(an)T(t)0T(t)Tn(t)Anexp(n1,2,),设原混合问题的解函数为

u(x,t)An1nexp((an)t)sinnx,2利用Xn(x)的正交性可求得 An(x)sin0lnxdx(n1,2,)。

[注]:可以证明:Xn(x)具有正交性。

l0sinnxdx2 8 ut(x,t)a2uxx(x,t)08.求解混合问题u(0,t),u(l,t)u(x,0)u0(0xl,t0),其中,,,u0为常数。

解:作函数变换 v(x,t)u(x,t)(则

ut(x,t)vt(x,t),lx)u(x,t)v(x,t)(l x),uxx(x,t)vxx(x,t),u(0,t),u(l,t)v(0,t)0,v(l,t)0,u(x,0)u0v(x,0)u0(lx)

所以,u(x,t)是原混合问题的解的充要条件是v(x,t)是如下混合问题的解: 2vt(x,t)avxx(x,t)0(0xl,(*)

v(0,t)0,v(l,t)0v(x,0)u(x)0lt0)

用分离变量法求解(*),由分离变量法的标准步骤可得:

X(x)Xn(x)sinnxl,naT(t)Tn(t)Anexp(t),l2

v(x,t)Tn1n(t)Xn(x)n1nxna,Anexp(t)sinll2代入初始条件可得:u0(l2lx)v(x,0)ln1Ansinnxlnxl

由Xn(x)的正交性可得:An

An0(u0(nlx))sindx,2n((u0)(1)(u0))(n1,2,),2所以,v(x,t)n1nxnan((u0)(1)(u0))exp(t)sinnll2

u(x,t)v(x,t)(lx)。

uxx(x,y)uyy(x,y)0(0xa,9.求解 u(x,0)x(xa),limu(x,y)0yu(0,y)0,u(a,y)0y0)。

解:用分离变量法:设给定的定解问题中的微分方程有如下满足齐次边界条件的分离变量形式非零解:

u(x,y)X(x)Y(y),则

uxx(x,y)X(x)Y(y),uyy(x,y)X(x)Y(y),uxx(x,y)uyy(x,y)X(x)Y(y)X(x)Y(y)0,X(x)X(x)Y(y)Y(y)X(x)X(x)0,Y(y)Y(y)0,

u(0,y)X(0)Y(y)0X(0)0,u(a,y)X(a)Y(y)0X(a)0,所以,X(x)为如下常微分方程边值问题的解函数:

2X(x)X(x)0nn

,X(0)0,X(a)0aX(x)Xn(x)sinnyanxa,从而有:Y(y)Yn(y)Anexp(又由另一个边界条件可得:

nya)Bnexp()(n1,2,)

(limun(x,y)limXn(x)Yn(y)0An0Yn(y)Bnexpyynya),设原定解问题的解函数是u(x,y)n1un(x,y)n1Bnexp(nya)sinnxa,则

u(x,0)x(xa)x(xa)n1Bnsinnxa

Bna2a0x(xa)sinnxandx22aannya333((1)1)n(n1,2,),所以,u(x,y)10.求解边值问题:

4a23n1(1)1n3exp()sinnxa。

uxx(x,y)uyy(x,y)0(0xa,

u(0,y)0,u(a,y)0xxu(x,0)0,u(x,b)sinaa0yb)。

解: 用分离变量法:设给定的定解问题中的微分方程有如下分离变量形式的满足齐次边界条件的非零解:

u(x,y)X(x)Y(y),则有:

uxx(x,y)X(x)Y(y), X(x)X(x)Y(y)Y(y)uyy(x,y)X(x)Y(y),0X(x)X(x)0,Y(y)Y(y)0,u(0,y)X(0)Y(y)0X(0)0,同理 X(a)0,所以,X(x)是如下二阶常微分方程边值问题的解函数:

2X(x)X(x)0nn

,X(0)0,X(a)0aXn(x)sinnyanxa,Y(y)nY(y)0Y(y)Yn(y)Ancoshny,Bnsinha设原定解问题的解为:u(x,y)n1(AncoshnyaBnsinhnya)sinnxa,则

0u(x,0)n1AnsinnxaAn0(n1,2,),xasinxa2au(x,b)nban1aBnsinhnbasinsinnxadx,所以,Bn(sinh)1xa0sinxanxanb2

sinha11(1)n1(1)n(n1)2(n1)2(n2,3,)

axbxxb

B1(sinh)1sinsindx2sinh0aaaaaa21。

所以,原定解问题的解函数为u(x,y)n1Bnsinhnyasinnxa,其中的Bn由以上式子给出。11.求解边值问题

uxx(x,y)uyy(x,y)k(0xa,

u(0,y)0,u(a,y)0u(x,0)0,u(x,b)00yb),提示:令u(x,y)v(x,y)w(x),而w(x)满足条件w(x)k,w(0)w(a)0。解:令w(x,y)k2x(xa),v(x,y)u(x,y)w(x,y),则

vxx(x,y)uxx(x,y)wxx(x,y)uxx(x,y)k,vyy(x,y)uyy(x,y)wyy(x,y)uyy(x,y)

所以,uxx(x,y)uyy(x,y)kvxx(x,y)vyy(x,y)0,u(0,y)0,u(a,y)0v(0,y)0,v(a,y)0,u(x,0)0,u(x,b)0v(x,0)k2x(xa),v(x,b)k2x(xa)

所以,u(x,y)是原定解问题的解的充要条件是v(x,y)是如下定解问题的解: vxx(x,y)vyy(x,y)0(*)v(0,y)0,v(a,y)0,kkv(x,0)x(xa),v(x,b)x(xa)22用分离变量法求解(*),由分离变量法的标准步骤可得:

v(x,y)X(x)Y(y)X(x)X(x)0,n

n,a2Y(y)Y(y)0,Xn(x)sinnxa,nynyYn(y)Anexp()Bnexp()

aa(n1,2,),v(x,y)vn(x,y)Xn(x)Yn(y)设(*)的解函数为v(x,y)n1(Anexp(nyak2)Bnexp(nya))sinnxa

则

v(x,0)n1(AnBn)sinnxa1x(xa),v(x,b)n1(AnDnBnDn)sinnxa,(其中 Dnexp(nba))

若记

Cna2ak20x(xa)sinnxadx2k2aa2n333((1)1),31nb)1CnAnexp(ABCannn则有: ,11ADBDCnbnbnnnnnBexp()exp()1Cnnaa 12 其中,An,Bn,Cn,Dn由以上各式给出。而题目所给的定解问题的解函数为

u(x,y)v(x,y)w(x,y)v(x,y)12.求解边值问题

uxx(x,y)uyy(x,y)0(0xa,

u(x,0)0,u(x,b)0u(0,y)y(yb),u(a,y)00yb)k2x(xa)。

解:用分离变量法求解此定解问题:设u(x,y)X(x)Y(y),由分离变量法的标准过程

nyn可得

n,Yn(y)sinX(x)Y(y)bbX(x)nX(x)0X(x)Xn(x)Anexp(nxb)Bnexp(nxb)(n1,2,)X(x)Y(y)2设原定解问题的解函数为



u(x,y)n1Xn(x)Yn(y)n1(Anexp(nxb)Bnexp(nxb))sinnyb,则由关于x的边界条件可得:y(yb)u(0,y)2bn1(AnBn)sinnyb,AnBnb0y(yb)sinnybdy



0u(a,y)nabn1(Anexp(nabnab1b)Bnexp(nab))sinnyb,Anexp(所以

An

Bn2b)Bnexp(2nabb)0,y(yb)sin)1)12b(exp()1)nyb0dy,nybdy,exp(2na)(exp(2nabb0y(yb)sin所以,u(x,y)所以,……。

13.求解混合问题

(An1nexp(nxb)Bnexp(nxb))sinnyb

3x3at2u(x,t)au(x,t)sinsinxxtt2l2l

u(0,t)0,ux(l,t)0u(x,0)0,u(x,0)0t(0xl,t0)。

解:用分离变量法求解此混合问题:设原给定的混合问题中的微分方程对应的齐次方程有如下分离变量形式的满足边界条件的非零解:

u(x,t)X(x)T(t)ux(x,t)X(x)T(t),uxx(x,t)X(x)T(t),ut(x,t)X(x)T(t),utt(x,t)X(x)T(t),utt(x,t)a2uxx(x,t)0

X(x)X(x)0, 由边界条件可得:u(0,t)X(0)T(t)0X(0)0,ux(l,t)X(l)T(t)0X(l)0,所以,X(x)是如下边值问题的非零解函数:

X(x)X(x)0

X(0)0,X(l)0X(x)X(x)T(t)aT(t)2

(2n1)求解此问题,可当n时,问题有非零解,其解函数集构成一个

2l2一维线性空间,它的一个基向量函数为X(x)Xn(x)sin令

fn(t)2l(2n1)x2l2lsin,dx,l0f(x,t)Xn(x)dx,fn(t)0,l0sin3x2lsin3at(2n1)x2l则

f2(t)sin3at2l(n1,3,4,5,)

令{Tn(t)}为如下初值问题的解函数: T(t)na2T(t)fn(t)

T(0)0,T(0)0(t0),(1)

则Tn(t)0(n1,3,4,5,),对于n=2,可用常数变易法来求:

T(t)2aT(t)0T(t)Acos设(1)的解函数为 T(t)A(t)cos则 T(t)A(t)cos令

A(t)cos3at2lB(t)sin3at2l3at2l3atB(t)sin3a2l2l3at2lBsin3at2l,3at2lB(t)cos3at2l)

(A(t)sin3at2lB(t)sin3at2l0,14 则

T(t)3a2l3a2l(A(t)sin3at2l3atB(t)cos),2lT(t)(A(t)sin3at2lB(t)cos3a2l3at3at3at3a)B(t)sin)(A(t)cos2l2l2l2l3at2l3at B(t)cos)f2(t),2l2

T(t)2a2T(t)f2(t)(A(t)sin3at3at(t)cos(t)sinAB02l2l也就是:

,3a3at3at3at(A(t)sinB(t)cos)sin2l2l2l2l求解此线性方程组得:A(t)22l3asin23at2l,B(t)2l3asin23at2lcos3at2l,3atll

A(t)sintc1,l3a3a3atl B(t)cosc2,l3a所以,(1)的解为:

3atl3at3at3atl

T(t)T2(t) tcosc1cosc2sinsin3a2l3a2l2l2l2由初始条件T(0)0,T(0)0可得:c10,2l22lc2,3a3at2l2所以,T2(t)3asin3at2ll3atcos,所以,题目所给的定解问题的解函数为:



u(x,t)14.求解混合问题

n12l23atl3atXn(x)Tn(t)sintcos(3a)22l3a2l3xsin。2l2x2u(x,t)au(x,t)sin(0xl,xxttl

u(0,t)0,u(l,t)03x2xu(x,0)2sin,u(x,0)sintllt0)。

解:作函数变换v(x,t)u(x,t)w(x),其中w(x)为待定函数,则

vtt(x,t)utt(x,t),vt(x,t)ut(x,t),vxx(x,t)uxx(x,t)w(x),22

vtt(x,t)avxx(x,t)utt(x,t)a(uxx(x,t)w(x))

utt(x,t)auxx(x,t)aw(x),15 设u(x,t)是原定解问题的解函数,2xl取aw(x)sin222xl,则有: 0,即w(x)sinl2a222vtt(x,t)avxx(x,t)utt(x,t)auxx(x,t)aw(x)sin2xl aw(x)0,2而

v(0,t)u(0,t)w(0)000,3xlv(l,t)u(l,t)w(l)0

v(x,0)u(x,0)w(x)2sin2xl2xl,sin2al2

vt(x,0)ut(x,0)sin,所以,v(x,t)为如下定解问题的解函数: v(x,t)a2v(x,t)0ttxx(*)

v(0,t)0,v(l,t)03xlv(x,0)2sinl2a(0xl,2xsin,l2t0),vt(x,0)sin2xl用分离变量法求解此定解问题:由分离变量法的标准过程可得: n

n,l2X(x)Xn(x)sinnatlBnsinnatlnxl,,T(t)Tn(t)Ancos设(*)的解函数为

(n1,2,)



v(x,t)n1un(x,t)n1(AncosnatlBnsinnatl)sinnxl,由初始条件可得:2sin3xl2xlv(x,0)sin2al22n1Ansinnxl

l可得: A10,A2,A32,2aAn0(n4,5,)

natllna

vt(x,t)n1nal(AnsinnatlnxlBncos)sinnxl,sin2xlvt(x,0)n1nalBnsinB2,Bn0(n1,3,4,5,)

2atl2at2x3at3xl所以,v(x,t)(,cossin)sin2cossinl2allll2a2所以,题目所给的定解问题的解函数为u(x,t)v(x,t)w(x)。15. 求解混合问题

2x2sinx(0xl,utt(x,t)auxx(x,t)l

u(0,t)t,u(l,t)sintu(x,0)0,u(x,0)(为常数)tt0)。

[注]:此定解问题中的微分方程非齐次项中的sinx应为sint,才能得到书中答案。

解:先将边界条件齐次化:令v(x,t)u(x,t)((sintt)t),lx则

vtt(x,t)utt(x,t)xlsint,2vxx(x,t)uxx(x,t),若u(x,t)是原定解问题的解函数,则

vtt(x,t)avxx(x,t)utt(x,t)2xl2sintauxx(x,t)

xl22

utt(x,t)auxx(x,t)0lsint0,2tt)t)tt0,v(0,t)u(0,t)((sintt)t)tt0,v(l,t)u(l,t)((sinll

v(x,0)u(x,0)00,vt(x,0)ut(x,0)(xl(cos*0))0,所以,v(x,t)是如下定解问题的解函数:

vtt(x,t)a2vxx(x,t)0

v(0,t)0,v(l,t)0v(x,0)0,v(x,0)0t(0xl,t0)v(x,t)0,所以,原定解问题的解函数为 u(x,t)xl(sintt)t

utt(x,t)a2uxx(x,t)3x2tex16. 求解 ux(0,t)t,ux(l,t)u(l,t)tu(x,0)0,u(x,0)1ext(0xl,t0)。

解:作如下函数变换:v(x,t)u(x,t)t(1ex)u(x,t)ttex,若u(x,t)是原定解问题的解函数,则经验证可得:v(x,t)是如下定解问题的解函数: vtt(x,t)a2vxx(x,t)3x2(1a2)tex

vx(0,t)0,vx(1,t)v(1,t)0v(x,0)0,v(x,0)0t(0x1,t0)

用分离变量法求解此定解问题:设v(x,t)X(x)T(t),T(t)aT(t)2由分离变量法的标准过程可得:

X(x)X(x)X(x)X(x)0,vx(0,t)0,vx(1,t)v(1,t)0X(0)0,X(1)X(1)0 由X(x)所满足的方程可得:X(x)c1cosxc2sinx,由边界条件可得:c20,0,取c11,则得X(x)cos

X(1)X(1)0sincos02所以,nn,X(x)Xn(x)cosnxx,ctg,(n1,2,),其中,n是方程ctg的所有正解。因为

10cosnxdx22100.5(1cos2nx)dx0.5(1sinn),2令

fn(t)1sinn21sin2210f(x,t)cosnxdx

1n0((3x)(1a)te22x)cosnxdx

4sinn(1sinn)3n22(1a)sinn1sinn222tbncnt

f(x,t)n1fn(t)cosnx,设原定解问题的解函数为v(x,t)Tn12n(t)cosnx,则

vttavxx2(Tn1n(t)aT(t))cosnx2nn1fn(t)cosnx,22从而有:

Tn(t)anTn(t)fn(t)(n1,2,),由初始条件可得:v(x,0)vt(x,0)0Tn(0)Tn(t)0,所以,Tn(t)为如下初值问题的解函数: 22Tn(t)anTn(t)fn(t)

Tn(0)0,Tn(0)0(t0)

22用常数变易法:Tn(t)anTn(t)0Tn(t)AncosantBnsinant,设此边值问题的解为: Tn(t)An(t)cosantBn(t)sinant,A(t)cosatB(t)sinat0nnnn经简单推导得: ,1A(t)sinatB(t)cosatf(t)nnnnnan1A(t)fn(t)sinantnan解此线性方程级:

1Bn(t)fn(t)cosantan积分并利用初始条件可得:

cn1A(t)((bct)cosatb)sinantnnnn23nanan

,cn1Bn(t)(bncnt)sinant(cosant1)23anan

Tn(t)An(t)cosantBn(t)sinant

1anbn2bncnt1an2(bncosantcnansinant)

an21cosantcnan21tsinatn an所以,u(x,t)Tn1n(t)cosnx,其中的Tn(t)、bn、cn和n均由以上各式给定。[注]课本上的答案为此处的a=1。

ut(x,t)a2uxx(x,t)0(0xl,17. 求解 ux(0,t),ux(l,t)u(x,0)A(A,为常数)t0)。

解:设u(x,t)是原定解问题的解函数,作函数变换v(x,t)u(x,t)x,19 则

vt(x,t)ut(x,t),vx(x,t)ux(x,t),vxx(x,t)uxx(x,t)

vx(0,t)ux(0,t)0,vx(l,t)ux(l,t)0,v(x,0)u(x,0)xAx,所以,v(x,t)是如下定解问题的解函数:

vt(x,t)a2vxx(x,t)0(0xl,t0)

vx(0,t)0,vx(l,t)0

v(x,0)Ax用分离变量法求解此定解问题:设v(x,t)X(x)T(t)为微分方程的满足齐次边界条件的非零解函数,则将v(x,t)代入方程后化简可得:

T(t)aT(t)X(x)X(x)T(t)aT(t)0,2X(x)X(x)0,vx(0,t)0,vx(l,t)0X(0)0,X(l)0,所以,X(x)为如下边值问题的非零解函数:

2nnX(x)X(x)0(0xl)lX(0)0,X(l)lX(x)X(x)cosnxnl(n0,1,2,)

将n代入T(t)的方程可得:

na

T(t)a2nT(t)0T(t)Tn(t)Bnexp(t)lnxna所以,vn(x,t)Tn(t)Xn(x)Bnexp(。t)cosll22(n0,1,2,),设

v(x,t)n0nxna,Bnexp(t)cosll2则由初始条件可得:Axv(x,0)1l2ln0Bncosnxl

可得:

B0

Bn)0l(Ax)dxA12l,(n1,2,),nx2ln(Ax)cosdx(1(1))220lln 20 所以,v(x,t)A

12ln12ln22nxna。(1(1))exp(t)coslln2ut(x,t)a2uxx(x,t)f(x)(0xl,18. 求解 u(0,t)A,u(l,t)B(A,B为常数)u(x,0)g(x)t0)。

解:设F(x)(0xx0f(x)dx)dx,w(x)1a2F(x)(AB)aF(l)al22xA,1a2

v(x,t)u(x,t)w(x)vt(x,t)ut(x,t),vxx(x,t)uxx(x,t)

vt(x,t)a2vxx(x,t)ut(x,t)a2uxx(x,t)f(x)0,1a1a22f(x),v(0,t)u(0,t)w(0)AF(0)(AB)aF(l)al2220A0,v(l,t)u(l,t)w(l)BF(l)(AB)aF(l)al2lA0,v(x,0)u(x,0)w(x)g(x)w(x),所以,v(x,t)是如下定解问题的解函数:

vt(x,t)a2vxx(x,t)0

v(0,t)0,v(l,t)0v(x,0)g(x)w(x)(0xl,t0),用分离变量法可求得:



v(x,t)其中,Ann1nxna,Anexp(t)sinll(g(x)w(x))sin22llnxl20dx(n1,2,)。

所以,u(x,t)n1nxnaAnexp(w(x)。t)sinll21.在扇形区域内求解边值问题

u0(ra,0)

u(r,0)0,u(r,)0。

u(a,)f()解:由极坐标下的Laplace算子表达式可知:

1u1u2

u0rurrruru0。r22rrrr2用分离变量法求解此定解问题:设u(r,)R(r)(),代入以上微分方程化简后可rR(r)rR(r)R(r)2得

()()2:

()()0,rR(r)rR(r)R(r)0

u(r,0)R(r)(0)0(0)0, u(r,)R(r)()0()0,所以,()是如下边值问题的非零解函数:

2nn()()0

(0)0,()0()sinnxn(n1,2,),2n/n/Bnr

rR(r)rR(r)nR(r)0R(r)Rn(r)Anr,n/又显然有:R(0)Bn0,也就是:Rn(r)Anr,所以,un(r,)Rn(r)n()Anrn/sinnsin,n设原定解问题的解函数是 u(r,)n1Anrn/n/,由关于r的边界条件可得:f()u(a,)其

n1Anasinn,中

Anan/20f()sinn2d(n1,2,),n/nr所以,u(r,)f()sindn10asinn。

u0(1r2,0)22 求解边值问题

u(1,)sin,u(2,)0。

u(r,0)0,u(r,)0解:由极坐标下的Laplace算子表达式可知:

1u1u20rurrruru0

ur22rrrr

2用分离变量法求解:设u(r,)R(r)()代入方程中并化简得:

rR(r)rR(r)R(r)2

r2R(r)rR(r)R(r)0,()()()0()

u(r,0)0,u(r,)0(0)0,()0,()()0

(0)0,()02n2nn()()sinnn(n1,2,),将nn2代入R(r)所满足的方程可得:

r2R(r)rR(r)n2R(r)0R(r)Rn(r)AnrnBnrn,n设原定解问题的解函数为 u(r,)Rn1(r)n()(An1nrBnrnn)sinn,nn0u(2,)(An2Bn2)sinnn1由r的边界条件可得:

,sinu(1,)(AnBn)sinnn1容易得到:

AnBn0(n2,3,),11A12A2B10

3,14B11A1B13所以,u(r,)13r43r1sin。2(ra)uxxuyyy23. 求解边值问题  222uraxy,rxy解:作函数变换 v(x,y)u(x,y)112y,24则有:

vxx(x,y)uxx(x,y),vyy(x,y)uyy(x,y)y 此时,有:

vxxvyyuxxuyyyyy0,所以,v(x,y)是如下边值问题的解函数:

222 23 vxxvyy0(ra)

 14222vxyy,rxy12ra将此定解问题由直角坐标改为极坐标:

r2vrrrvrv0(ra)

1424v(a,)acossinasin12(xrcos,yrsin),用分离变量法求解此定解问题:设v(r,)R(r)F(),由分离变量法的标准步骤rR(r)rR(r)R(r)2容易得到:

F()F()02,rR(r)rR(r)R(r)0F()F()由v(r,)的实际意义可知:F()是以2为周期的周期函数,R(0) 所以

nn2,F()Fn()AncosnBnsinn(n0,1,2)

22nnn

rR(r)rR(r)nR(r)0R(r)c1rc2r,letRn(r)r,n设

v(r,)Rn0(r)Fn()(An0nncosnBnsinn)r

由关于r的边界条件可得:v(a,)112(An04ncosnBnsinn)a,n而

v(a,)acossin

所以,A013213242asin

12412acos219644a412asin21a,B222196acos4,4a,A224,A4,其余的An、Bn的值均为零。所以,v(r,) u(r,)1324132ar(242124acos212212sin2)1964196rcos4,112rsin。

444ar(124acos22sin2)rcos4u0(ra,0)224.求解边值问题 ur(a,)f()。

u(r,0)0,u(r,)02解:因为其自变量的取值区域是扇形区域,所以可在极坐标系下用分离变量法求解此定 24 解问题,因为,u1rrrur1ur2220,设 u(r,)R(r)(),求出其各阶偏导数并代入方程后化简可得:

rR(r)rR(r)R(r)2

r2R(r)rR(r)R(r)0 ()()()0()(由u(r,)关于的边界条件可得

(0)0,2)0

()()0n4n2所以

(0)0,()0n()sin2n2(n1,2)

r2R(r)rR(r)4n2R(r)0RRn(r)Anr2nBnr2n

u(0,)Rn(0)Rn(r)Anr2n

设原定解问题的解函数为

u(r,)An1nr2nsin2n,则

ur(r,)2nAn1nr2n1sin2n,由边界条件得

f()ur(a,)从而有:

An2na2n12nAn1na2n1sin2n

/20f()sin2nd

(1)

所以,原定解问题的解函数为u(r,)其中的系数由(1)式给出。

An1nr2nsin2n,uxy(ra,0)225.求解边值问题

ur(a,)f()

222u(r,0)0,u(r,)0,rxy2解:设w(x,y)112xy(xy),作函数变换v(x,y)u(x,y)w(x,y),22则

vvxxvyyuxxuyy(wxxwyy)0 在极坐标下:

v(r,)u(r,)w(r,)u(r,)124rsin2,25

vr(r,)ur(r,)

vr(a,)ur(a,)经验算得知:

v(r,0)0,v(r,1616rsin2,asin2,332)0,所以,v(r,)为如下边值问题的解函数:

21v1v(r)20v2rrrr13v(a,)f()asin2r6v(r,0)0,v(r,)02(ra,02)

用分离变量法求解,设v(r,)R(r)()代入方程并化简得:

rR(r)rR(r)R(r)2

r2R(r)rR(r)R(r)0,()()()0()由关于的边界条件可得:(0)0,(2)0,(n1,2,),2由此可得: n4n,n()sin2n222n2n

rR(r)rR(r)4nR(r)0RRn(r)AnrBnr,v(0,)R(0)Rn(r)Anrn2n。

v(r,)Rn13(r)n()An1nr2nsin2n,则

f()16asin2vr(a,)22nAn1na2n1sin2n,由可求得: v(r,)An1nr2nsin2na12rsin2,2其中,An2na2n1/20f()sin2nd,124rsin2。

类的全局变量 篇4

计算1+2+3+4+......+100

计算这种方法有多种,可以直接是用公式,也可以是用循环,现在我们使用一种更加新颖的方法:使用构造函数和static变量

《变量与函数》教学反思 篇5

函数定义的关键词是:“两个变量”、“唯一确定”、“与其对应”;函数的要点是:1 有两个变量,2 一个变量的值随另一个变量的值的变化而变化,3 一个变量的值确定另一个变量总有唯一确定的值与其对应;函数的实质是:两个变量之间的对应关系;学习函数的意义是:用运动变化的观念观察事物。与学习进行仔细的研究,有助于函数意义的理解,但是,不可能在一课的学时内真正理解函数的意义,继续布置作业:每个同学列举出几个反映函数关系的实例,培育学生用函数的观念看待现实世界,最后,我还说明了,函数的学习,是我们数学认识的第二个飞跃,代数式的学习,是数学认识的第一次飞跃:由具体的数、孤立的数到一般的具有普遍意义的数,函数的学习,是由静止的不变的数到运动变化的数。

在函数概念的教学中,应突出“变化”的思想和“对应”的思想。从概念的起源来看,函数是随着数学研究事物的运动、变化而出现的,他刻画了客观世界事物间的动态变化和相互依存的关系,这种关系反映了运动变化过程中的两个变量之间的制约关系。因此,变化是函数概念产生的源头,是制约概念学习的关节点,同时也是概念教学的一个重要突破口。教师可以通过大量的典型实例,让学生反复观察、反复比较、反复分析每个具体问题的量与量之间的变化关系,把静止的表达式看动态的变化过程,让他们从原来的常量、代数式、方程式和算式的静态的关系中,逐步过渡到变量、函数这些表示量与量之间的动态的关系上,使学生的认识实现

为了快速明了的引出课题,课前让学生收集一些变化的实例,从学生的生活入手,开门见山,来指明本节课的学习内容。本课的引例较为丰富,但有些内容学生解决较为困难,于是我采取了三种不同的提问方式:1.教师问,学生答;2.学生自主回答;3.学生合作交流回答。为了较好的突出重点突破难点,在处理教学活动过程中,让学生思考每个变化活动中反映的是哪个量随哪个量的变化而变化,并提出一个量确定时另一个量是否唯一确定的问题,在得出变量和常量概念的同时渗透函数的概念.为了更好的让学生理解变量和常量的意义,由“问题中分别涉及哪些量?哪些量是变化的,哪些量是始终不变的?”一系列问题,在借助生活实例回答的过程中,归纳总结出变量与常量的概念,并能指出具体问题中的变量与常量。函数的概念是把学生由常量数学的学习引入变量数学的学习的过程,学生初步接触函数的概念,难以理解定义中“唯一确定”的准确含义,我设置了以下二个问题:1.在前面研究的每个问题中,都出现了几个变量?它们之间是相互影响,相互制约的。2.在二个变量中,一个量在变化的过程中每取一个值,另一个量有多少个值与它对应?来理解具体实例中二个变量的特殊对应关系,初步理解函数的概念。为了进一步让学生理解“唯一对应”关系,借助函数图像,使学生直观的感受二个变量之间特殊对应关系-----唯一对应。通过这种从实际问题出发的探究方式,使学生体验从具体到抽象的认识过程,及时给出函数的定义。再从抽象转化到实际应用中去,加深学生对函数概念的理解。为了加强学生辨析函数的能力,我准备了一道思考题,Y2=X中对于X的每一个值Y都有唯一的值与之对应吗?Y是X的函数吗?为什么?帮助学生把握概念的本质特征,注重学生的过程经历和体验。变量与函数的概念是学生数学认识上的一次飞越,所以我根据学生的认知基础,创设一定条件下的现实情景,使学生从中感受到变量与函数的存在和意义,体会变量与函数之间的相互依存关系和变化规律,遵循从具体到抽象、感性到理性的认知规律,以教师为主导,学生为主体的教学原则,引导学生探究新知。让学生领悟到现实生活中存在的多姿多彩的数学问题,并能从中提出问题,分析问题和解决问题,并培养学生合作意识,探究和应用的能力,使学生真正成为数学学习的主人。

政策变量 篇6

货币变量对实际产出变量是否具有实际影响, 经济学中已经对此进行了大量的理论和实证研究, 但是目前还没有形成一致的结论, 其主要原因是表示名义经济和实际经济的变量具有多种形式, 因此无法利用确定的代表性变量来指定货币变量与实际产出之间的关联机制。Granger (1969) 利用双变量之间的Granger影响关系检验发现基础货币变量对于实际产出变量具有单向的显著影响, 由此认为货币政策即使在短期内也是有效的, 这样的实证结论支持了货币主义学派的观点。但是随后Sims (1980) 的研究产生了对于“货币冲击具有实际效果”观点的质疑, 其主要结论是当在货币存量和实际产出变量的关系方程中引入利率变量时, 货币存量对于实际产出的作用程度将显著降低, 因此动态利率将比存量货币具有更强的解释产出变化能力, 这同凯恩斯经济学的LM曲线机制更加吻合。为了精细地分析货币变量和实际产出变量之间的关系, Bernanke和Blinder (1992) 选择了不同的货币变量形式, 其中包括M1, M2和三种不同的利率, 分别检验了其不同组合对实际产出变量:工业产出、资本使用率、就业率和失业率、耐用品定单等的影响程度, 结论是联邦基金利率是对这些实际变量最为重要的影响成分, 从而显示出利率杠杆的基本作用。

我国学者也对相关问题进行了理论和实证研究。其中许祥泰 (2001) 认为, 中国经济结构的内在不稳定性导致货币政策中介目标的不可测和不可控性, 经济体制不完善导致了货币政策失效。刘金全 (2002) 认为货币政策的有效性不仅依赖于货币政策的方向和强度, 而且依赖于经济周期的具体阶段, 即货币政策存在非对称性。刘金全、张艾莲 (2003) 通过检验货币供给增长率中存在的趋势性转变发现货币政策对实际产出变量的影响较弱。

由于分析实际产出变量和货币变量之间影响关系的结论不尽相同, 因此需要检验这些结论相对于变量选取和假设条件的稳健性及灵敏性, Leamer (1983) 给出了检验影响关系稳健性及灵敏性的检验方法, 并且在不同国家的经济运行中得到了广泛应用, 为此本文将基于我国的具体数据, 采用Leamer检验方法, 判断我国经济运行中货币政策作用机制的稳健性及灵敏性。

一、向量自回归模型以及Leamer模型的稳健性与灵敏性分析

Leamer (1983) 认为统计检验结论所具有的稳健性体现在所得到的检验结果应该对不同的模型假设均成立。与稳健性相对应, 也需要对一些重要的检验结论在不同模型假设条件下进行灵敏性分析。在具有参数结构的模型当中, 主要对不同假设下变量参数的显著性进行稳健性及灵敏性检验, 即考察变量系数在符号上和显著性水平上的变化。如果经验方程当中引入其他变量以后, 原解释变量系数没有发生符号上的改变, 或者没有出现变量的非显著性, 则我们认为该变量是稳健的。否则, 利用原方程进行检验得到该变量的统计结果被认为是脆弱的, 即具有灵敏性。

我们主要采用向量自回归模型当中的简化式方程检验货币变量对于实际产出变量的Granger影响, 并且判断检验结论的稳健性及灵敏性。如果所考察的货币变量在大多数指定条件下仍然具有对于实际产出变量的Granger影响, 则认为这个变量对于实际产出具有稳健的解释和推断能力。例如考虑变量M1的Granger影响, 设是某个实际变量, 则通过VAR模型得到下述简化式:

这里需要检验系数bt-i, i=1, …, n在统计量水平上是否显著非零, 一般情形下利用具有参数约束的F-统计量进行检验。如果F-统计量显著, 则认为M1对实际变量Xt具有Granger影响。在进行灵敏性分析时, 需要在VAR模型中继续引入其他货币变量, 例如可以引入某种贷款利率变量Rl, t, 得到如下简化式方程:

对上述方程重复进行M1和Rl, t的Granger影响关系检验 (分别计算对应的F-统计量值, 并且与相应的临界值比较) 。与此类似, 我们可以进一步将其他货币变量, 例如某种存款利率Rd, t, 引进作为回归变量继续进行Granger影响因果关系检验。如果某个货币变量在所有回归变量被引进的过程中, 其F-统计量均是显著的, 则认为这个货币变量对于实际产出的Granger影响是稳健的;如果某个货币变量仅仅在具体的某些回归方程中具有显著的Granger影响, 而在引入其他回归因子以后显著性消失, 则认为这个货币变量的Granger影响是脆弱的, 也是灵敏的。

我们在实证分析中涉及到9个实际产出变量和货币变量:实际GDP变量Yt, 累积消费Ct, 累积投资It, 货币变量M0和M1的同比增长率;表示货币机会成本的变量选取了一年期储蓄利率, 一年期贷款利率, 五年期储蓄利率和五年期贷款利率, 分别用变量Rd1、Rd5、Rl1和Rl5表示。由于M0和M1具有较强的相关性, 因此在同一回归方程中避免同时出现这两个变量。这样针对不同的实际产出变量, 我们可以分别建立32个包含M0和M1的回归方程, 建立15个包含Rd1, Rd5, Rl1和Rl5的回归方程, 例如其中涉及到累积消费的回归方程为:

这些方程中逐步引入解释变量, 然后判断这些解释变量对累积消费变量的解释能力, 同时检验消费变量对扰动项的冲击反应, 进而获得模型稳健性和灵敏性检验的经验证据。

二、货币政策的稳健性及灵敏性检验结果

我们使用样本区间取自1991年第4季度至2008年第4季度的季度数据, 实际GDP (Yt) 由名义GDP和通货膨胀率 (用居民消费价格指数替代) 计算得到;累积消费 (Ct) 用社会消费品零售总额度量;累积投资 (It) 用全社会固定资产投资度量。实际GDP、累积消费和累积投资的季度增长率时间路径如图1所示。货币变量M0和M1的季度同比增长率由图2表示。在选取数据时, 由于我国实行了有限浮动的利率体制, 虽然已经连续调整利率并且开征利息税, 但是仍然无法动态地体现利率变化对于实际产出的影响, 为此一年期储蓄利率 (Rd1) 、一年期贷款利率 (Rl1) 、五年期储蓄利率 (Rd5) 和五年期贷款利率 (Rl5) 使用实际利率来进行计算, 实际利率是名义利率和通货膨胀率之差, 它们的时间路径由图3表示。数据来源于国家统计局《我国经济景气月报》和中经网 (http://dbceigovcn) 。

如图1所示, GDP增长率从1991年至1996年期间波动较为剧烈, 在1996年底我国经济顺利实现“软着陆”以后, 经济增长的波动程度明显降低。消费增长率的波动与GDP大体相同, 在时间上稍有滞后。相比而言, 投资增长率的波动较为剧烈, 在1994年至1995年出现了一次大的波动, 1996年经济“软着陆”以后波动幅度逐渐减小, 在2003年到2005年前后又出现了一次较大的波动, 2006年至今逐渐趋于平缓。

由图2可以看出, M0和M1的增长率路径大致趋同, 从1992年到1996年出现了一次“陡升缓降”, 其中M0和M1的增长率都在1993年前后出现了峰值, 随即又迅速下降, 直至1994年—1996年间出现了一次小幅波动, 从1996年到目前为止波幅放缓。

图3表明, 我国实际存款利率和贷款利率也在1992年到1996年出现了“陡降陡升”, 在1994年—1995年间达到谷底, 而后迅速攀升, 直到1998年—1999年达到峰值, 此后实际利率的起伏较为平缓, 从2006年至今一直处于下降态势。

为了检验货币变量与实际产出变量是否显著相关, 我们列出了货币变量对实际产出变量具有显著Granger影响的VAR方程数量除以总方程数, 显著性水平为10%。我们的计算结果在表1中列出:由表1可以看出, 在包含M0和消费的16个VAR方程中, 每个方程中的M0都对消费变量具有显著的Granger影响, 因此我们认为货币变量M0对实际产出变量消费的Granger影响是稳健的。而在分别包括M1、一年期存款利率、五年期存款利率、一年期贷款利率、五年期贷款利率和消费变量的方程中, 具有显著Granger影响的VAR方程数量分别占总方程数量的1/16、2/8、6/8、4/8和2/8, 所以我们认为M1、一年期存款利率、五年期存款利率、一年期贷款利率及五年期贷款利率对消费的Granger影响是灵敏的。

同理, 在分别包含M0、M1、一年期存款利率、五年期存款利率、一年期贷款利率、五年期贷款利率和投资的8个VAR方程中, 具有显著Granger影响的VAR方程数量分别占总方程数量的0/16、0/16、1/8、4/8、1/8和6/8, 所以我们认为一年期存款利率、五年期存款利率、一年期贷款利率及五年期贷款利率对投资的Granger影响是灵敏的。

与之相类似的是, 在分别包括M0、M1、一年期存款利率、五年期存款利率、一年期贷款利率、五年期贷款利率和GDP的方程中, 具有显著Granger影响的VAR方程数量分别占总方程数量的6/16、0/16、2/8、3/8、3/8和5/8, 所以我们认为M0、一年期存款利率、五年期存款利率、一年期贷款利率及五年期贷款利率对GDP的Granger影响是灵敏的。

以上实证结果表明, 只有M0对消费变量具有显著的稳健影响, 而M1、一年期存款利率、五年期存款利率、一年期贷款利率及五年期贷款利率对消费的影响都是灵敏的, 即当与其它货币变量共同作用时, M1、一年期存款利率、五年期存款利率、一年期贷款利率和五年期贷款利率将对消费没有显著影响。存款利率和贷款利率对投资和GDP的Granger影响都是灵敏的, 即考虑多种货币变量共同作用时, 一年期存款利率、五年期存款利率、一年期贷款利率和五年期贷款利率对投资和GDP也没有显著影响。

三、经济政策分析与启示

从理论上讲, 利率是经济活动中一个至关重要的变量, 是借贷资本的成本与报酬, 是推行货币政策的重要工具, 是国家调控经济的重要杠杆。利率波动应该对国民经济各行各业, 以至储蓄、投资、消费都有影响, 特别是对一些利率敏感行业如建筑业、房地产业等的影响应该很大。但从对我国数据的计算分析来看, 我国具有明显的“利率机制失灵”。

从消费方面来说, 现金对于市场的影响要强于存款及贷款利率, 货币供给量的增加能够促进消费的增加, 而通过利率水平的调整来影响消费收效甚微, 即使实际利率为负时, 我国居民的储蓄存款额也一直居高不下。我们认为出现这种情况是因为:首先, 我国具有“勤俭节约”的传统美德, 受这种传统思想的影响, 削弱了利率变化的对消费者的消费刺激, 使得消费者很难改变长期的储蓄习惯。并且随着我国住房、养老、医疗、就业和教育等改革的深入, 导致消费者对未来的支出预期增加, 对当期消费更加谨慎。此外, 我国目前贫富差距较大, 大部分中低收入者的消费倾向很高, 并主要用于满足基本生活需求, 因此对利率的影响并不敏感。而对于高收入者, 利率的变化并不能改变他们的消费能力, 从而利率变化对他们的影响也不大。

从投资和GDP方面来说, 利率在理论上通过影响投资进而影响GDP, 但从本文的实证检验结果可以发现我国利率波动对投资和GDP没有较为稳健的影响。我们认为这首先是因为中央银行是利率的唯一制定者, 而中央银行作为宏观调控部门为了追求货币稳定等其他宏观经济目标, 不能使利率完全随货币资金供求关系的变化而变动, 因此形成的利率水平和波动幅度容易失真。其次, 我国的基础设施建设和房地产投资在固定资产投资中占有较大比例, 近些年来, 这些行业的投资回报率较高, 有的甚至高达几倍, 这导致贷款成本相对较低, 因而利率调节不能对相关行业产生较为显著的影响。

由于存在以上原因, 致使我国的利率调整不能对宏观经济产生较为稳健的影响。为了提高货币政策对实际产出的影响以达到对宏观经济进行调控的目的, 有效发挥“利率杠杆”的作用, 我们提出以下建议: (1) 建立健全社会保障体系。考虑到消费者普遍的储蓄动机, 我国应加快住房、养老、医疗、就业和教育等改革的步伐, 完善社会保障体系, 以减少消费者对于未来不确定支出预期, 从而使消费者改变消费观念, 使货币政策在较大程度上影响个人消费与投资决策。 (2) 提高消费者收入水平。在现有基础上进一步健全和完善最低生活保障制度, 并能使中低收入者的收入水平保持长期稳定增长。通过增加税收等财政政策降低过高收入, 从而在一定程度上缩小贫富差距。 (3) 推动利率市场化进程。货币政策要充分发挥作用, 离不开市场化条件下健全的货币政策工具。利率市场化是发展现代货币政策工具的前提。改革利率管理体制, 使利率能真正反映资本市场供求状况, 才能使货币政策更好的发挥调控宏观经济的作用。 (4) 控制固定资产投资的部分行业。对于房地产等高利润行业, 政府应采取相应措施减少其过高利润, 降低其投资回报率, 从而增加贷款成本在其总投资额中所占的比例, 使货币政策变化对投资能够起到有效的促进或抑制作用。

参考文献

[1]刘金全.货币政策作用的有效性和非对称性研究[J].管理世界, 2002 (3) .

[2]刘金全, 张艾莲.我国货币政策作用机制的阶段性与货币—产出之间影响关系检验[J].统计研究, 2003 (8) .

[3]Bernanke, B.S.and Blinder, A.S.The Fed-eral Funds rate and the channels of monetary transmission, American Economic Review, 1992 (82) :901-921.

[4]Leamer, E.E.Sensitivity analysis would help, A-merican Economic Review, 1985 (75) :308-313.

[5]Sims, C.Money, Income, and Causality, Ameri-can Economic Review, 1972 (62) :540-542.

[6]Walsh, C.E.Monetary Theory and Policy, CM:MIT Press, 1998.

【政策变量】推荐阅读:

文化变量07-04

中介变量08-06

变量施肥08-06

变量关系08-07

变量分析09-07

模糊变量09-10

变量分布09-14

工艺变量09-25

变量作业09-28

离散变量10-06

上一篇:作文:龙宫探险下一篇:贷款公司内部制度