等差数列优秀教案(通用10篇)
等差数列优秀教案 篇1
授课教师 授课班级 课 题 3.2.1等差数列(一) 课型 新授课 教学目标 知识目标 等差数列的定义.
等差数列的通项公式. 能力目标 明确等差数列的定义.
掌握等差数列的通项公式,并能运用其解决问题. 情感目标 培养学生的观察能力.
进一步提高学生的推理、归纳能力.
培养学生的应用意识. 教学重点 等差数列的定义的理解和掌握.
等差数列的通项公式的推导和应用. 教学难点 等差数列“等差”特点的理解、把握和应用. 教学过程 教学环节和教学内容 设计意图 【复习回顾】(2分钟)
数列的定义以及数列的通项公式和递推公式。
【引入】(3分钟)
某人要用彩灯装饰圣诞树,这个人做事喜欢按一定的规律去做,他在圣诞树的顶尖装上1个彩灯,在第一层装上4个,第二层装上7个,第三层装上10个,第四层装上13个。如果有第五层,你能猜得出他要装上多少个彩灯吗?他的规律是怎样的?
你能根据规律在( )内填上合适的数吗?
(1)1, 4, 7,10,13,( )
(2)21, 21.5, 22, ( ), 23, 23.5,…
(3)8,( ), 2, -1, -4, …
(4)-7, -11, -15, ( ), -23
共同特点:从第2项起,每一项与它的前一项的差等于同一个常数。这样的数列叫做等差数列。
【讲授新课】(16分钟)
一、等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。
用符号表示:
教师活动:分析定义,强调关键的地方,帮助学生理解和掌握。
问题:1.数列(1)(2)(3)(4)的公差分别是多少?
2.(5)1, 3, 5, 7, 9, 2, 4, 6, 8, 10
(6)5, 5, 5, 5, 5, 5 ……是等差数列吗?
3.求等差数列 1, 4, 7,10,13,16,…的第100项。
师生一起讨论回答。
二、等差数列的通项公式
如果等差数列 的首项是 ,公差是d,则据其定义可得:
即:
即:
即:
由此归纳等差数列的通项公式可得:
∴已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项
思考:已知等差数列的第m项 和公差d,这个等差数列的通项公式是?答:
【例题讲解】(8分钟)
等差数列教案4 篇2
教学内容与教学目标
1.使学生理解等差数列的定义,掌握通项公式及其简单应用,初步领会“迭加”的方法;
2.通过通项公式的探求,引导学生学习归纳、猜测、证明等合情推理与逻辑推理方法,提高学生分析、综合、抽象、概括等逻辑思维能力;
3.通过证明的教学过程,培养学生实事求是的科学态度和勇于探索的精神.
设计思想
1.根据本节内容,我们选用“探究发现式”教学法,并按如下顺序逐步展开:
(1)给等差数列下定义;
(2)等差数列通项公式的探求;
(3)通项公式的初步应用.
2.在讲等差数列概念之前,学生对数列的定义及通项公式已有所理解.在此基础上,通过引导学生对几个具体数列共性(差相等)的观察研究,让学生自己给等差数列下定义────把命名权交给学生,旨在充分发挥学生的主体作用.
3.“观察───归纳───猜想───证明”是获得发现的重要途径.因此,在探求等差数列的通项公式时,我们选择了上述途径,一方面可提高学生的合情推理与逻辑推理能力,另一方面,为落实教学目标打下了坚实的基础.
课题引入
通过请学生观察几个具体的数列的特点.例如:
(1)1,4,7,10,„;
(2)3,-1,-5,-9,„;
(3)5,5,5,5,„,并由学生自行分析(必要时老师可作点拨)得出“从第2项起每一项与它前一项的差都等于同一个常数”这一共性,随即请学生给这类数列命名(学生易将这类数列称作“差相等的数列”或“等差数列)”,师肯定学生的回答,或稍作提炼,并顺水推舟,指出这是我们今天将要研究的内容───等差数列(板书),以此引出课题.
知识讲解
1.关于等差数列的定义
(1)教学模式:由学生观察分析几个具体数列的共性───给这类数列命名(等差数列)───给等差数列下定义───分析两个要点的作用───用符号语言描述定义───指出定义的功能.
采用这一教学模式,主要目的是充分发挥学生的主体作用,教师的主导作用主要体现在必要的点拨上.
(2)等差数列的定义有两个要点.一是“从第2项起”.这是为了确保每一项与前一项差的存在性;二是“差等于同一个常数”,这是等差数列的基本特点“差相等”的具体体现.
2.+关于等差数列的通项公式
(1)教学模式:试验───归纳───猜想───证明───鉴赏.即试着求出a1,a2,a3,a4,并对此进行分析归纳,猜想出通项公式,再加以证明,最后从数形结合的角度揭示公式的内涵.
采用这一教学模式,可帮助学生学习合情推理与逻辑推理的方法,提高学生的发现能力和逻辑思维能力,培养学生思维的科学性和严密性以及勇于探索的精神.
(2)通项公式的证明:
方法1(利用迭加法):
在an-an-1=d中,取下标n为2,3,„,n,得a2-a1=d,a3-a2=d,a4-a3=d,„,an-an-1=d.
把这n-1个式子相加并整理,得an= a1+(n-1)d.
又当n=1时,左边= a1,右边= a1+(1-1)d= a1.
公式也适用.故通项公式为an= a1+(n-1)d(n=1,2,3,„).
方法2(利用递推关系)
an= an-1+d
= an-2+2d
= an-3+3d(注意ak的下标与d的系数的关系)
=„
= a1+(n-1)d.
(n=1时的验证同方法1).
(3)公式鉴赏:
① 通项公式可表示为an=dn+c(其中c= a1-d,nN)的形式,n的系数即为公差.当d≠0时,an是定义在自然数集上的一次函数,其图象是一次函数y=dx+c(xR)的图象上的一群孤立的点.
② 通项公式中含有a1,d,n,an四个量,其中a1和d是基本量,当a1和d确定后,通项公式便随之确定.从已知和未知的角度看,若已知其中任意三个量的值,即可利用方程的思想求出第四个量的值(即知三求一).
例题分析
考虑到本节课是等差数列的起始课,因此例题应围绕等差数列的定义及通项公式这两个知识点选配.
例1.求等差数列8,5,2,„的第20项.
通过本题的求解,使学生初步掌握通项公式的应用,运用方程的思想“知三求
一” .
本例在探求出通项公式以后给出.
分析与略解:欲求第20项a20,需知首项a1与公差d.现a1为已知,因此只需*求出d,便可由通项公式求出a20.事实上,∵ a1=8,d=5-8=-3,n=20,∴ a20=8+(20-1)×(-3)= -49.
例2.已知数列-2,1,4,„,3n-5,„,(1)求证这个数列是等差数列,并求其公差;
(2)求第100项及第2n-1项;
(3)判断100和110是不是该数列中的项,若是,是第几项?若不是,请说明理由.
通过本例的求解,加深学生对定义及其功能的理解和认识,并能利用方程的思想解决问题.
本例可在讲完定义后给出,也可在获得通项公式以后给出.
分析:对(1),只需利用定义证明an+1-an等于常数即可,并且这个常数即为公差;对(2),从函数的角度看,只需将an=3n-5中的n分别换成100及2 n-1即得a100和a2n-1;对(3),只需利用方程的思想,由an=100或an=110分别求出n,若求出的n为正整数,则可判定该数是这个数列中的项,并且这个正整数是几,该数就是这个数列中的第几项;若n不是正整数,则该数不是这个数列中的项.
略解:(1)由于an+1-an=3(n+1)-5-(3 n-5)=3(常数),故这个数列是等差数列,且公差d=3.
(2)∵ an=3 n-5,∴ a100 =3×100-5=295,a2n-1=3(2n-1)-5=6n-8.
(3)设3 n-5=100,解得n=35,∴ 100是这个数列中的项,并且是第35项;
设3 n-5=110,解得n=115
3N*,∴ 110不是这个数列中的项.
小结或总结
本节课我们主要研究了等差数列的定义和它的通项公式.等差数列的定义是判断一个数列是否是等差数列的依据之一,通项公式是通项an与项数n的关系的一种解析表示,它从函数和方程两个角度为我们求解问题提供了有力的工具.通过给等差数列下定义及自行探求通项公式,使我们领略了合情推理与逻辑推理在探索、发现知识方面的重要作用.
习题
1.已知等差数列{an}中,a1=5.6,a6=20.36,则a4=.
2.已知数列{an}的通项公式是an=-2 n+3,证明{an}是等差数列,并求出公差、首项及第2 n+5项.
3.在数列{an}中,a1=-2,2 an+1-1=2an,则,a51等于,().
(A)20(B)21(C)22
参考答案(D)2
31.14.6
2.∵ an+1-an= -2,∴{an}是等差数列,且d= -2,a1=1,a2n+5= -4 n-7.
3.D.
引申与提高
除了等差数列的定义以外,通项公式也是判断一个数列是否是等差数列的依据之一.我们把通项公式改写成a1= an+(n-1)·(-d)(*),并把它与原通项公式比较,易知两者形式是完全一样的.这里可视an为首项,a1为第n项,这个数列由原数列中前n项反序书写而得,即an,an-1,an-2,„,a2,a1.由(*)式知它仍成等差数列,并且公差为-d.由此知,从正、反两个不同的顺序看待“同一个”等差数列时,各自“等差”的特点保持不变,但公差互为相反数.
思 考 题
1.已知数列-5,-3,-1,1,„是等差数列,判断2n+7(n∈N*)是否是该数列中的项?若是,是第几项?
略解:∵ d= -3-(-5)=2,∴ an= -5+(n-1)×2=2 n-7.
而2n+7=2(n+7)-7,∴ 2n+7是该数列中的第n+7项.
2.已知数列-5,-3,-1,1,„是等差数列,判断2n+7(n∈N*)是否是该数列中的项?若是,是第几项?
略解:∵ d= -3-(-5)=2,∴ an= -5+(n-1)×2=2 n-7.
而2n+7=2(n+7)-7,∴ 2n+7是该数列中的第n+7项.
测 试 题
22.且{an}是等差数列,则1.已知数列an的前4项分别为25,238是数列an中的().
(B)第49项
an1(A)第48项(C)第50项 31an(D)第51项 2.已知数列{an}中,a1=1,则a98=.
3.一个首项为-24的等差数列,从第10项开始为正数,求公差d的取值范围.
参考答案
1.D.
2.1
292.提示:{1an}是公差为3的等差数列,求出1an后再求an,进而求出
a98.
a100249d083.由,即,解得<d≤3.3248d90a90
∴d的取值范围是,3.
高中数学等差数列教案 篇3
《江苏教育出版社》必修5 第二章 第二节“等差数列”
二.设计思想
数列是刻画一类离散现象的数学模型,在我们的日常生活中,会遇到如存款利息、构房贷款、资产折旧等一些计算问题,数列模型可以帮助我们解决这类实际问题,学习数列知识对进一步理解函数的概念和体会数学的应用价值具有重要的意义。
本章主要通过对日常生活中大量的实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些性质,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
“等差数列”第一课时是以概念为主的一节课,内容主要是等差数列的定义和通项公式。等差数列的通项公式与前n项和的公式的导出都离不开等差数列的定义,因此,教学中首先要讲清等差数列的定义,并且自始自终都要紧扣这个定义。
由于等差数列的定义学生较易理解,而且学生也具备这方面的基础,所以在本节内容的教学设计上,充分体现学生是学习的主体这一特点,首先从实际问题和学生已有知识出发,提供一组具体数列,然后引导学生通过观察、分析它们的规律,归纳出等差数列的定义。紧接着教师提出一个开放性的问题:“在等差数列 中,若公差为d,请根据等差数列的定义,写出与之相关的等式”。并用实物投影展示有代表性的学生的列式,由学生评价、补充。在这过程中,学生通过数学符号语言与文字语言的互译,加深了对定义的理解。而且用不同的方法推导出了通项公式,把等差数列的定义与通项公式有机地联系起来。让学生充分体验数学知识的形成过程,尽可能地让学生通过观察、分析、猜想、归纳、类比、推理等在发现探索知识的过程中体验数学,让学生在自主探求知识的同时,获得了分析问题、解决问题的能力,培养了创新意识。在教学设计上突出了数学思想方法,如对数列概念的介绍和通项公式的探究中充分体现函数思想和类比思想;在公式的运算中体现方程思想和数形结合思想。
在通项公式的应用中,有针对性地选择例题,充分挖掘教材例题的内涵。通过例1(教材例4)的教学,让学生感受等差数列与一次函数的关系,联系教材36页的“思考”进行教学设计,引导学生发现等差数列的公差d便是数列的各点所在直线的斜率,进一步得出公差d与等差数列函数单调性的关系。在例2(教材例2)的教学中,让学生初步感受数列通项公式的应用,并引导学生发现a6=a3+6d,进一步探索通项公式更一般的形式。
三.教学目标
1.认知目标:理解等差数列的定义,掌握等差数列通项公式的推导方法以及它的简单应用。
2.能力目标:在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维能力。
3.情感目标:通过学生自主的探索活动,获得新知识,让学生感受到成功的喜悦,从中培养他们的创新意识。
四.教学重点:
理解等差数列的定义,掌握等差数列通项公式的推导方法。
五.教学难点:
对等差数列通项公式的透彻理解以及通项公式的函数意义。
六.教学准备:
1、认真研读“数列”这一章新旧教材,比较它们的异同,以便备课时能更好地体现新课程理念。
2、课前发给每位同学一张白纸,要求学生带黑色水笔,以备课堂实物投影所需。
3、老师制作投影片,课前检查实物投影仪。
七.教学过程:
㈠引言:
从学生上一课所学的“剧场座位”的数列实例(教材P29)导入新课。
教师出示【投影片1】 某剧场有30排座位,第一排有20个座位,从第二排起,后一排都比前一排多2个座位,那么各排的座位数依次为20,22,24,26,28,…。
思考:第30排有多少个座位?
㈡关于等差数列定义的学习过程:
实例展示,引出定义
⑴教师出示【投影片2】并提出问题:观察下列数列有何共同特点?
(设计目的:①逐步引导学生自己描述出这些数列的共同特征,从第2项起,每一项与它的前一项的差等于同一个常数。②培养学生的观察能力和归纳、表达能力。)
⑵教师:揭示课题(板书),出示【投影片3】:
如果一个数列从第2项起,每一项与它前一项的差都等于同一个常数,这个数列就叫做等差数列。
(设计目的:加深对定义中关键词的理解。)
对定义的再认识:
⑴教师再次出示【投影片2】,并提出问题:以上四个等差数列从第2项起,每一项与前一项的差是多少?
(设计目的:引出公差的概念及符号表示。)
⑵教师提出问题:如果等差数列 : ,公差为d,根据等差数列的定义,写出与之相关的等式,选择列式有代表性的学生板演。(估计学生会出现以下几种状况)
等差数列前n项和教案 篇4
一、教材分析
1、教材内容:等差数列前n项求和过程以及等差数列前n项和公式。
2.教材所处的地位和作用:本节课的教学内容是等差数列前n项和,与前面学过
的等差数列的定义、性质等内容有着密切的联系,又能为后面等比数列前n
项和以及数列求和做铺垫。
3、教学目标
(1)知识与技能:掌握等差数列前n项和公式,理解公式的推导方法。同时能
熟练、灵活地应用等差数列前n项和公式解决问题。
(2)过程与方法:经历公式的推导过程,体验倒序相加进行求和的过程,学会
观察、归纳、反思。体验从特殊到一般的研究方法。
(3)情感、态度、价值观:通过具体、生动的现实问题的引入,激发学生探
究求和方法的兴趣,树立学生求知意识,产生热爱数学的情感,逐步养
成科学、严谨的学习态度,提高一般公式推理的能力。
4、重点与难点
重点:等差数列前n项和公式的掌握与应用。
难点:等差数列前n项和公式的推导以及其中蕴含的数学思想的掌握。
二、学情分析
学生前几节已经学过一些数列的概念及简单表示法,还学了等差数列的定
义以及性质,对等差数列已经有了一定程度的认识。这些知识也为这节的等差数列前n项和公式做准备,让学生能更容易理解等差数列前n项和公式的推导过程。同时也为后面的等比数列前n项和公式做铺垫。但由于数列形式多样,因此仅仅掌握等差数列前n项和公式还是不够的,更应该学会灵活应用。
三、教学方法:启发引导,探索发现
四、教学过程
1.教学环节:创设情境
教学过程:200多年前,高斯的算术老师提出了下面的问题: 123100?。据说,当其他同学忙于把100个数逐项相加时,10岁的高斯迅速得出5050这个答案。让同学思考并讨论高斯是怎么算的。
设计意图:由著名的德国数学家高斯的例子引发同学们的思考,为下面引入倒序相加法求和做准备。2.教学环节:介绍倒序相加法
教学过程:请同学将自己的计算方法在课上发表,老师接着介绍倒序相加
法。记S123100981S10099,从而发现每一列相加都得101。
则2S(1100)(299)(398)(1001)101*100
S101*10025050
类似地,用同样的方法计算1,2,3,,n,的前n项和,可以得到 123n(n1)n。2 设计意图:介绍倒序相加法,并用这个方法计算1,2,3,,n,的前n 项和,从而为下面推导等差数列前n项和公式做铺垫。
3.教学环节:推导公式
教学过程:首先介绍数列an的前n项和,用Sn来表示,即
Sna1a2a3an。对于公差为d的等差数列,我们用两种方法表示Sn。Sna1(a1d)(a12d)[a1(n1)d]Snan(and)(an2d)[an(n1)d]
则两式相加得:
2Sn(a1an)(a1an)(a1an)(a1an)n(a1an)
n个n(a1an),将等差数列的通项公2n(n1)d。式ana1(n1)d代入,得到公式Snna12 推导出等差数列前n项和的公式为Sn 设计意图:用倒序相加法推导得到等差数列前n项和公式,由于有前面的铺垫让学生更容易理解等差数列前n项和公式的推导过程,对后面的应用也有帮助。
4、教学环节:例题讲解
教学过程:例1:用等差数列前n项和的公式计算1+3+5++99的值。
例2:a11,a86,求这个等差数列的前8项和S8以及公
差d。例3:已知数列an的前n项和Snn2n,求这个数列 的通项公式。这个数列是等差数列吗?如果是,它的首项与公差分别是什么?
设计意图:巩固等差数列前n项和公式,加深学生对该公式的印象。6.教学环节:回顾总结
教学过程:
1、倒序相加法进行求和的思想
2、复习等差数列前n项和公式Sn Snna1n(a1an)和 2n(n1)强调要根据条件选用适当的公式进 d,行求解。以及公式的适用范围。7.教学环节:布置作业
七、板书设计
1、问题的提出
2、倒序相加法
3、等差数列前n项和公式
4、例题
5、回顾总结
等差数列优秀教案 篇5
(二)教材:等差数列前n项和
(二)目的:使学生会运用等差数列前n项和的公式解决有关问题,从而提高学生分析问题、解决问题的能力。过程:
一、复习:等差数列前n项和的公式
二、例一 在等差数列an中 已知S848 S12168 求a1和d;
解:8a128d48 a18 d4
12a166d168 已知a3a540,求S17.
2解:∵a1a17a3a1540
∴S1717(a1a17)1740340 例二 已知an,bn都成AP,且 a15,b115,a100b100100试求数 列anbn的前100项之和S100.
解:S100100(a1a1a100b100)100(515100)6000 例三 一个等差数列的前12项之和为354,前12项中偶数项与奇数项之比为32:27,求公差。121112ad35412652d
解一:设首项为a1,公差为d 则6(a1d) d5
322176a652d12S奇S偶354S偶19232 解二:S偶 由 S偶S奇6d d5 S奇162S27奇 例四 已知:an1024lg21n(lg20.3010)nN* 问多少项之和为最 大?前多少项之和的绝对值最小?
解:1 an1024(1n)lg20
an11024nlg2010241024n13401n3403 ∴n3402 lg2lg2 2 Sn1024nn(n1)(lg2)0 2 当Sn0或Sn近于0时其和绝对值最小
令:Sn0 即 1024+ 得:nn(n1)(lg2)0 2204816804.99 lg2 ∵ nN* ∴n6805
例五 项数是2n的等差数列,中央两项为an和an1是方程x2pxq0的 两根,求证此数列的和是方程 lg2x(lgn2lgp2)lgx(lgnlgp)20 的根。(S2n0)
解:依题意:anan1p
∵a1a2nanan1p ∴S2n2n(a1a2n)np ∵lg2x(lgn2lgp2)lgx(lgnlgp)20
∴(lgxlgnp)20 ∴xnpS2n(获证)
例六(机动,作了解)求和 1 1111 12123123n 解:an12112()
123nn(n1)nn1 ∴ Sn2(1)()()2(1)223nn1n1n1 2(10099)(9897)(43)(21)222222221111112n 解:原式=19919573
三、作业 《精编》P167-168 6、7、8、9、10
等差数列优秀教案 篇6
一、教学目标:
知识与能力:理解等差数列的定义;掌握等差数列的通项公式;培养学生的观察、归纳能力,应用数学公式的能力及渗透函数、方程思想
过程与方法:经历等差数列的产生过程和应用等差数列的基本知识解决问题的能力。情感态度与价值观:通过等差数列概念的归纳概括,培养学生的观察、分析能力,体验从特殊到一般认知规律,培养学生积极思维,追求新知的创新意识。
二、教学重点:理解等差数列的概念,掌握等差数列的通项公式,体会等差数列与一次函数之间的联系。
三、教学难点:概括通项公式推导过程中体现出的数学思想方法。
四、教学准备:根据本节知识的特点,为突出重点、突破难点,增加教学容量,便于学生更好的理解和掌握所学的知识,我利用计算机辅助教学。
五、教学过程:
(一)创设情境,课题导入
复习上节课学习的数列的定义及数列的表示法。这些方法从不同的角度反映了数列的特点,下面我们来看这样的一些数列:(大屏幕显示课本41页的四个例子)⑴、0 5 10 15 20 „ „ ⑵、48 53 58 63 ⑶、18 15.5 13 10.5 8 5.5 ⑷、10072 10144 10216 10288 10360 教师提出问题:以上四个数列有什么共同的特征?请同学们互相讨论。(学生积极讨论。得到结论,教师指名回答)
共同特点:从第2项起,每项与它的前一项的差是同一个常数。
师:这些数列均具有相邻两项之差“相等”的特点,具有这种特点的数列,我们把它叫做等差数列。
(二)设置问题,形成概念
等差数列:一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数就叫做等差数列的公差,常用字母d表示。
师:等差数列的概念中的几个关键点是什么?
生(思考、讨论):第2项、每一项与它的前一项、同一个常数
教师在进一步强调。
师:如何用数学语言来描述等差数列的定义?
学生讨论后得出结论:
数学语言:anan1d(n2)或
an1and(n≥1)
(学生通过讨论,从而不断完善自己的认知结构)
师:同学们能否举一些等差数列的例子?
(学生争先恐后地发言,教师随机指定两名学生回答。)
理解等差数列的概念是本节课的重点,为了加深对概念的理解,让学生讨论课本45页练习第4题,教师总结。
(三)等差数列的通项公式
师:如同我们在前一节看到的,能否确定一个数列的通项公式对研究这个数列具有重要的意义。数列⑴、⑵、⑶、⑷的通项公式存在吗?如果存在,分别是什么?
(师生一起探讨)
师:若一个无穷等差数列{an},首项是a1,公差为d,怎样得到等差数列的通项公式?(引导学生根据等差数列的定义进行归纳)
a2a1d 即:a2a1d
a3a2d 即:a3a2da12d
a4a3d 即:a4a3da13d
„ „
至此,让学生自己猜想通项公式是什么,使学生体会归纳、猜想在得出新结论中的作用。
生:ana1(n1)d
师:此处由归纳得出的公式只是一个猜想,严格的证明需要用数学归纳法的知识,在这里,我们暂且先承认它,我们能否再探索一下其他的推导方法?
(然后学生在教师的引导下一起探索另外的推导方法)叠加法:{an}是等差数列,所以:
anan1d
an1an2dan2an3d
„ „
a2a1d
两边分别相加得:ana1(n1)d
所以:ana1(n1)d 迭代法:{an}是等差数列,则:
anan1dan22dan33d = „ „=a1(n1)d
所以:ana1(n1)d
由以上关系还可得:ama1(m1)d
即:a1am(m1)d
则:ana1(n1)dam(m1)d(n1)d
=am(nm)d
即得等差数列的第二通项公式:anam(nm)d
(四)通项公式的应用:
观察通项公式并提出问题:
师:要求等差数列的通项公式只需要求谁?
生:a1和d
师:通项公式中有几个未知量? 生:a1、d、an、n
师:要求其中的一个,需要知道其余的几个? 生:3个。
举几个简单的例子让学生求解(屏幕显示):
等差数列{an}中,⑴已知:a1
2d
3求an ⑵已知:a13 an
d2 求n
⑶已知:a18
a627
求d ⑷已知:d
1a78
求a1 3(题目比较简单,照顾到全体学生,使学生深刻掌握等差数列的通项公式,从而打好基础。)例题讲解:(屏幕显示,学生讲解)
例一:
1、求等差数列8、5、2„ „的第20项
解:由a18
d58n20得:
a208(201)(3)49
2、401是不是等差数列
5、
9、13„ „的项?如果是,是第几项?
解:由a1
5d9(5)4得an54(n1)4n1
由题意知,本题是要回答是否存在正整数n,使得:
4014n1成立
解得:n100即401是这个数列的第100项。
例二:某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4km(不含4km)计费为10元,如果某人乘坐该市的出租车去往14km处的目的地,且一路畅通,等候时间为0,需要支付多少车费?
师:此题是一个实际应用问题,可抽象为那种数学模型?
生:可以抽象为等差数列的数学模型。
师:模型中提供的已知量有哪些?
生:4km处的车费记为:a111.2公差d1.2
师:要求量是谁?
生:当出租车行至目的地即14km处时,n=11 求a11
所以:a1111.2(111)1.223.2 例三:数列an3n5是等差数列吗?
(引导学生根据等差数列的定义求解,就是看anan1(n2)是不是一个与n无关的常数。)
生:anan13n3(n1)5所以:{an}是等差数列
引申:已知数列{an}的通项公式anpnq,其中p、q为常数,这个数列是等差数列吗?若是,首项和公差分别是多少?
(指定学生求解)
解:取数列{an}中任意两项an和an1(n2)
anan1(pnq)p(n1)qpnq(pnpq)p
它是一个与n无关的常数,所以{an}是等差数列?
并且:a1pq
dp
师:上节课我们已学习过数列是一种特殊的函数,那么由此题启示,等差数列是哪一类函数?
生:等差数列是关于正整数n的一次函数。师:一定是一次函数吗? 生(茫然,讨论):还可以是常数函数,当d=0的时候。师:那么等差数列的图像有什么特征?
生:是均匀分布在一条直线上的一群孤立的点。
师:通过例三,我们能否总结一下,到目前为至我们有哪些方法来判断一个数列是等差数列?
(学生讨论、回答,教师补充)
一是利用定义:anan1d(n2)或
an1and(n≥1)二是利用通项公式:anpnq(pR)是关于n的一次函数或常数函数。课堂检测反馈:
1、求等差数列
10、8、6„ 的第20项。
2、-20是不是等差数列0、3.5、-7„ 的项?如果是,是第几项?如果不是,说明理由。3、等差数列{an}中,已知:a510
a12
31求a1和d 4、等差数列{an}中,已知:a56
a8
求a14
5、等差数列{an}中,已知:a1a69
a47 求a3、a9
(五)课时小结:
(学生自己归纳、补充,培养学生的口头表达能力和归纳概括能力,教师总结)
1、等差数列的定义:anan1d(n2)或
an1and(n≥1)2、等差数列的通项公式:ana1(n1)d或anam(nm)d
(六)课后作业:
课本45页习题2.2(A组)
数列求和教案 篇7
数列求和常见的几种方法:(1)公式法:①等差(比)数列的前n项和公式;
1n(n1)21222n2nn(
123......6② 自然数的乘方和公式:123......n(2)拆项重组:适用于数列
1n)(2 1)an的通项公式anbncn,其中bn、cn为等差数列或者等比数列或者自然数的乘方;
(3)错位相减:适用于数列an的通项公式anbncn,其中bn为等差数列,cn为等比数列;
(4)裂项相消:适用于数列a的通项公式:aknnn(n1),a1nn(nk)(其中k为常数)型;
(5)倒序相加:根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的.(6)
分段求和:数列an的通项公式为分段形式
二、例题讲解
例
1、(拆项重组)求和:311254718......[(2n1)12n]
练习1:求和Sn122334......n(n1)
例
2、(裂项相消)求数列11113,35,57,179,...,1(2n1)(2n1)的前n项和
练习2:求S11n11212311234...1123...n
例
3、(错位相减)求和:1473n222223...2n
练习3:求Sn12x3x24x3...nxn1(x0)
例
4、(倒序相加)设f(x)4x4x2,利用课本中推导等差数列前n项和的方法,求:f(11001)f(21001)f(31001)...f(10001001)的值
a3n2(n4)例
5、已知数列n的通项公式为an2n3(n5)(nN*)求数列an的前n项和Sn
检测题
1.设f(n)22427210...23n10(nN),则f(n)等于()
2n222n4(81)
B.(8n11)
C.(8n31)
D.(81)777712.数列{an}的前n项和为Sn,若an,则S5等于()
n(n1)511A.1
B.
C.
D.
66303.设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S37,且a13,3a2,a34构成等差数列. A.(1)求数列{an}的通项公式.(2)令banln3n1,n1,2...,求数列{bn}的前n项和Tn。
4.设数列a2nn满足a13a23a3…3n1a
3,aN*n.(Ⅰ)求数列an的通项;
(Ⅱ)设bnna,求数列bn的前n项和Sn n
5.求数列22,462n22,23,,2n,前n项的和.6:求数列112,123,,1nn1,的前n项和.7:数列{an}的前n项和Sn2an1,数列{bn}满b13,bn1anbn(nN).(Ⅰ)证明数列{an}为等比数列;(Ⅱ)求数列{bn}的前n项和Tn。
8:
求数列21,41,6114816,2n2n1,...的前n项和Sn.
.
9、已知数列an的前n项和Sn123456...1n1n,求S100.10:在各项均为正数的等比数列中,若a5a69,求log3a1log3a2log3a10的值.11:求数列的前n项和:11,1a4,11a27,,an13n2,…
12:求S12223242...(1)n1n2(nN)
13:已知函数fx2x2x2(1)证明:fxf1x1;
数学教案-数列 篇8
3.1.1数列
教学目标
1.理解数列概念,了解数列和函数之间的关系
2.了解数列的通项公式,并会用通项公式写出数列的任意一项
3.对于比较简单的数列,会根据其前几项写出它的个通项公式
4.提高观察、抽象的能力.
教学重点
1.理解数列概念;
2.用通项公式写出数列的任意一项.
教学难点
根据一些数列的前几项抽象、归纳数列的通项公式.
教学方法
发现式教学法
教具准备
投影片l张(内容见下页)
教学过程()
(1)复习回顾
师:在前面第二章中我们一起学习了有关映射与函数的知识,现在我们再来回顾一
下函数的定义.
生:(齐声回答函数定义).
师:函数定义(板书)
如果A、B都是非空擞 集,那么A到B的映射
就叫做A到B的函数,记作:,其中
(Ⅱ)讲授新课
师:在学习第二章的基础上,今天我们一起来学习第三章数列有关知识,首先我们来看一些例子。(放投影片)
4,5,6,7,8,9,10. ①
②
1,0.1,0.01,0.001,0.0001…. ③
1,1.4,1.41,1.41,4,…. ④
-1,1,-1,1,-1,1,…. ⑤
2,2,2,2,2,
师:观察这些例子,看它们有何共同特点?
(启发学生发现数列定义)
生:归纳、总结上述例子共同特点:
1. 均是一列数;
2. 有一定次序
师:引出数列及有关定义
一、定义
1. 数列:按一定次序排列的一列数叫做数列;
2. 项:数列中的每一个数都叫做这个数列的项。
各项依次叫做这个数列的第1项(或首项)。第2项,…,第n项…。
如:上述例子均是数列,其中例①:“4”是这个数列的第1项(或首项)“9”是这个数列的第6项。
3. 数列的一般形式:,或简记为,其中是数列的第n项
生:综合上述例子,理解数列及项定义
如:例②中,这是一个数列,它的首项是“1”,“”是这个数列的第“3”项,等等。
师:下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:
项
↓ ↓ ↓ ↓ ↓
序号 1 2 3 4 5
师:看来,这个数的第一项与这一项的序号可用一个公式:来表示其对应关系
即:只要依次用1,2,3…代替公式中的n,就可以求出该数列相应的各项
生:结合上述其他例子,练习找其对应关系
如:数列①:=n+3(1≤n≤7)
数列③:≥1)
数列⑤:n≥1)
4.通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。
师:从映射、函数的观点来看,数列也可以看作是一个定义域为正整数集N+(或它的有限子集的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式。
师:对于函数,我们可以根据其函数解析式画出其对应图象。看来,数列也可根据其通项公式来函出其对应图象,下面同学们练习画数列①②的图象。
生:根据扭注通项公式画出数列①,②的图象,并总结其特点。
图3―1
特点:它们都是一群弧立的点
5.有穷数列:项数有限的数列
6.无穷数列:项数无限的数列
二、例题讲解
例1:根据下面数列的通项公式,写出前5项:
(1)
师:由通项公式定义可知,只要将通项公式中n依次取1,2,3,4,5,即可得到数列的前5项。
解:(1)
(2)
例2:写出下面数列的一个通项公式,使它的前4项分别是下列各数:
(1)1,3,5,7; (2)
(3)
分析:
(1)项1=2×1-1 3=2×2-1 5=2×3-1 7=2×4-1
↓ ↓ ↓ ↓
序号 1 2 3 4
∴;
(2)序号:1 2 3 4
↓ ↓ ↓ ↓
项分母:2=1+1 3=2+1 4=3+1 5=4+1
↓ ↓ ↓ ↓
项分子: 22-1 32-1 42-1 52-1
∴;
(3)序号
‖ ‖ ‖ ‖
∴
(Ⅲ)课堂练习
生:思考课本P112练习1,2,3,4
师:[提问]练习3,4,并根据学生回答评析
生:板演练习1,2
(Ⅳ)课时小结
师:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n项求一些简单数列的通项公式。
(V)课后作业
一、课本P114习题3.1 1,2
二、1.预习内容:课本P112~P13
预习提纲:①什么叫数列的递推公式?
②递推公式与通项公式有什么异同点?
板书设计
课题
一、定义
1. 数列
2. 项
3. 一般形式
4. 通项公式
5. 有穷数列
6. 无穷数列
二、例题讲解
例1
例2
函数定义
教学后记
§3.1.2数列
教学目标
1.了解数列的递推公式,明确递推公式与通项公式的异同
2.会根据数列的递推公式写出数列的前几项
3.培养学生推理能力.
教学重点
根据数列的.递推公式写出数列的前几项
教学难点
理解递推公式与通项公式的关系
教学方法
启发引导法
教具准备
投影片1张(内容见下页)
教学过程()
(I)复习回顾
师:上节课我们学习了数列及有关定义,下面先来回顾一下上节课所学的主要内容.
师:[提问]上节课我们学习了哪些主要内容?
生:[回答]数列、项、表示形式、通项公式、数列分类等等.
(Ⅱ)讲授新课
师:我们所学知识都来源于实践,最后还要应用于生活。用其来解决一些实际问题.
下面同学们来看此图:钢管堆放示意图(投影片).
生:观察图片,寻其规律,建立数学模型.
模型一:自上而下:
第1层钢管数为4;即:14=1+3
第2层钢管数为5;即:25=2+3
第3层钢管数为6;即:36=3+3
第4层钢管数为7;即:47=4+3
第5层钢管数为8;即:58=5+3
第6层钢管数为9;即:69=6+3
第7层钢管数为10;即:710=7+3
若用表示钢管数,n表示层数,则可得出每一层的钢管数为一数列,且≤n≤7)
师:同学们运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数。这会给我们的统计与计算带来很多方便。
师:同学们再来看此图片,是否还有其他规律可循?(启发学生寻找规律2,建立模型二)
生:自上而下每一层的钢管数都比上一层钢管数多1。
即
依此类推:(2≤n≤7)
师:对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。
一、定义:
递推公式:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
说明:递推公式也是给出数列的一种方法。
二、例题讲解
例1:已知数列的第1项是1,以后的各项由公式给出,写出这个数列的前5项。
分析:题中已给出的第1项即
递推公式:
解:据题意可知:
例2:已知数列中,≥3)
试写出数列的前4项
解:由已知得
(Ⅲ)课堂练习
生:课本P113练习 1,2,3(书面练习)
(板演练习1.写出下面各数列的前4项,根据前4项写出该数列的一个通项公式。
(1)≥2)
(2)≥3)
师:给出答案,结合学生所做进行评析。
(Ⅳ)课时小结
师:这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,课后注意理解。注意它与通项公式的区别在于:
1. 通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系。
2. 对于通项公式,只要将公式中的n依次取胜,2,3…即可得到相应的项。而递推公式则要已知首项(或前n项),才可求得其他的项。
(V) 课后作业
一、课本P114习题3.1 3,4
二、1.预习内容:课本P114―P116
3. 预习提纲:①什么是等差数列?②等差数列通项公式的求法?
板书设计
课题
一、定义
1. 递推公式:
三、例题讲解
例1
例2
小结:
通项公式与
递推公式区别
经典教案集萃之数列 篇9
经典教案集萃之数列
经典教案集萃之数列 数列第五部分:数列的求和 (一)课标解读及教学要求:会灵活运用等差、等比数列的求和公式,掌握数列求和的几种特殊方法。 (二)典型例题: 例题1:求下列个数列的和: (1) ; (2) ; (3) (4)1,1+2,1+2+22,1+2+22+23,…。 【命题意图】本题主要考查分组求和法、裂项相消法等数列求和的基本方法,考查等价转化等数学思想方法。 【分析】对于非等差、等比数列的求和问题,求出其通项公式是关键,学会从通项公式的结构特征进行分析,选择合理的方法。 【变题】(1)求和: ( ; (2)求数列 的各项的和。 (3)求 (4)求 ( ; 例题2:若数列 中, ,求 。 【命题意图】本题主要考查特殊数列求和的方法。 【分析1】分类讨论。 【分析2】求出奇数项和偶数项的通项,再分别求和。 【分析3】展开分别求和。 例题3:设a为常数,求数列 的前n项和。 【命题意图】本题主要考查错位相消法求和。 【分析】分a=1与 讨论。 时用错位相消法。 【变题1】:若公比为c的等比数列为 的首项为 且满足 (1)求c的值; (2)求数列 的前n项和 。 【分析】根据数列的递推关系和等比数列的知识,建立关于c的方程,解方程即可求出c的值,从而求得 的通项公式,进一步求出 的表达式,根据 的特点,再运用错位相消法求和。 【变题2】设 ,定义 , 。 (1)求数列 的通项公式; (2)若 , ,试比较 的大小,并说明理由。 例题4:设 的定义域为R,其图象关于点 成中心对称,令 是常数,且 , ,求数列 的前n项的和。 【命题意图】本题考查颠倒相加求和 【分析】本题中 【变题】设 ,利用推导等差数列前n和公式的方法,求 的值。 例题5:已知数列为 的.通项为 前n项和为 ,且 是 与2的等差数列;数列 中, 点 在直线 上。 (1)求数列 的通项公式; (2)设数列 前n项和为 ,试比较 与2的大小; (3)求 的和。 【命题意图】本题主要考查等差数列的通项公式、前n项和公式等基础知识和裂项相消、错位相减等特殊数列的求和的基本方法,考查综合运用所学知识分析问题、解决问题的能力。 【分析】首先根据已知条件求出 考察 灵活地对 与 求和处理。 【变题1】数列 满足: 求 。 【变题2】已知 ,且 成等差数列,n为正偶数,又 。求证: 。 (三)建议课时:2课时
数列的递推公式教案 篇10
普兰店市第六中学
陈娜
一、教学目标
1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。
2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。
3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。
二、教学重点、难点和关键点
重点:数列的递推定义以及应用数列的递推公式求出通项公式。难点:数列的递推公式求通项公式。关键:同本节难点。
三、教学方法
通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题…… 经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。
四、教学过程
环节1:新课引入
一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把 1
现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马?
通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。环节2:引例探究
(1)1 2
16………
(2)1
cos1
coscos1
cos[cocsos1]
…….(3)0 1 7 10 13 …….通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。递推公式定义:
如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习
例1:已知数列{an}的第1项是1,以后的各项由公式
a n
(n≥2)给出,写出这个给出,写出这个数列的前5项.= 1+an-11解:据题意可知:a1=1, a3=1+
a2=1+1a1=1+1a311=2,23531a21=1+=1+12=35=32,.a4=1+=1+=,a5=1+85a42
an的前五项是3581,2,,235
练习:已知一个数列的首项a1=1, a3=2, an= an-1+ an-2(n≥3)求这个数列的前五项。这个例题和习题是为了让学生进一步体会通过数列的的递推公式来求数列中的项,同时也能让学生感受到如果要是中间有一个环节做错了就会关联到其他的结果也是错误的,因此要培养学生认真的品质。
例2:已知数列{ an}满足a1 =1,an+1 =an +(2n-1)
(1)(2)写出其数列的前五项,归纳出数列的一个通项公式。利用数列的递推公式求其通项公式。
a2a1(2*11)112a3a2(2*21)235解(1)a11,a4a3(2*31)5510,a5a4(2*41)10717 猜想:an=(n-1)2+1(2)a2a12*11
a3a22*21
a4a32*31
…………………
an =an-1 +(2n-3)
an =a1 +2[1+2+3+…+(n-1)]—(n-1)an=1+2*(n1)[1(n1)]2_(n-1), 即an=(n-1)2+1 当n=1时也满足上式。
所设问题中的(1)是起着承上启下的作用,同时也引出了(2)的结论引起学生的兴趣,让学生感受到如何能在数列的递推公式得出数列的通项公式,体会到事物之间的互相转化的思想。
跟踪练习:已知数列{ an }中,a1 =1,an+1= an +
1n(n1),求数列的{ an }的通项公式。
在例2解题过程中从等差数列的通项公式的累和法进行引导,让学生体会到同类问题的知识的迁移过程。同时也引导学生认识到an+1—an=f(n)这样形式的都可以用累和法来求解。
环节4:归纳总结 ① 定义
② 累加法:an+1—an= f(n)环节5:作业:必做与选作
【等差数列优秀教案】推荐阅读:
等差数列教学设计及教案11-21
等差数列习题10-20
等差数列笔试题06-06
等差数列学案11-17
等差数列历年高考题08-20
等差数列知识点09-03
等差数列及其性质习题10-06
《等差数列》教学设计11-07
等差数列试题(自我检测)11-29
等差数列前n项和07-03