《等差数列》教学设计(共10篇)
《等差数列》教学设计 篇1
等差数列第一课时教学设计片断
重庆市教育科学研究院 张晓斌
教学过程
1.创设情境,直奔课题
①德国数学家高斯八岁时计算1+2+3+„+100=?时,所用到的数列:1,2,3,4,„,100。②姚明刚进NBA一周里每天训练发球的个数依次是:6000,6500,7000,7500,8000,8500,9000。.③匡威运动女鞋的尺码(鞋底长,单位是cm):22,23,23,24,24,25,25,26。
引导学生观察:上面的数列①、②、③有什么共同特点?
学生容易发现这些数列有一个共同特点:从第二项起,每一项与前一项的差都等于同一个常数,我们把具有这一特点的数列叫做等差数列(此时写出课题)。
2.阐述定义,理解内涵
在前面的基础上得出等差数列的定义:
如果一个数列从第二项起,每一项与前一项的差都等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。
你觉得在理解等差数列的定义时应注意什么?启发学生回答: ①“从第二项起”(这是为了保证“每一项”都有“前一项”);
②每一项与它的前一项的差必须是同一个常数(因为“同一个常数”体现了等差数列的基本特征); 然后在理解概念的基础上,引导学生将等差数列的文字语言转化为数学语言,归纳出一串数学表达式,即a2a1d,a3a2d,,anan1d,an1and,,这其中最能刻划等差数列的本质特征的是哪一个等式?
。an1and(d是常数,nN*)或anan1d(d是常数,nN且n2)通过下面三个问题从正反两方面加深对概念的理解:
① 9,8,7,6,5,4,„„是等差数列吗?(递减等差数列)②常数列3,3,„,3,„是等差数列吗?(常数列)
③数列1,4,7,11,15,19是等差数列吗?(非等差数列)
由此三个问题和前面的问题让学生发现:公差d可以是正数、负数,也可以是0;当d0时,等差数列是递增数列;当d0时,等差数列是递减数列;当d0时,等差数列是常数列.④若数列{an}满足:an1and(d是常数,nN且n2),则数列{an}是等差数列吗? 3.探究交流,发现公式
如果等差数列{an}首项是a1,公差是d,那么这个等差数列a2,a3,a4如何表示?an呢? 根据等差数列的定义,不难由学生完成:
因为a2a1d,a3a2d,a4a3d,„„。所以a2a1d,12121212a3a2d(a1d)da12d,a4a3d(a12d)da13d,„„„„„„„„„„„„„„„„„„„„„„„ 由此完成ana1(学生回答)
当n1时,对(*)式两边均为a1,即等式也成立,说明(*)式对nN都成立,因此等差数列的通项公式就是:ana1(n1)d,nN。
上面求通项公式的过程是迭代的过程,所用的方法叫不完全归纳法,这种导出公式的方法不够严密,因此我们有必要寻求更为严密的推导方法。
根据等差数列的定义,引导学生探究发现:
**)d填空,得ana1(n1)d„„(*),这是等差数列的通项公式吗?(让a1a1 a2a1d a3a2d
„„„„„
anan1d
将以上n个式子相加得ana1(n1)d。这种求通项公式的方法叫叠加法,这是一种严密的科学证明方法。
然后再引导学生对此公式进行理解:通项公式含有a1,d,n,an这4个量,已知三个量,就可以求出第4个量,即“知三可求一”,这样通项公式就是方程,从中让学生体会方程思想的运用。
4.运用新知,解决问题
例1已知等差数列18,15,12,9,„„。
(1)请写出a20,an;
(2)-279是否是这个数列中的项,如果是,是第几项?
说明:要判断-279是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得an279成立,实质上是要求方程an279的正整数解。
例2已知等差数列{an}中,a510,a1525,求a25的值。解略。(a2540)
解方程组比较麻烦,可否避免?让学生发现:a15a510d(155)d。这是一种巧合,还是对任意的两项差都满足?提出
探究活动一:请同学们思考:在公差为d的等差数列{an}中,an与am有何关系? 由ana1(n1)d和ama1(m1)d易得aman(mn)d(证实并非巧合),从而也有d aman。
mn2
让学生比较ana1(n1)d与aman(mn)d发现,前式是后式的特例,后式是前式的推an(mn)d叫做等差数列的变通式。让学生用变通式再解例2。广。为此我们不妨把am探究活动二:通过例2发现:5,15,25成等差,a5,a15,a25 也成等差;在等差数列{an}中,k1,k2,k3„成等差数列,那么 ak1,ak2,ak3„成等差数列吗?(让学生课后思考)
探究活动三:
由等差数列通项公式得ana1(n1)ddn(a1d)(d,b是常数),当d0的时候,通项公式是关于n的一次式,一次项的系数是公差。等差数列通项可以写成anpnq形式;反之,如果数列{an}的通项公式为anpnq(其中p、q是常数),那么这个数列是等差数列吗?
判定数列{an}是不是等差数列,也就是要看an1an的差是不是与n无关的常数。这由等差数列的定义可以完成证明。
由此得出:数列{an}为等差数列的充要条件是其通项anpnq(p,q是常数)。探究活动四:
(1)在直角坐标系中,画出an3n21(nN*)的图象。这个图象有什么特点?(无穷多个孤立点。)
(2)在同一坐标系下,画出函数y3x21的图象。你发现了什么?(an3n21的图象是直线y3x21上均匀排开的无穷多个孤立点。)(3)等差数列anpnq与函数ypxq图象间有什么关系?(anpnq的图象是直线ypxq 上均匀排开的无穷多个孤立点。)5.归纳小结,提炼精华 一个定义: an1and(d是常数)。
两个公式:ana1(n1)d,anam(nm)d。
三种思想:特殊与一般思想、方程与函数的思想、数形结合的思想。要追问在哪里体现了这些思想方法?
三种方法:不完全归纳法、迭代法、叠加法。6.课后作业,运用巩固
必做题:课本P114习题3.2第1,2,6 题。
备选题:1.在等差数列{an}中,已知a12,a10是第一个大于1的项,求公差d的取值范围。2.我国古代算书《孙子算经》卷中第25题记有:“今有五等诸侯,共分橘子六十颗。人分加三颗。问:五人各得几何?”
3.选做题:在等差数列{an}中,已知 a716,求下列各式的值:(1)a6a8;(2)a3a11。
《等差数列》教学设计 篇2
1. 创设情景, 唤起学生知识经验的感悟和体验
世界七大奇迹之一的泰姬陵坐落于印度古都阿格, 传说陵寝中有一个三角形图案, 以相同大小的圆宝石镶饰而成, 共有100层, 你知道这个图案一共花了多少宝石吗? ( 多媒体展示三角形图案)
也就是计算1 + 2 + 3 + …+ 100 = ?
提问: 有没有同学了解这个题的解题过程? 简便方法?
学生会联想到以前接触过的高斯求和法.
介绍高斯算法: 高斯, 德国著名数学家, 被誉为“数学王子”. 二百多年前, 高斯的算术教师提出了下面的问题: 1 + 2+ 3 + … + 100 = ? 据说, 当其他同学忙于把100个数逐项相加时, 10岁的高斯却用下面的方法迅速算出了正确答案:
( 1 + 100 ) + ( 2 + 99 ) + … + ( 50 + 51 ) = 101 ×50 = 5050.
设计说明情境学习理论认为: 数学学习总是与一定的知识背景, 即“情境”相联系. 从实际问题入手, 图中蕴含算数, 能激发学生学习新知识的兴趣, 提高解决问题的积极性.
2. 层层铺垫, 在自主探究与合作中学习
问题: 1 + 2 + 3 + … + 100 = ? ( 高斯算法)
实质: 首尾相加法, 成对出现, 每对和为101, 组成50对. 将和变为积来求.
设计说明高斯的这一首尾配对算法学生虽然是熟悉的, 但是他们对此的认知只是处于非常简单的记忆, 并不能说是理解. 为了让学生对此算法有更深的认识, 也为了更好地推出后面的等差数列求和公式, 设计了以下几个问题探究:
探究1: 在宝石图案中, 第1层到第21层共用了多少颗宝石? 即1 + 2 + 3 + … + 21 = ?
用同样方法相加的时候学生会发现, 首尾配对后最中间一个会多出来, 即: ( 1 + 2 + … + 10 + 12 + … + 20 + 21) +11. ( 对学生的分析归纳给予表扬)
发现: 若项数是奇数时和项数是偶数时不同, 采用这一方法求和就得分开讨论.
提问: 是不是求和时得根据项数是奇数还是偶数进行分类讨论呢?
学生可能会赞成这一说法. 教师并不全盘否定, 但可以指出每次这样分类会有点烦琐, 此时应适当地引导学生探索更为简捷的求解方法.
设计说明求和时不可能每次都通过讨论项数是奇数还是项数是偶数来进行求解. 教师指出还可以将解法简洁化, 激发学生探索的兴趣, 让学生自己积极参与到解决问题中来.
引导学生回忆小学探求三角形面积是通过先补后分的方法, 再用多媒体显示探索路径: 补一个倒置的三角形, 形成平行四边形, 使得上下每行的个数刚好相等.
学生观察得出答案:
设计说明用直观的图形启发学生, 开拓思路, 化繁为简. 帮助学生更好地理解这一简便算法. 此过程渗透了数形结合的数学思想, 将问题直观化.鼓励学生在以后的学习中也可以结合这一较为直观的数学思想解题.
多补一个同样的图形, 借用两倍来考虑问题, 省去了对奇偶项数进行分类.
将几何图形转化为数学式子:
设计说明补一个同样的式子, 颠倒相加. 由加法转化为乘法求解, 省去了讨论奇偶项数的麻烦. 这个方法记为“倒序相加法”.
探究2: n个自然数求和: 1 + 2 + 3 + … + n = ? ( 学生分组讨论, 学生代表发言)
也就是说n个自然数求和直接可以利用这种倒序相加法求得, 不管n为奇数还是偶数.
设计说明这里的n个自然数是学生最为熟悉的等差数列, 不管n是奇数还是偶数, 过程采用的是一样的方法, 旨在让学生体验倒序相加求和这个算法的合理性, 从心理上完成对首尾配对求和算法的改进. 此研究过程也由特殊过渡到了一般, 为等差数列前n项求和做了铺垫, 培养了学生观察分析、类比推理的能力.
那么一般的等差数列如何求和呢? 能用相同的方法吗? 条件满足吗?
探究3: 已知等差数列{ an} : a1, a2, a3, …, an, …, 如何n123求前n项和Sn= a1+ a2+ a3+ … + an?
通过对等差数列基本概念及性质的认识, 从它的基本元素出发, 结合“倒序相加法”对求和公式进行了推导. ( 等差数列的后一项比前一项多一个公差, 前一项比后一项少一个公差)
设计说明推导过程采用了层层递进, 由学生最容易接受的21个自然数到n个自然数, 再推广到一般的等差数列前n项求和, 从特殊过渡到一般, 利用“倒序相加法”顺利完成公式的推导, 将课堂的难点巧妙地加以突破. 不仅培养了学生观察分析、类比推理的能力, 也培养了主动探索、勇于发现的精神.
3. 归纳整理, 公式应用
注: d可以为0, 此时Sn= na1.
设计说明整个推导过程都是在教师的引导下, 由学生主动完成的, 加深了对公式的理解, 也提高了学生学习数学的兴趣, 体验成就感, 增加学习的信心. 两个求和公式涉及了a1, an, d, n, Sn五个量, 都是等差数列中的基本元素.
结合两个求和公式, 给出相应例题加以应用.
例1在等差数列{ an} 中, ( 1) 已知a1= 3, a21= 55, 求S21; ( 2) 已知a1= 6, d = -1/2, 求S20.
设计说明第一小题从首项、尾项、项数出发可以利用公式1求解, 第二小题从首项、公差、项数出发可以利用公式2求解, 让学生自己选择不同公式求解. 通过比较, 引导学生在解题时根据题目条件选择适当的公式加以求解.
例2求正奇数数列1, 3, 5, 7, …前100项和.
设计说明本题可用公式2直接求解, 也可结合通项公式根据公式1求解, 让学生体会哪个公式更为便捷.
变式: 等差数列 - 13, - 9, - 5, - 1, 3, …的前多少项和等于50 ?
设计说明本题适当加深了难度, 需要变用公式. 由数列的前四项可知首项、公差, 且题中告知和为50, 让我们求的是项数, 引导学生可以借用公式2求解项数.
例3在等差数列{ an} 中, 已知d =1/2, an=3/2, Sn=-15/2, 求a1及n.
设计说明本题已知三个量求另外两个未知量, 可以选择求和公式1结合等差数列的通项公式列出关于a1及n的两个方程求解. 两个求和公式中都包括四个元素, 利用其中任意三个元素必可求出另外一个, 即: 知三求一. 其实两个求和公式共涉及了a1, an, d, n, Sn五个量, 我们可以通过任意三个求解另外两个, 即: 知三求二.
4. 梳理知识, 自我小结
找几名学生来谈谈通过本节课的学习, 学到了什么?体验到什么? 掌握了什么? 最后教师加以归纳肯定:
( 1) 回顾从特殊到一般的推导方法, 采用“倒序相加法”.
( 2) 等差数列的两个求和公式: 1Sn=n ( a1+ an) 2;
( 3) 会根据条件选用适当的公式求解.
二、教学反思
收获: 教师有意识、有目的地开发、整合和使用课程资源, 将在很大程度上提高学生从事数学活动的水平和教师从事教学活动的质量. 本节课改进了教材上直接推导等差数列前n项和公式的做法, 而是通过设计由简单到复杂、从特殊到一般的几个问题帮助学生自己探究出等差数列的前n项和的公式, 学生在经历的过程中加深了对公式的理解和巩固, 取得了良好的教学效果.
思考: 如何处理好“预设”与“生成”的关系?
教学方案是教师对教学过程的“预设”, 实施教学方案, 是把“预设”转化为实际的教学活动. 在这个过程中, 师生双方的互动往往会“生成”一些新的教学资源 , 特别是在数学探究教学中, 更需要教师及时把握, 因势利导, 适时调控.
例如, 本节课在讲到第一个问题探究1 + 2 + 3 + … + 21时, 学生并不是都像教师预设的那样出现一种方法, 即原式 = ( 1 + 2 + … + 10 + 12 + … + 20 + 21) + 11, 而是出现了其他方法, 方法1: 原式 = ( 1 + 2 + 3 + … + 20) + 21; 方法2:原式 = 0 + 1 + 2 + … + 20 + 21.
以上方法实际上是用了“化归思想”, 将奇数个项问题转化为偶数个项求解, 教师不得不叹服学生思维的伟大, 感叹自己预设的不足, 对于学生的这种思考, 教师应进行充分肯定与表扬.
对等差数列的教学设计 篇3
一、问题设计
在现实生活中,经常会遇到下面的特殊数列:
我们经常这样数数,从0开始,每隔5个数一次,可以得到数列:
0,5,_,_,_,_,。。。
水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼,如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m,那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):
18,_,_,_,_,5.5
我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息,按照单利计算本利和的公式是:
本利和=本金€?1+利率€状嫫?
例如,按活期存入1000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和组成的数列是:
_,_,_,_,_。
问题:上面的数列有什么共同特点?你能用数学语言(符号)描述这些特点吗?
二、建立模型
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫作等差数列,这个常数叫作等差数列的公差,公差通常用字母d表示,即an+1-an=d
问题:
如果三个数a,A,b成等差数列,那么A叫a,b的等差中项,你能用a,b表示A吗?
你能猜想出问题情境中的3个数列各自的通项公式嗎?
一般地,对于等差数列{an},你能用基本量a1、d来表示其通项吗?
解法:(1):归纳:a1=a1,a2=a1+d,a3=a1+2d,…
an=a1+(n—1)d
解法(2):累加:a2—a1=d,a3—a2=d,…,an+1-an=d,各式相加
得an—a1=(n—1)d
∴an=a1+(n—1)d
〔思考〕
(1)这个通项公式有何特点?是关于n的几次式的形式?d可以等于0吗?
(2)此公式中有几个量?
〔结论〕
(1)等差数列通项公式是关于n的一次式的形式,n的系数为d。当d=0时,该数列为常数列。
(2)此公式中有四个量,即 n,d,知道其中任何三个可求另外一个,所以,通项公式实质上是四个量之间的关系。
三、解释应用
1、(1)求等差数列8,5,2,…的第20项。
(2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?
2、某市出租车的计价标准为1.2元/千米,起步价为10元,即最初的4km(不含4km)计费10元,如果某人乘坐该市的出租车去往14km处的目的地,且一路畅通,等候时间为0,须要支付多少车费?
解:根据题意,当该市出租车的行程大于或等于4km时,每增加1km,乘客须要支付1.2元,所以,可建立一个等差数列{an}来计算车费。
令a1=11.2,表示4km处的车费,公差d=1.2。那么,当出租车行至14km处时,n=11,此时须要支付车费a11=11.2+(11—1)€?.2=23.2(元)。
答:须要支付车费23.2元。
3、已知数列{an}的通项公式为an=pn+q,其中p、q为常数,且p≠0,那么这个数列一定是等差数列吗?
分析:判定{an}是不是等差数列,可以利用等差数列的定义,也就是看an-an-1(n>1)是不是一个与n无关的常数。
解:取数列{an}中的任意相邻两项an与an-1(n>1),求差,得
an-an-1=(pn+q)-〔p(n-1)+q〕=pn+q-(pn-p+q)=p
四、拓展延伸
在直角坐标系中,画出通项公式为an=3n-5的数列的图像,并说出这个数列的图像有什么特点,该图像与y=3x-5的图像有什么关系?据此,你能得出一般性的结论吗?
通项公式的四个量中知道其中三个量可求另一个量,你能据此编出一些不同的题目吗?
对于两个次数相同的等差数列{an}和{bn},{an+bn},{an·bn}·{}(bn=0)是否为等差数列?
总之,教师能否调动学生的积极性和能否真正培养学生能力,提高课堂效率,很大程度上取决于教师能否设计出既符合教材要求又符合学生的认知水平的问题,通过设计一些列问题,层层递进,使问题得到了全面解决,这样不仅锻炼了学生的思维,培养了能力,而且体现了新课程的理念。
等差数列教学设计及教案 篇4
教材分析
1.教学内容:
本节课是《普通高中课程标准实验教科书•数学5》(人教A版)第二章《数列》的第二节内容,即《等差数列》第一课时。研究等差数列的定义和通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。
2.教学地位:
本节是第二章的基础,为以后学习等差数列求和、等比数列奠定基础,是本章的重点内容,也是高考重点考察的内容之一,它有着广泛的实际应用,而且起着承前启后的作用。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。
3.教学重点难点:
重点: ①理解等差数列的概念。
②探索并掌握等差数列的通项公式的推导过程及应用。
难点: 理解等差数列“等差”的特点及通项公式的含义,概括通项公式推导过程中体现出的数学思想方法。学情分析
我所教学的学生是我校高二(9)班、(10)班的学生,经过一年的学习,已具有一定的理性分析能力和概括能力。且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程。他们的思维正从经验性的逻辑思维向抽象思维发展。但也有一部分学生的基础较弱,所以我授课时注重从具体的生活实例出发,注重引导、启发和探究以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。教法和学法分析
1.教法
⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
2.学法
引导学生首先从三个现实问题(课本页码问题、月均等额还款问题、操场跑道问题)概括出特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;引导学生多角度、多层面认识事物,学会探究。在本节的备课和教学过程中,鼓励学生提出自己的见解,学会提出问题、解决问题,通过恰当的教学方式让学生学会自我调适、自我选择。教学目标
通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式。能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生理解等差数列是一种函数模型。
等差数列概念的理解及由此得到的“性质”的方法。观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
在解决问题的过程中培养学生主动探索、勇于发现的求知精神;使学生认识事物的变化形态,养成细心观察、认真分析、善于总结的良好思维习惯。并通过一定的实例激发同学们的民族自豪感和爱国热情。
教学媒体和教学技术的选用
通过多媒体课件,使学生获得感性认知的同时,为掌握理性认知创造条件,这样做,可以使学生带着兴趣学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。本节课打破传统的一言堂的格局,代之以人为本、民主、开放和建立在信息网络平台上的现代教学格局。
教学过程
导:
1896年,雅典举行第一届现代奥运会,到2008年的北京奥运会已经是第29届奥运会。
观察数据1896,1900,1904,…,2008,2012,()你能预测出第31届奥运会的时间吗? 思:
看下面几个例子:
(1)我们课本的页码数从小到大依次为:
1, 2,3, 4,……
(2)某人贷款买房,需要月均等额还款。他每月还款的钱数(单位:元)分别为:
800,800, 800, 800,……
(3)我校的操场跑道,弯道处的圆弧半径依次相差1.2米,那么这些圆弧半径可以表示为:
a , a +1.2 , a +2.4 , a+3.6 ,……(a>0)请同学们思考一下,这几个数列有何共同特点呢? 以上几组数据有何共同特点? 定义:
如果一个数列从第2项起,每一项与它的前一项 的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差通常用 d 表示.a nan1d(n2)或 an1and(n1)
注:1.从第二项起。
2.相邻两项,后项减前项。3.差等于同一个常数。
议:
判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d, 如果不是,说明理由。
(1)1,3,5,7,…(2)9,6,3,0,-3…(3)-8,-6,-4,-2,…(4)3,3,3,3,…
1111(5)1,,,2345(6)15,12,10,8,…
展:
通 项 公 式 的 推 导1
设等差数列{an}的首项是a1,公差是d,则
a2=a1+d, a3=a2+d =(a1+d)+ d = a1+ 2d a4=a3+d=(a1+2d)+d=a1+3d an=a1+(n-1)d
所以等差数列的通项公式是:
an=a1+(n-1)d(n∈N*)
通 项 公 式 的 推 导2
a2-a1=d, a3-a2=d, a4-a3=d,…
an-an-1=d 以上共(n-1)项
(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=(n-1)d ∴an-a1=(n-1)d 即an=a1+(n-1)d 评
(1)求等差数列8,5,2,…的第20项;
(2)判断-401是不是等差数列 –5,-9 ,-13…的项?如果是,是第几项,如果不是,说明理由。
分析:(1)由给出的等差数列前三项,先找到首项d,写出通项公式,就可以求出第20项a20.(2)本题同样需要求出通项,然后看通项等于-401时,有没有正整数解就可以了。
解:(1)∵a1=8,d=5-8=-3, n=20
a,求出公差
1∴an=a1+(n-1)d=8+(n-1)×(-3)=-3n+11 ∴a20=11-3×20=-49(2)由题意得: a1=-5,d=-9-(-5)=-4 ∴这个数列的通项公式是:an =-5+(n-1)×(-4)=-4n-1 令-401=-4n-1,得 n=100 ∴-401是这个数列的第100项。检:
(1)求等差数列3,7,11…的第4项与第10项;
(2)判断100是不是等差数列 2,9,16,…的项?如果是,是第几项?如果不是,说明理由。检:
在等差数列{an}中,已知 a5=10,a12=31,求首项a1与公差d a5a14d10a12a111d31解:由题意:
a12d3解之得:
∴这个数列的首项a1是-2,公差d =3.练习三
已知等差数列{an}中,a4=10,a7=19,求a1和d.a13d10a6d19解:依题意得:1
a11d3解之得:
∴这个数列的首项是1,公差是3。想一想
已知数列中任意两项,可求出首项和公差,主要是联立二元一次方程组。这种题型有简便方法吗? 请同学们思考并做以下练习。
练:
1、已知等差数列{an}中,a3=9,a9=3, 求公差d和a12。
2、已知等差数列{an}中,若am、公差d 是常数,试求出an的值。课时小结
1.等差数列的定义: an+1-an=d(n≥1且n∈N*)2.等差数列的通项公式
an=a1+(n-1)d(n≥1)3.重要关系式 an=am+(n-m)d 练:
必做题:课本习题第1、4题
选做题:已知等差数列{an}的首项a1=-24,从第10项开始为正数,求公差d的取值范围。
等差数列 教学反思 篇5
《等差数列(-)》教学反思
________________________________________________________________ 本节课《等差数列》是高二必修5第二章第二节第一课时的内容,是学生学习了数列的基本概念和给出数列两种表示方法基础上来研究的,对数列的理解还不够透彻,仅停留在表面上,而对等差数列定义的理解更有一些问题。(1)对定义中“从第二项起(n≥2)”,“每一项与前一项的差”,“同一个常数”三个关键词理解上,需要反复的锤炼。(2)为了更好地揭示数学的本质常常需要把自然语言转化成符号语言,在高一已经在这方面得到训练,由于刚接触等差数列的定义,学生不能很好的把定义转化成符号语言,还需要给出一定的提示。(3)判断数列是否是等差数列时,对于 “同一常数”的意义理解不到位。(4)在推导通项公式上,只有个别学生能给出推导过程,大部分学生还不能独立完成,甚至没有思路。(5)学生在理解等差数列与一次函数之间的联系上会遇到问题(6)在练习知三求一问题时(通项公式的应用),解方程的思想要重点强调,学生的解题步骤应加强规范,运算能力还有待于提高。
在课堂实施过程中,我采用启发引导式、合作探究式、自主探究式以及讲练结合的教学方法,通过问题情境激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。整个课堂教学脉络清晰,节奏明快,重点突出,难点也突破的较好。学生对问题的回答比较踊跃,愿意主动参与课堂教学。学生对定义有了较深刻的认识。而在通项公式的推导上遵循一个科学的分析方法,由特殊到一般,组织学生共同探讨。学生对公式的获取思路明确,理解比较深刻,较好地完成了课前预设的目标。但由于教学内容的紧凑,课堂时间有限,在课堂教学中受传统教学方式影响较多,对学生创新思维的培养就显得的不足,从某种意义讲束缚了学生的思想,阻碍了学生的思维发展,这一点在今后的教学中要逐渐改进。但从总体上看,达到了预期的效果,较好的完成了本节的教学目标。
《等差数列》教学设计 篇6
教学目标分析
根据课程标准的要求和学生的实际情况,本节课的教学目标确定为:
1、知识目标:
探索并掌握等差数列的前n项和公式;
能用等差数列的前n项和公式解决简单实际问题;
2、能力目标:
通过公式的探索,提高观察、分析、类比思维能力,并在此过程中掌握倒序相加求和的数学方法,体会从特殊到一般的认知规律;通过公式的运用,提高学生从实际问题中抽象出数列模型的能力,提高分析问题、解决问题的能力。体会数形结合、分类讨论、类比、方程思想、函数思想等数学思想方法。
3、情感目标:
通过“拟真”发现,模拟数学家的思维活动,经历等差数列的前n项和公式产生过程,进行知识的“再创造”,不仅学到了“死”的结论,还学会了提出问题、分析、解决问题的方法,品尝了知识探究过程中的成功喜悦。通过公式运用,树立“大众数学”思想意识。(3)教学重点、难点
教学重点:探索并掌握等差数列的前n项和公式及其运用。教学难点:等差数列前n项和公式的推导思路的获得;
建立等差数列模型,能用相关知识解决实际问题。
教学关键点:通过创设问题情境,运用多媒体动态演示倒置“三角形”,利用先合后分思想方法,类比推导出等差数列求和公式。通过对公式从不同层次、角度深入剖析,使学生从本质上理解记忆并掌握公式。在具体的问题情境中,引导学生发现数列的等差关系并用等差数列的前n项和公式解决实际问题,加深公式的运用。
教法与学法 学法分析:
在教学中关注学生的主体参与,丰富学生的学习方式、改进学生的学习方法,发挥学生的主体作用。学生已经学习了等差数列的通项公式及其性质,对高斯算法也是熟悉的,知道采用首尾配对的方法求和,这都为倒序相加法的教学提供了基础。但高斯的算法与一般等差数列求和还有一定的距离,他们对这种方法的认识可能处于模仿记忆阶段,如何引出倒序相加法这是学生学习的障碍。同时学生已有函数方程知识,因此在教学中可适当渗透函数思想。教法分析
教法上本着“教师为主导,学生为主体,探究为主线,思维训练为主攻”的教学思想,主要采用启发引导,合作探究的教学方法。本节课利用数列求和中丰富的数学史资源,创设问题情境引导学生追寻数学家的足迹,体验数学家的思维过程,进行知识的“再创造”。学生不仅学到“死”的结论,还学会提出问题、分析、解决问题的方法,品尝了知识探究过程中的成功与喜悦。运用多媒体动态演示作为辅助教学的一种手段,遵循由特殊到一般的认识规律,激发学生的学习兴趣,启迪学生的思维,提高课堂效率。在教学中重视学生“做数学”的过程,关注学生的主体参与,师生互动,生生互动,使学生在“做”的过程中掌握数学概念和方法的本质。
教学过程
学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下五个的教学过程:
(一)忆旧迎新——引入新课
从学生的原认知结构出发,复习等差数列的通项公式及性质,为学习等差数列的前n项和提供准备知识。同时教学平稳地过渡到下一环节。
(二)创设问题情境——探索交流
《数学课程标准》中明确指出:教材应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。本节课我由世界七大奇迹之一泰姬陵上的宝石图案,引入高斯算法。学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但是他们对这种方法的认识可能处于模仿、记忆的阶段,为了促进学生对这种算法的进一步理解,我设计了1+2+„+50+51的问题。普遍性寓于特殊之中,引导学生探究上式的结果。学生解答过程中,自然用到化归思想:将奇数项问题装化为偶数项求解,并在此基础上提出更高要求。不讨论n的奇偶可不可以呢?利用先分后和思想方法,运用多媒体把“三角形”倒置,学生通过直观观察易得出,由此猜想出等差数列前n项和,并类比上述推理用倒序相加法推导出公式,之后结合等差数列通项公式推导出
(三)公式剖析——思想升华
通过对公式不同层次、不同角度深入剖析并结合直观几何图形,记忆公式加深理解,使学生从本质上理解公式,知道公式的来龙去脉。在教学中,鼓励学生借助几何直观进行公式的记忆,揭示研究对象的性质和关系,渗透了数形结合的数学思想。
(四)例题讲解——学以致用
通过练习,进一步加深对本节知识的理解,在具体的问题情境中,引导学生发现数列的等差关系并用等差数列的前n项和公式解决实际问题,加深公式的运用,提高学生分析问题能力,解决问题的能力和解题能力,提高学生的建模能力及发展学生的应用意识。
(五)课堂小结——整体认知
以提问的方式鼓励学生自己总结,归纳提升,帮助学生养成系统整理知识的习惯;关注学生自主体验,培养学生归纳、概括能力并对本节课所蕴含的数学思想方法加以揭示,提高学生认知水平。
(六)布置作业——巩固加深
通过分层布置作业,提高学生学习兴趣,让不同学生得到不同发展。
教学反思
《等差数列》教学设计 篇7
“五环四步”要求学生动手能力强, 老师起主导作用, 学生作为主体, 积极合作探究, 从而发挥学生的合作能力和主观能动性。试问:在文化课里, “五环四步”实用吗?答案是肯定的, 只要用心去想, 用实际行动去做, 就一定能在课堂解放学生、解放老师。例如在进行中职数学“等差数列前n项和”教学时, 我将所教的专业知识与数学相结合, 采用了“五环四步”的教学模式。
1 学习前情分析
1.1 教学对象分析
教学对象是中职二年级的学生, 学生已经能识别等差数列, 弄清了首项a、公差d、项数n、第n项an这些量, 会利用等差数列的通项公式进行简单的计算, 熟知等差中项的角标性质, 这就为这节课的学习打下了坚实的基础。任教班级的学生喜欢合作交流, 活泼好动, 进取心强。但他们缺乏自信, 容易气馁, 坚持力不强。
1.2 教学内容及教学目标分析
“等差数列的前n项和”是中职数学基础模块下册第六章第二节的内容。在此之前, 学生已经学习了等差数列及等差中项的性质, 这为本节课的学习起了铺垫作用。本节课是进一步学习数列和解决一类求和问题的重要基础和有力工具, 它在现实生活中有着广泛的实际应用, 如储蓄、分期付款、房贷等有关计算, 而且在公式推导过程中所渗透的类比联想、分析概括等思想方法, 都是学生今后学习和工作必备的数学素养。
因此, 结合学生目前学习的实际情况, 联系教学大纲与学生今后工作所需, 根据职业教育培养“能力人”的目标要求, 将本节课教学目标确定为以下三个方面:知识目标细化为要求学生能记住等差数列前n项和公式;弄清公式中首项a1、公差d、项数n、第n项an, 前n项和Sn这些量, 知道其中三个量可以求出另外一个量;能将等差数列前n项和公式的理论知识运用到实际的业务工作当中。在技能方面, 要求学生能在课前主动去查阅资料, 弄清“等额本金”的贷款方式;能制定好小组合作计划, 通过合作找到解决“等额本金”贷款这个问题的方法;能独立思考, 分析数据、解决生活和工作中的贷款、储蓄等问题。态度方面, 能自觉地完成查阅资料、课后作业等任务;能通过小组合作的方式, 愉快地与“同事”相处、交流、合作;能够接受批评和自我批评。
2 教学方法选取
在教学过程中通过问题的设置、小组合作探究、能力鉴定的方式, 反复运用公式来突出重点;通过对等差中项角标性质的回顾和将问题分解为多个小问题提出来突破难点。为了教学环节的顺利展开, 我结合职业教育特点, 本节课将通过具体实例引入, 采用问题探究的方式与学生进行交流, 设置评价激励的机制, 并借助多媒体进行清晰的演示, 引导学生积极参与学习中去, 帮助学生更好地学习, 成为课堂、生活、工作真正的主人。独立学习、合作学习、自主学习是学生必备的素养。因此, 在课前我要求学生借助网络、书籍等媒介查询“等额本金”的贷款方式;在课堂中指导学生进行小组合作探究、自主学习, 以及角色扮演。
3 教学过程设计
学生不喜欢理论学习, 喜欢实践操作。为了将理论转化为模拟的工作实践, “教”少能“学”多, 将灌输变为合作探究式的学习, 因此选择采用了“五环四步”的教学模式。
3.1 能力发展动员
上课前要求学生去查阅“等额本金”的贷款方式, 并布置了一道关于“等差数列”的题目, 由各组小组长检查学生的完成情况, 并总结汇报。这里主要是培养学生自主学习习惯。本堂课开始, 采用问题探究的教学方法, 由老师讲述“等额本金”的贷款故事, 让这个故事引起学生探究的兴趣。而后, 我将提出问题:最后贷款人一共需要还多少钱?这就引出了这节课的需要探究的课题——等差数列求和。
3.2 基础能力诊断
为了解决这个问题, 并树立学生学习的信心。采用谈话法和学生一起比对课前的题目答案, 并引领学生回顾上一堂课学的等差数列通项公式和等差中项角标性质, 然后, 老师将提出问题—Sn=第一项+第二项+…+第n项, 这n个项中有多少对a1+an?这为构造倒序的Sn, 化简Sn作了铺垫。这样就突破了推导公式这一难点。
3.3 能力发展训练
为了让他们能够形成解决实际问题的思路, 充分发挥合作交流学习和小组竞争的优势。学生采用的学习方法是小组合作学习。由老师发一份任务单给学生, 这份任务单是要求计算出贷款人总共的还款金额, 并强调学生接下来应完成的是先化简Sn, 然后再分析题干中的已知量, 利用等差数列前n项和公式和计算器, 去完成这项任务, 并将讨论的结果记录在小黑板上, 规定时间为10分钟。
布置好任务之后, 各个小组将人员进行分配, 开始交流合作。老师检查每个小组分配任务的情况, 观察每一组的成员是否在积极思考、是否分享自己的想法, 是否达到了合作交流的几个目标, 他们是怎样的思维过程, 怎么去解决这个问题, 并及时鼓励和指导。
学生完成合作任务后, 邀请每一组的代表展示他们小组的成果, 并对探究思考的过程进行简要的阐述, 其他成员可以补充讲解。学生展示之后, 老师将填写一份评价机制表格。根据评价机制指标, 各个小组相互评分, 并说明评分的理由, 从而让竞争与合作相互作用, 推动学生前进。
3.4 能力发展鉴定
学习不是一蹴而就的事情。虽然学生通过合作探究完成了任务, 但是否掌握了这种计算方法了呢?老师代替朋友小李向学生咨询一下“贷款”的事, 这里学生的角色转换为了银行的工作人员, 这既巩固了知识, 又能让学生深刻的感受到数学是为以后的工作和生活服务的。
3.5 能力发展反思
通过前面贷款人的“房贷”, 李先生咨询的“贷款”的计算, 这节课学生学到了什么、有哪些感悟和体会呢?邀请学生分享他们找到的学习方法和自我优势, 分析他们的不足, 思考怎么改进。
为了进一步巩固和强化学生知识, 树立学生学习信心, 课后作业将根据学生程度, 分层落实。
通过这节课的教学, 学生在课前查阅资料, 有助于学生养成自主学习的习惯。内化“能力本位教学”, 注重学生技能地培养, 学生在学习和探究中会更有兴趣、更有坚持力。注重“合作学习”的培养, 有利于学生以后在工作中和同事的相处与合作。
《等差数列》教学设计 篇8
一、链接生活,生动导入
数学的众多知识都是来源于生活,生活是生动的,数学是抽象的,可以说数学是生活实际的模型化。在实际的教学中,我们可以返璞归真,将知识还原到生活中,通过知识链接生活,生动导入课堂。
必修五第二章开启了数列的教学,数列就开始进入学生的视线。数列的概念比较简单,但是变式复杂,有着多种多样的变式。这时候就需要抓住本源,从根本处理解知识。在引入等差数列概念时,我选用了一个生活实例。王老板开了一家饭店,随着事业的发展,他面临一项投资的选择。方案一:一次性投資5万元,6年后收益12万元。方案二:一次性投资7万元,第二年收益1万元,以后每年收益比前一年多0.5万元。比较两种方案。这一案例提出之后,引起了学生的积极讨论,学生身临其境,仿佛自己就是饭店老板一样,都兴致勃勃地想管理自己的“财富”。第一种方案的收益很明显,利润所得即为收益-投资=10-5=7万元,这就作为一个比较标准,与方案二进行对比,关键要看方案二的收益模型。首先看6年后的收益,每年累计求和为1+1.5+2+2.5+3+3.5= 13.5万元。那么6年之后所得利润=13.5-7=6.5万元,6.5万元小于方案一中的7万元。从相同的投资期来比较的话,方案一所得利润更大。但是如果将方案二的投资期再延长一年,二者所得的利润就相当了。如果再延长一年,方案二将超过方案一。方案二的增长模型就是一个等差数列,虽然起点低,增长慢,但是一直有增长,最终会取得一个数值很大的结果。
通过这样一个贴近现实的例子,就生动地引出了等差数列的概念,并且隐含地带出了数列求和的意义与需要。只将数列变成一列数字,其概念是晦涩难懂的,各种公式也将变成一种单纯的数字符号,求和、变换等也将变得失去实际的意义。
二、自主归纳,深化意识
数列中最为重要的可以说就是求和公式了。但是如果公式只是要求学生进行背诵的话,容易造成遗忘,对学生自身的思维能力的提高也没有积极的影响。因此,作为教师要善于“让权”,引导学生自主总结归纳公式。
等差数列的公式比较简单,适合学生自己去探索。在推导等差数列的前n项和的时候,我引入了一个经典的加法给学生启示思路。题目是“1+2+3+…+98+99=?”这道题目我们在小学就曾经破解了。题目的解答是采取巧妙的方式,加法式中共有99项,第一个数与最后一个数相加的和是100,第二个数与倒数第二个数相加是100,以此类推。那么整个式子就可以归结为49个100相加,再加上一个50,结果即为4950。那么这种思想就可以延伸到等差数列求和当中,学生以此为启发探究等差数列的前n项和。我们记数列前n项和为Sn,首项为a1,公差为d。学生经过1到99加和的启发,将前n项和相加分为了奇数项数和偶数项数两种。对于偶数项数,正好分为 n个首末项相加的和,用符号表示即为Sn= n×(a1+an)= n(a1+a1+ (n-1)d)=na1+ n(n-1)d。对于奇数项数,则会多出来一项,这项是第
项。此时的求和则是Sn= (n-1)×(a1+an)+a(1+n)/2= (n-1)(a1+a1+ (n-1)d)+a1+ d=na1+ n(n-1)d,这时候学生就会发现虽然进行了分类讨论,结果却能统一,经过自身的推导,结论掌握的程度要超过教师讲解。
数列的求和公式往往是能统一成相同形式的,但是数列的种类越积越多,仅仅凭借背诵记忆是很容易混淆的。正因为这样,让学生自己进行推导,掌握的知识就更加牢固,正所谓“授人以鱼不如授人以渔”。
三、多元交流,引导反思
一个“1”再加一个“1”,结果是“2”;但是一种思想“加”另一种思想,结果可能就是很多种思想。所以说,学习中的交流是必不可少的,课堂上的交流不仅只是教师与学生之间,更应该普及在学生与学生之间。
以一道例题的讨论为例。题干如下:已知等差数列的前5项和S5=10,前10项和为S10=30,求数列的前15项和S15。学生大多数采用的是先求数列的公差,然后求出首项,进而得出通项公式。有了通项公式,整个数列就相当于已知了,代入所求的前15项和的要求,问题即可解决。一般到了这里,问题就算结束了,但是此题还有更巧妙的解法,我没有点破,只是让学生各自结组讨论。很快就有小组发现了,已知与所求的角标有着特殊的联系,5,10,15构成了一组等差数列。该小组提出这一发现后,其他小组有意识地将结果进行横向比较,回顾刚才的运算结果S15=60,大家发现S5,S10-S5,S15-S10也是呈等差数列分布的。一石激起千层浪,规律就这样被发现了,进而又有其他小组借助这两个小组的“科研发现”,找到了这种理论的依据,即为S5,S10-S5,S15-S10的意义是第一个5项和,第二个五项和,第三个五项和这样分布的,这样也构成了一个“大”的等差数列。
如果按照常规的解法,恐怕整个班级都要用同样的传统解法来解数列求和的题目。“众人拾柴火焰高”,通过学生的多元交流,新的规律就可以被发现,新的方法就会被传播,可以引发学生自我的反思与提高。
总之,数列教学需要教师化难为易,从生活入手;积极引导学生深入思考,学会自主归纳;支持学生多元交流,鼓励方法的创新。只要教师勇于开拓反思,就一定能突破“数列教学”的瓶颈。
《等差数列的前n项和》教学反思 篇9
瀛海学校 曹娜
一、地位和作用
本节课是必修5第二章第三节“等差数列的前n项和”的第一课时,主要内容是等差数列的前n项和公式的推导过程和简单应用。学生在学习了等差数列的通项公式的基础上,进一步研究等差数列的前n项和,体会等差数列的前n项和与二次函数之间的关系。本节为以后学习数列求和提供了一种重要的思想方法——倒序相加求和法。
二、教材处理
1.在推导等差数列前n项和的公式前回答问题1:设等差数列 {an} 的首项为a1,公差为d,如何求等差数列的前n项和Sn= a1 +a2+a3+„+an?用课件直观、形象地呈现“倒序”,让学生能更好地理解倒序相加法,而第二个公式并不象书本上那样直接给出,而是让学生自己推导。这样处理教材,使学生的思维得到了很大的锻炼。
2.推导出了等差数列的前n项和的两个公示后,有的学生比较茫然,不知道大量的公式如何去记忆。于是给学生讲了一种简单易懂的记忆方法。学生在初中学习的基础上,已经很熟悉三角形、平行四边形以及梯形等平面图形的面积,于是通过公式与梯形面积公式之间的“形象的”关系,学生就能很快掌握公式的内容了。
3.学生在记住了等差数列前n项和的两个公式后,为了让学生体会两个公式的不同点及在做题过程中能够灵活选择公式,设置了两个练习,特别设置为了强调项数的算法,提醒学生注意到底要求的是等差数列的前n项和还是前(n+1)项的和。
4.等差数列的求和公式及通项公式,一共涉及到5个量,通常已知其中3个,可求另外2个。为了让学生更好地理解方程(方程组)思想:知三求二,设置了1个例题,用表格的形式把各个量呈现出来,已知什么,要求什么,一目了然。
三、成功之处
1.本节课充分发挥课件的优势,并吸取其他老师讲本节课的经验,将自己的想法充分融入课件中,使内容更加充实。既融合了所要学的知识,又充分考虑到了学生的接受能力,使得学生在学习过程中积极主动,动脑思考、动手计算,及时巩固知识。
2.通过具体的例子,用课件直观、形象地呈现“倒序”,让学生能更好地理解倒序相加法,而第二个公式让学生自己推导,这样记忆会更深刻。
3.通过等差数列前n项和公式与梯形面积公式之间的“形象的”关系,让学生很快记住公式的内容。
4.在教学过程中不断向学生渗透基本思想及方程(组)思想,让学生在解题中能够灵活地去分析、思考问题,并感受数学思想方法之美、体会数学思想方法之重要。
四、存在的问题
1.由于学生计算练习题的速度较慢,耽误了一些时间,其实学生在做练习题时,完全可以让学生说出解题过程,而不必计算出结果,这样就能节省时间。但是,现在的学生运算能力确实较弱,所以就不得不利用宝贵的课上时间进行练习。
数列教学设计 篇10
一、学习任务分析
1.教材的结构、内容
本节课选自人教A版必修5第二章第一节《数列的概念与简单表示法》第1课时的内容,它主要研究数列的概念、分类,以及数列的两种表示形式。
2.教材的地位、作用
本节课是在集合、映射、函数等相关知识的基础上的一节课,它将数列与集合区分开来,使学生在对比中更加明确集合的概念性质,将数列与函数联系起来,加深了学生对函数的理解;同时作为数列的起始课,它为后续等差数列、等比数列的学习作了知识储备。
教材从实际问题引入数列的概念,这样就把生活实际与数学有机地联系在一起,充分体现了数学的实用价值,让学生感受到数列产生的背景,培养了学生观察分析、抽象概括的能力。
二、教学目标
1.知识与技能
(1)理解数列及其概念,了解数列和函数之间的关系;
(2)掌握数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的个通项公式。
2.过程与方法
通过对一列数的观察、归纳,写出符合条件的通项公式,培养学生的观察能力和抽象概括能力。
3.情感、态度与价值观
通过例举生活中的实际例子,让学生体会数学来源于生活,提高学生数学学习的兴趣。
三、教学重点和难点
1.教学重点
数列及其有关概念,数列的通项公式及其应用。
2.教学难点
根据一些数列的前几项,抽象、归纳数列的通项公式。
四、教学过程
第一部分——创设情境,导入新课
情境一:传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画
点或用小石子来表示数。比如他们研究过三角形数和正方形数(图示):
情境二:某市在某年内的月平均气温为(单位:°C):
8.0,9.5,9.5,12.8,20.6,25.1,30.0,32.3,29.7,17.2,10.2,8.0。
情境三:在学习英语的过程中,记忆英语单词是很重要的一个环节。小明现在有3000个英
语单词量,他认为自己不需要再记忆了,于是他每天都会忘记10个单词,而小东现在 只有2000个单词量,他认为自己需要不断的重复记忆,保证2000个单词量不变。问题:从以上三个情境中,我们可以得到这样的五组数据:①1,3,6,10,15,...;②1,4,9,16,25,...;③8.0,9.5,9.5,12.8,20.6,25.1,30.0,32.3,29.7,17.2,10.2,8.0;④3000,2990,2980,2970,...;⑤2000,2000,2000,2000,...。观 察这五组数据,看它们有何共同特点?
【师生活动】
学生独立思考,教师点名回答 【教师归纳】
(1)均是一列数;(2)有一定次序 【设计意图】
首先,情境的设计均源于生活,既可以帮助学生直观地理解数列的概念,又能够让学生体会数学概念形成的背景以及数学在实际生活中应用的广泛性,激发学生会的数学学习兴趣。其次,情境中的五组数据,也可作为教学中数列的分类等较为典型的例子。
第二部分——师生合作,形成概念
1.定义
数列:按照一定顺序排列着的一列数 2.定义剖析
(1)数列的数是按一定顺序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;
(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现。问题:回忆集合的相关定义、性质,将以上五个数列中的数用集合表示,观察分析集合与数
列有何区别?
【师生活动】
学生独立思考,教师点名回答 【教师归纳】
(1)集合中的元素是无序的,而数列中的数是按一定顺序排列的;
(2)集合中的元素是互异的,而数列中的数是可以重复出现的;
(3)集合中的元素不一定是数,而数列的对象一定是数。3.相关概念
(1)数列的项:数列中的每一个数都叫做这个数列的项.。各项依次叫做这个数列的第1项(或首项),第2项,„,第n 项,„。(2)数列的一般形式:a1,a2,a3,...,an,...,简记为an,其中an为数列的第n项。(3)数列的分类:
①根据数列项数的多少分:有穷数列、无穷数列。
②根据数列项的大小分:递增数列、递减数列、常数列、摆动数列。结合上述例子,帮助学生理解数列项的定义。例如,数列①中,“1”是这个数列的第1项(或首项),“15”是这个数列中的第5项;数列①②为递增数列,数列④为递减数列,数列⑤为常数列,数列③为摆动数列等等。
第三部分——例题讲解,巩固新知
例:下面的数列,哪些是递增数列、递减数列、常数列、摆动数列?
(1)全体自然数构成数列
0,1,2,3,....(2)1996~2002年某市普通高中生人数(单位:万人)构成数列
82,93,105,119,129,130,132.(3)无穷多个3构成数列
3,3,3,....(4)目前通用的人民币面额按从大到小的顺序构成数列(单位:元)
100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01.(5)-1的1次幂,2次幂,3次幂,4次幂......构成数列
-1,1,-1,1,....(6)2的精确到1,0.1,0.01,0.001,...,的不足近似值与过剩近似值分别构成数列
1,1.4,1.41,1.414,...;
2,1.5,1.42,1.415,....【设计意图】
通过几个典型的例子,加深学生对数列的理解以及数列项与项之间的关系,使学生掌握数列的分类。
第四部分——课堂小结,深化新知 【师生共同总结】
(1)数列的定义
【《等差数列》教学设计】推荐阅读:
小学等差数列教学设计09-06
等差数列习题10-20
等差数列笔试题06-06
等差数列历年高考题08-20
等差数列知识点09-03
等差数列及其性质习题10-06
等差数列前n项和07-03
等差数列专项练习题05-22
等差数列复习课(第一课时)07-13
等差数列知识点及题型08-10