等差数列及其性质习题(通用11篇)
等差数列及其性质习题 篇1
考点1等比数列的通项与前n项和
题型1已知等比数列的某些项,求某项
【例1】已知an为等比数列,a22,a6162,则a10题型2 已知前n项和Sn及其某项,求项数.【例2】⑴已知Sn为等比数列an前n项和,Sn93,an48,公比q2,则项数n⑵已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.题型3 求等比数列前n项和
【例3】等比数列1,2,4,8,中从第5项到第10项的和.【例4】已知Sn为等比数列an前n项和,an1332333n1,求Sn
【例5】已知Sn为等比数列an前n项和,an(2n1)3n,求Sn.【新题导练】
1.已知an为等比数列,a1a2a33,a6a7a86,求a11a12a13的值.an的前n项和,a23,a6243,Sn364,则n; 2.如果将20,50,100依次加上同一个常数后组成一个等比数列,则这个等比数列的公比为.3.已知Sn为等比数列
4.已知等比数列an中,a21,则其前3项的和S3的取值范围是
5.已知Sn为等比数列
an前n项和,an0,Sn80,S2n6560,前n项中的数值最大的项为54,求S100.考点2 证明数列是等比数列
【例6】已知数列nN.其中为实数,an和bn满足:a1,an12ann4,bn(1)n(an3n21),3
⑴ 对任意实数,证明数列an不是等比数列;
⑵ 试判断数列
bn是否为等比数列,并证明你的结论.1
【新题导练】
6.已知数列{an}的首项a1
22an1,an1,n1,2,3,….证明:数列{1}是等比数列;3an1an
考点3 等比数列的性质
【例7】已知Sn为等比数列
【新题导练】
7.已知等比数列an前n项和,Sn54,S2n60,则S3n.an中,an0,(2a4a2a6)a436,则a3a5.an的前n项和,已知ban2nb1Sn 考点4 等比数列与其它知识的综合 【例8】设Sn为数列
⑴证明:当b
⑵求
【新题导练】
8.设Sn为数列2时,ann2n1是等比数列; an的通项公式 an的前n项和,a1a,an1Sn3n,nN*.n⑴ 设bnSn3,求数列bn的通项公式;
⑵ 若an1
an(nN),求a的取值范围.
7.等差数列
8.已知数列an中,a410且a3,a6,a10成比数列,求数列an前20项的和S20. an的前n项和为Sn,Sn3(an1)nN; 1⑴求a1,a2的值;
⑵证明数列
an是等比数列,并求Sn.
等差数列及其性质习题 篇2
1.通项公式的推广an=am+ (n-m) d或
例1: (2010年全国高考I卷文科) 设等差数列{an}满足a3=5, a10=-9,
(Ⅰ) 求{an}的通项公式;
(Ⅱ) 求{an}的前n项和Sn及使得Sn最大的序号n的值。
简析:
(1) 由an=am+ (n-m) d得
又a3=5, 代入通项公式an=a1+ (n-1) d, 得a1=9,
∴an=11-2n。
∵Sn=- (n-5) 2+25, ∴当n=5时, Sn取得最大值。
点评:等差数列的通项公式{an}是n的一次函数或常数函数, 它的图像为一条直线上一系列孤立的点, 而两点可以确定一条直线, 故已知等差数列的两项即可确定这个数列。
2. 在等差数列{an}中, 如果m+n=p+q, 则am+an=ap+aq, 特别地, 如果m+n=2p, 则am+an=2ap
例2: (1) 在等差数列{an}中, 已知a3+a99=200, 求数列的前101项的和S101;
(2) 已知一个项数为n的等差数列的前四项的和为21, 末四项和为67, 前n项和为286, 求项数n。
(2) ∵a1+a2+a3+a4=21, an-3+an-2+an-1+an=67,
即286=11n, 解得n=26。
点评:灵活运用性质“若m+n=p+q, am+an=ap+aq”和前n项和公式可以避繁就简, 使问题迅速获解。
3. 若公差d>0, 则此数列为递增数列;若d<0, 则此数列为递减数列;若d=0, 则此数列为常数列。
例3: (2009安徽高考卷理科) 已知{an}为等差数列, a1+a3+a5=105, a2+a4+a6=99, 以Sn表示{an}的前n项和, 则使得Sn达到最大值的n是 () 。
(A) 21 (B) 20 (C) 19 (D) 18
简析:由a1+a3+a5=105得3a3=105, 即a3=35, 由a2+a4+a6=99得3a4=99, 即a4=33, ∴d=-2, an=a4+ (n-4) × (-2) =41-2n, 由得n=20, 选B。
点评:在等差数列{an}中,
因为所以Sn是n的二次函数 (d≠0时) , 因此也可以根据二次函数的性质确定Sn的最值。
4. 若数列{an}是等差数列, (1) 正常数k1, k2, k3, …, kn成等差数列, 则数列ak1, ak2, ak3, …, akn也成等差数列, 即在等差数列中取间隔相等的项组成的新数列仍然是等差数列; (2) 数列{pan}, {pan+c} (p, c均为常数) 也都是等差数列。 (3) 若数列是{an}, {bn}是等差数列, 则{an+bn}, {man+pbn}也都是等差数列。
例4:已知两个等差数列{an}∶5, 8, 11, …;{bn}∶3, 7, 11, …, 则新数列{2an-bn}的第10项是多少?
等差数列与等比数列的性质 篇3
●考试目标主词填空
1.等差数列的性质.
①等差数列递增的充要条件是其公差大于0,②在有穷等差数列中,与首末两端距离相等的和相等.即a1+an=a2+an-1=a3+an-2=„=ak+an+1-k,③在等差数列{an}中,使am+a0=ap+aq成立的充要条件是是等差数列,⑤若数列{an}与{bn}均为等差数列,且m,k为常数,则{man+kbn}Sn=an2+bn+c能表示等差数列前n项和的充要条件是2.等比数列的性质.①在等比数列{an}中,公比为q,其单调性的考察应视a1及q的取值范围而定.②在有穷的等比数列{an}即:a1an=a2·an-1=a3·an-2=„=ak·an+1-k.
③在等比数列{an}中,使am·a0=ap·ak成立的充要条件是m+n=p+k. ④在等比数列中,每隔相同的项抽出来,依原来的顺序构成一个新数列,则此新数列仍是等比数列.man⑤若数列{an}与{bn}均为等比数列,m是不等于零的常数,则{m·an·bn}与仍为等比数列.bn
●题型示例点津归纳
【例1】证明下列论断:
(1)从等差数列中每隔相同的项抽取一些项依原顺序构成的新数列仍然是等差数列.(2)从等比数列中每隔相同的项抽取一些项依原顺序构成的新数列仍然是等比数列.
【解前点津】等差数列的公差以及等比数列的公比都是已知常数,且每隔k项抽取一个数中的k边应视为已知正整数,按定义证明即可.【规范解答】(1)设{xn}是公差为d的等差数列,抽取的第一个数为xm,隔k项抽取的第二个数为xm+k,再隔k项抽取的第三个数为xm+2k,依次类推,则新数列的第p项(p≥1)必为xm+(p-1)k ·第p+1项为xm+pk.由通项公式:
∵xm+pk-xm+(p-1)k=x1+(m+pk-1)d-[x1+(m+pk-k-1)d]=(k-1)d是一个p无关的常数,故新数列是一个公差为kd的等差数列.(2)设{yn}是一个公比为q的等比数列,抽取的第一个数为ym,隔k项抽取的第二个数为ym+k,再隔k项抽取的第三个数为ym+2k,依次类推,则新数列的第p项(p≥1)必为ym+(p-1)k,第p+1项为ym+pk.由等比数列通项公式: ∵ympk
ym(p1)ky1qmpk1k==q是一个与p无关的常数.mpkk1y1q
故新数列是一个公比为qk的一个等比数列.【解后归纳】证明{xn}是一个等差数列,只须证明xn-xn-1=常数即可,类似地,证明{yn}是一个等比数列,只证明yn=常数即可. yn
1【例2】设x,y,z∈R,3x,4y,5z成等比数列,且
111xz,成等差数列,求的值.xzxyz
【解前点津】依条件列方程组,从方程组中推导
xz
之值. zx
(4y)2(3x)(5z)
2xz
y=【规范解答】由题意得:211代入第一个方程消去y得:
xzyxz
2xz2xz34(xz)26416()=15xz=,故=.xz15zx15xz
【解后归纳】因(xz
)中不含y,故在方程组中,y成为消去的对象.zx
【例3】已知数列{an}满足3an+1+an=4(n≥1),且a1=9,其前n项之和为Sn,求满足不等式|Sn-n-6|<的最小正整数n. 12
5【解前点津】构造“新数列”,求出通项公式,注意到3(an+1-1)=-(an-1).【规范解答】由条件得:3(an+1-1)=-(an-1).视为3xn+1=-xn,∵a1-1=8,故新数列{an-1}是首项为8,公比为-的一个等比数列.故:
31n81
31n-11n-1=6-6×(-1)n,an-1=8(-),即an=1+8(-)Sn-n=
3331
13
11n-1
∴|Sn-n-6|=6×()n <3>250>35n-1>5.3125
∴n>6从而n≥7.故n=7是所求的最小正整数.
【解后归纳】将一个简单的递推公式进行变形,从而转化为一个等差数列,或一个等比数列的模型.这是一种“化归”的数学思想.【例4】设{an}为等差数列,{bn}为等比数列,且b1=a1,b2=a2,b3=a3(a1
n
2+bn)=2+1,试求{an}的首项与公差.【解前点津】设
b2b
=q,则1=2+1.1qb1
【规范解答】设{an}的公差为d,{bn}的公比为q,则由条件知,b2=b1b3(a2)2=(a1)·(a3)
a2
=(1+2)(2+1)
a1
(a1+d)
4=a22,a12a22=a1
·(a1+2d)(a1+d)=|a1(a1+2d)|又b1=(1+q)(22
2+1),故
2a1
42即a1=[a1+(a1+d)2](2+1),解关于a1及d的方程组得:a1=-2,d=22-2.
【解后归纳】将所列方程组转化为关于基本量a1,d的方程,是常规思路.此题是否有另外思路?读者可自己寻找.●对应训练分阶提升
一、基础夯实
1.在等比数列{an}中,a9+a10=a(a≠0),a19+a20=b,则a99+a100等于()
bbb9b10
A.8B.()C.9D.()10
aaaa
2.已知等差数列{an}中,|a3|=|a9|,公差d<0,则使前n项和Sn取得最大值的自然数n是()
A.4和5B.5或6C.6或7D.不存在3.若{an}为一个递减等比数列,公比为q,则该数列的首项a1和公比q一定为()A.q<0,a1≠0B.a1>0,01 C.q>1,a1<0D.0
0
4.由公差为d的等差数列a1,a2,a3,„,重新组成的数列a1+a4,a2+a5,a3+a6,„是()A.公差为d的等差数列B.公差为2d的等差数列 C.公差为3d的等差数列D.非等差
5.设2a=3,2b=6,2c=12,则a、b、c()A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列 C.既不是等差数列,又不是等比数列D.既是等差数列,又是等比数列
6.若{an}是等比数列,a4a7=-512,a3+a8=124,且公比q为整数,则a10的值是()A.256B.-256C.512D.-51
27.设{an}是由正数组成的等比数列,且a5·a6=81,那么log3a1+log3a2+log3a3+„+log3a10的值是()A.5B.10C.20D.30
8.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则这两个数的和是()A.1
11111B.12C.13D.14 444
49.在等比数列{an}中,已知对任意自然数n,a1+a2+„+an=2n-1,则a1+a2+„+a2n=()A.(2n-1)2B.1n2n1
(2-1)C.4-1D.(4n-1)3
310.上一个n级的台阶,若每次可上一级或两级,设上法的总数为f(n),则下列猜想中正确的是()
A.f(n)=nB.f(n)=f(n-1)+f(n-2)
n(n1,2)
C.f(n)=f(n-1)·f(n-2)D.f(n)=
f(n1)f(n2)(n3)
二、思维激活
11.在等差数列{an}中,若Sm=n,Sn=m(Sn为前n项和)且m≠n,则Sm+n
三、能力提高
12.在等差数列{an}中,a1,a4,a25三个数依次成等比数列,且a1+a4+a25=114,求这三个数.13.已知{an}为等差数列,(公差d≠0),{an}中的部分项组成的数列ak1,ak2,ak13,„,ak,„,n
恰好为等比数列,其中k1=1,k2=5,k3=17,求k1+k2+k3+„+kn.14.设f(x)=a1x+a2x2+„+anxn(n为正偶数),{an}是等差数列,若f(1)=(1)求an;(2)求证:f(1nn(n+1),f(-1)=. 22)<2. 2
15.数列{an}的前n项和Sn=100n-n2(n∈N).(1){an}是什么数列?
(2)设bn=|an|,求数列|bn|的前n项和.第3课等差数列与等比数列的性质习题解答
1.A先求a1与公比q.2.B∵d<0,∴a3>a9,∴a3=-a9.3.B分别考察a1>0与a1<0两种情况.4.B∵(an+an+3)-(an-1+an+2)=(an-an-1)+(an+3-an+2)=d+d=2d.5.A∵62=3×12,∴(2b)2=2a·2c2b=a+c且b2≠ac.6.C∵a4a7=a3a8=-512,a3+a8=124,∴a3,a8是x2-124x-512=0的两根.解之:a3=-4,a8=128或a3=128,a8=-4q=-2或-
但q=-不合题意,∴a10=a8·q2=512.22
7.C其值为log3(a1a2„a10)=log3(a1a10)·(a2a9)„(a5a6)=log3(a5a6)5=5log3(a5·a6)=5log381=20.9
xx23y28.A设这两个正数为x,y,由题意可得:.272yx9y4
9.D∵Sn=2n-1,∴an+1=Sn+1-Sn=2n+1-1-(2n-1)=2n,又a1=S1=21-1=1=21-1,∴an=2n-1.10.D每次可上一级或两级,故需分段考虑.11.Sm+n=-(m+n)运用公式求和.2a4(a13d)2a1(a124d)a1a25
12.设公差d,依题意得:
a1a4a251143a127d114
a438a4a13d23414a138a12
或,或
a38aa24d224498d0d425125
∴这三个数是38,38,38或2,14,98.
13.∵a1,a5,a17成等比数列,∴(a1+4d)2=a1(a1+16d)d=
aa11,an=a1(n+1),a5=a1+4d=3a1,∴q=5
22a1
=3,akn=
k11
a1(kn+1)akn=a1·qn-1=a1×3n-1,∴na1=a1×3n-1,∴kn=2×3n-1-1k1+k2+k3+„22
n-1
2(13n)
+kn=2(1+3+9+„+3)-n= =3n-n-1.(13)n
14.(1)设{an}的公差为d,则f(1)=a1+a2+„+an=d=1,由na1+
1nn
n(n+1),f(-1)=-a1+a2-a3+a4+„-an-1+an=d=,∴222
n(n1)n(n1)
得a1=1,∴an=n. 22
2n
1123111111n(2)f()=+2+3+„+(1-)]f()=+2+3+„+n+n1
22222222222
两式相减:
1
11n
1111n2nnf()=1++2+„+n1-n=-n=2-2n1-2n<2. 2222212
12
15.(1)an=Sn-Sn-1=(100n-n2)-[100(n-1)-(n-1)2]=101-2n(n≥2),∵a1=S1=100×1-12=99=101-2×1,∴数列{an}的通项公式为an=101-2n又∵an+1-an=-2为常数.∴数列{an}是首项为a1=99,公差d=-2的等差数列.(2)令an=101-2n≥0得n≤50(n∈N*),①当1≤n≤50时,an>0,此时bn=|an|=an,所以{bn}的前n项和Sn′=100n-n2且S50′=100×50-502=2500,②当n≥51时,an<0,此时bn=|an|=-an由b51+b52+„+bn=-(a51+a52+„+an)=-(Sn-S50)=S50-Sn得数列{bn}前n项和为Sn′=S50+(S50-Sn)=2S50-Sn=2×2500-(100n-n2)=5000-100n+n2.(nN*,1n50)100nn
由①②得数列{bn}的前n项和为Sn′=.2*
等差数列及其性质习题 篇4
———福贡县第一中学杨豪
摘要:等差数列和等比数列的中项性质是高中数学中的一个重要内容,也是高考数学命题的一个热点。如果我们从本质上揭示等差数列和等比数列的中项性质的内涵,那么,不仅会给我们提升对数列特征的学习有所帮助,也会为进一步培养学生的逻辑推理能力有一定好处。
关键词:等差数列和等比数列 〃中项性质 〃拓展
从特殊入手,研究数学对象的性质,再逐步推广到一般是数学常用的研究方法。我们下面从等差数列和等比数列中项性质出发,推导出其角标性质。有利于提高我们对等差数列、等比数列的认识,一、内容介绍
等差数列和等比数列的角标性质——数列中任意序数和相等的两项之间的关系。
(一)等差数列中项
1、概念与内容
由三个数a、A、b组成等差数列,这时,A叫做a与b的等差中项,即2A=a+b 或A=ab
2〃
2、拓展与提升
若等差数列an中的项ap、aq、ar、as(p、q、r、sN*)且满足p+q=r+s,则有ap+aq=ar+as成立。
即等差数列an中任意两项序数和相等的两项的和相等。
3、证明其性质。
若等差数列an的公差为d,首项为a1,且p、q、r、sN*,于是有,ap=a1 +(p-1)d,aq =a1 +(q-1)d,所以,ap+aq=2a1+(p+q-2)d,同理可得,ar+as=2a1+(r+s-2)d。
因为p+q=r+s,所以ap+aq=ar+as〃(Ⅰ)
(二)等比数列的中项
1、概念与内容
若在a与b两个数之间插入一个数G,使a、G、b成等比数列,则称G为a与b的等比中项(a、G、b都为非零数)。即G2=ab或G=ab〃
12、拓展与提升
若等比数列an中的项am、an、ar、as(m、n、r、sN*)且满足p+q=r+s,则有am.an= ar.as成立。
即等比数列an中任意两项序数和相等的两项的积相等。
3、证明其性质。
若等比数列an的公比为q(q0),首项为a1,且m、n、r、sN*,于是有,am =a1qm1, an=a1qn1,因此am.an=a12qmn2 同理可得,ar.as=a12.qrs2.因为m+n=r+s,所以am.an=ar.as(Ⅱ)
我们把(Ⅰ)、(Ⅱ)称为等差数列和等比数列的角标性质。
(三)应用
我们知道,数学学习的宗旨就是要从特殊和表面现象中总结出一般规律,然后再去指导实践解决实际问题。
二、处理教材中的练习与习题
1、已知an是等差数列(1)2a5=a3+a7是否成立?2a5=a1+a9成立吗?为什么?(提示:5+5=3+7=1+9)
(2)2an=an1+an1(n>1)是否成立?据此你可能得出什么结论?(提示:n+n=(n-1)+(n+1))
(3)若2an=ank+ank(n>k>0)是否成立?你又能得出什么结论?(提示:n+n=(n-k)+(n+k))
2、已知an是比差数列
(1)a52=a3.a是否成立?a52=a1.a9成立吗?为什么?
7(提示:5+5=3+7=1+9)
(2)an2=an1.an1(n>1)是否成立?据此你可能得出什么结论?(提示:n+n=(n-1)+(n+1))
(3)若an2=ank.ank(n>k>0)是否成立?你又能得出什么结论?(提示:n+n=(n-k)+(n+k))
三、解决高考中的数列问题
运用等差数列和等比数列的角标性质来解决高考问题,能够使我们的考生事半功倍,增强考试信心。对指导复习工作具有重要意义。例如:
1、如果等差数列an中,a3+a4+a5=12,那么,a1+a2+…+a7=
(A)1
4(B)21(C)28(D)3
5(提示:a3+a5=a1+a7=2a4)
1、已知在等差数列an中,a1+a9=10,则a5的值为:
(B)6(C)8
(D)10
(A)
5(提示:a1+a9=2a5)
2、已知an是比差数列,Sn是它的前n项和。若a2a3=2a1,54且a4与2a7的等差中项为(A)35,则Sn为:
(D)29
54a7
(B)33(C)
31(提示:由a2a3=a1a4=2a1a4=2,再由a4+2a7=2×
q
=
14,=
a7a4
=
q
=
2,从而可知a1=16,进一步可求得Sn)
当然,这一部分内容仅仅是高中数学内容的冰山一角。通过这样的学习活动培养学生如何去思考、如何去钻研的学习习惯和学习态度。从心理学来看,高中生的心理和生理都趋于成熟,我们应该着手于加强高中生的分析问题和理解问题能力的培养,提高他们的抽象思维能力和逻辑思维能力,从而提高学习效率。反对死记硬背和题海战术,真正把他们从学习“苦海”中解救出来。这也是我们做老师的心得。参考文献:
[1]人民教育出版社,中学数学室.数学(高中必修),2006年6月第 版.[2]施致良.中小学劳动与技术教育[J]教学案例专题研究,浙江大学出版社,2001年3月第一版。
说明:本文在2010年云南省第六届教育教学论文研讨活动中荣获一等奖。因此,该文在2010年云南“教育研究专辑”中得到发表。
等差数列习题集 篇5
(二)5,9,13,17…….的前30项之和是多少?
(三)1-100这100个自然数中能被5整除的数的和是多少?
(四)对于数列4,7,10,13,16,19……,第10项是多少?49是 个数列的和几项?第100项与第50项的差是多少?
(五)等差数列2,5,8,11,14,…….问47是其中第几项?
(六)求等差数列2,6,10,14,18,……..的第10项是多少?
(七)求所有三位数中3的倍数的和.(八)1+3+4+6+7+9+10+12+13+……..+66+67+69+70的和是多少?
(九)有五个滑轮的直径成等差数列,已知最小的与最大的滑轮直径分别是120MM和216MM,求中间的三个滑轮的直径。
抓住性质巧解数列 篇6
例1 等差数列{an}中, 若a1+a4+a7=39, a3+a6+a9=27, 求S9.
方法二:a1+a4+a7=3a4=39,
a3+a6+a9=3a6=27, 得
例2 已知Sn是等差数列{an}的前n项和, S6=36, Sn=324, Sn-6=14 (n>6) , 求n.
分析 等差数列中, Sn, S2n-Sn, S3n-S2n, …也是等差数列.
解 Sn-Sn-6=180.
∵S6, S12-S6, …, Sn-Sn-6是等差数列,
例3 已知两个等差数列{an{和{bn}的前n项和分别为An和Bn, 且
解 ∵{an}, {bn}是等差数列,
因此当n=1, 2, 3, 5, 11时符合题意.
例4 已知在等比数列{an}中, an>0, 且有am·am+10=a, am+50·am+60=b (m∈N+) , 求am+125·am+135.
分析 等比数列{an}中, 有an=amqn-m成立.
例5 已知正项等比数列{an}的公比q=2, 且a1a2a3…a30=230, 求a2a5a8…a29, a3a6a9…a30.
解 ∵{an}是等比数列, 且若m+n=p+h, 则
aman=ap+ah.
又 ∵a1a30=a2a29=…=a15a16,
∴a1a2a3…a30= (a1a30) 15=230,
a1a30=22,
a2a5a8…a29= (a2a29) 5= (22) 5=210,
a3a6a9…a30= (a2a5a8…a29) q10=210·210=220.
结束语 上述问题若用等差、等比数列的通项或它们的求和公式去解方程或方程组的话, 计算非常的复杂, 费时费力, 特别是例题2是个非常鲜明的例子, 若用等差数列前n项和公式去解方程组的话, 计算非常棘手, 而上述解法非常巧妙地用性质去处理, 使问题解答非常的简捷.因此, 同学们在平时的学习过程中要学好、学牢基础, 达到融会贯通、举一反三的效果, 这样, 即使题目形式千变万化, 我们解题时也能够对症下药, 找到方子.
摘要:数列是高中数学的难点, 也是历年高考中的必考题, 当其在选择题或填空题中出现时, 常常都是以等差、等比数列为载体, 都属于中档题, 难度不会很大, 但是如果不掌握运算方法和解题技巧的话, 学生往往会事倍功半, 耗费时间, 这时候如果我们考虑用等差、等比数列的基本性质去解题, 问题就迎刃而解了.下举例说明等差、等比数列的性质在解题中的巧用.
等比数列性质(本站推荐) 篇7
1,在等比数列an中,已知a3a636,a4a718,an
12,求n。
2,在1与100之间插入n个正数,使这n个数成等比数列,求插入的n个数的积。3,在等比数列an中,若a22,a6162,求a10。
4,在等比数列an中,a3a4a53,a6a7a824,求a9a10a11。
5,一个项数为偶数的等比数列,它的偶数项和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,求此等比数列的项数。
6,在等比数列an中,a9a10aa0,a19a20b,求a99a100。
7,已知由正数组成的等比数列an中,公比q2,a1a2a3a30245,求
a1a4a7a28
第二周等差数列课后习题范文 篇8
1、超市工作人员在商品上依次编号,分别为4,8,12,16,...请问第34个商品上标注的是什么数字?第58个呢?
2、商店中推行打包促销活动,每6个商品为一包。第一包中每个商品的编号依次是3,6,9,12,15,18;第二包中编号为21,24,27,30,33,36。依次类推,请问第20包的第三个商品编号为多少?
3、幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具上的编号是98,前一个玩具的编号比后一个玩具的编号总少3,问第一个小朋友手上的玩具是多少号?
4、学校举办运动会,共54个人参加,每人都有参赛号码,已知前一个人的号码比后一个人的号码总是少4,最后一个人的号码是215,第一个人的号码是多少?
5、糖果生产商为机器编号,依次为7,13,19,25,...,问编号为433的机器是第几个?
6、医院为病床编号,依次为8,14,20,26,...,问编号为284的病床是第几张?
7、有一排用等差数列编码的彩色小旗,第1面小旗上的号码为
3.7,第8面小旗上的号码为38.7,你知道第7面小旗上的编码吗?
8、一个等差数列的第1项1.2,第8项是9.6,求它的第10项。
9、一个等差数列的第一项是4.1,公差是3.1,另外一项是32,求项数。
一轮复习等差等比数列证明练习题 篇9
1.已知数列an是首项为a1,公比q141的等比数列,bn23log1an 44(nN*),数列cn满足cnanbn.
(1)求证:bn是等差数列;
2ana2,aa6a6(nN),n1nn2.数列满足1设cnlog5(an3).
(Ⅰ)求证:cn是等比数列;
*3.设数列an的前n项和为Sn,已知a12a23a3nan(n1)Sn2n(nN).(2)求证:数列Sn2是等比数列; 4.数列{an}满足a11,an12n1an(nN)nan22n(1)证明:数列{}是等差数列;
an2Sn25.数列an首项a11,前n项和Sn与an之间满足an(n2)
2Sn1(1)求证:数列1是等差数列
Sn2,an16.数列{an}满足a13,an1(1)求证:{an1}成等比数列; an2*7.已知数列{an}满足an13an4,(nN)且a11,(Ⅰ)求证:数列an2是等比数列;
答案第1页,总5页 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
8. 数列{an}满足:a11,nan1(n1)ann(n1),nN*(1)证明:数列{an}是等差数列; n9.已知数列{an}的首项a1=
22an,an1,n=1,2,… 3an1(1)证明:数列11是等比数列; an1,Snn2ann(n1),n1,2,L. 210.已知数列{an}的前n项和为Sn,a1(1)证明:数列n1Sn是等差数列,并求Sn; n11.(16分)已知数列{an}的前n项和是Sn,且Sn2ann(1)证明:an1为等比数列;
12.数列{an}满足:a12,a23,an23an12an(nN)(1)记dnan1an,求证:数列{dn}是等比数列;
13.已知数列{an}的相邻两项an,an1是关于x方程x22nxbn0的两根,且a11.(1)求证:数列{an2n}是等比数列;
14.(本题满分12分)已知数列{an}中,a15且an2an12n1(n2且nN*). 13a1(Ⅰ)证明:数列nn为等差数列;
215.已知数列an中,a11,an1an(nN*)an3(1)求证:11是等比数列,并求an的通项公式an;an235,a3,且当n2时,2416.设数列an的前n项和为Sn,n.已知a11,a24Sn25Sn8Sn1Sn1.
(1)求a4的值;
答案第2页,总5页 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
(2)证明:an11an为等比数列; 217.设数列an的前n项和为Sn,且首项a13,an1Sn3n(nN).n(Ⅰ)求证:Sn3是等比数列; 18.(本小题满分10分)已知数列an满足a11,an1a2(1)求证:数列n是等比数列;
n(3n3)an4n6,nN*.
n
参考答案
1.(1)见解析;(2)Sn2(3n2)1n();(3)m1或m5 3342n12.(Ⅰ)见解析;(Ⅱ)3.(1)
an511Tn2n.3.;459(Ⅲ)a24,a38;
(2)见解析;(3)5
2nn14.(1)详见解析;(2)an;(3)2n326
n11(n1)23. 5.(1)详见解析;(2)an;(3)2(n2)3(2n1)(2n3)6.(1)证明{an1}成等比数列的过程详见试题解析; an2答案第3页,总5页 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
(2)实数t的取值范围为7.详见解析
8.(1)见解析;(2)Sn1331. t222n13n13 49.(1)详见解析(2)Sn21nnn1 2n12n2210.(1)由Snn2ann(n1)知,当n2时,Snn,即(SnS(n1)n1)n(n21)Snn2Sn1n(n1),所以所以n1n11SnSn11,对n2成立.又S11,nn11n1n1Sn1(n1)1,即Sn是首项为1,公差为1的等差数列.所以nnn2Sn.
n1(2)因为
bnSn1111()32n3n(n1)(n3)2n1n3,所以b1b2Lbn. 11111111115115(L)()22435nn2n1n326n2n312k18k6k411.(1)见解析;(2)解析;(3)存在,或或.
m5m2m1812.(1)dn12n1(2)an2n11
2n12n为偶数3313.(1)见解析;(2)Sn,(3)(,1)
n121n为奇数3314.(Ⅰ)详见解析(Ⅱ)Snn2n1 15.(1)证明详见解析;(2)23.
7116.(1);(2)证明见解析;(3)an2n18217.(Ⅰ)详见解析;(Ⅱ)(9,3)(3,)
n1.
答案第4页,总5页 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
18.(1)详见解析(2)详见解析
等差数列及其性质习题 篇10
一. 选择题:
(1)已知数列{an}的通项公式为an=2n-5,那么a2n=()。A 2n-5
B 4n-5
C
2n-10
D
4n-10(2)等差数列-7/2,-3,-5/2,-2,··第n+1项为()A 12(n7)
B 1nn2(n4)
C 2D 27(3)在等差数列{ an }中,已知S3=36,则a2=()A
B
C
D 6(4)在等比数列{an}中,已知a2=2,a5=6,则a8=()A
B 12
C
D
24(5)平面向量定义的要素是()
A 大小和起点
B
方向和起点
C 大小和方向
D 向和起点
(6)ABACBC等于()
A
2BC
B 2CB
C 0
D
0(7)下列说法不正确的是().A
零向量和任何向量平行
B
平面上任意三点A、B、C,一定有ABBCAC C 若ABmCD(mR),则AB//CD
D若ax1e1,bx2e2,当x1x2时,ab
(8)设点A(a1,a2)及点B(b1,b2),则AB的坐标是(A(a1b1,a2b2)
B(a1a2,b1b2)
大小、方)
C(b1a1,b2a2)
D(a2a1,b2b1)
(9)若ab=-4,|a|=2,|b|=22,则是()A 0 B
90
C
180
D
270(10)下列各对向量中互相垂直的是()A a(4,2),b(3,5)
B a(3,4),b(4,3)
C a(5,2),b(2,5)
D a(2,3),b(3,2)
(11).等比数列{an}中,a2=9,a5=243,则{an}的前4项和为().A.81
B.120
C.168
D.192(12).已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=().
A.-4 D. -10
B.-6
C.-8
(13)公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5=(A)1
(B)2
(C)4
(D)8(14).在等差数列{an}中,已知a4+a8=16,则a2+a10=(A)12(B)16(C)20(D)24 二.填空题:
(1)数列0,3,8,15,24,…的一个通项公式为_________________.(2)数列的通项公式为an=(-1)n+12+n,则a10=_________________.(3)等差数列-1,2,5,…的一个通项公式为________________.1(4)等比数列10,1,10,…的一个通项公式为______________(5)ABCDBC=______________.(6)已知2(ax)=3(bx),则x=_____________.(7)向量a,b的坐标分别为(2,-1),(-1,3),则ab的坐标_______,2a3b的坐标为__________.(8)已知A(-3,6),B(3,-6),则AB=__________,|BA|=____________.(9)已知三点A(3+1,1),B(1,1),C(1,2),则
n,41.数列的通项公式为an=sin写出数列的前5项。
2.在等差数列{ an }中,a1=2,a7=20,求S15.315.在等比数列{ an }中,a5=4,q=2,求S7.3.在平行四边形ABCD中,O为对角线交点,试用BA、BC表示BO.4.任意作一个向量a,请画出向量b2a,cab.5.已知点B(3,-2),AB=(-2,4),求点A的坐标.6.已知点A(2,3),AB=(-1,5), 求点B的坐标.7.已知a(2,2),b(3,4),c(1,5),求:(1)2ab3c;
(2)3(ab)c
等差数列及其性质习题 篇11
B.312
C.352
D.384 3, 2, 11, 14,()
A.18
B.21
C.24
D.27
1,2,6,15,40,104,()
A.329
B.273
C.225
D.185 2,3,7,16,65,321,()
A.4546
B.4548
C.4542
D.4544 1/2
6/11
17/29
23/38
()A.117/191
B.122/199
C.28/45 D.31/47
答案 1.C 6=1x2+4 20=6x2+8 56=20x2+16 144=56x2+32 144x2+64=288+64=352
2.D 分奇偶项来看:奇数项平方+2 ;偶数项平方-2 = 1^2 +2 = 2^2-2
11= 3^2 +2
14= 4^2-2(27)=5^2 +2
34= 6^2-2
3.B 273
几个数之间的差为: 1 4 9 25 64
为别为:
1的平方
2的平方 3的平方 5的平方 8的平方 1+2=3 2+3=5 3+5=8 5+8=13
即后面一个为13的平方(169)
题目中最后一个数为:104+169=273 3.A 4546 设它的通项公式为a(n)规律为a(n+1)-a(n)=a(n-1)^2
4.D 原式变为:1/
1、2/
4、6/
11、17/
29、46/76,可以看到,第二项的分子为前一项分式的分子+分母,分母为前一项的分母+自身的分子+1;答案为:122/1 99 2011年国家公务员考试数量关系:数字推理的思维解析
近两年国家公务员考试中,数字推理题目趋向于多题型出题,并不是将扩展题目类型作为出题的方向。因此,在题目类型上基本上不会超出常规,因此专家老师建议考生在备考时要充分做好基础工作,即五大基本题型足够熟练,计算速度与精度要不断加强。
首先,这里需要说明的是,近两年来数字推理题目出题惯性并不是以新、奇、变为主,完全是以基本题型的演化为主。特别指出的一点是,多重数列由于特征明显,解题思维简单,基本上可以说是不会单独出题,但是通过近两年的各省联考的出题来看,简单多重数列有作为基础数列加入其它类型数列的趋势,如2010年9.18中有这样一道题:
【例1】10,24,52,78,().,164
A.106 B.109 C.124 D.126
【答案】D。其解题思路为幂次修正数列,分别为
故答案选D。
基本幂次修正数列,但是修正项变为简单多重数列,国考当中这一点应该引起重视,在国考思维中应该有这样一个意识,幂次的修正并不仅仅为单纯的基础数列,应该多考虑一下以前不被重视的多重数列,并着重看一下简单多重数列,并作为基础数列来用。
下面说一下国考中的整体思维,多级数列,幂次数列与递推数列,三者在形式上极其不好区分,幂次数列要求考生对于单数字发散的敏感度要够,同时要联系到多数字的共性联系上,借助于几个题目的感觉对于理解和区别幂次数列是极为重要的。
对于多级数列与递推数列,其区分度是极小的,几乎看不出特别明显的区别,考生在国考当中遇到这类题目首先应该想到的就是做差,通过做差来看数列的整体趋势,如果做差二次,依然不成规律,就直接进行递推,同时要看以看做一次差得到的数列是否能用到递推中。
【例2】(国考 2010-41)1,6,20,56,144,()
A.384 B.352 C.312 D.256
【答案】B。在这个题目中,我们可以得到这样一个递推规律,即(6-1)×4=20,(20-6)×4=56,(56-20)×4=144,因此(144-56)×4=352。这个规律实际上就是两项做一次差之后4倍的递推关系,也就是充分利用了做差来进行递推。
【例3】(联考 2010.9.18-34)3,5,10,25,75,(),875
A.125 B.250 C.275 D.350
【答案】B。这个题目中,其递推规律为:(5-3)×5=10,(10-5)×5=25,(25-10)×5=75,(75-25)×5=250,(250-75)×5=875,故答案为B选项。
联系起来说,考生首先应当做的是进行单数字的整体发散,判断数字推理中哪几个题目为幂次或幂次修正数列,其次需要做的就是进行做差,最后进行递推,递推的同时要考虑到做一次差得到的二级数列。
这里针对许多学员遇到幂次修正数列发散不准确的问题,提出这样一个方法,首先我们知道简单的幂次及幂次修正数列可以当成多级数列来做,比如二级和三级的等差和等比数列。在2010年的国考数字推理中,我们发现这样一道数字推理题:
【例4】(2010年国家第44题)3,2,11,14,(),34
A.18 B.21 C.24 D.27
我们可以看出,这个题中,未知项在中间而且是一个修正项为+2,-2的幂次修正数列。从这里我们得到这样一个信息,国考当中出题人已经有避免幂次修正数列项数过多,从而使得考试可以通过做差的方式解决幂次修正数列的意识。未知项在中间的目的就是变相的减少已知项数,避免做差解题。
因此,在今后的行测考试中,如果出现未知项在中间的数字推理题目,应该对该题重点进行幂次数的发散,未知项在中间,本身就是幂次数列的信号,这是由出题人思维惯性而得出的一个结论。
这一思维描述起来极为简单,但是需要充分考虑到国考出题的思维惯性,对于知识点的扩充要做好工作,然后再联系起来思考,在运用的时候要做到迅速而细致,这才是国家公务员考试考察的方向与出题思路。
题海
几道最BT公务员考试数字推理题汇总 1、15,18,54,(),210 A 106 B 107 C 123 D 112 2、1988的1989次方+1989的1988的次方…… 个位数是多少呢? 3、1/2,1/3,2/3,6/3,(),54/36 A 9/12, B 18/3 ,C 18/6 ,D 18/36 4、4,3,2,0,1,-3,()A-6 , B-2 , C 1/2 ,D 0 5、16,718,9110,()A 10110,B 11112,C 11102,D 10111 6、3/2,9/4,25/8,()A 65/16, B 41/8, C 49/16, D 57/8 7、5,(),39,60,105.A.10 B.14 C.25 D.30 1、3 2 53 32()A. 7/5 B.5/6 C.3/5 D.3/4 2、17 126 163 1124()
3、-2,-1,1,5()29(2000年题)A.17 B.15 C.13D.11 4、5 9 15 17()A 21 B 24 C 32 D 34
5、81,30,15,12(){江苏真题} A10 B8 C13 D14 6、3,2,53,32,()A 75 B 5 6 C 35 D 34 7、2,3,28,65,()A 214B 83C 414D 314 8、0,1,3,8,21,(),144 9、2,15,7,40,77,()A96,B126,C138,,D156 10、4,4,6,12,(),90 11、56,79,129,202()A、331 B、269 C、304 D、333 12、2,3,6,9,17,()A 19 B 27 C 33 D 45 13、5,6,6,9,(),90 A 12, B 15, C 18, D 21 14、16 17 18 20()A21
B22
C23
D24 15、9、12、21、48、()16、172、84、40、18、()17、4、16、37、58、89、145、42、(?)、4、16、.....KEYS:
1、答案是A 能被3整除嘛
2、答:应该也是找规律的吧,1988的4次个位就是6,六的任何次数都是六,所以,1988的1999次数个位和1988的一次相等,也就是8 后面那个相同的方法个位是1 忘说一句了,6乘8个位也是8
3、C(1/3)/(1/2)=2/3 以此类推
4、c两个数列 4,2,1-〉1/2(依次除以2);3,0,-3
5、答案是11112 分成三部分:
从左往右数第一位数分别是:5、7、9、11 从左往右数第二位数都是:1 从左往右数第三位数分别是:6、8、10、12
6、思路:原数列可化为1又1/2, 2又1/4, 3又1/8。故答案为4又1/16 = 65/16
7、答案B。5=2^2+1,14=4^2-2,39=6^2+3,60=8^2-4,105=10^2+5
17、分数变形:A 数列可化为:3/1 4/2 5/3 6/4 7/5
18、依次为2^3-1,3^3-1,……,得出6^3-1
19、依次为2^3-1,3^3-1,……,得出6^3-1 20、思路:5和15差10,9和17差8,那15和(?)差6 5+10=15 9+8=17 15+6=21 21、81/3+3=30,30/3+5=15,15/3+7=12,12/3+9=13 答案为1322
22、思路:小公的讲解
2,3,5,7,11,13,17.....变成2,3,53,32,75,53,32,117,75,53,32......3,2,(这是一段,由2和3组成的),53,32(这是第二段,由2、3、5组成的)75,53,32(这是第三段,由2、3、5、7组成的),117,75,53,32()这是由2、3、5、7、11组成的)
不是,首先看题目,有2,3,5,然后看选项,最适合的是75(出现了7,有了7就有了质数列的基础),然后就找数字组成的规律,就是复合型数字,而A符合这两个规律,所以才选A 2,3,5,后面接什么?按题干的规律,只有接7才是成为一个常见的数列:质数列,如果看BCD接4和6的话,组成的分别是2,3,5,6(规律不简单)和2,3,5,4(4怎么会在5的后面?也不对)质数列就是由质数组成的从2开始递增的数列
23、无思路!暂定思路为:2*65+3*28=214,24、0+3=1*3,1+8=3*3,3+21=8*3,21+144=?*3。得出?=55。
25、这题有点变态,不讲了,看了没有好处
26、答案30。4/4=1,6/12=1/2,?/90=1/3
27、不知道思路,经过讨论:
79-56=23 129-79=50 202-129=73 因为23+50=73,所以下一项和差必定为50+73=123 ?-202=123,得出?=325,无此选项!
28、三个相加成数列,3个相加为11,18,32,7的级差 则此处级差应该是21,则相加为53,则53-17-9=27 答案,分别是27。
29、答案为C 思路: 5×6/5=6,6*6/4=9,6*9/3=18(5-3)*(6-3)=6(6-3)*(6-3)=9(6-3)*(9-3)=18 30、思路:
22、23结果未定,等待大家答复!
31、答案为129 9+3=12,12+3平方=21,21+3立方=48
32、答案为7 172/2-2=84 84/2-2=40 40/2-2=18 18/2-2=7
经典推理:
1,4,18,56,130,()A.26 B.24 C.32 D.16 2,1,3,4,8,16,()A.26 B.24 C.32 D.16 3,1,1,3,7,17,41,()A.89 B.99 C.109 D.119 4,1,3,4,8,16,()A.26 B.24 C.32 D.16 5,1,5,19,49,109,()A.170 B.180 C 190 D.200 6,4,18,56,130,()A216 B217 C218 D219
KEYS:
答案是B,各项除3的余数分别是1.0.2.1 0.对于1、0、2、1、0,每三项相加=>3、3、3 等差
我选B 3-1=2 8-4=4 24-16=8 可以看出2,4,8为等比数列 我选B 1*2+1=3 2*3+1=7 2*7+3=17 … 2*41+17=99 我选 C 1+3=4 1+3+4=8 … 1+3+4+8=32 1*1+4=5 5*3+4=19 9*5+4=49 13*7+4=95 17*9+4=157 我搜了一下,以前有人问过,说答案是A 如果选A的话,我又一个解释
每项都除以4=>取余数0、2、0、2、0 仅供参考
1.256,269,286,302,()A.254 B.307 C.294 D.316 2.72 , 36 , 24 , 18 ,()A.12 B.16 C.14.4 D.16.4 3.8 , 10 , 14 , 18 ,()A.24 B.32 C.26 D.20 4.3 , 11 , 13 , 29 , 31 ,()A.52 B.53 C.54 D.55 5.-2/5,1/5,-8/750,()A 11/375 B 9/375 C 7/375 D 8/375 6.16 , 8 , 8 , 12 , 24 , 60 ,()A.90 B.120 C.180 D.240 10.2,3,6,9,17,()A.18 B.23 C.36 D.45 11.3,2,5/3,3/2,()A.7/5 B.5/6 C.3/5 D.3/4 13.20,22,25,30,37,()A.39 B.45 C.48 D.51 16.3 ,10 ,11 ,(),127 A.44 B.52 C.66 D.78 25.1,2/3,5/9,(1/2),7/15,4/9,4/9 A.1/2 B.3/4 C.2/13
D.3/7 32.(),36,19,10,5,2 A.77 B.69 C.54 D.48 33.1,2,5,29,()A.34 B.846 C.866 D.37 36.1/3,1/6,1/2,2/3,()
41.3 , 8 , 11 , 9 , 10 ,()A.10 B.18 C.16 D.14 42.4,3,1,12,9,3,17,5,()A.12 B.13 C.14 D.15 44.19,4,18,3,16,1,17,()A.5 B.4 C.3 D.2
45.1,2,2,4,8,()A.280 B.320 C.340 D.360
46.6,14,30,62,()A.85 B.92 C.126 D.250
48.12,2,2,3,14,2,7,1,18,3,2,3,40,10,(),4
A.4 B.3 C.2 D.1
49.2,3,10,15,26,35,()A.40 B.45 C.50 D.55 50.7 ,9 ,-1 , 5 ,(-3)A.3 B.-3 C.2 D.-1 51.3,7,47,2207,()A.4414 B 6621 C.8828 D.4870847 52.4,11,30,67,()A.126 B.127 C.128 D.129
53.5 , 6 , 6/5 , 1/5 ,()A.6 B.1/6 C.1/30 D.6/25 54.22,24,27,32,39,()A.40 B.42 C.50 D.52
55.2/51,5/51,10/51,17/51 ,()
A.15/51 B.16/51 C.26/51 D.37/51
56.20/9,4/3,7/9,4/9,1/4,()A.5/36 B.1/6 C.1/9 D.1/144 57.23,46,48,96,54,108,99,()
A.200 B.199 C.198 D.197
58.1.1,2.2,4.3,7.4,11.5,()
A.155 B.156 C.158 D.166
59.0.75,0.65,0.45,()
A.0.78 B.0.88 C.0.55 D.0.96
60.1.16,8.25,27.36,64.49,()
A.65.25 B.125.64 C.125.81 D.125.01
61.2,3,2,(),6
A.4 B.5 C.7 D.8
62.25,16,(),4
A.2 B.3 C.3 D.6
63.1/2,2/5,3/10,4/17,()
A.4/24 B.4/25 C.5/26 D.7/26
65.-2,6,-18,54,()
A.-162 B.-172 C.152 D.164
68.2,12,36,80,150,()
A.250 B.252 C.253 D.254
69.0,6,78,(),15620 A.240 B.252 C.1020 D.7771 74.5 , 10 , 26 , 65 , 145 ,()A.197 B.226 C.257 D.290 75. 76.65,35,17,3,(1)77.23,89,43,2,(3)
79.3/7,5/8,5/9,8/11,7/11,()
A.11/14 B.10/13 C.15/17 D.11/12 80.1,2,4,6,9,(),18 A.11 B.12 C.13 D.14 85.1,10,3,5,()A.11 B.9 C.12 D.4 88.1,2,5,29,()
A.34 B.846 C.866 D.37 89.1 , 2 , 1 , 6 , 9 , 10 ,()A.13
B.12 C.19
D.17 90.1/2,1/6,1/12,1/30,()
A.1/42 B.1/40 C.11/42 D.1/50 91.13 , 14 , 16 , 21 ,(), 76 A.23
B.35 C.27 92.1 , 2 , 2 , 6 , 3 , 15 , 3 , 21 , 4 ,(A.46
B.20 C.12 D.44 93.3 , 2 , 3 , 7 , 18 ,()A.47 B.24 C.36 D.70 94.4,5,(),40,104 A.7 B.9 C.11 D.13 95.0,12,24,14,120,16,()A.280 B.32 C.64 D.336 96.3 , 7 , 16 , 107 ,()98.1 , 10 , 38 , 102 ,()
A.221 B.223 C.225 D.227 101.11,30,67,()
102.102 ,96 ,108 ,84 ,132,()103.1,32,81,64,25,(),1,1/8 104.-2,-8,0,64,()105.2,3,13,175,()108.16,17,36,111,448,()
A.639
B.758 C.2245 D.3465 110.5,6,6,9,(),90 A.12 B.15 C.18 D.21 111.55 , 66 , 78 , 82 ,())A.98 B.100 C.96 D.102 112.1 , 13 , 45 , 169 ,()A.443 B.889 C.365 D.701 113.2,5,20,12,-8,(),10 A.7
B.8
C.12
D.-8 114.59 , 40 , 48 ,(),37 , 18 A.29 B.32 C.44 D.43 116.1/3 , 5/9 , 2/3 , 13/21 ,()A.6/17 B.17/27 C.29/28 D.19/27 117.1 , 2 , 1 , 6 , 9 , 10 ,()A.13
B.12 C.19
D.17 118.1 , 2/3 , 5/9 ,(), 7/15 , 4/9 , 4/9 119.-7,0,1,2,9,()120.2,2,8,38,()
A.76 B.81 C.144 D.182 121.63,26,7,0,-2,-9,()122.0,1,3,8,21,()123.0.003,0.06,0.9,12,()124.1,7,8,57,()125.4,12,8,10,()126.3,4,6,12,36,()127.5,25,61,113,()129.9,1,4,3,40,()A.81 B.80 C.121 D.120 130.5,5,14,38,87,()A.167 B.168 C.169 D.170 133.1 , 5 , 19 , 49 , 109 ,()A.170 B.180 C.190 D.200 134.4/9 , 1 , 4/3 ,(), 12 , 36 135.2 , 7 , 16 , 39 , 94 ,()A.227 B.237 C.242 D.257 136.-26 ,-6 , 2 , 4 , 6 ,()A.8 B.10 C.12 D.14 137.1 , 128 , 243 , 64 ,()A.121.5 B.1/6 C.5 D.358 1/3138.5 , 14,38,87,()
A.167 B.168 C.169 D.170 139.1,2,3,7,46 ,()
A.2109 B.1289 C.322 D.147 140.0,1,3,8,22,63,()142.5 , 6 , 6 , 9 ,(), 90 A.12 B.15 C.18 D.21 145.2 , 90 , 46 , 68 , 57 ,()
A.65 B.62.5 C.63 D.62 146.20 , 26 , 35 , 50 , 71 ,()A.95 B.104 C.100 D.102 147.18 , 4 , 12 , 9 , 9 , 20 ,(), 43 A.8 B.11 C.30 D.9 148.-1 , 0 , 31 , 80 , 63 ,(), 5 149.3 , 8 , 11 , 20 , 71 ,()A.168 B.233 C.91 D.304 150.2 , 2 , 0 , 7 , 9 , 9 ,()A.13 B.12 C.18 D.17 151.8 , 8 ,(), 36 , 81 , 169 A.16
B.27 C.8 D.26 152.102 , 96 , 108 , 84 , 132 ,()154.-2 ,-8 , 0 , 64 ,()155.2 , 3 , 13 , 175 ,()156.3 , 7 , 16 , 107 ,()166.求32+62+122+242+42+82+162+322 A.2225 B.2025 C.1725 D.2125 178.18 , 4 , 12 , 9 , 9 , 20 ,(), 43 179.5 , 7 , 21 , 25 ,()
A.30 B.31 C.32
D.34 180.1 , 8 , 9 , 4 ,(), 1/6 A.3 B.2 C.1
D.1/3 181.16 , 27 , 16 ,(), 1 A.5
B.6 C.7
D.8 182.2 , 3 , 6 , 9 , 18 ,()183.1 , 3 , 4 , 6 , 11 , 19 ,()184.1,2,9,121,()
A.251 B.441 C.16900 D.960 187.5 , 6 , 6 , 9 ,(), 90 A.12 B.15 C.18 D.21 188.1 , 1 , 2 , 6 ,()
A.19 B.27 C.30 D.24 189.-2 ,-1 , 2 , 5 ,(),29 190.3,11,13,29,31,()191.5,5,14,38,87,()A.167 B.68 C.169 D.170 192.102 , 96 , 108 ,84 , 132 ,()193.0,6,24,60,120,()
194.18 , 9 , 4 , 2 ,(), 1/6 A.3
B.2
C.1 D.1/3 198.4.5,3.5,2.8,5.2,4.4,3.6,5.7,()A.2.3 B.3.3 C.4.3 D.5.3 200.0,1/4,1/4,3/16,1/8,(5/64)201.16 , 17 , 36 , 111 , 448 ,()A.2472 B.2245 C.1863 D.1679 203.133/57 , 119/51 , 91/39 , 49/21 ,(), 7/3 A.28/12 B.21/14 C.28/9 D.31/15 204.0 , 4 , 18 , 48 , 100 ,()A.140 B.160 C.180 D.200 205.1 , 1 , 3 , 7 , 17 , 41 ,()A.89 B.99 C.109 D.119 206.22 , 35 , 56 , 90 ,(), 234 A.162 B.156 C.148 D.145 207.5 , 8 ,-4 , 9 ,(), 30 , 18 , 21 208.6 , 4 , 8 , 9 , 12 , 9 ,(), 26 , 30 A.12 B.16 C.18 D.22 209.1 , 4 , 16 , 57 ,()A.165 B.76 C.92 D.187
210.-7,0,1,2,9 ,()A.12 B.18 C.24 D.28 211.-3,-2,5,24,61 ,(122)A.125 B.124 C.123 D.122 212.20/9,4/3,7/9,4/9,1/4,(5/36)A.5/36 B.1/6 C.1/9 D.1/144 216.23,89,43,2,()A.3 B.239 C.259 D.269 217.1 , 2/3 , 5/9 ,(), 7/15 , 4/9 A.1/2 B.3/4 C.2/13 D.3/7 220.6 , 4 , 8 , 9 ,12 , 9 ,(), 26 , 30 223.4 , 2 , 2 , 3 , 6 , 15 ,(?)A.16 B.30 C.45 D.50 261.7 , 9 , 40 , 74 , 1526 ,()262.2 , 7 , 28 , 63 ,(), 215 263.3 , 4 , 7 , 16 ,(), 124 264.10,9,17,50,()
A.69 B.110 C.154 D.199 265.1 , 23 , 59 ,(), 715 A.12 B.34 C.214 D.37 266.-7,0,1,2,9,()A.12 B.18 C.24 D.28 267.1 , 2 , 8 , 28 ,()A.72 B.100 C.64 D.56 268.3 , 11 , 13 , 29 , 31()A.52 B.53 C.54 D.55 269.14 , 4 , 3 ,-2 ,(-4)A.-3 B.4 C.-4 D.-8 解析: 2除以3用余数表示的话,可以这样表示商为-1且余数为1,同理,-4除以3用余数表示为商为-2且余数为2,因此14,4,3,-2,(-4),每一项都除以3,余数为2、1、0、1、2 =>选C ps:余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1 270.-1,0,1,2,9,(730)271.2,8,24,64,(160)
272.4 , 2 , 2 , 3 , 6 , 15,(45)A.16 B.30 C.45 D.50 273.7,9,40,74,1526,(5436)274.0,1,3,8,21,(55)280.8 , 12 , 24 , 60 ,()289.5,41,149,329,(581)290.1,1,2,3,8,(13)291.2,33,45,58,(612)297.2 , 2 , 0 , 7 , 9 , 9 ,()A.13 B.12 C.18 D.17 299.3 , 2 , 5/3 , 3/2 ,()A.7/5 B.5/6 C.3/5 D.3/4
【例 1】-81、-
36、-9、0、9、36、()【广州2005-3】 A.49 B.64 C.81 D.100 【例 2】582、554、526、498、470、()A.442 B.452 C.432 D.462 【例 3】8、12、18、27、()【江苏2004A类真题】 A.39 B.37 C.40.5 D.42.5 【例 5】5、5、()、25、25 5 【云南2003真题】【山东2006-3】 A.5 5 B.5 5 C.15 5 D.15 5 【例 6】
18、-27、36、()、54 【河北2003真题】 A.44 B.45 C.-45 D.-44 【例 7】2、3、5、7、11、13、()【云南2003 真题】 A.15 B.17 C.18 D.19 【例 8】11、13、17、19、23、()【云南2005真题】 A.27 B.29 C.31 D.33
二级数列
【例 1】12、13、15、18、22、()【国2001-41】 A.25 B.27 C.30 D.34 【例 2】32、27、23、20、18、()【国2002B-3】 A.14 B.15 C.16 D.17 【例 3】-2、1、7、16、()、43【国2002B-5】 A.25 B.28 C.31 D.35 【例 4】2、3、5、9、17、()【国1999-28】 A.29 B.31 C.33 D.37 【例 5】-
2、-1、1、5、()、29【国2000-24】 A.17 B.15 C.13 D.11 【例 6】102、96、108、84、132、()【国2006一类-31】【国2006二类-26】A.36 B.64 C.70 D.72 【例 7】20、22、25、30、37、()【国2002A-2】
A.39 B.45 C.48 D.51 【例 8】1、4、8、13、16、20、()【国2003A-1】 A.20 B.25 C.27 D.28 【例 9】1、2、6、15、31()【国2003B-4】 A.53 B.56 C.62 D.87 【例 10】1、2、2、3、4、6、()【国2005二类-30】 A.7 B.8 C.9 D.10 【例 11】22、35、56、90、()、234【国2000-22】 A.162 B.156 C.148 D.145 【例 12】17、18、22、31、47、()【云南2003真题】 A.54 B.63 C.72 D.81 【例 13】3、5、8、13、20、()【广州2007-27】 A.31 B.33 C.37 D.44 【例 14】37、40、45、53、66、87、()【广州2007-28】 A.117 B.121 C.128 D.133 【例 15】67、54、46、35、29、()【国2008-44】 A.13 B.15 C.18 D.20
三级数列
【例 1】1、10、31、70、133、()【国2005 一类-33】 A.136 B.186 C.226 D.256 【例 2】0、4、18、48、100、()【国2005二类-33】 A.140 B.160 C.180 D.200 【例 3】0、4、16、40、80、()【国2007-44】 A.160 B.128 C.136 D.140 【例 4】()、36、19、10、5、2【国2003A-4】 A.77 B.69 C.54 D.48 【例 5】0、1、3、8、22、63、()【国2005 一类-35】 A.163 B.174 C.185 D.196 【例 6】-8、15、39、65、94、128、170、()【广东2006 上-2】 A.180 B.210 C.225 D.256 【例 7】-
26、-6、2、4、6、()【广州2005-5】 A.11 B.12 C.13 D.14
多级数列绝大部分题目集中在相邻两项两两做差的“做差多级数列”当中,除此之外还有相当一部分相邻两项两两做商的“做商多级数列” 【例 1】1、1、2、6、24、()【国2003B-2】 A.48 B.96 C.120 D.144 【例 2】2、4、12、48、()【国2005一类-26】 A.96 B.120 C.240 D.480 【例 3】3、3、6、18、()【广州2005-1】 A.24 B.72 C.36 D.48 【例 4】1、2、6、24、()【广州2005-4】 A.56 B.120 C.96 D.72
分组数列
【例 1】3、15、7、12、11、9、15、()【国2001-44】 A.6 B.8 C.18 D.19 【例 2】1、3、3、5、7、9、13、15、()、()【国2005 一类-28】 A.19、21 B.19、23 C.21、23 D.27、30 【例 3】1、4、3、5、2、6、4、7、()【国2005二类-35】 A.1 B.2 C.3 D.4 【例 4】1、1、8、16、7、21、4、16、2、()【国2005二类-32】 A.10 B.20 C.30 D.40 【例 5】400、360、200、170、100、80、50、()【江苏2006C-1】 A.10 B.20 C.30 D.40 【例 6】1、2、3、7、8、17、15、()A.31 B.10 C.9 D.25 【例 7】0、3、1、6、2、12、()、()、2、48【江苏2005真题】 A.3、24 B.3、36 C.2、24 D.2、36 【例 8】9、4、7、-4、5、4、3、-4、1、4、()、()【广州2005-2】 A.0,4 B.1,4 C.-1,-4 D.-1,4 【例 9】12、12、18、36、90、()【广州2007-30】 A.186 B.252 C.270 D.289
幂次修正数列
【例 1】2、3、10、15、26、()【国2005一类-32】 A.29 B.32 C.35 D.37 【例 2】0、5、8、17、()、37【浙江2004-6】 A.31 B.27 C.24 D.22 【例 3】5、10、26、65、145、()【浙江2005-5】 A.197 B.226 C.257 D.290 【例4】-
3、-
2、5、()、61、122【云南2005 真题】 A.20 B.24 C.27 D.31 【例 5】0、9、26、65、124、()【国2007-43】 A.165 B.193 C.217 D.239 【例 6】2、7、28、63、()、215【浙江2002-2】 A.116 B.126 C.138 D.142 【例 7】0、-
1、()、7、28【浙江2003-2】 A.2 B.3 C.4 D.5 【例 8】4、11、30、67、()【江苏2006A-2】 A.121 B.128 C.130 D.135 【例 9】-1、10、25、66、123、()A.214 B.218 C.238 D.240 【例 10】-3、0、23、252、()【广东2005下-2】 A.256 B.484 C.3125 D.3121 【例 11】14、20、54、76、()【国2008-45】 A.104 B.116 C.126 D.144
【例 1】1、3、4、7、11、()【国2002A-04】【云南2004 真题】 A.14 B.16 C.18 D.20 【例 2】0、1、1、2、4、7、13、()【国2005一类-30】 A.22 B.23 C.24 D.25 【例 3】18、12、6、()、0、6【国1999-29】 A.6 B.4 C.2 D.1 【例 4】25、15、10、5、5、()【国2002B-4】 A.10 B.5 C.0 D.-5 【例 5】1、3、3、9、()、243【国2003B-3】 A.12 B.27 C.124 D.169
【例 6】1、2、2、3、4、6、()【国2005二类-30】 A.7 B.8 C.9 D.10 【例 7】3、7、16、107、()【国2006一类-35】【国2006二类-30】 A.1707 B.1704 C.1086 D.1072 【例 9】144、18、9、3、4、()A.0.75 B.1.25 C.1.75 D.2.25 【例 10】172、84、40、18、()【云南2005 真题】 A.5 B.7 C.16 D.22 【例 11】1、1、3、7、17、41、()【国2005二类-28】 A.89 B.99 C.109 D.119 【例 12】118、60、32、20、()【北京应届2007-2】 A.10 B.16 C.18 D.20 【例 13】323,107,35,11,3,?【北京社招2007-5】 A.-5 B.13,C1 D2 【例 14】1、2、3、7、46、()【国2005一类-34】 A.2109 B.1289 C.322 D.147 【例 15】2、3、13、175、()【国2006 一类-34】【国2006 二类-29】 A.30625 B.30651 C.30759 D.30952 【例 16】6、15、35、77、()【江苏2004A类真题】 A.106 B.117 C.136 D.163 【例 17】1、2、5、26、()【广东2002-93】 A.31 B.51 C.81 D.677 【例 18】2、5、11、56、()【江苏2004A类真题】 A.126 B.617 C.112 D.92 【例 19】157、65、27、11、5、()【国2008-41】
A.4 B.3 C.2 D.1
数字推理题725道详解
【1】7,9,-1,5,()
A、4;B、2;C、-1;D、-3 分析:选D,7+9=16; 9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比
【2】3,2,5/3,3/2,()A、1/4;B、7/5;C、3/4;D、2/5 分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5
【3】1,2,5,29,()
A、34;B、841;C、866;D、37 分析:选C,5=12+22;29=52+22;()=292+52=866
【4】2,12,30,()
A、50;B、65;C、75;D、56;
分析:选D,1×2=2; 3×4=12; 5×6=30; 7×8=()=56
【5】2,1,2/3,1/2,()
A、3/4;B、1/4;C、2/5;D、5/6;
分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】 4,2,2,3,6,()
A、6;B、8;C、10;D、15;
分析:选D,2/4=0.5;2/2=1;3/2=1.5; 6/3=2; 0.5,1,1.5, 2等比,所以后项为2.5×6=15
【7】1,7,8,57,()
A、123;B、122;C、121;D、120;
分析:选C,12+7=8; 72+8=57; 82+57=121;
【8】 4,12,8,10,()A、6;B、8;C、9;D、24;
分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9
【9】1/2,1,1,(),9/11,11/13 A、2;B、3;C、1;D、7/9;
分析:选C,化成 1/2,3/3,5/5(),9/11,11/13这下就看出来了只能 是(7/7)注意分母是质数列,分子是奇数列。
【10】95,88,71,61,50,()
A、40;B、39;C、38;D、37;
分析:选A,思路一:它们的十位是一个递减数字 9、8、7、6、5 只是少开始的4 所以选择A。思路二:955 = 81;888 = 72;711 = 63;611 = 54;500 = 45;400 = 36,构成等差数列。
【11】2,6,13,39,15,45,23,()A.46;B.66;C.68;D.69;
分析:选D,数字2个一组,后一个数是前一个数的3倍
【12】1,3,3,5,7,9,13,15(),()
A:19,21;B:19,23;C:21,23;D:27,30;
分析:选C,1,3,3,5,7,9,13,15(21),(30)=>奇偶项分两组1、3、7、13、21和3、5、9、15、23其中奇数项1、3、7、13、21=>作差2、4、6、8等差数列,偶数项3、5、9、15、23=>作差2、4、6、8等差数列
【13】1,2,8,28,()A.72;B.100;C.64;D.56;
分析:选B,1×2+2×3=8;2×2+8×3=28;8×2+28×3=100
【14】0,4,18,(),100 A.48;B.58; C.50;D.38; 分析: A,思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列;
3232323232思路二:1-1=0;2-2=4;3-3=18;4-4=48;5-5=100; 思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100;
思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100 可以发现:0,2,6,(12),20依次相差2,4,(6),8,222222思路五:0=1×0;4=2×1;18=3×2;()=X×Y;100=5×4所以()=4×3
【15】23,89,43,2,()A.3;B.239;C.259;D.269; 分析:选A,原题中各数本身是质数,并且各数的组成数字和2+3=5、8+9=17、4+3=7、2也是质数,所以待选数应同时具备这两点,选A
【16】1,1, 2, 2, 3, 4, 3, 5,()分析:
思路一:1,(1,2),2,(3,4),3,(5,6)=>分1、2、3和(1,2),(3,4),(5,6)两组。
思路二:第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项、第九项为一组=>1,2,3;1,3,5;2,4,6=>三组都是等差
【17】1,52, 313, 174,()A.5;B.515;C.525;D.545;
分析:选B,52中5除以2余1(第一项);313中31除以3余1(第一项);174中17除以4余1(第一项);515中51除以5余1(第一项)
【18】5, 15, 10, 215,()A、415;B、-115;C、445;D、-112;
答:选B,前一项的平方减后一项等于第三项,5×5-15=10; 15×15-10=215; 10×10-215=-115
【19】-7,0, 1, 2, 9,()
A、12;B、18;C、24;D、28;
33333
3答: 选D,-7=(-2)+1;
0=(-1)+1; 1=0+1;2=1+1;9=2+1; 28=3+1
【20】0,1,3,10,()
A、101;B、102;C、103;D、104;
答:选B,思路一: 0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102;
2222思路二:0(第一项)+1=1(第二项)
1+2=3
3+1=10
10+2=102,其中所加的数呈1,2,1,2 规律。
思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1;
【21】5,14,65/2,(),217/2
A.62;B.63;C.64;D.65;
3答:选B,5=10/2 ,14=28/2 , 65/2,(126/2), 217/2,分子=> 10=2+2;
28=3+1;65=4+1;(126)=5+1;217=6+1;其中2、1、1、1、1头尾相加=>1、2、3等差 3
3【22】124,3612,51020,()
A、7084;B、71428;C、81632;D、91836; 答:选B,思路一: 124 是1、2、4; 3612是 3、6、12; 51020是5、10、20;71428是 7,14 28;每列都成等差。
思路二: 124,3612,51020,(71428)把每项拆成3个部分=>[1,2,4]、[3,6,12]、[5,10,20]、[7,14,28]=>每个[ ]中的新数列成等比。
思路三:首位数分别是1、3、5、(7),第二位数分别是:2、6、10、(14);最后位数分别是:4、12、20、(28),故应该是71428,选B。
【23】1,1,2,6,24,()A,25;B,27;C,120;D,125 解答:选C。思路一:(1+1)×1=2,(1+2)×2=6,(2+6)×3=24,(6+24)×4=120 思路二:后项除以前项=>1、2、3、4、5 等差
【24】3,4,8,24,88,()A,121;B,196;C,225;D,344 解答:选D。
02468思路一:4=2 +3,8=2 +4,24=2 +8,88=2 +24,344=2 +88 思路二:它们的差为以公比2的数列:
024684-3=2,8-4=2,24-8=2,88-24=2,?-88=2,?=344。
【25】20,22,25,30,37,()A,48;B,49;C,55;D,81 解答:选A。两项相减=>2、3、5、7、11质数列
【26】1/9,2/27,1/27,()A,4/27;B,7/9;C,5/18;D,4/243;
答:选D,1/9,2/27,1/27,(4/243)=>1/9,2/27,3/81,4/243=>分子,1、2、3、4 等差;分母,9、27、81、243 等比
【27】√2,3,√28,√65,()
A,2√14;B,√83;C,4√14;D,3√14;
答:选D,原式可以等于:√2,√9,√28,√65,()2=1×1×1 + 1;9=2×2×2 + 1;28=3×3×3 + 1;65=4×4×4 + 1;126=5×5×5 + 1;所以选 √126,即 D 3√14
【28】1,3,4,8,16,()
A、26;B、24;C、32;D、16;
答:选C,每项都等于其前所有项的和1+3=4,1+3+4=8,1+3+4+8=16,1+3+4+8+16=32
【29】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;
答:选C,2, 1 , 2/3 , 1/2 ,(2/5)=>2/1, 2/2, 2/3, 2/4(2/5)=>分子都为2;分母,1、2、3、4、5等差
【30】 1,1,3,7,17,41,()A.89;B.99;C.109;D.119 ;
答:选B,从第三项开始,第一项都等于前一项的2倍加上前前一项。2×1+1=3;2×3+1=7;2×7+3=17; …;2×41+17=99
【31】 5/2,5,25/2,75/2,()
答:后项比前项分别是2,2.5,3成等差,所以后项为3.5,()/(75/2)=7/2,所以,()=525/4
【32】6,15,35,77,()A. 106;B.117;C.136;D.163 答:选D,15=6×2+3;35=15×2+5;77=35×2+7;163=77×2+9其中3、5、7、9等差
【33】1,3,3,6,7,12,15,()A.17;B.27;C.30;D.24;
答:选D,1,3,3,6,7,12,15,(24)=>奇数项1、3、7、15=>新的数列相邻两数的差为2、4、8
作差=>等比,偶数项 3、6、12、24 等比
【34】2/3,1/2,3/7,7/18,()
A、4/11;B、5/12;C、7/15;D、3/16 分析:选A。4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22
【35】63,26,7,0,-2,-9,()A、-16;B、-25;C;-28;D、-36 3333333分析:选C。4-1=63;3-1=26;2-1=7;1-1=0;(-1)-1=-2;(-2)-1=-9;(-3)()=146(22+34=56;34+56=90,56+90=146)
【46】32,98,34,0,()A.1;B.57;C.3;D.5219; 答:选C,思路一:32,98,34,0,3=>每项的个位和十位相加=>5、17、7、0、3=>相减=>-12、10、7、-3=>视为-1、1、1、-1和12、10、7、3的组合,其中-1、1、1、-1 二级等差12、10、7、3 二级等差。
思路二:32=>2-3=-1(即后一数减前一个数),98=>8-9=-1,34=>4-3=1,0=>0(因为0这一项本身只有一个数字, 故还是推为0),?=>?得新数列:-1,-1,1,0,?;再两两相加再得出一个新数列:-2,0,1.?;2×0-2=-2;2×1-2=0;2×2-3=1;2×3-3=?=>3
【47】5,17,21,25,()A.34;B.32;C.31;D.30 答:选C,5=>5 , 17=>1+7=8 , 21=>2+1=3 , 25=>2+5=7 ,?=>?得到一个全新的数列5 , 8 , 3 , 7 , ?前三项为5,8,3第一组, 后三项为3,7,?第二组,第一组:中间项=前一项+后一项,8=5+3,第二组:中间项=前一项+后一项,7=3+?,=>?=4再根据上面的规律还原所求项本身的数字,4=>3+1=>31,所以答案为31
【48】0,4,18,48,100,()A.140;B.160;C.180;D.200;
答:选C,两两相减===>?4,14,30,52,{()-100} 两两相减 ==>10.16,22,()==>这是二级等差=>0.4.18.48.100.180==>选择C。思路二:4=(2的2次方)×1;18=(3的2次方)×2;48=(4的2次方)×3;100=(5的2次方)×4;180=(6的2次方)×5
【49】 65,35,17,3,()A.1;B.2;C.0;D.4;
答:选A,65=8×8+1;35=6×6-1;17=4×4+1;3=2×2-1;1=0×0+1
【50】 1,6,13,()A.22;B.21;C.20;D.19; 答:选A,1=1×2+(-1);6=2×3+0;13=3×4+1;?=4×5+2=22
【51】2,-1,-1/2,-1/4,1/8,()
A.-1/10;B.-1/12;C.1/16;D.-1/14;
答:选C,分4组,(2,-1);(-1,-1/2);(-1/2,-1/4);(1/8,(1/16))===>每组的前项比上后项的绝对值是 2
【52】 1,5,9,14,21,()A.30;B.32;C.34;D.36;
答:选B,1+5+3=9;9+5+0=14;9+14+(-2)=21;14+21+(-3)=32,其中3、0、-
2、-3二级等差
【53】4,18, 56, 130,()A.216;B.217;C.218;D.219 答:选A,每项都除以4=>取余数0、2、0、2、0
【54】4,18, 56, 130,()A.26;B.24;C.32;D.16;
答:选B,各项除3的余数分别是1、0、-1、1、0,对于1、0、-1、1、0,每三项相加都为0
【55】1,2,4,6,9,(),18 A、11;B、12;C、13;D、18;
答:选C,1+2+4-1=6;2+4+6-3=9;4+6+9-6=13;6+9+13-10=18;其中1、3、6、10二级等差
【56】1,5,9,14,21,()A、30;B.32;C.34;D.36; 答:选B,思路一:1+5+3=9;9+5+0=14;9+14-2=21;14+21-3=32。其中,3、0、-
2、-3 二级等差,思路二:每项除以第一项=>5、9、14、21、32=>5×2-1=9;9×2-4=14;14×2-7=21; 21×2-10=32.其中,1、4、7、10等差
【57】120,48,24,8,()
A.0;B.10;C.15;D.20;
答:选C,120=112-1; 48=72-1; 24=52-1; 8=32-1; 15=(4)2-1其中,11、7、5、3、4头尾相加=>5、10、15等差
【58】48,2,4,6,54,(),3,9 A.6;B.5;C.2;D.3;
答:选C,分2组=>48,2,4,6 ; 54,(),3,9=>其中,每组后三个数相乘等于第一个数=>4×6×2=48 2×3×9=54
【59】120,20,(),-4 A.0;B.16;C.18;D.19;
3210答:选A,120=5-5;20=5-5;0=5-5;-4=5-5
【60】6,13,32,69,()
A.121;B.133;C.125;D.130 答:选B,6=3×2+0;13=3×4+1;32=3×10+2;69=3×22+3;130=3×42+4;其中,0、1、2、3、4 一级等差;2、4、10、22、42 三级等差
【61】1,11,21,1211,()
A、11211;B、111211;C、111221;D、1112211 分析:选C,后项是对前项数的描述,11的前项为1 则11代表1个1,21的前项为11 则21代表2个1,1211的前项为21 则1211代表1个2、1个1,111221前项为1211 则111221代表1个1、1个2、2个1
【62】-7,3,4,(),11 A、-6;B.7;C.10;D.13;
答:选B,前两个数相加的和的绝对值=第三个数=>选B
【63】3.3,5.7,13.5,()A.7.7;B.4.2;C.11.4;D.6.8;
答:选A,小数点左边:3、5、13、7,都为奇数,小数点右边:3、7、5、7,都为奇数,遇到数列中所有数都是小数的题时,先不要考虑运算关系,而是直接观察数字本身,往往数字本身是切入点。
【64】33.1, 88.1, 47.1,()A.29.3;B.34.5;C.16.1;D.28.9;
答:选C,小数点左边:33、88、47、16成奇、偶、奇、偶的规律,小数点右边:1、1、1、1 等差
【65】5,12,24, 36, 52,()A.58;B.62;C.68;D.72; 答:选C,思路一:12=2×5+2;24=4×5+4;36=6×5+6;52=8×5+12 68=10×5+18,其中,2、4、6、8、10 等差; 2、4、6、12、18奇数项和偶数项分别构成等比。
思路二:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,37质数列的变形,每两个分成一组=>(2,3)(5,7)(11,13)(17,19)(23,29)(31,37)=>每组内的2个数相加=>5,12,24,36,52,68
【66】16, 25, 36, 50, 81, 100, 169, 200,()A.289;B.225;C.324;D.441;
22222答:选C,奇数项:16,36,81,169,324=>分别是4, 6, 9, 13,18=>而4,6,9,13,18是二级等差数列。偶数项:25,50,100,200是等比数列。
【67】1, 4, 4, 7, 10, 16, 25,()A.36;B.49;C.40;D.42 答:选C,4=1+4-1;7=4+4-1;10=4+7-1;16=7+10-1;25=10+16-1;40=16+25-1
【68】7/3,21/5,49/8,131/13,337/21,()
A.885/34;B.887/34;C.887/33;D.889/3 答:选A,分母:3,5,8,13,21,34两项之和等于第三项,分子:7,21,49,131,337,885分子除以相对应的分母,余数都为1,【69】9,0,16,9,27,()
A.36;B.49;C.64;D.22;
答:选D,9+0=9;0+16=16;16+9=25;27+22=49;其中,9、16、25、36分别是32, 42, 52, 62,72,而3、4、5、6、7 等差
【70】1,1,2,6,15,()A.21;B.24;C.31;D.40;
答:选C,思路一两项相减=>0、1、4、9、16=>分别是02, 12, 22, 32, 42,其中,0、1、2、3、4 等差。思路二头尾相加=>8、16、32 等比 【71】5,6,19,33,(),101 A.55;B.60;C.65;D.70;
答:选B,5+6+8=19;6+19+8=33;19+33+8=60;33+60+8=101
【72】0,1,(),2,3,4,4,5 A.0;B.4;C.2;D.3 答:选C,思路一:选C=>相隔两项依次相减差为2,1,1,2,1,1(即2-0=2,2-1=1,3-2=1,4-2=2,4-3=1,5-4=1)。
思路二:选C=>分三组,第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项为一组=>即0,2,4;1,3,5;
2,4。每组差都为2。
【73】4,12, 16,32, 64,()A.80;B.256;C.160;D.128;
答:选D,从第三项起,每项都为其前所有项之和。
【74】1,1,3,1,3,5,6,()。A.1;B.2;C.4;D.10;
答:选D,分4组=>1,1; 3,1; 3,5; 6,(10),每组相加=>2、4、8、16 等比
【75】0,9,26,65,124,()
A.186;B.217;C.216;D.215;
3333 3答:选B,0是1减1;9是2加1;26是3减1;65是4加1;124是5减1;故6加1为217
【76】1/3,3/9,2/3,13/21,()
A.17/27;B.17/26;C.19/27;D.19/28;
答:选A,1/3,3/9,2/3,13/21,(17/27)=>1/
3、2/
6、12/
18、13/
21、17/27=>分子分母差=>2、4、6、8、10 等差
【77】1,7/8,5/8,13/32,(),19/128 A.17/64;B.15/128;C.15/32;D.1/4 答:选D,=>4/4, 7/8, 10/16, 13/32,(16/64), 19/128,分子:4、7、10、13、16、19 等差,分母:4、8、16、32、64、128 等比
【78】2,4,8,24,88,()A.344;B.332;C.166;D.164 答:选A,从第二项起,每项都减去第一项=>2、6、22、86、342=>各项相减=>4、16、64、256 等比
【79】1,1,3,1,3,5,6,()。
A.1;B.2;C.4;D.10;
答:选B,分4组=>1,1; 3,1; 3,5; 6,(10),每组相加=>2、4、8、16 等比
【80】3,2,5/3,3/2,()
A、1/2;B、1/4;C、5/7;D、7/3 分析:选C;
思路一:9/3,10/5,10/6,9/6,(5/7)=>分子分母差的绝对值=>6、5、4、3、2 等差,思路二:3/
1、4/
2、5/
3、6/
4、5/7=>分子分母差的绝对值=>2、2、2、2、2 等差
【81】3,2,5/3,3/2,()A、1/2;B、7/5;C、1/4;D、7/3 3分析:可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5
【82】0,1,3,8,22,64,()A、174;B、183;C、185;D、190;
答:选D,0×3+1=1;1×3+0=3;3×3-1=8;8×3-2=22;22×3-2=64;64×3-2=190;其中1、0、-
1、-
2、-
2、-2头尾相加=>-
3、-
2、-1等差
【83】2,90,46,68,57,()
A.65;B.62.5;C.63;D.62
答:选B, 从第三项起,后项为前两项之和的一半。
【84】2,2,0,7,9,9,()
A.13;B.12;C.18;D.17;
答:选C,从第一项起,每三项之和分别是2,3,4,5,6的平方。
【85】 3,8,11,20,71,()A.168;B.233;C.211;D.304 答:选B,从第二项起,每项都除以第一项,取余数=>2、2、2、2、2 等差
【86】-1,0,31,80,63,(),5 A.35;B.24;C.26;D.37;
7654321答:选B,-1=0-1,0=1-1,31=2-1,80=3-1,63=4-1,(24)=5-1,5=6-1
【87】11,17,(),31,41,47 A.19;B.23;C.27;D.29;
答:选B,隔项质数列的排列,把质数补齐可得新数列:11,13,17,19,23,29,31,37,41,43,47.抽出偶数项可得数列: 11,17,23,31,41,47
【88】18,4,12,9,9,20,(),43 A.8;B.11;C.30;D.9 答:选D, 把奇数列和偶数列拆开分析:
偶数列为4,9,20,43.9=4×2+1, 20=9×2+2, 43=20×2+3,奇数列为18,12,9,(9)。18-12=6, 12-9=3, 9-(9)=0
【89】1,3,2,6,11,19,()
分析:前三项之和等于第四项,依次类推,方法如下所示: 1+3+2=6;3+2+6=11;2+6+11=19;6+11+19=36
【90】1/2,1/8,1/24,1/48,()A.1/96;B.1/48;C.1/64;D.1/81
答:选B,分子:1、1、1、1、1等差,分母:2、8、24、48、48,后项除以前项=>4、3、2、1 等差
【91】1.5,3,7.5(原文是7又2分之1),22.5(原文是22又2分之1),()
A.60;B.78.25(原文是78又4分之1);C.78.75;D.80 答:选C,后项除以前项=>2、2.5、3、3.5 等差
【92】2,2,3,6,15,()A、25;B、36;C、45;D、49 分析:选C。2/2=1 3/2=1.5 6/3=2 15/6=2.5 45/15=3。其中,1, 1.5, 2, 2.5, 3 等差
【93】5,6,19,17,(),-55 A.15;B.344;C.343;D.11; 答:选B,第一项的平方减去第二项等于第三项
【94】2,21,(),91,147 A.40;B.49;C.45;D.60;
答:选B,21=2(第一项)×10+1,49=2×24+1,91=2×45+1,147=2×73+1,其中10、24、45、73 二级等差
【95】-1/7,1/7,1/8,-1/4,-1/9,1/3,1/10,()A.-2/5;B.2/5;C.1/12;D.5/8;
答:选A,分三组=>-1/7,1/7; 1/8,-1/4;-1/9,1/3; 1/10,(-2/5),每组后项除以前项=>-1,-2,-3,-4 等差
【96】63,26,7,0,-1,-2,-9,()A、-18;B、-20;C、-26;D、-28;
33333333答:选D,63=4-1,26=3-1,7=2-1,0=1-1,-1=0-1,-2=(-1)-1,-9=(-2)-1-28=(-3)-1,【97】5,12 ,24,36,52,(), A.58;B.62;C.68;D.72 答:选C,题中各项分别是两个相邻质数的和(2,3)(5,7)(11,13)(17,19)(23,29)(31,37)
【98】1,3, 15,(),A.46;B.48;C.255;D.256
答:选C,3=(1+1)2-1
15=(3+1)2-1
255=(15+1)2-1
【99】3/7,5/8,5/9,8/11,7/11,()A.11/14;B.10/13;C.15/17;D.11/12;
答:选A,奇数项:3/7,5/9,7/11
分子,分母都是等差,公差是2,偶数项:5/8,8/11,11/14 分子、分母都是等差数列,公差是3
【100】1,2,2,3,3,4,5,5,()A.4;B.6;C.5;D.0 ;
答:选B,以第二个3为中心,对称位置的两个数之和为7
【101】 3,7, 47,2207,()A.4414;B.6621;C.8828;D.4870847 答:选D,第一项的平方5 => 16=3×7-5 107=16×7-5 1707=107×16-5
【128】2,3,13,175,()A.30625;B.30651;C.30759;D.30952;
222答:选B, 13(第三项)=3(第二项)+2(第一项)×2
175=13+3×2
30651=175+13×2
【129】1.16,8.25,27.36,64.49,()A.65.25;B.125.64;C.125.81;D.125.01;
答:选B,小数点左边:1,8,27,64,125分别是1,2,3,4,5的三次方,小数点右边:16,25,36,49分别是4,5,6,7,8的平方。
【130】,2,(),A.; B.; C.;D.;
答:选B,,2,=>,,【131】 +1,-1,1,-1,()A.;B.1 ;C.-1;D.-1;
答:选C, 选C=>第一项乘以第二项=第三项
【132】 +1,-1,1,-1,()A.+1;B.1;C.;D.-1;
答:选A,选A=>两项之和=>(+1)+(-1)=2 ;(-1)+1= ;1+(-1)= ;(-1)+(+1)=2 =>2 , , ,2 =>分两组=>(2 ,),(,2),每组和为3。
【133】,,()A.B.C.D.答:选B, 下面的数字=>2、5、10、17、26,二级等差
【134】,1/12,()A.; B.; C.;D.; 答:选C,,1/12,=>,,,外面的数字=>1、3、4、7、11 两项之和等于第三项。里面的数字=>5、7、9、11、13 等差
【135】 1,1,2,6,()A.21;B.22;C.23;D.24;
答:选D, 后项除以前项 =>1、2、3、4 等差
【136】1,10,31,70,133,()A.136;B.186;C.226;D.256 答:选C,思路一:两项相减=>9、21、39、63、93=>两项相减=>12、18、24、30 等差.思路二:10-1=9推出3×3=9 31-10=21推出3×7=21 70-31=39推出3×13=39 133-70=63推出3×21=63 而3,7,13,21分别相差4,6,8。所以下一个是10,所以3×31=9393+133=226
【137】0,1, 3, 8, 22,63,()A.163;B.174;C.185;D.196;
答:选C, 两项相减=>1、2、5、14、41、122 =>两项相减=>1、3、9、27、81 等比
【138】 23,59,(),715 A、12;B、34;C、213;D、37;
答:选D, 23、59、37、715=>分解=>(2,3)(5,9)(3,7)(7,15)=>对于每组,3=2×2-1(原数列第一项)9=5×2-1(原数列第一项),7=3×2+1(原数列第一项),15=7×2+1(原数列第一项)
【139】2,9,1,8,()8,7,2
A.10;B.9;C.8;D.7;
答:选B, 分成四组=>(2,9),(1,8);(9,8),(7,2),2×9 = 18 ; 9×8 = 72
【140】5,10,26,65,145,()A、197; B、226;C、257;D、290; 答:选D, 思路一:5=2+1,10=3+1,26=5+1,65=8+1,145=12+1,290=17+1,思路二:三级等差
【141】27,16,5,(),1/7 A.16;B.1;C.0;D.2;
答:选B,27=3,16=4,5=5,1=6,1/7=7差
【142】1,1,3,7,17,41,()
A.89;B.99;C.109;D.119;
答:第三项=第一项+第二项×2
【143】1, 1, 8, 16, 7, 21, 4, 16, 2,()A.10;B.20;C.30;D.40;
答:选A,每两项为一组=>1,1;8,16;7,21;4,16;2,10=>每组后项除以前项=>1、2、3、4、5 等差
【144】0,4,18,48,100,()A.140;B.160;C.180;D.200; 答:选C,思路一:0=0×1 4=1×4 18=2×9 48=3×16 100=4×25 180=5×36=>其中
3210
(-1)
2,其中,3,2,1,0,-1;3,4,5,6,7等0,1,2,3,4,5 等差,1,4,9,16,25,36分别为1、2、3、4、5的平方
思路二:三级等差
【145】1/6,1/6,1/12,1/24,()A.1/48;B.1/28;C.1/40;D.1/24;
答:选A,每项分母是前边所有项分母的和。
【146】0,4/5,24/25,()A.35/36;B.99/100;C.124/125;D.143/144;
答:选C,原数列可变为 0/1,4/5,24/25,124/125。分母是5倍关系,分子为分母减一。
【147】1,0,-1,-2,()A.-8;B.-9;C.-4;D.3;
答:选C,第一项的三次方-1=第二项
【148】0,0,1,4,()A、5;B、7;C、9;D、11 分析:选D。0(第二项)=0(第一项)×2+0,1=0×2+1
4=1×2+2
11=4×2+3
【149】0,6,24,60,120,()A、125;B、196;C、210;D、216 333233分析: 0=1-1,6=2-2,24=3-3,60=4-4,120=5-5,210=6-6,其中1,2,3,4,5,6等差
【150】34,36,35,35,(),34,37,()A.36,33;B.33,36; C.37,34;D.34,37;
答:选A,奇数项:34,35,36,37等差;偶数项:36,35,34,33.分别构成等差
【151】1,52,313,174,()
A.5;B.515;C.525;D.545 ;
答:选B,每项-第一项=51,312,173,514=>每项分解=>(5,1),(31,2),(17,3),(51,4)=>每组第二项1,2,3,4等差;每组第一项都是奇数。
【152】6,7,3,0,3,3,6,9,5,()
A.4;B.3;C.2;D.1;
答:选A,前项与后项的和,然后取其和的个位数作第三项,如6+7=13,个位为3,则第三项为3,同理可推得其他项
【153】1,393,3255,()
A、355;B、377;C、137;D、397;
答:选D,每项-第一项=392,3254,396 =>分解=>(39,2),(325,4),(39,6)=>每组第一个数都是合数,每组第二个数2,4,6等差。
【154】17,24,33,46,(),92 A.65;B.67; C.69 ;D.71 答:选A,24-17=7,33-24=9,46-33=13,65-46=19,92-65=27.其中7,9,13,19,27两项作差=>2,4,6,8等比
【155】8,96,140,162,173,()A.178.5;B.179.5;C 180.5;D.181.5 答:选A,两项相减=>88,44,22,11,5.5 等比数列 【156】(),11,9,9,8,7,7,5,6 A、10; B、11; C、12; D、13 答:选A,奇数项:10,9,8,7,6 等差;偶数项:11,9,7,5 等差
【157】1,1,3,1,3,5,6,()。A.1;B.2;C.4;D.10;
答:选D,1+1=2 3+1=4 3+5=8 6+10=16,其中,2,4,8,10等差
【158】1,10,3,5,()A.4;B.9;C.13;D.15;
答:选C,把每项变成汉字=>一、十、三、五、十三=>笔画数1,2,3,4,5等差
【159】1,3,15,()A.46;B.48;C.255;D.256 1248答:选C,21 = 3 ,21 = 255,【160】1,4,3,6,5,()A.4;B.3;C.2;D.7 答:选C,思路一:1和4差3,4和3差1,3和6差3,6和5差1,5和2差3。思路二:1,4,3,6,5,2=>两两相加=>5,7,9,11,7=>每项都除以3=>2,1,0,2,1
【161】14,4,3,-2,()A.-3;B.4;C.-4;D.-8 ;
答:选C,余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1。因此14,4,3,-2,(-4),每一项都除以3,余数为2、1、0、1、2
【162】8/3,4/5,4/31,()
A.2/47;B.3/47;C.1/49;D.1/47; 答:选D,8/3,4/5,4/31,(1/47)=>8/
3、40/50、4/
31、1/47=>分子分母的差=>-5、10、27、46=>两项之差=>15,17,19等差
【163】59,40,48,(),37,18 A、29;B、32;C、44;D、43; 答:选A,思路一:头尾相加=>77,77,77 等差。
思路二:59-40=19; 48-29=19; 37-18=19。
思路三:59 48 37 这三个奇数项为等差是11的数列。40、19、18 以11为等差
【164】1,2,3,7,16,(),191
A.66;B.65;C.64;D.63;
22222答:选B,3(第三项)=1(第一项)+2(第二项),7=2+3,16=3+7,65=7+16 191=16+65
【165】2/3,1/2,3/7,7/18,()A.5/9;B.4/11;C.3/13;D.2/5
答:选B,2/3,1/2,3/7,7/18,4/11=>4/6,5/10,6/14,7/18,8/22,分子4,5,6,7,8等差,分母6,10,14,18,22 等差
【166】5,5,14,38,87,()A.167;B.168;C.169;D.170;
22222答:选A,两项差=>0,9,24,49,80=>1-1=0,3-0=9,5-1=24,7-0=49,9-1=80,其中底数1,3,5,7,9等差,所减常数成规律1,0,1,0,1
【167】1,11,121,1331,()
A.14141;B.14641;C.15551;D.14441;
答:选B,思路一:每项中的各数相加=>1,2,4,8,16等比。
思路二:第二项=第一项乘以11。
【168】0,4,18,(),100 A.48;B.58;C.50;D.38;
答:选A,各项依次为1 2 3 4 5的平方,然后在分别乘以0 1 2 3 4。
【169】19/13,1,13/19,10/22,()A.7/24;B.7/25;C.5/26;D.7/26;
答:选C,=>19/13,1,13/19,10/22,7/25=>19/13,16/16,13/19,10/22,7/25.分子:19,16,13,10,7等差分母:13,16,19,22,25等差
【170】12,16,112,120,()A.140;B.6124;C.130;D.322 ; 答:选C,思路一:每项分解=>(1,2),(1,6),(1,12),(1,20),(1,30)=>可视为1,1,1,1,1和2,6,12,20,30的组合,对于1,1,1,1,1 等差;对于2,6,12,20,30 二级等差。
思路二:第一项12的个位2×3=6(第二项16的个位)第一项12的个位2×6=12(第三项的后两位),第一项12的个位2×10=20(第四项的后两位),第一项12的个位2×15=30(第五项的后两位),其中,3,6,10,15二级等差
【171】13,115,135,()A.165;B.175;C.1125;D.163 答:选D,思路一:每项分解=>(1,3),(1,15),(1,35),(1,63)=>可视为1,1,1,1,1和3,15,35,63的组合,对于1,1,1,1,1 等差;对于3,15,35,63.3=1×3,15=3×5,35=5×7,63=7×9每项都等于两个连续的奇数的乘积(1,3,5,7,9).思路二:每项中各数的和分别是1+3=4,7,9,10 二级等差
【172】-12,34,178,21516,()
A.41516;B.33132;C.31718;D.43132 ;
答:选C,尾数分别是2,4,8,16下面就应该是32,10位数1,3,7,15相差为2,4,8下面差就应该是16,相应的数就是31,100位1,2下一个就是3。所以此数为33132。
【173】3,4,7,16,(),124
1234分析:7(第三项)=4(第二项)+3(第一项的一次方),16=7+3,43=16+3 124=43+3,【174】7,5,3,10,1,(),()
A.15、-4 ;B.20、-2;C.15、-1;D.20、0 答:选D,奇数项=>7,3,1,0=>作差=>4,2,1等比;偶数项5,10,20等比
【175】81,23,(),127 A.103;B.114;C.104;D.57; 答:选C,第一项+第二项=第三项
【176】1,1,3,1,3,5,6,()。A.1;B.2;C.4;D.10;
答:选D,1+1=2 3+1=4 3+5=8 6+10=16,其中2 4 8 16等比
【177】48,32,17,(),43,59。A.28;B.33;C.31;D.27;
答:选A,59-18=11 43-32=11
28-17=11
【178】19/13,1,19/13,10/22,()a.7/24;b.7/25;c.5/26;d.7/26;
答:选B,1=16/16 , 分子+分母=22=>19+13=32 16+16=32
10+22=32
7+25=32
【179】3,8,24,48,120,()A.168;B.169;C.144;D.143;
222222答:选A,3=2-1 8=3-1 24=5-1 48=7-1
120=11-1 168=13-1,其中2,3,5,7,11质数数列
【180】21,27,36,51,72,()A.95;B.105;C.100;D.102; 答:选B,27-21=6=2×3,36-27=9=3×3,51-36=15=5×3,72-51=21=7×3,105-72=33=11×3,其中2、3、5、7、11质数列。
【181】1/2,1,1,(),9/11,11/13
A.2;B.3; C.1;D.9;
答:选C,1/2,1,1,(),9/11,11/13 =>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13 连续质数列。
【182】 2,3,5,7,11,()A.17;B.18;C.19;D.20 答:选C,前后项相减得到1,2,2,4 第三个数为前两个数相乘,推出下一个数为8,所以11+8=19
【183】2,33,45,58,()A、215;B、216;C、512;D、612
分析:答案D,个位2,3,5,8,12=>作差1,2,3,4等差;其他位3,4,5,6等差
【184】 20/9,4/3,7/9,4/9,1/4,()A、3/7;B、5/12;C、5/36;D、7/36 分析:选C。20/9,4/3,7/9,4/9,1/4,(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36;分母36,36,36,36,36,36 等差;分子80,48,28,16,9,5 三级等差
【185】5,17, 21, 25,()A、29;B、36;C、41;D、49 分析:答案A,5×3+2=17,5×4+1=21,5×5=0=25,5×6-1=29
【186】2,4,3,9,5,20,7,()A.27;B.17;C.40;D.44;
分析:答案D,奇数项2,3,5,7连续质数列;偶数项4,9,20,44,前项除以后项=>4/9,9/20,20/44=>8/18,9/20,10/22.分子8,9,10等差,分母18,20,22等差
【187】2/3,1/4,2/5,(),2/7,1/16,A.1/5;B.1/17;c.1/22;d.1/9 分析:答案D,奇数项2/3,2/5,2/7.分子2,2,2等差,分母3,5,7等差;偶数项1/4,1/9,1/16,分子1,1,1等差,分母4,9,16分别为2,3,4的平方,而2,3,4等差。
【188】1,2,1,6,9,10,()
A.13;B.12;C.19;D.17;
分析:答案D,每三项相加=>1+2+1=4;2+1+6=9;1+6+9=16;6+9+10=25;9+10+X=36=>X=17
【189】8,12,18,27,()A.39;B.37;C.40.5;D.42.5;
分析:答案C,8/12=2/3,12/18=2/3,18/27=2/3,27/?=2/3
27/(81/2)=2/3=40.5,【190】2,4,3,9,5,20,7,()A.27;B.17;C.40; D.44 分析:答案D,奇数项2,3,5,7连续质数列;偶数项4,9,20,44=>4×2+1=9
9×2+2=20
20×2+4=44
其中1,2,4等比
【191】1/2,1/6,1/3,2,(),3,1/2 A.4;B.5;C.6;D.9
分析:答案C,第二项除以第一项=第三项
【192】1.01,2.02,3.04,5.07,(),13.16 A.7.09;B.8.10;C.8.11;D.8.12
分析:答案C,整数部分前两项相加等于第三项,小数部分二级等差
【193】256,269,286,302,()A.305;B.307;C.310;D.369
分析:答案B,2+5+6=13;256+13=269;2+6+9=17;269+17=286;2+8+6=16 286+16=302;3+0+2=5;302+5=307
【194】1,3,11,123,()
A.15131;B.1468;C16798;D.96543 2222分析:答案A,3=1+2 11=3+2 123=11+2()=123+2=15131
【195】1,2,3,7,46,()A.2109;B.1289;C.322;D.147
22分析:答案A,3(第三项)=2(第二项)-1(第一项),7(第四项)=3(第三项)-2(第二项),46=7-3,()=46-7=2109
【196】18,2,10,6,8,()A.5;B.6;C.7;D.8;
分析:答案C,10=(18+2)/2,6=(2+10)/2,8=(10+6)/2,()=(6+8)/2=7
【197】-1,0,1,2,9,()A、11;B、82;C、729;D、730;
33333分析:答案D,(-1)+1=0 0+1=1 1+1=2 2+1=9 9+1=730
【198】0,10,24,68,()
A、96;B、120;C、194;D、254;
33333分析:答案B,0=1-1,10=2+2,24=3-3,68=4+4,()=5-5,()=120
【199】7,5,3,10,1,(),()22A、15、-4;B、20、-2 ; C、15、-1 ;D、20、0;
分析:答案D,奇数项的差是等比数列 7-3=4 3-1=2 1-0=1 其中1、2、4 为公比为2的等比数列。偶数项5、10、20也是公比为2的等比数列
【200】2,8,24,64,()
A、88;B、98;C、159;D、160;
分析:答案D,思路一:24=(8-2)×4
64=(24-8)×4
D=(64-24)×4,思路二:2=2的1次乘以1
8=2的2次乘以2
24=2的3次乘以3
64=2的4次乘以4,(160)=2的5 次乘以5
【201】4,13,22,31,45,54,(),()A.60, 68;B.55, 61; C.63, 72;D.72, 80 分析:答案C,分四组=>(4,13),(22,31),(45,54),(63,72)=>每组的差为9
【202】9,15,22, 28, 33, 39, 55,()A.60;B.61;C.66;D.58;
分析:答案B,分四组=>(9,15),(22,28),(33,39),(55,61)=>每组的差为6
【203】1,3,4,6,11,19,()
A.57;B.34;C.22;D.27;
分析:答案B,数列差为2 1 2 5 8,前三项相加为第四项 2+1+2=5 1+2+5=8 2+5+8=15 得出数列差为2 1 2 5 8 15
【204】-1,64,27,343,()
A.1331;B.512;C.729;D.1000;
分析:答案D,数列可以看成 -1三次方, 4的三次方, 3的三次方, 7的三次方,其中-1,3,4,7两项之和等于第三项,所以得出3+7=10,最后一项为10的三次方
【205】3,8,24,63,143,()A.203,B.255,C.288,D.195,分析:答案C,分解成2-1,3-1,5-1,8-1,12-1;2、3、5、8、12构成二级等差数列,它们的差为1、2、3、4、(5)所以得出2、3、5、8、12、17,后一项为17-1 得288
【206】3,2,4,3,12,6,48,()A.18;B.8;C.32;D.9;
分析:答案A,数列分成 3,4,12,48,和 2,3,6,(),可以看出前两项积等于第三项
【207】1,4,3,12,12,48,25,()A.50;B.75;C.100;D.125 分析:答案C,分开看:1,3,12,25; 4,12,48,()差为2,9,13 8,36,? 因为2×4=8,9×4=36,13×4=52,所以?=52,52+48=100
【208】1,2,2,6,3,15,3,21,4,()
A.46;B.20;C.12;D.44;
分析:答案D,两个一组=>(1,2),(2,6),(3,15),(3,21),(4,44)=>每组后项除以前项=>2,3,5,7,11 连续的质数列
【209】 24,72,216, 648,()A.1296;B.1944;C.2552;D.3240
2分析:答案B,后一个数是前一个数的3倍
【210】4/17,7/13, 10/9,()A.13/6;B.13/5;C.14/5;D.7/3;
分析:答案B,分子依次加3,分母依次减4
【211】 1/2,1,1,(),9/11,11/13, A.2;B.3;C.1;D.7/9 ;
分析:答案C,将1分别看成3/3,5/5,7/7.分子分别为1,3,5,7,9,11.分母分别为2,3,5,7,11,13连续质数列
【212】13,14,16,21,(),76 A.23;B.35;C.27;D.22
分析:答案B,差分别为1,2,5,而这些数的差又分别为1,3,所以,推出下一个差为9和27,即()与76的差应当 为31。
【213】2/3,1/4,2/5,(),2/7,1/16,A.1/5;B.1/17;C.1/22; D.1/9 ;
分析:答案D,将其分为两组,一组为2/3,2/5,2/7,一组为1/4,(),1/16,故()选1/9
【214】3,2,3,7,18,()A.47;B.24;C.36;D.70; 分析:答案A,3(第一项)×2(第二项)--3(第一项)=3(第三项);3(第一项)×3(第三项)--2(第二项)=7(第四项);3(第一项)×7(第四项)--3(第三项)=18(第五项);3(第一项)×18(第五项)--7(第四项)=47(第六项)
【215】3,4,6,12,36,()
A.8;B.72;C.108;D.216 分析:答案D,前两项之积的一半就是第三项
【216】125,2,25,10,5,50,(),()
A.10,250;B.1,250; C.1,500 ; D.10,500;
分析:答案B,奇数项125,25,5,1等比,偶数项2,10,50,250等比
【217】15,28,54,(),210 A.78;B.106;C.165;D.171; 分析:答案B,思路一:15+13×1=28, 28+13x2=54,54+13×4=106, 106+13x8=210,其中1,2,4,8等差。思路二:2×15-2=28,2×28-2=54,2×54-2=106,2×106-2=210,【218】 2,4,8,24,88,()
A.344;B.332; C.166;D.164;
分析:答案A,每一项减第一项=>2,4,16,64,256=>第二项=第一项的2次方,第三项=第一项的4次方,第四项=第一项的6次方,第五项=第一项的8次方,其中2,4,6,8等差
【219】22,35,56,90,(),234 A.162;B.156;C.148;D.145;
分析:答案D,后项减前项=>13,21,34,55,89,第一项+第二项=第三项
【220】1,7,8, 57,()A.123;B.122;C.121;D.120;
222分析:答案C,1+7=8,7+8=57,8+57=121
【221】1,4,3,12,12,48,25,()A.50;B.75;C.100;D.125 分析:答案C,第二项除以第一项的商均为4,所以,选C100
【222】5,6,19,17,(),-55 A.15;B.344;C.343;D.11;
分析:答案B,5的平方-6=19,6的平方-19=17,19的平方-17=344,17平方-344=-55
【223】3.02,4.03,3.05,9.08,()A.12.11;B.13.12;C.14.13;D.14.14;
分析:答案B,小数点右边=>2,3,5,8,12 二级等差,小数点左边=>3,4,3,9,13 两两相加=>7,7,12,22 二级等差
【224】95,88,71,61,50,()A.40;B.39;C.38;D.37;
分析:答案A,955 = 81,888 = 72,711 = 63,611 = 54,500 = 45,400 = 36,其中81,72,63,54,45,36等差
【225】4/9,1,4/3,(),12,36 A.2;B.3;C.4;D.5;
分析:答案C,4/9,1,4/3,()12,36=>4/9,9/9,12/9,36/9,108/9,324/9,分子:
(1/2)14,9,12,36,108,324=>第一项×第二项的n次方=第三项,4×(9)=12,4×(9)=36,4×(9(3/2))=108,4×(9)=324,其中1/2,1,3/2,2等差,分母:9,9,9,9,9,9等差 2
【226】 1,2,9,121,()
A.251;B.441;C.16900;D.960;
分析:答案C,(1+2)的平方等于9,2+9的平方等于121,9+121的平方等于16900
【227】6,15,35,77,()A.106;B.117;C.136;D.163;
分析:答案D,15=6×2+3,35=15×2+5,77=35×2+7,?=77×2+9
【228】16,27,16,(),1 A.5;B.6;C.7;D.8;
43210分析:答案A,2=16 3=27 4=16
5=5 6=1
【229】4,3,1, 12, 9, 3, 17, 5,()
A.12;B.13;C.14;D.15;
分析:答案A,1+3=4,3+9=12,?+5=17,?=12,【230】1,3,15,()A.46;B.48;C.255;D.256 1248分析:答案C,2-1 = 1;2-1 = 3;2-1 = 15;所以 21 =第三项
【287】-1,0,31, 80, 63,(), 5 A.35, B.24, C.26, D.37 分析:选B,0×7-1=-1;1×6-1=0 ;2×5-1=31;3×4-1=80;4×3-1=63;5×2-1=24;6×1-1=5;
【288】-1,0,31,80,63,(),5
A.35;B.24;C.26;D.37 分析:选D,每项除以3=>余数列2、0、1、2、0、1
【289】102,96,108,84,132,()A.36;B.64;C.70;D.72
分析:选A,两两相减得新数列:6,-12,24,-48,?;6/-12=-12/24=24/-48=-1/2,那么下一项应该是-48/96=-1/2;根据上面的规律;那么132-?=96 ;=>36
【290】1,32,81,64,25,(),1 A.5,B.6,C.10,D.12
1分析:选B,M的递减和M的N次方递减,6=6
【291】2,6,13,24,41,()A.68;B.54;C.47;D.58
分析:选A,2=1二次方+1 6=2二次方+2 13=3二次方+4 24=4二次方+8 41=5二次方+16 ?=6二次方+32
【292】 8, 12, 16,16,(),-64
分析:1×8=8;2×6=12;4×4=16;8×2=16;16×0=0;32×(-2)=-64;
【293】0,4,18,48,100,()A.140;B.160;C.180;D.200 分析:选C,思路一:二级等差。
思路二:0=1的2次方×0;4=2的2次方×1…180=6的2次方×5。
22222思路三:0=1×0;4=2×1;18=3×2 ;48=4×3 ;100=5×4;所以最后一个数为6×5=180
【294】3,4,6,12,36,()A.8;B.72;C.108;D.216 分析:选D,(第一项*第二项)/2=第三项,216=12×36/2
【295】2,2,3,6,15,()A、30;B、45;C、18;D、24 分析:选B,后项比前项=>1,1.5,2,2.5,3 前面两项相同的数,一般有三种可能,1)相比或相乘的变式。两数相比等于1,最适合构成另一个等比或等差关系2)相加,一般都是前N项之和等于后一项。3)平方或者立方关系其中平方,立方关系出现得比较多,也比较难。一般都要经两次变化。像常数乘或者加上一个平方或立方关系。或者平方,立方关系减去一个等差或等比关系。还要记住1,2这两个数的变式。这两个特别是1比较常用的。
【296】1,3,4,6,11,19,()2A.57; B.34; C.22;D.27 分析:选B,差是2,1,2,5,8,?;前3项相加是第四项,所以?=15;19+15=34
【297】13,14,16,21,(),76 A.23; B.35;C.27;D.22 分析:选B,相连两项相减:1,2,5,();再减一次:1,3,9,27;()=14;21+14=35
【298】3,8,24,48,120,()
A.168;B.169;C.144;D.143 ;
222222分析:选A,2-1=3;3-1=8;5-1=24;7-1=48;11-1=120;13-1=168;质数的平方-1
【299】21,27,36,51,72,()A.95;B.105;C.100;D.102 ;
分析:选B,21=3×7;27=3×9;36=3×12;51=3×17;72=3×24;7,9,12,17,24两两差为2,3,5,7,? 质数,所以?=11;3×(24+11)=105
【300】2,4,3,9,5,20,7,()A.27;B.17;C.40;D.44 ;
分析:选D,偶数项:4,9,20,44 9=4×2+1;20=9×2+2;44=20×2+4其中1,2,4成等比数列,奇数项:2,3,5,7连续质数列
【301】1,8,9,4,(),1/6 A,3;B,2;C,1;D,1/3 43210(-1)分析:选C,1=1;8=2;9=3;4=4;1=5 ;1/6=6
【302】63,26,7,0,-2,-9,()
3333333分析:4-1=63;3-1=26;2-1=7;1-1=0;-1-1=-2;-2-1=-9 ;-3-1=-28
【303】8,8,12,24,60,()A,240;B,180;C,120;D,80 分析:选B,8,8是一倍12,24两倍关系60,(180)三倍关系
【304】-1,0,31,80,63,(),5 A.35;B.24; C.26;D.37;
765432分析:选B,-1 = 01 31= 21 63 = 41 5 = 6 – 1
【305】3,8,11,20,71,()A.168;B.233;C.91;D.304 分析:选B,每项除以第一项=>余数列2、2、2、2、2、2、2
【306】88,24,56,40,48,(),46 A.38;B.40;C.42;D.44 分析:选D,前项减后项=>64、-32、16、-
8、4、-2=>前项除以后项=>-
2、-
2、-
2、-
2、-2
【307】4,2,2,3,6,()A.10;B.15;C.8;D.6;
分析:选B,后项/前项为:0.5,1,1.5,2,?=2.5
所以6×2.5=15 1【308】49/800,47/400,9/40,()A.13/200;B.41/100;C.51/100;D.43/100 分析:选D,思路一:49/800,47/400,9/40, 43/100=>49/800、94/800、180/800、344/800=>分子 49、94、180、344
49×2-4=94;94×2-8=180;180×2-16=344;其中4、8、16等比。
思路二:分子49,47,45,43;分母800,400,200,100
【309】36,12,30,36,51,()
A.69 ;B.70; C.71; D.72 分析:选A,36/2=30-12;12/2=36-30;30/2=51-36;36/3=X-51; X=69
【310】5,8,-4,9,(),30,18,21 A.14;B.17;C.20;D.26 分析:选B,5+21=26;8+18=26;-4+30=26;9+17=26
【311】6,4,8,9,12,9,(),26,30 A.12;B.16;C.18;D.22 分析:选B,6+30=36;4+26=30;8+x=?;9+9=18;12 所以x=24,公差为6
【312】6, 3, 3, 4.5, 9,()A.12.5;B.16.5;C.18.5;D.22.5 分析:选D,6,3,3,4.5,9,(22.5)=>后一项除以前一项=>1/2、1、2/3、2、5/2(等差)
【313】3.3,5.7,13.5,()A.7.7;B.4.2;C.11.4;D.6.8 分析:选A,都为奇数
【314】5,17,21,25,()A.34;B.32;C.31;D.30; 分析:选C,都是奇数
【315】400,(),2倍的根号5,4次根号20 A.100;B.4; C.20;D.10 分析:选C,前项的正平方根=后一项
【316】1/2,1,1/2,1/2,()A.1/4;B.6/1; C.2/1;D.2 分析:选A,前两项乘积 得到 第三项
【317】 65,35,17,(),1 A.9;B.8;C.0;D.3;
分析:选D,65 = 8×8 + 1;35 = 6×6 – 1;17 = 4×4 + 1;3= 2×2 – 1;1= 0×0 + 1
【318】 60,50,41,32,23,()A.14;B.13;C.11; D.15; 分析:选B,首尾和为 73。
【319】16,8,8,12,24,60,()A、64;B、120;C、121;D、180 分析:选D。后数与前数比是1/2,1,3/2,2,5/2,---答案是180
【320】3,1,5,1,11,1,21,1,()A、0;B、1、C、4;D、35 分析:选D。偶数列都是1,奇数列是3、5、11、21、(),相邻两数的差是2、6、10、14是个二级等差数列,故选D,35。
【321】0,1,3,8,22,64,()A、174;B、183;C、185;D、190 答:选D,0×3+1=1;1×3+0=3;3×3-1=8;8×3-2=22;22×3-2=64;64×3-2=190;其中1、0、-
1、-
2、-
2、-2头尾相加=>-
3、-
2、-1等差
【322】0,1,0,5,8,17,()A、19;B、24;C、26;D、34; 答:选B,0 =(-1)1 5 =(2)+ 1.....24 =(5)-1
【323】0,0,1,4,()A、5;B、7;C、9;D、10 分析:选D。二级等差数列
【324】18,9,4,2,(),1/6 A、1;B、1/2;C、1/3;D、1/5 分析:选C。两个一组看。2倍关系。所以答案 是 1/3。
【325】6,4,8,9,12,9,(),26,30 A、16;B、18;C、20;D、25 分析:选A。头尾相加=>36、30、24、18、12等差
【326】 1,2,8,28,()A.72;B.100;C.64;D.56
答:选B,1×2+2×3=8;2×2+8×3=28;8×2+28×3=100
【327】1, 1, 2, 2, 3, 4, 3, 5,()A.6;B.4;C.5;D.7;
答:选A,1, 1, 2;2, 3, 4;3, 5 6=>分三组=>每组第一、第二、第三分别组成数列=>1,2,3;1,3,5;2,4,6
【328】0,1/9,2/27,1/27,()A.4/27;B.7/9;C.5/18;D.4/243;
答:选D,原数列可化为0/3,1/9,2/27,3/81;分子是0,1,2,3的等差数列;分母是3,9,27,81的等比数列;所以后项为4/243
【329】1,3,2,4,5,16,()。A、28;B、75;C、78;D、80 答:选B,1(第一项)×3(第二项)-1=2(第三项);3×2-2=4;2×4-3=5……5×16-5=75
【330】1,2,4,9,23,64,()A、87;B、87;C、92;D、186 答:选D,1(第一项)×3-1=2(第二项); 2×3-2=4....64×3-6=186
【331】2,2,6,14,34,()A、82;B、50;C、48;D、62 答:选A,2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82
222
2【332】 3/7,5/8,5/9,8/11,7/11,()A、11/14;B、10/13;C、15/17;D、11/12 答:选A,奇数项3/7,5/9,7/11.分子3,5,7等差;分母7,9,11等差。偶数项5/8,8/11,11/14,分子分母分别等差
【333】 2,6,20,50,102,()A、142;B、162;C、182;D、200 答:选C,思路一:三级等差。即前后项作差两次后,形成等差数列。也就是说,作差三次后所的数相等。
2222思路二:2(第一项)+3-5=6(第二项);6+4-2=20 20+5+5=50;50+6+16=102。其中-5,-2,5,16,可推出下一数为31(二级等差)所以,102+7+31=182
【334】 2,5,28,(),3126 A、65;B、197;C、257;D、352 答:选C,1的1次方加1(第一项),2的2次方加1等5,3的3次方加1等28,4的4次方加1等257,5的5次方加1等3126,【335】7,5,3,10,1,(),()
A.15、-4; B.20、-2; C.15、-1; D.20、0 答:选D,奇数项7,3,1,0=>作差=>4,2,1等比;偶数项5,10,20等比
【336】81,23,(),127
A.103;B.114;C.104;D.57 答:选C,第一项+第二项=第三项。81+23=104,23+104=127
【337】1,3,6,12,()A.20;B.24;C.18;D.32;
答:选B,3(第二项)/1(第一项)=3,6/1=6,12/1=12,24/1=24;3,6,12,24是以2为等比的数列
【338】7,10,16,22,()A.28;B.32;C.34;D.45;
答:选A,10=7×1+3;16=7×2+2;22=7×3+1;28=7×4+0
【339】11,22,33,45,(),71 A.50;B.53;C.57;D.61 答:选C,10+1=11;20+2=22;30+3=33;40+5=45;50+7=57;60+11=71;加的是质数!
【340】1,2,2,3,4,6,()
A.7;B.8;C.9;D.10 答:选C,1+2-1=2;2+2-1=3;2+3-1=4;3+4-1=6;4+6-1=9;
【341】3,4,6,12,36,()
A.8;B.72;C.108;D.216;
答:选D,前两项相乘除以2得出后一项,选D
【342】5,17,21,25,()
A.30;B.31;C.32;D.34 答:选B,思路一:5=>5+0=5 ,17=>1+7=>8,21=>2+1=>3,25=>2+5=7,?=>? 得到新数列5,8,3,27,?。三个为一组(5,8,3),(3,7,?)。第一组:8=5+3。第二组:7=?+3。?=>7。规律是:重新组合数列,3个为一组,每一组的中间项=前项+后项。再还原数字原有的项4=>3+1=>31。
思路二:都是奇数。
【343】12,16,112,120,()分析:答案:130。
把各项拆开=>分成5组(1,2),(1,6),(1,12),(1,20),(1,30)=>每组第一项1,1,1,1,1等差;第二项2,6,12,20,30二级等差。
【344】13,115,135,()
分析:答案:163。把各项拆开=>分成4组(1,3),(1,15),(1,35),(1,63)=>每组第一项1,1,1,1,1等差;第二项3,15,35,63,分别为奇数列1,3,5,7,9两两相乘所得。
【345】-12,34,178,21516,()分析:答案:33132。-12,34,178,21516,(33132)=>-12,034,178,21516,(33132),首位数:-1,0,1,2,3等差,末位数:2,4,8,16,32等比,中间的数:3,7,15,31,第一项×2+1=第二项。
【346】15, 80, 624, 2400,()A.14640;B.14641;C.1449;D.4098;
44444分析:选A,15=2-1;80=3-1;624=5-1; 2400=7-1;?=11-1;质数的4次方-1
【347】5/3,10/8,(),13/12 A.12/10;B.23/11; C.17/14; D.17/15 分析:选D。5/3,10/8,(17/15),13/12=>5/3,10/8,(17/15),26/24,分子分母分别为二级等差。
【348】2,8,24,64,()
A.128;B.160;C.198;D.216;
分析:选b。2=1×2;8=2×4;24=4×6;64=8×8;?=16×10;左端1,2,4,8,16等比;右端2,4,6,8,10等差。
【349】 2,15,7,40,77,()
A.96;B.126;C.138;D.156;
222答:选C,15-2=13=4-3;40-7=33=6-3;138-70=61=8-3
【350】 8,10,14,18,()
A.26;B.24;C.32;D.20 答:选A,8=2×4,10=2×5 14=2×7 18=2×9 26=2×13。其中4,5,7,9,13,作差1,2,2,4=>第一项×第二项=第三项
【351】13,14,16,21,(),76
A.23;B.35;C.27;D.22 答:选B,后项减前项=>1,2,5,14,41=>作差=>1,3,9,27等比
【352】1,2,3,6,12,()A.20;B.24;C.18;D.36 答:选B,分3组=>(1,2),(3,6),(12,?)偶数项都是奇数项的2倍,所以是24
【353】20/9,4/3,7/9,4/9,1/4,()A.1/6;B.1/9;C.5/36;D.1/144; 答:选C,20/9,4/3,7/9,4/9,1/4(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36,其中80,48,28,16,9,5三级等差。
【354】4,8/9,16/27,(),36/125,216/49 A.32/45;B.64/25;C.28/75;D.32/15
323232答:选B,偶数项:2/3,4/5(64/25),6/7 规律:分子——2,4,6的立方,分母——3,5,7的平方
【355】13579,1358,136,14,1,()A.1;B.2;C.-3;D.-7 答:选b 第一项13579它隐去了1(2)3(4)5(6)7(8)9括号里边的;第二个又是1358先补了第一项被隐去的8;第三个又是136再补了第一项中右至左的第二个括号的6;第三个又是14;接下来答案就是12
【356】5,6,19,17,(),-55
A、15;B、344;C、343;D、170 答:选B,第一项的平方—第二项=第三项
【357】1,5,10,15,()A、20;B、25;C、30;D、35 分析:答案C,30。思路一:最小公倍数。
思路二:以1为乘数,与后面的每一项相乘,再加上1与被乘的数中间的数.即:1×5+0=5,1×10+5=15,1×15+5+10=30
【358】129,107,73,17,-73,()
A.-55;B.89;C.-219;D.-81;
答:选c,前后两项的差分别为:22、34、56、90,且差的后项为前两项之和,所有下一个差为146,所以答案为-73-146=219
【359】20,22,25,30,37,()A.39;B.45;C.48;D.51;
答:选c,后项--前项为连续质数列。
【360】2,1,2/3,1/2,()
A.3/4;B.1/4;C.2/5;D.5/6 答:选C,变形:2/1,2/2,2/3,2/4,2/5
【361】7,9,-1,5,()
A.3;B.-3;C.2;D.-1 答:选B,思路一:(前一项-后一项)/2思路二:7+9=16 9+(-1)=8;(-1)+5=4;5+(-3)=2其中2,4,8,16等比
【362】5,6,6/5,1/5,()
A.6;B.1/6;C.1/30;D.6/25 答:选B,第二项/第一项=第三项
【363】1,1/2,1/2,1/4,()A.1/4;B.1/8;C.1/16;D.3/4 答:选B,第一项*第二项=第三项 【364】1/2,1,1/2,2,()A.1/4;B.1/6;C.1/2;D.2 答:选a。第一项/第二项=第三项
【365】16,96,12,10,(),15 A、12;B、25;C、49;D、75 答:选D。75。通过前面3个数字的规律,推出后面3个数字的规律。前面12×16/2=96,因此下面15×10/2=75
【366】41,28,27,83,(),65 A、81;B、75;C、49;D、36 答:选D。36。(41-27)×2=28,(83-65)×2=36
【367】-1,1,7,17, 31,(),71
A.41;B.37;C.49;D.50 答:选c。后项-前项=>差是2,6,10,14,?。?=1831+18=49
【368】-1,0,1,2,9,()
A.11;B.82;C.729;D.730;
答:选D。前面那个数的立方+1所以9的立方+1==730
【369】 1, 3, 3, 6,5,12,()
A.7;B.12;C.9;D.8;
答:选a。奇数项规律:1 3 5 7等差;偶数项3,6,12等比。
【370】 2, 3, 13,175,()A、255;B、2556;C、30651;D、36666 答:选C,30651。前面项的两倍+后面项的平方=第三项
【371】 1/2,1/6, 1/12, 1/30,()
A.1/42;B.1/40;C.11/42;D.1/50;
答:选A。分子为2、6、12、30,分别是2的平方-2=2,3的平方-3=6,4的平方-4=14,6的平方-6=30,下一项应该为7的平方-7=42,所以答案因为A(1/42).【372】23,59,(),715 A、64;B、81;C、37;D、36 分析:答案C,37。拆开:(2,3)(5,9)(3,7)(7,15)=〉3=2×2—1;9=5×2—1;7=3×2+1;15=7×2+1
【373】 15,27,59,(),103 A、80;B.81;C.82;D.83 答:选B.15-5-1=9 ;27-2-7=18;59-5-9=45; XY-X-Y=?;103-1-3=99;成为新数列9,18,45,?,99 后4个都除9,得新数列2,5,()11为等差
()为8 时是等差数列
得出?=8×9=72 所以答案为B,是81
【374】2,12,36,80,150,()A、156;B、252;C、369;C、476 分析:答案B,252。2=1×2;12 =3×4;36 =6×6;80 =10×8;150=15×10;?=21×12,其中1,3,6,10,15二级等差,2,4,6,8,10等差。
【等差数列及其性质习题】推荐阅读:
等差等比数列的性质12-22
等差数列习题10-20
2等差数列及其前n项和07-02
等差数列专项练习题05-22
等差数列基础练习题12-16
四年级等差数列练习题12-17
等比数列及其性质学案10-27
等差数列笔试题06-06
等差数列学案11-17
证明等比等差数列01-14