同济高数教案

2024-06-28

同济高数教案(通用2篇)

同济高数教案 篇1

高数同济版下 高数(下)小结

一、微分方程复习要点

解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解.一阶

微分方程的解法小结:

高数同济版下 二阶微分方程的解法小结:

非齐次方程的特解的形式为:

高数同济版下 主要 一阶

1、可分离变量方程、线性微分方程的求解;

2、二阶常系数齐次线性微分方程的求解;

3、二阶常系数非齐次线性微分方程的特解

二、多元函数微分学复习要点

一、偏导数的求法

1、显函数的偏导数的求法 时,应将看作常量,对求导,在求时,应将看作常量,对求导,所运 用的是一元函数的求导法则与求导公式

2、复合函数的偏导数的求法 设,,则,几种特殊情况: 1),,则2),则 3),则

3、隐函数求偏导数的求法 1)一个方程的情况,设是由方程唯一确定的隐函数,则,高数同济版下 或者视,由方程两边同时对 2)方程组的情况 由方程组.两边同时对求导解出即可

二、全微分的求法 方法1:利用公式 方法2:直接两边同时求微分,解出即可.其中要注意应用微分形式的不变性:

三、空间曲线的切线及空间曲面的法平面的求法 1)设空间曲线Г的参数方程为,则当时,在曲线上对应 处的切线方向向量为,切线方程为 法平面方程为 2)若曲面的方程为,则在点处的法向,切平面方程为 法线方程为 高数同济版下 若曲面的方程为,则在点处的法向,切平面方程为 法线方程为

四、多元函数极值(最值)的求法 1 无条件极值的求法 设函数在点的某邻域内具有二阶连续偏导数,由,解出驻点,记,1)若 时有极小值 2)若,则在点处无极值 3)若,不能判定在点处是否取得极值,则在点处取得极值,且当时有极大值,当 2 条件极值的求法 函数在满足条件下极值的方法如下: 1)化为无条件极值:若能从条件解出代入中,则使函数成为一元函数无条件的极值问题 2)拉格朗日乘数法 作辅助函数,其中为参数,解方程组 高数同济版下 求出驻点坐标,则驻点可能是条件极值点 3 最大值与最小值的求法 若多元函数在闭区域上连续,求出函数在区域内部的驻点,计算出在这些点处的函数值,并与区域的边界上的最大(最小)值比较,最大(最小)者,就是最大(最小)值.主要

1、偏导数的求法与全微分的求法;

2、空间曲线的切线及空间曲面的法平面的求法

3、最大值与最小值的求法

三、多元函数积分学复习要点 七种积分的概念、计算方法及应用如下表所示:

高数同济版下 高数同济版下 *定积分的几何应用 定积分应用的常用公式:(1)面积(2)体积(型区域的面积)(横截面面积已知的立体体积)(所围图形绕 的立体体积)(所围图形绕 体体积)(所围图形绕轴 的立体体积)

高数可分离变量的微分方程教案 篇2

观察与分析

1 求微分方程y2x的通解 为此把方程两边积分 得 yx2C

一般地 方程yf(x)的通解为yf(x)dxC(此处积分后不再加任意常数)

2 求微分方程y2xy2 的通解

因为y是未知的 所以积分2xy2dx无法进行 方程两边直

接积分不能求出通解

1dy2xdx 两边积分 得

y211

x2C 或y2yxC1是原方程的通解 可以验证函数y2xC

为求通解可将方程变为

一般地 如果一阶微分方程y(x, y)能写成 g(y)dyf(x)dx

形式 则两边积分可得一个不含未知函数的导数的方程

G(y)F(x)C

由方程G(y)F(x)C所确定的隐函数就是原方程的通解

对称形式的一阶微分方程

一阶微分方程有时也写成如下对称形式

P(x y)dxQ(x y)dy0 在这种方程中 变量x与y 是对称的

若把x看作自变量、y看作未知函数 则当Q(x,y)0时 有

dyP(x,y)

dxQ(x,y)若把y看作自变量、x看作未知函数 则当P(x,y)0时 有

dxQ(x,y)

dyP(x,y)

可分离变量的微分方程

如果一个一阶微分方程能写成

g(y)dyf(x)dx(或写成y(x)(y))的形式 就是说 能把微分方程写成一端只含y的函数和dy 另一端只含x的函数和dx 那么原方程就称为可分离变量的微分方程

讨论 下列方程中哪些是可分离变量的微分方程?(1)y2xy

是 y1dy2xdx (2)3x25xy0

是 dy(3x25x)dx(3)(x2y2)dxxydy=0

不是

(4)y1xy2xy2 是 y(1x)(1y2)(5)y10xy

是 10ydy10xdx(6)yxy

不是 yx

可分离变量的微分方程的解法

第一步

分离变量 将方程写成g(y)dy f(x)dx的形式

第二步

两端积分g(y)dyf(x)dx 设积分后得G(y)F(x)C

第三步

求出由G(y)F(x)C所确定的隐函数y(x)或x(y)G(y)F(x)C  y(x)或x(y)都是方程的通解 其中G(y)F(x)C称为隐式(通)解

例1 求微分方程dy2xy的通解

dx

此方程为可分离变量方程 分离变量后得

1dy2xdx

y两边积分得

ydy2xdx

21即

ln|y|x2C1

从而

yexC1eC1ex

2因为eC1仍是任意常数 把它记作C 便得所给方程的通解

yCex

例2 铀的衰变速度与当时未衰变的原子的含量M成正比 已知t0时铀的含量为M0 求在衰变过程中铀含量M(t)随时间t变化的规律 2

解 铀的衰变速度就是M(t)对时间t的导数

dM

dtdMM

dtdM0 其中(>0)是常数 前的曲面号表示当t增加时M单调减少 即

dt

由于铀的衰变速度与其含量成正比 故得微分方程由题意 初始条件为 M|t0M0

将方程分离变量得

两边积分 得dMdt

MdM()dt

M即

lnMtlnC 也即MCet

由初始条件 得M0Ce0C

所以铀含量M(t)随时间t变化的规律MM0et 

例3 设降落伞从跳伞塔下落后 所受空气阻力与速度成正比 并设降落伞离开跳伞塔时速度为零 求降落伞下落速度与时间的函数关系

设降落伞下落速度为v(t) 降落伞所受外力为Fmgkv(k为比例系数) 根据牛顿第二运动定律Fma 得函数v(t)应满足的方程为

mdvmgkv

dt初始条件为

v|t00

方程分离变量 得

dvdt

mgkvmdvdt两边积分 得 mgkvm

ln(mgkv)1ktC

m1kC1ktmgemCe即

v(C)

kk将初始条件v|t00代入通解得Cmg

kktmg(1em)

于是降落伞下落速度与时间的函数关系为vk

例4 求微分方程

解 方程可化为 dy1xy2xy2的通解

dx

dy(1x)(1y2)

dx分离变量得

1dy(1x)dx

1y2两边积分得

1y2dy(1x)dx 即arctany2x2xC

1211于是原方程的通解为ytan(x2xC)

师生互动设计

上一篇:观潮(网友来稿) 教案教学设计下一篇:我撒了一个谎作文