张齐华 因数和倍数 教学实录

2024-10-31|版权声明|我要投稿

张齐华 因数和倍数 教学实录(精选8篇)

张齐华 因数和倍数 教学实录 篇1

张齐华《因数和倍数》

张齐华老师的《因数和倍数》,教学理念崭新,教学设计独特,文化底蕴丰富,谈吐风趣幽默。课堂教学开放而又充满活力。

感触一:充满人性化的评价语

听张老师的课是一种享受,尤其是聆听他那自然、精炼的评价语。如评价作业纸时,张老师说“关于A这种方法你有什么话要说?”(学生纷纷举手想要指出错误)可张老师是这样引导的:“能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?”还有,尽管学生是找错了,他这样说:“其实这个同学挺不容易的,他已经找出不少了,对不对?”……这些人性化的评价语在课堂中还有很多,这些朴实的语言,孩子们在潜移默化中感受到的是成功,是对数学学习的无限乐趣。

感触二:丰富多彩的文化信息。

关于本堂课的文化气息,是相当浓厚的,张老师一定查阅了不少的资料,进行了创造性的组合和优化,对激发学生的学习兴趣是大有好处的。“计数器’九颗珠子的奥秘;神奇的完美数,让学生在不知不觉中感受到了数学的奥秘。只有有了文化气息,数学才变得有了灵魂,而再不会让学生感到枯燥无味,只会乐在其中。感触三:善于引导,让学生学会思考

张老师善于捕捉学生发言过程中的信息,教师大胆地让学生自己找出36的因数和3的倍数,再通过对几份不同作业的比较,一步又一步,层次清晰地得出找因数和倍数的方法。在这一过程中,教师与学生进行互动,沟通联系,交流想法,形成意见,真正做到了“教育的引导者。”如:“看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?”、“他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?”……老师亲切的话语引导学生去发现、思考。

这一堂课上了55分钟,这在日常的教学中是不允许的,但在这节课中,没有这增加的十几分钟,简直是一种遗憾,那么如何解决现实与理想的矛盾呢?

教学过程:

一、认识倍数和因数

师:一起看大屏幕,数一数,几个正方形?(12)第一个问题是如果老师请你把12个正方形摆成一个长方形,会摆吗?行不行?能不能就用一道非常简单的乘法算式表达出来? 生:1×12 师:猜猜看,他每排摆了几个,摆了几排?

生:12个,摆了一排。

师:(屏幕显示摆法)是这样吗?第二种摆法我们只要把他旋转一下就跟第一种怎么样?(一样)。我们可以把他忽略不计。还可以怎么摆?同样用一道乘法算式表达出来?

生:三四十二

师:这一次每排摆了几个,摆了几排?(屏幕显示摆法)同样第二种摆法也可以省。还有吗?

生齐:2×6 师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。

师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。

师板书:因数和倍数

师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行?

师:谁先来?

生说略

师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?

生:12是12的因数,12是12的倍数。

师:虽然是拗口了点,不过数学上还真是这么回事,12的确是12的因数,12也是12的倍数。为了研究方便,以后来探讨因数和倍数的时候所说的数都是什么数啊?

生:自然数

师:而且谁得除外。

生:0 师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。3、5、18、20、36 生说略。

二、探索找因数倍数的方法

师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才张老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?

生1:

3、18 师:还有谁?

生2:36 师:3、18、36都是36的因数,只有这3个吗?

生1:1 生2:4 生3:6 师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。

学生填写时师巡视搜集作业。

师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为A、B、C师板书。

A:2、4、13、12、18、36 B:1、2、4、3、6、9、12、18、36 C:1、36、2、18、3、12、4、9、6 师:关于A这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。

生1:都对的

师:有没有道理?看来要找一个人的优点挺困难的。

生2:写全了 生大声说:没有!

师:正好触及了大家的公愤,看来要找一个人的优点不太好找了,是吧?其实这个同学挺不容易的,他已经找出不少了,对不对?说说有什么问题?

生:没有写全,少了3、6、9。

师:大伙来思考一下,6、9这两个因数是36的因数吗?看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?

生:36÷4,只写了4,没写9 师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?

生齐:两个两个找。

生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。

师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。

师:第二个同学有没有找全,有没有更好的建议送给他。

生:他应该把4、3调换一下。

师:做了一个微调就不仅仅是美观的问题,更带给我们一种寻找的有序。第三个同学是最没有顺序的,什么1、36,2、18了,你们觉得有道理吗?

师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?

生:他们那样还要头对尾头对尾的,像这样直接就可以写了。

师:有没有听明白,也是同样一对一对出现的。

生:大小没有排,B大小排完后从小到大很舒服。

师:你看你那个舒服吗?

生:舒服

师:正是因为你的质疑,他把方法说了出来。他用了什么?

生:乘法口诀

师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。

师:虽然这个同学找到了尝试完了1,找到

36、尝试完了2,找到18、3、12、4、9、6,自然数有很多,那你的7、8没有试,你怎么知道找全了呢?

生1:找到开始重复就不找了

生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。

师:体会体会

1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。

生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。

师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20 生齐:1、2、4、5、10、20 再试一个:15,写在练习纸上。学生汇报

师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。

生:

21、300 师:你能把3的倍数全部写下来吗?

生:不能。太多太多了。

师:那怎么办?写不完可以用省略号表示。试试看。

学生练习纸上完成,汇报。师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的?

生1:3×1、3×2 师:能理解吗?

生1:3+3=6、6+3=9 师:有理吗?不要小看加3了,当到数大的时候也比较方便。

生:略

师:寻找一个数的倍数的方法掌握了吗?试一试。7的倍数

学生练习纸上完成:50以内7的倍数。

师:谁来说说这一次你找了哪几个?

生:7、14、21、28 师:为什么不加省略号?

生:因为给了一个限制。

师:任何自然数的倍数是无限的。会寻找一个数的因数吗?

三、感受倍数和因数的神奇奥秘

师:透出一个信息,关于因数和倍数是不是蕴藏了很有意思的规律,下面这题就隐藏了一条规律。屏幕显示:老师这有9颗珠子全部放到十位和个位,1颗放十位,另外8颗放个位。这样就得到几?(18)要是不这样放,你还能得到其他的两位数吗?

生1:27 生2:36 师:把你知道的两位数跟同桌说一说。

学生同桌说,师:如果把你们说的两位数按一定顺序排出来,就得到了这样的一排数,是这样吗?屏幕展示:18、27、36、45、54、63、72、81 仔细观察9颗珠子拨的两位数,你发现了什么?

生:都是9的倍数

师:9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数都是(8的倍数)

师:发现了什么?9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数(不一定都是8的倍数),7颗珠子、6颗珠子呢?其实这里的学问没有同学想的那么简单,张老师给大家布置一个小任务,自己在草稿本上画一画珠子,看看6颗5颗4颗拨出的两位数到底和珠子的个数有什么关系?这里蕴藏着非常丰富的规律,等待着同学们去发现。其实不仅在计数器上找到一些有趣的规律。

师:张老师问一个问题,好不好?1—100这100个数,思考一下,哪个数的因数最多?

生1:1 生2:99 师:还有谁要发表的?

生3:9 师问生2:为什么认为99的因数最多?

生:9是最大的。

师:张老师公布一下答案: 60 师:可以一起找一找。可以负责任的告诉你,比99多多了。是不是数越大,因数就越多。你们知道一小时有多少分?(60分),一分=60 秒,这里的60和刚才的60有关系吗?这里的60就和100以内的因数有关系,你们相信吗?特意给大家带来一本书。书的名字叫《数字王国》,学生读有关资料。

师:相信了吧,其实张老师一开始也是特别不相信,咱们历法上面的 1小时=60分,一分=60秒的进率竟然和100以内的数的因数有着这么大的关系,这本书详细记载着为什么一年有12个月,一天有24小时,同学们知道为什么用12、24作为进率,道理是一样的。数学中发现的规律

师:更有意思的在后面,张老师给大家介绍一个数,数学家把6称为“完美数”。想知道为什么吗?用最快的速度说一说6的因数?

生:1、2、3、6 师:把6划去,1+2+3=6,又回到了6本身,正是因为这样的数非常特别,所以数学家把这样特点的数称为是完美数。数学家找到了第一个完美数,就会去找第一个完美数,猜猜看,找到了没有?今天张老师不把答案直接告诉你们,我透露一下资料好不好?第二个完美数比20大,比30小,而且还是一个双数,好猜了吧。有幸去南京聆听了张齐华老师执教的《因数和倍数》,感触颇深。张老师那崭新的教学理念,独特的教学设计,丰富的文化底蕴,风趣幽默的谈吐,深深打动了我。他那开放而又充满活力的课堂教学,令我感触很深。感触一:充满人性化的评价语

听张老师的课是一种享受,尤其是聆听他那自然、精炼的评价语。如评价作业纸时,张老师说“关于A这种方法你有什么话要说?”(学生纷纷举手想要指出错误)可张老师是这样引导的:“能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?”还有,尽管学生是找错了,他这样说:“其实这个同学挺不容易的,他已经找出不少了,对不对?”……这些人性化的评价语在课堂中还有很多,这些朴实的语言,孩子们在潜移默化中感受到的是成功,是对数学学习的无限乐趣。

感触二:丰富多彩的文化信息。

关于本堂课的文化气息,是相当浓厚的,张老师一定查阅了不少的资料,进行了创造性的组合和优化,对激发学生的学习兴趣是大有好处的。“计数器’九颗珠子的奥秘;神奇的完美数,让学生在不知不觉中感受到了数学的奥秘。只有有了文化气息,数学才变得有了灵魂,而再不会让学生感到枯燥无味,只会乐在其中。

感触三:善于引导,让学生学会思考

张老师善于捕捉学生发言过程中的信息,教师大胆地让学生自己找出36的因数和3的倍数,再通过对几份不同作业的比较,一步又一步,层次清晰地得出找因数和倍数的方法。在这一过程中,教师与学生进行互动,沟通联系,交流想法,形成意见,真正做到了“教育的引导者。”如:“看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?”、“他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?”……老师亲切的话语引导学生去发现、思考。

只是这一堂课上了55分钟,这在日常的教学中是不允许的,但在这节课中,没有这增加的十几分钟,简直是一种遗憾,那么如何解决现实与理想的矛盾呢?

课堂实录如下:

教学过程:

一、认识倍数和因数

师:一起看大屏幕,数一数,几个正方形?(12)第一个问题是如果老师请你把12个正方形摆成一个长方形,会摆吗?行不行?能不能就用一道非常简单的乘法算式表达出来?

生:1×12

师:猜猜看,他每排摆了几个,摆了几排?

生:12个,摆了一排。

师:(屏幕显示摆法)是这样吗?第二种摆法我们只要把他旋转一下就跟第一种怎么样?(一样)。我们可以把他忽略不计。还可以怎么摆?同样用一道乘法算式表达出来?

生:三四十二

师:这一次每排摆了几个,摆了几排?(屏幕显示摆法)同样第二种摆法也可以省。还有吗?

生齐:2×6

师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。

师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。

师板书:因数和倍数

师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行?

师:谁先来?

生说略

师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?

生:12是12的因数,12是12的倍数。

师:虽然是拗口了点,不过数学上还真是这么回事,12的确是12的因数,12也是12的倍数。为了研究方便,以后来探讨因数和倍数的时候所说的数都是什么数啊?

生:自然数

师:而且谁得除外。

生:0

师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。3、5、18、20、36

生说略。

二、探索找因数倍数的方法

师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才张老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?

生1:

3、18

师:还有谁?

生2:36

师:3、18、36都是36的因数,只有这3个吗?

生1:1

生2:4

生3:6

师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。

学生填写时师巡视搜集作业。

师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为A、B、C师板书。

A:2、4、13、12、18、36

B:1、2、4、3、6、9、12、18、36

C:1、36、2、18、3、12、4、9、6

师:关于A这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。

生1:都对的

师:有没有道理?看来要找一个人的优点挺困难的。

生2:写全了

生大声说:没有!

师:正好触及了大家的公愤,看来要找一个人的优点不太好找了,是吧?其实这个同学挺不容易的,他已经找出不少了,对不对?说说有什么问题?

生:没有写全,少了3、6、9。

师:大伙来思考一下,6、9这两个因数是36的因数吗?看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?

生:36÷4,只写了4,没写9

师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?

生齐:两个两个找。

生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。

师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。

师:第二个同学有没有找全,有没有更好的建议送给他。

生:他应该把4、3调换一下。

师:做了一个微调就不仅仅是美观的问题,更带给我们一种寻找的有序。第三个同学是最没有顺序的,什么1、36,2、18了,你们觉得有道理吗?

师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?

生:他们那样还要头对尾头对尾的,像这样直接就可以写了。

师:有没有听明白,也是同样一对一对出现的。

生:大小没有排,B大小排完后从小到大很舒服。

师:你看你那个舒服吗?

生:舒服

师:正是因为你的质疑,他把方法说了出来。他用了什么?

生:乘法口诀

师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。

师:虽然这个同学找到了尝试完了1,找到

36、尝试完了2,找到18、3、12、4、9、6,自然数有很多,那你的7、8没有试,你怎么知道找全了呢?

生1:找到开始重复就不找了

生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。

师:体会体会

1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。

生:

生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。

师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20

生齐:1、2、4、5、10、20

再试一个:15,写在练习纸上。学生汇报

师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。

生:

21、300

师:你能把3的倍数全部写下来吗?

生:不能。太多太多了。

师:那怎么办?写不完可以用省略号表示。试试看。

学生练习纸上完成,汇报。

师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的?

生1:3×1、3×2

师:能理解吗?

生1:3+3=6、6+3=9

师:有理吗?不要小看加3了,当到数大的时候也比较方便。

生:略

师:寻找一个数的倍数的方法掌握了吗?试一试。7的倍数

学生练习纸上完成:50以内7的倍数。

师:谁来说说这一次你找了哪几个?

生:7、14、21、28

师:为什么不加省略号?

生:因为给了一个限制。

师:任何自然数的倍数是无限的。会寻找一个数的因数吗?

生:略

三、感受倍数和因数的神奇奥秘

师:透出一个信息,关于因数和倍数是不是蕴藏了很有意思的规律,下面这题就隐藏了一条规律。屏幕显示:老师这有9颗珠子全部放到十位和个位,1颗放十位,另外8颗放个位。这样就得到几?(18)要是不这样放,你还能得到其他的两位数吗?

生1:27

生2:36

师:把你知道的两位数跟同桌说一说。

学生同桌说,师:如果把你们说的两位数按一定顺序排出来,就得到了这样的一排数,是这样吗?屏幕展示: 18、27、36、45、54、63、72、81

仔细观察9颗珠子拨的两位数,你发现了什么?

生:都是9的倍数

师:9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数都是(8的倍数)

师:发现了什么?9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数(不一定都是8的倍数),7颗珠子、6颗珠子呢?其实这里的学问没有同学想的那么简单,张老师给大家布置一个小任务,自己在草稿本上画一画珠子,看看6颗5颗4颗拨出的两位数到底和珠子的个数有什么关系?这里蕴藏着非常丰富的规律,等待着同学们去发现。其实不仅在计数器上找到一些有趣的规律。

师:张老师问一个问题,好不好?1—100这100个数,思考一下,哪个数的因数最多?

生1:1

生2:99

师:还有谁要发表的?

生3:9

师问生2:为什么认为99的因数最多?

生:9是最大的。

师:张老师公布一下答案: 60

师:可以一起找一找。可以负责任的告诉你,比99多多了。是不是数越大,因数就越多。你们知道一小时有多少分?(60分),一分=60 秒,这里的60和刚才的60有关系吗?这里的60就和100以内的因数有关系,你们相信吗?特意给大家带来一本书。书的名字叫《数字王国》,学生读有关资料。

师:相信了吧,其实张老师一开始也是特别不相信,咱们历法上面的 1小时=60分,一分=60秒的进率竟然和100以内的数的因数有着这么大的关系,这本书详细记载着为什么一年有12个月,一天有24小时,同学们知道为什么用12、24作为进率,道理是一样的。数学中发现的规律

师:更有意思的在后面,张老师给大家介绍一个数,数学家把6称为“完美数”。想知道为什么吗?用最快的速度说一说6的因数?

生:1、2、3、6

师:把6划去,1+2+3=6,又回到了6本身,正是因为这样的数非常特别,所以数学家把这样特点的数称为是完美数。数学家找到了第一个完美数,就会去找第一个完美数,猜猜看,找到了没有?今天张老师不把答案直接告诉你们,我透露一下资料好不好?第二个完美数比20大,比30小,而且还是一个双数,好猜了吧。数学上的规律不是一下子直觉说出来的,那么这样先来说一说双数:22、24、26、28,猜猜看,可能是谁?

学生试这四个数。

师:写出所有的因数,然后把自己给去掉。

师:正确答案应该是22,我们一起来找一找,人们开始找第三个完美数,想知道第5个吗?师板书。为什么这么惊讶?同学们惊讶的背后张老师体会的过老,刚才找一个也花了一分多钟,要从几十亿数中找出这6个完美数,数学家们要付出多大的心血。你觉得什么力量使数学家们去不断努力?

生:好奇心

师:数学家们能透过枯燥的数学本身看到里面的东西,就像我们今天这堂课一样,透过数字蕴藏着大量丰富的规律。高斯曾经说过的把数学比作科学的皇后,数论是数学皇后头顶上的皇冠,我们研究的只是数论中的最最基本的一些小常识,换句话说这堂课我们没有摘取数学皇后头顶上的皇冠,我们摘取的只是皇冠上一小粒一小粒的珠子。

子直觉说出来的,那么这样先来说一说双数:22、24、26、28,猜猜看,可能是谁?

学生试这四个数。

师:写出所有的因数,然后把自己给去掉。

师:正确答案应该是22,我们一起来找一找,人们开始找第三个完美数,想知道第5个吗?师板书。为什么这么惊讶?同学们惊讶的背后张老师体会的过老,刚才找一个也花了一分多钟,要从几十亿数中找出这6个完美数,数学家们要付出多大的心血。你觉得什么力量使数学家们去不断努力?

生:好奇心

师:数学家们能透过枯燥的数学本身看到里面的东西,就像我们今天这堂课一样,透过数字蕴藏着大量丰富的规律。高斯曾经说过的把数学比作科学的皇后,数论是数学皇后头顶上的皇冠,我们研究的只是数论中的最最基本的一些小常识,换句话说这堂课我们没有摘取数学皇后头顶上的皇冠,我们摘取的只是皇冠上一小粒一小粒的珠子。

张齐华 因数和倍数 教学实录 篇2

关键词:教学设计,游戏化设计

【教学目标】

1.知识目标:通过用动手操作, 结合乘法算式各部分的关系, 认识倍数和因数;依据倍数和因数的含义和已有的乘除法知识, 自主探索并总结找一个数的倍数和因数的方法。

2.情感目标:在探索中, 感受数学知识的内在联系, 体会数学内容的奇妙, 产生学习数学的浓厚兴趣。

【教学过程】

一、类比演绎, 实现正迁移

1. 屏幕出示:果果、果公、“我”三个人物和提示语 (果果是我的儿子, 果公的儿子是我) 。

2. 你能根据上面两句话, 说说 () 是 () 的父亲, () 是 () 的孙子。

3. 师:能单独说“我是儿子”吗?为什么?

数学上也有像这样的相互依存的关系。让我们一起进入今天研究的数学问题。 (设计意图:一是活跃课堂气氛, 拉近师生彼此之间的距离, 体现教师的亲和力;二是通过这样的实例为倍数、因数中存在相互依存的关系打下伏笔, 顺利解决为什么要完整地说一个数是另一个的倍数或因数的问题。)

二、数形结合, 理解其意义

1. 师:

一起看大屏幕, 数一数, 有几个相同正方形?如果老师请你把12个正方形摆成一个长方形, 会摆吗?能不能就用一道非常简单的乘法算式表达出你摆的长方形。

2. 师:

猜猜看, 他每行摆了几个, 摆了几行?

3. 师:

每行能摆5个吗?为什么?

咱们先以一道乘法算式为例, 3×4=12, 数学上说12是3的倍数, 12 (也是4的倍数) ;倒过来3是12的因数, 那4 (也是12的因数) 。

4. 能单独说3是因数, 12是倍数吗?

不能, 的确是这样, 就像不能单独说“我是儿子”一样。它们是相互依存的关系。

5. 师:

这儿还有两道乘法算式, 先自己说一说谁是谁的因数?谁是谁的倍数?为了研究方便, 以后探讨因数和倍数的时候所说的数都是什么数啊?而且谁得除外。 (读70页下面小字)

6. 小结:

:看这些乘法算式, 其中两个乘数都是积的什么数, 积是两个乘数的什么数。

7. 师:

好了, 刚才我们已经初步研究了因数和倍数, 屏幕显示:试一试:你能从中选两个数, 说一说谁是谁的因数, 谁是谁的倍数吗?然后交流, 并说说想法。

3、6、12、18、36

三、游戏激趣, 促知识巩固

1. 找一个数的倍数。

(1) 师:刚才老师在听的时候发现好几个数都是3的倍数, 你发现了吗?这五个数中哪些数是3的倍数? (2) 师:3的倍数仅仅是这些吗?还能找几个吗?请你按照从小到大的顺序写写3的倍数。教师巡视, 写得完吗, 怎么办? (用省略号表示) 。 (3) 师:你是怎么找到3的倍数的呢?生1:3×1、3×2;生2:3+3=6、6+3=9。 (4) 试一试。2, 5的倍数。比较2, 3, 5的倍数, 看看一个数最小的倍数是 (它的本身) , 省略号说明了 (没有最大的倍数, 是无限的) 。 (5) 美的使者。规则:先找60以内 (包括60) 6的倍数, 填在下面圈里, 然后用这些倍数按照一定的顺序在下面方格图中顺次连接, 看看你能得到一副怎样的美丽图案。

汇报交流:为什么不用省略号了?要画出美丽的五角星需要按照怎样的顺序相连?你是美丽的创造者吗? (设计意图:通过教师点拨, 学生揣摩出找一个数的倍数的两种方法, 比较2、3、5的倍数, 让学生体会一个数的最小倍数是它本身, 一个数的倍数是无限的, 要按从小到大的顺序依次写出它的倍数。美的使者, 意在先解决找一定范围内一个数的倍数, 提醒学生不再用省略号的原因, 然后通过连一连, 让学生获得五角星图案, 体验学有所获, 取得成功的喜悦感, 建立继续学习的信心和动力。)

2. 找一个数的因数。

因数和倍数教学片段 篇3

师:他说一个倍数可能有很多个?

生:因数。

师:同学们,经过你们交流之后,谁是谁的因数,谁是谁的倍数?

生:在24÷4=6这个式子中,24的因数就是4,4的倍数就是24。

师:有没有其他的说法?刚才说得不是特别规范。

生:24是4的倍数,4是24的因数。(板书:24是4的倍数,4是24的因数。)

师:这样吗?

生:是。

师:这个?(师指24÷6=4这个算式。)

生:24是6的倍数,6是24的因数。

师:那我们回到刚才的问题,刚才我们说24是4的倍数,小怿说24是?

生:6的倍数。

师:那你现在能理解刚才小成所说的吗?你能完整地说一说吗?

生:24是4和6的倍数,4和6是24的因数。

师:老师还想考考你们,这个式子是我准备的。(板书:4×6=24。)

师:怎么都是除法,乘法你们会不会说?有的同学面露难色,很困难吗?

生:24是4和6的倍数,4和6是24的因数。

师:我们可以把它当成什么去看?(师指乘法算式。)

生:除法。(师画箭头从乘法算式指向除法。)

师:这么指你们明白吗?

生:明白。

师:考考你们,(板书:1.2÷0.2=6。)再说说谁是谁的倍数,谁是谁的因数?(学生稍显困惑。)是不是很简单,是不是一样的呀?(师指板书上的两组除法算式。)

生:1.2是0.2和6的倍数,6和0.2是1.2的因数。

师:我觉得说得挺好。

生:这个算式是没有因数和倍数的。

师:谁说的?为什么没有?

生:因为算式1.2÷0.2=6,1.2和0.2不是整数。

师:谁告诉你一定要是整数的?

生:书上,在整数除法中,商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

师:同学们,别忘了书中给定我们的一个前提条件。(课件出示。)

生:整数除法中。

师:而它们呢?(师指1.2÷0.2=6。)

师:这也不是整数除法呀。然后才是我们分出来的第一类,如果——

生:商是整数而没有余数。

师:我们就说——

生:被除数是除数的倍数,除数是被除数的因数。

师:同学们,看了这个概念之后,你们要注意什么呢?(板书概念。)

生:整数除法。(板书:整数除法。)

(作者单位:哈尔滨市花园小学)

张齐华 因数和倍数 教学实录 篇4

第一环节:字母表示任意数 展示:a b

孩子们,请看,这是两个(字母)【板书:字母】 在哪儿见过?

展示:a+b=b+a

它是谁? 生:加法交换律 这里的a 和 b 代表什么? 生:代表两个数 【板书:数】

举个例子。生举例如:3+4=4+3 【副板书:3+4=4+3】 只表示这一个算式吗? 生:无数个

师:也就是说这里的字母不仅表示数,还表示任意数。【板书:字母——任意数】

第二环节:字母式表示运算结果

我发现我们班的多数孩子能够做到课上积极发言,老师很高兴,给你们看一个我的宝贝好不好?生:好 师拿出实物:

这是(生:存钱罐)

(晃一晃)有钱吗?生:没有

看我的,变!多少钱?5元(师边放入,生边数)

师:这个存钱罐不是透明的,如果我想以后一眼看出里面的钱数,怎么办? 生想出不同办法。。师:贴上便签条:5元 师:第一个告一段落 【出示另一只存钱罐】

师:第二个有钱吗?(晃一晃)有

猜猜有多少元?(师晃着走到孩子身边)生猜出不同数据。。

师:只靠听,无法确定这个数是多少?用什么表示更好呢? 生:字母

什么字母?生。。师:我喜欢a

由此,我创编了这个问题:

展示:一个存钱罐里面有a 元,另一个里面有5元,两个一共()元。生:a +5 师:这里的a +5是表示算式呢?还是表示结果? 生发表不同看法。

数学上的正确结果是——【展示:a +5=a +5】 下面我给大家做个小游戏,请注意看 师演示:这个是存钱罐a元,另一个是5元倒出放到a元的存钱罐,现在“结果”是?生:a +5 a +5,如果在便签上写呢? 我有两个注意:一是两张便签上一张写5,另一张写a,中间添个+ 二是一张便签上直接写a +5 选择哪个?

生选择第2个:直接写a +5 师:这是a +5是算式还是结果?生:是结果。哦,看来同一个字母式,既表示算式,还表示结果!【板演:字母式——运算结果】

第三环节:数和字母、字母和字母相乘,乘号省略的教学 请看这里的问题:展示

一个储钱罐里面有a元,拿走8元,剩()元。生:a-8 师:a-8,表示?结果

一个储钱罐里面有a元,平均分给4人,每人()元。生:a÷4

一个储钱罐里面有a元,3个这样的储钱罐一共()元。生:3×a

有不同答案吗?生:(3a)

师:数和字母、字母和字母相乘,乘号可以省略吗? 生发表不同想法。。

看资料,数学家的规定,由于内容很多,很重要,我分条出示,请同学们仔细看。展示——阅读提示:

①字母和字母相乘,乘号可省略为“.”,也可省略不写。如:a×b=a.b=ab ②字母和数相乘,乘号也可省略为“.”,或不写。但通常数字写在字母前面。如:a3=3 a

4×X=4X 字母和1相乘,1也可省略。如a×1=a ③相同字母相乘,比如a×a,可以写成a.a,也可写乘a2,读作:a的平方。看完了,有不懂的地方现在可以提出来。生。。同学们很善于思考。这有几个题,请看 展示练习:

a×c

b×4

z+z+z

x×1 x×x

师:同学们直接把答案写在练习纸上。

做题时可以看上面的阅读提示,这不叫作弊,叫参考。(幽默)指生汇报

重点讲解:z+z+z x×1

x×x(空中画)出示:z×3 x+x 第四环节:字母式还表示数量及关系。研究完乘号,我们再研究人好不好? 研究我,请看,展示:头像

我的年龄未知,用x表示。

师:X 可以表示任意数吗?能代表2000吗?生。。能代表3吗?0.2呢? 这里的X能代表多少数? 生猜:25—30。。

师:同学们的意思是这里的X指的是一定的范围(板书:范围)真了不起!

师:下一个一起来认识(出示外甥女头像)我姐姐的女儿,我应该叫?生。。师:外甥女

师:给个字母表示她年龄。生。。师:为什么不用X?生。。

师:同一个问题中不同量要用不同字母。看她的真正年龄,出示:X-17 师:发现了什么?生:师与外甥女差17岁

师:意思是:X-17表示的我与外甥女年龄之间的?(生:关系)说的太好了!

原来字母式不但表示某一数量,还表示两个量之间的关系。【板书:数量 关系】

如果 我的年龄是26 外甥女是9

28

。。

。。在这个过程中,谁一直在变化?谁不变?生。。师:说的真好!年龄之间的关系永远不变。师:我还带来一位,【出示问号头像】 他的年龄是:(出示X-1)猜猜他是谁?生猜。。

同学们很善于想象,不管他是谁? 他与我年龄之间的什么一定?生:关系 太聪明了!

师:如果用X代表我外甥女的年龄,我的年龄又如何表示? 四人讨论 生:X+17 这个人的年龄呢?(问号头像)生1:X+17-1。。生2:X+16(简洁)

他的年龄为什么一会是:X+16,一会又是:X-1? 生:X在儿子身上

师:看来,X表示谁重要吗? 生:重要 再看这里的问题,你会吗?

展示:一瓶饮料的价格a,4 a表示什么? 展示:a表示一颗巧克力的块数,4 a表示?

师:一个正方形(出示图)的一条边用a表示,4 a表示?生:周长 周长用c表示,那么c与4 a的关系是?生c=4 a 用s表示面积呢?s等于什么?生:s=a2 师:这说明字母还可以表示图形的计算公式 用字母表示数最大的优点就是:以万变应不变。(展示)

好了,同学们,我们这节课就上到这里,谢谢聪明可爱的你们!下课!

板书设计:

用字母表示数(范围)

字母→任意数

字母式→运算结果

未知数 数量

张齐华教学艺术系列(一) 篇5

(一)教学智慧彰显在细节中

密斯·凡·德罗是20世纪最伟大的建筑师之一,在被要求用一句话来描述他成功的原因时,他只说了5个字,“成功在细节”。成功的课堂教学又何尝不是如此。对细节的正确把握,是一堂课出彩的关键。

在教学《分数的初步认识》一课时,张齐华老师将教材(图略)中的等分线作了隐藏处理,先出示第一条,告诉学生把一张纸条全部涂色,可以用数“1”来表示,请学生估计一下,现在涂色部分是几分之一。

学生有的猜1/3,有的猜1/2。课件验证后得出涂色部分是1/3。教师继续出示第三张纸条,同样请学生估计。许多学生一下子就估计出是1/6,老师让学生交流是怎么估的,有没有什么窍门。原来学生用第三张与第二张纸条的1/3进行比较,发现这次涂色部分只有它的一半,所以确定用1/6来表示。

教师随即总结说:“瞧,借助观察和比较进行估计,这是多好的思考策略呀!”这个小小的一个细节却有思想在其中。然而,精彩的还不仅仅停留于此,接下去,张老师凭借这张小纸条做大文章,让学生观察这里的涂色部分和对应的数,并谈谈发现。学生有的发现了同样一张纸条,它的1/3要比1/6大;1里面有3个1/3,1里面有6个1/6;平均分的份数越多,涂色的一份也就越小……学生唧唧喳喳,思维异常活跃。这是一个充满灵性的课堂,从预设教案到动态生成,从学生估计意识的培养,到数学思维策略的综合训练,再到极限思想的有机渗透,朴素的内容承载着丰厚的数学内涵,一切精彩源于老师关注细节。

从这样的角度去分析,笔者还发现在教学《交换律》一课时,张老师勇

做教材的创造者,而不是消费者。

张老师先讲了一个“朝三暮四”的故事,接着问学生想说些什么。

结合学生发言,教师板书:3+4=4+3。

师:观察这一等式,你有什么发现?

生1:我发现,交换两个加数的位置和不变。(教师板书这句话)

师:其他同学呢?(见没有补充)老师的发现和他很相似,但略有不同。(教师随即出示:交换3和4的位置和不变)比较我们俩给出的结论,你想说些什么?

生2:我觉得您(老师)给出的结论只代表了一个特例,但他(生1)给出的结论能代表许多情况。

生3:我也同意他(生2)的观点,但我觉得单就黑板上的这一个式子,就得出“交换两个加数的位置和不变”好像不太好。万一其他两个数相加的时候,交换它们的位置和不等呢!我还是觉得您的观点更准确、更科学一些。

师:的确,仅凭一个特例就得出“交换两个加数的位置和不变”这样的结论,似乎草率了点。但我们不妨把这一结论当作一个猜想(教师随即将生1给出的结论中的“。”改为“?”)。既然是猜想,那么我们还得——

生:验证……

北京师范大学数学科学学院曹一鸣先生在评课时认为:从整节课看,“加法结合律”只是一个触点,“减法中是否也会有交换律?”“乘法、除法中呢?”等新问题,则是原有触点中诞生的一个个新的生长点。统整到一起时,作为某一特定运算的“交换律知识”被弱化了,而“交换律”本身、“变与不变”的辩证关系、“猜想-实验-验证”的思考路线、由“此知”及“彼知”的数学联想等却一一获得凸显,成为超越于知识之上的更高的数学课堂追求。当我们在课堂上欣赏孩子沉思时的宁静、疑惑时的迷茫、顿悟时的愉悦、争辩时的激越,聆听时的惊讶、论证时的流畅,成功后的欢畅时……一个享受思辨的课堂,皆因张老师对细节的关注而精彩

纷呈。

基于这样的思考,我还发现课堂上密切关注学习动态、对学生资源的有效利用,也是张老师引领学生进入思考境界的法宝。在学生写36约数的练习中,他有意选择了两份不同的作品进行讲评:

36的约数:1、2、3、4、6、9、12、18、36。

36的约数:

1、36,2、18,3、12,4、9,6。

他首先让两个孩子分别介绍自己寻找约数的方法:第一个孩子说采用的“逐一法”,第二个孩子采用的是“配对法,两个两个找”。张老师不动声色,让其他同学比较哪一种方法最好,为什么?很多孩子自然认为“配对法”好,一一寻找,不易丢失答案。张老师并不满足于这样的“异口同声”,立即反问:“难道第一种方法没有值得肯定的吗?”这幽默一问,化解了第一个孩子的窘境。孩子们静心思考,独立反省,终获顿悟。最后,他追问那个采用“逐一法”的孩子:“如果继续让你找因数,你打算采用哪一种方法?”在这个教学细节中,张老师将“比较”方法演绎得淋漓尽致:第一层次的比较,学生学会了不同方法之间获得“最优化”的思想;第二个层次比较,学会了“辩证分析”的思想,看问题不能简单化;第三个层次的比较,获得了“欣赏借鉴”的思想,只有放大别人的优点,才能共享智慧之果。三次“比较”,不仅仅是一种数学方法的传授,更是一种思想价值的渗透。

用一颗灵动的心去感应,用一双智慧的眼睛去捕捉,用“蹲下身,走进去”的育人情怀引领学生触摸数学的精彩,贵在于细微处着笔墨。张老师对教材的深加工,对文本的精加工,随时捕捉学生的疑问、想法、创见等精彩瞬间,使课堂成为师生互动、心灵对话的舞台,成为师生共同创造奇迹、唤醒各自沉睡的潜能的时空。

张齐华教学艺术系列

(二)评价的智慧:如芬芳的野花一路绽放

“听张齐华的课很舒服、很轻松、很悦耳,很自在……”这是老师们的共识,而这又或许与张老师丰厚的人文底蕴、扎实的语言功底,尤其是他那清新自然、精炼洒脱的评价语有关。细数他的数学课堂,我们能听到:

当有学生提出不同意见时,张老师没有忽略前一位学生的心理感受,而是面带微笑着对他说:“有人挑战你了,高兴吗?”“高兴!”学生自信地回答。

当出示了练习题时,张老师会伴着温暖的眼光问:“同学们,有困难吗?那么,谁先来说?”在展示学生作品时,张老师会用关注的目光问:“你想给这份作业提点什么?”“还有什么需要补充吗,对于他的方法想不想说点什么?”然后转身告诉其他学生,没有必要迷信别人。当觉得没有其他答案时,张老师会提醒大家:“没有不同想法也可以大声说出来。”他的话语不由得让人感到温馨。

我们还欣赏到这样一组镜头:

师:瞧!刚才的一折,一撕,还真创造出了数学中的轴对称图形。说实话,数学呀,有时就这么简单。如果没有记错的话,大家对轴对称图形并不陌生,在我们认识的平面图形中,应该也有一些轴对称图形。

(出示轴对称图形的习题,让学生判断是否为轴对称图形)

师:练习之前,我要给你们一些忠告,有时候,不要过分相信自己的眼睛,看上去像轴对称图形的也许不是,看上去不像的也许偏偏却是。

(教师让学生根据经验大胆猜想,选择自己最有把握的说一说,也可以结合手中的学具,6人小组合作,一起折折,验证自己的猜想。学生在小组内进行交流,对于平行四边形是不是轴对称图形引起了争论。)

生1:我认为平行四边形是轴对称图形,沿着高把它剪下来,可以拼成一个长方形,对折后,左右两边能完全重合。

生2:我认为平行四边形不是轴对称图形,把平行四边形对折后,两边的图形不能完全重合,所以我认为它不是。

师:(特意走过去,跟生2握着手)我跟你握手不是我赞成你的说法,而是感谢你为课堂创造出了两种不同的声音。想想,要是我们的课堂只有一种声音,那该多单调啊!

(在学生再次进行操作实践后,第一个学生改变了自己的看法,知道了平行四边形不是轴对称图形)

师:你的退让我们更接近真理!

(在接下去的环节中,教师引导学生找出对称图形的对称轴)

师:都说实践出真知。数学讲究的是深究,就这5个图形,难道你们就不想深入研究说点什么?这个梯形是轴对称图形,但是……

此时无声胜有声。充满智慧的评价一下子扣紧了学生的心弦,激活了学生的思维。学生盯着那5个图形,继续找呀,辩呀,老师精彩的旁白无疑成了学生思维的推进器。

他的评价语极富哲理。学生在探讨9个珠子组成的两位数能被9整除时,马上误以为8也有这样的规律。“真是这样吗?”张老师诱发学生进一步思考。当学生发现8个珠子不行,7个珠子也不行的时候,又产生了“其他都不行”的错误想法。张老师接口说:“可别盲目地否定一切。”寥寥数语,张弛有度。

在“圆的认识”一课中,有学生交流画圆经验时说:“我们组在绳子的一端系上一块橡皮,抓住绳子的另一端一甩,也同样出现了一个圆。”对于这样的意外生成,张老师评价说:“尽管这一方法没有能在白纸上最终„画‟出一个圆,但他们的创造仍然是十分美妙,不是吗?”课堂里响起了热烈的掌声。这掌声,源于学生内心的一种欣赏与激励,一种接纳与认可,是一种真情流淌。

张老师的语言富有磁力,常常是“未成曲调先有情”,蕴含着无限的意趣。如“省略号来得太迟”、“边做作业边思考,再作出决策”、“不要忙于下结论”,他时刻召唤学生积极地思考。

一位学生在写36的因数时,漏掉了2。面对学生的错误,张老师幽默地说道:“看了以后,你想说点什么吗?”“听听他是怎么找的。”“有很多人一个也没漏掉,相信他们一定有窍门,一起看看吧!”……一句句简短的心灵对话,一个个与学生心灵交汇的眼神动作,无不渗透着关爱。

“感人心者,莫先乎情”。有人说,语言的舒展即是思想的流畅,语言的优美源于思想的精致,语言是世界上最美的智慧之花。课堂上,常听到张老师不失时机的赞美:“非常善于联想!”“很不错!”“哎呀,真了不起!”“太棒了!”不经意的一句评价语,一句鼓励话,他娓娓道来,或幽默、或诙谐、或深情、或睿智,总能将学生的学习情绪调适到最佳状态,使之产生自主学习的积极心理倾向。他那流转自如的教学语言,亦诗亦歌亦画的教学韵味,用渲染创设美好的意境,用真情激起心灵的震撼,用启迪拨开重重的迷惑,用诱导触发深远的思考,使课堂时时弥漫着与生命萌发相通的浓郁的人文气息。他用真情言说引发学生的真知灼见,他用自信从容催发学生的创新火花,他用诗情解读引领学生走向数学学习的美妙境界,课堂上时时有“倾听幼竹拔节声”的情景图。这种独特而富有魅力的课堂评价,诠释着师生新角色,灵动演绎着课堂。分享他的课堂,我们分明感到在教育生命的跋涉中,智慧如芬芳的野花,在课堂里一路绽放,每踏出坚实的一步,便会看到山花烂漫……

张齐华教学艺术系列

(三)用情境营造情趣盎然的教学磁场

张齐华老师善于在数学课堂上设置一些情境,将教育、教学内容镶嵌在一个多姿多彩的生活大背景中。

在认识“长方体”一课中,“长方体的长、宽、高”作为一个知识点,教师一般都直接告诉学生。然而,张齐华老师教学时却创设了这样的问题情景:如果将长方体12条棱擦掉1条,你还能想象出这个长方体的大小吗?如果擦掉2条、3条甚至更多条呢?试一试,看至少留下几条棱,才能确保想象出长方体的大小?当学生在经历尝试、探索、操作、优化等数学活动后不约而同地选择了长、宽、高三条棱时,规定性的数学常识“长、宽、高”在这一刻被“活化”了。张齐华老师认为,像这样的“头脑创造”可以还原数学概念的内在生命力,相对于概念的授受而言,其文化价值更大。这种基于问题研究而设计的有趣的教学情境,由一个问题逐步引发新问题的产生,学生始终围绕问题去研究,从而实现思维的攀升。在这个教学环节中,学生寻找的是途径,感悟的是规律,掌握的是方法而不仅仅是知道了长方体的“长、宽、高”,对后续学习无疑很有价值。

张齐华老师认为,一个真正意义上的情境应该能激发学生乐于参与、关注和活动的“情”,并引导学生浸润于探索、思维和发现之“境”,它固然需要以具体的场景作背景、载体,然而,场景的呈现能否有效唤起学生的认识不平衡感、问题意识以及认知冲突,场景本身是否能吸引学生主动参与到问题的探究、思考中来等问题还都有待进一步探索。

基于这样的数学思考,执教“分数的初步认识”一课时,张老师出示了自己1周岁时直立的照片。他让学生猜照片上的孩子是谁?一位学生激动地说:“我觉得是张老师。”

师:真有眼力!这是1周岁时的我。仔细观察。(动画演示:身高约是头高的4倍)

师:发现了吗,1周岁婴儿,头的高度约是身高的几分之一?

生:1/4。

师:长大后,情况又会怎样呢?

教师出示现在自己的直立照片,并动画演示:头高约是身高的1/7。

师:现在,头的高度约是身高的几分之一?

生:1/7。

师:其实,不同的年龄阶段,相应的分数也不一样。同学们今年10岁左右,那么,一个10岁左右的儿童,他的头高又约是身高的几分之一呢?想知道吗?

生:(激动地)想!

教师随即邀请一个学生上台,其他同学一起现场估计。

学生有猜头的高度约是身高的1/5,有的认为是1/6,有的说比较接近1/7。张老师告诉大家:估计时出现误差很正常。至于10岁左右儿童头的高度究竟大约是身高的几分之一呢,课后同学们不妨去查一查资料。那位学生回到了座位上,其余孩子仍兴趣盎然,面露喜色。

我想此时由一张照片创设猜想分数的教学情境,其“醉翁之意不在酒”。题材的新颖、活泼且不说,关键是学生在看一看、比一比、估一估等一系列的操作活动中加深了对分数的认识。这一引入,有机拓展了学生的认识视野,使他们真切感受到分数在日常生活中的广泛应用,切实体验到学习分数的价值。

在“因数与倍数”新课导入部分,张老师创设了操作情境,巧用模型来建构知识,揭示概念内涵;“交换律”课始又创设了故事情境,为新课学习搭建思考平台;“简单统计”中,创设让学生现场调查的情境,增进学生对统计方法及价值的理解;教学“认识整万数”时,又从拨数游戏开始,在拨数过程中,唤起了学生对计数器、计数单位、数位等相关经验的回忆。

诚然,新课改背景下如何创设有效的教学情境一直是大家关注的热点,而在张老师的数学课堂中,不管是赏心悦目、富有情趣的童话故事,还是新颖别致、妙趣横生的操作情境,每节课的设计都基于学生不同的文化背景和生活经历,努力挖掘生活实际中可能出现的新鲜的活动内容,以情境为亮点,以情感为纽带,以思维为核心,以生活世界为源泉,将数学知识融入到广阔的生活背景下,融入到生命成长的舞台里。

张老师在创设教学情境时,已打通了学科课堂的堡垒,以各学科的整合来制造课堂的热能效应,拓展了学习活动的外延,将学习活动立体化,学生在习得知识的同时,积累文化,积淀人文精神。他以问题带动和砥砺学生思辨的深入,以课堂上师生对话实现智慧的碰撞和经验的共享,以师生之间、生生之间的有效互动,或唤起认同,或触动联想,或引导猜测,或激发疑虑……从而使学生对于知识的认识趋于丰富、完整、准确和深刻,以此来打造充满活力、情趣盎然的教学磁场。

张齐华教学艺术系列

(四)一路诗意地追寻数学文化

提起张齐华,便不能不提到数学文化。

张齐华常常思考,数学究竟能否从根本上改变一个人,使其变得更有力量和精神涵养?数学学习,对于学生的生命和精神成长能给予怎样的影响和润泽。于是,他把教学看作生命中的一部分,课堂上,为孩子搭建了一个个展示自我的舞台,动手折折、剪剪、拼拼,小组说说、议议,让孩子在体验的过程中去经历审美、想象,去感悟数学的自然美。这样的师生交往意味着对话,意味着参与,意味着心态的开放,个性的张显,教学过程变成了一种分享理解的过程,课堂里时时闪动着师生生命的灵光。

在“圆的认识”一课,他借助大自然中美妙的水纹、向日葵、光环、电磁波以及人类社会、生活、文化、艺术领域中美轮美奂的圆的介入,充分展示圆的美丽和内蕴的文化气息。“轴对称图形”一课,又从剪纸中的对称、建筑物中的对称、著名标志中的对称、桂林山水中的对称现象来展示轴对称图形的美妙。或许刚开始理解的数学文化之美,更多依赖数学以外的一些东西,依托媒体的精彩演示,把自然、科学、社会、文化等加以整合,而在“因数和倍数”一课的诸多环节,却折射出张老师对于数学文化的深度思考与文化张力的高度关注。

我们不妨做个镜头回放:师:同学们的想法都很有价值!的确,100以内的自然数中,60不算大,但它的因数却最多。正是60的这一特点,使它在数学和天文学的发展历史上扮演了重要的角色。(出示资料:我们都知道,1小时=60分,1分=60秒。然而,史学家通过考证却发现,时间的进率之所以定为60,是因为“在100以内的自然数中,60的因数最多,共有12个”。据说,这样就可以使许多有关时间的运算变得十分简便。)

师:怎么样,没想到时、分、秒之间的进率定为60竟和我们数学中因数的个数有着密不可分的联系,数学的奇妙有时真是让人难以置信!其实,作为数论的一个小分支,因数和倍数领域中类似美妙的数学现象比比皆是。这里,老师还想给大家介绍一个特别的数,那就是6。想知道为什么吗?

生:想。

师:那就让我们一起来做个小实验吧!第一,写下6所有的因数;第二,除去6本身,将剩下的因数相加。你发现了什么?

生:(惊讶地)结果还是等于6。

师:正因为这样的数很特别,所以数学家们将具有这一特点的数称之为完美数。6就是第一个完美数。千万别小看这些数,因为,它们非常罕见。想知道第二个完美数是多少吗?

生:想!

师:透露一下,比20大,比30小。组内分工合作,看看哪一小组最先找出第二个完美数!学生分组合作,很快,几个小组都找出了第二个完美数28,兴奋之情溢于言表。

师:其实,人们对于数探索的兴趣是永无止境的,找到了第二个完美数,人们就开始寻找第三个、第四个……就这样,一个又一个新的完美数被不断发现。这时,课件配乐依次呈现:496,8128,33550336,8589869056……

不难发现,在引领孩子寻找“完美数”的过程中,完美数之少,凸显数学家求索之路的艰辛,这无疑是对数学精神的引领。接着,在古罗马建筑宏伟壮丽中,张老师告诉孩子,这座建筑之所以历经千年沧桑,因为里面隐藏着倍数和因数的秘密。伴随着一首首优美和谐的旋律缓缓流淌,张老师又提醒孩子,音符之间的和谐源自于倍数和因数的关系,这不就是数学的魅力展示吗!可以想像,丰富的数学猜想,希腊建筑、音乐、完美数的神奇美感,孩子们发自内心地体会到了数学的应用价值和神奇力量,在对完美数的惊讶中,为我国古代人民的勤劳智慧兴奋不已时,爱祖国、爱科学、爱数学的种子已悄然萌发,这不正是数学的力量吗?

至此,我还忆起“分数的初步认识”课尾张老师给大家带来那则有趣的广告。男孩冬冬将蛋糕平均分成4份后,却发现一共有8个小伙伴,灵机一动,他从中间横着切了一刀,将蛋糕平均分成8份,正在这时,第9个男孩出现了。怎么办呢?冬冬又将自己分得的一份分成2份,将1份送给了他……小小的一个广告,蕴含着丰富的数学内涵及浓浓的人文关怀,及时关注了学生的情感体验,巩固了分数的认识,还唤醒了学生心灵深处的那份爱心,那份纯真,那份友谊,那份责任。学生不仅仅收获了知识,还收获了一种高尚的品德,一个美好的心灵。这种文化代表着学生对于这个世界的认识和经验,显示着学生特有的价值观、思维方式和行为方式。这也许就是张老师所说的“臻善,享受数学给予的精神力量”吧!

在张齐华老师的讲座《从朴素走向深刻》一文中,我还知道“简单统计”中,如何渗透统计思想;“找规律”中,如何从变中求同,上升为“一一对应”的数学思想;“确定位置”中坐标思想如何落实,尤其是那个不规则图形钢琴背面的面积计算---化曲为直,其间所渗透的微积分思想……

张齐华老师以一种古典、审美的情怀,关注学生数学思考的提升、数学思维方式的培养,关注数学精神品质的有机渗透,不仅丰富了数学文化的内涵,更为今后开展数学文化的理论探索和实践研究,开掘出新的思路,展现新的契机,描摹新的未来。

如今,在他的数学课堂上,我们可以随时随地触觉到数学的源头、数学的历史、数学的精神乃至数学的力量,似乎呈现在我们眼前的不再是一两页薄薄的教材,而是一幅源远流长的数学画卷。数学从表面上看是枯燥无味的,然而却有着一种隐蔽的、深邃的美,一种感性与理***融的美,数学美是数学科学本质力量的感性与理性的呈现,是一种人的本质力量通过人的数学思维结构的呈现,是一种真实意义上的美,是一种彰显人文精神的科学美。

因数和倍数教学反思 篇6

【教后反思】

在设计和执教这节复习课的过程中,我不止一次的体会到上好一节复习课真的很难,既要全面、详细的了解学生的认知现状,又要科学、合理的安排复习程序;既要切实培养学生建构知识网络的能力,又要努力提高学生灵活运用知识,解决实际问题的能力。短短40分钟,给我们教师提出了更高的挑战。现将我在泰安执教这节课之后的一点体会和反思整理如下:

1.三点满意

(1)充分关注了学生的知识基础。

培养学生整理知识、构建网络这一目标是勿容质疑的。教学中,我有意识的关注了学生的现有整理水平,并在此基础上设计自己的教学思路。学生处于他们的最近发展区,当然会热情而积极的去探索和交流。比如课前组织学生自主整理,一方面可以确保学生对将要复习的知识进行充分的回忆,另一方面通过检查学生作业,可以真实的了解到学生对知识整理的现有水平,从而找准学习的起点,为课上理顺知识点之间的联系奠定了坚实的基础。

(2)充分尊重了学生的认知规律。

能把所学的知识有条理的整理成知识网络图,对学生来说是重要而必备的技能。当然这个技能并不是一节课就可以培养出来的。如何在确保学习兴趣的前提下,有效培养学生构建知识网络的意识和能力呢? “因数与倍数”这部分的学习内容杂,概念多,我和学生一起将本单元知识构建成知识网络。让他们一起经历知识网络的构建,一起感受和体会构建知识网络的方法和意义,并最终形成一种技能。

(3)充分调动了学生的参与热情。

整节课中,因为有了巧妙的设计、有了激励的语言,有了学生感兴趣的学具,学生的学习热情始终很高。特别是破译QQ号密码之后,学生甚至不理会已经下课了,还是兴致很高,这说明学生喜欢这节课,而学生喜欢的课堂才是我们教师最应该去追求的课堂。

2几点不足

(1)因为这节课既要带领学生建构知识网络,又要做一些相对应的练习,时间不太宽余,再加上练习题设计的较多,多少有些紧张,所以原本就快的语速更快了,整节课听起来太满,有点抢时间的感觉。

(2)练习题设计的题题型不够多样化,覆盖不够全面。

(3)对学困生照顾的不够,有点左右为难,既怕耽误时间,又怕影响学困生的学习。(4)提问的面还不够宽 3.一点感受

张齐华 因数和倍数 教学实录 篇7

一、借助直观, 让学生经历从“数学描述”到“合理定义”的概念形成过程

在整个小学阶段, 由于数学概念抽象性与学生思维形象性的矛盾, 大部分概念没有下严格的定义, 而是从学生所了解的实例或已有知识经验出发, 尽可能通过直观具体的形象帮助学生认识概念的本质属性。因此, 在教学中借助几何直观能帮助学生更好地理解、掌握数学概念。

例如, “因数和倍数”一课的教学, 人教版教材提供了2行飞机、每行6架的直观图, 北师大版提供了学生所熟悉的购买水果情境, 苏教版、现代小学数学、新思维数学都采用了小方块摆长方形的直观图。显然, 各版本教材都在明确告诉教师, 因数和倍数概念的建立需要借助直观图形。可因数、倍数概念本身似乎与形结合得并不紧密, 因此, 直观摆图后告知学生概念和直接告知学生概念有什么区别呢?直观图无非引出整数相乘的乘式, 而五年级的学生完全具备直接从乘式发现整除特性的能力, 直接告知概念有何不可?

基于这样的困惑, 笔者实施了不同的概念引入环节。

【设计一】

1.出示三个数5、7、10, 你觉得哪两个数中存在倍数关系?

2.为什么认为10和5之间存在倍数关系?你是怎么想的?

3.看来同学们认定的倍数关系指的是两个整数成整数倍关系。我们以前认识的“倍”可以是小数倍也可以是整数倍。“倍”和“整数倍”, 谁的范围更大?

4.我们今天研究的就是这种范围小小的“整数倍”关系——因数和倍数关系。我们可以说, 10是5的倍数, 5是10的因数。

5.加一个数“30”变成四个数:5、7、10、30。现在谁是谁的因数, 谁是谁的倍数?

6.看来乘法式子中可以找到这种关系。你能从哪个式子里发现因数倍数关系?

【设计二】

1.12个正方形拼摆长方形, 能不能用一个简单的乘式表达?

2.猜猜看, 他想的是每排摆几个, 摆几排?还有吗?能摆5排吗?

3.我们只研究整个图形的拼摆, 也就是说这节课只研究整数之间的关系。在这样简单的整数之间、图形之中蕴含着一种我们到现在都没学过的关系。以2×6=12为例, 因为2×6=12, 所以2是12的因数, 那么6也是 (12的因数) 。反过来, 12是2的倍数, 12也是 (6的倍数) 。这两个式子蕴涵的因数和倍数关系, 请你和同桌说一说。

4.你发现12有几个因数?刚才用12个小正方形摆出了几种长方形?得到了几个乘式?试试2, 想象出2个小正方形摆成怎样的长方形了吗?你想到的式子是哪个?它的因数有哪些?1呢?它有几个因数?0呢?0个正方形去摆放没有意义, 数学家也觉得没什么意义, 就把0划出了因数和倍数的研究范围 (不包括0) 。

【思考】

设计一中, 直接给予一个乘式引出因数和倍数的概念, 而且硬性规定因数和倍数只研究整数且不包括0, 学生对概念的感知是浅层的, 仅停留在记忆层面。而设计二多了形的支撑, 比如学生看到3, 脑海中能出现3个小正方形摆成长方形, 发现只有一种摆法, 它的两个因数是1和3。学生还形象地理解了1为什么只有1个因数, 研究因数和倍数为什么不包括0。直观表象有助于概念形成, 学生印象深刻。

借助直观, 就能将学生形成数学概念的过程变为在问题情境中尝试、操作、思考、分析的过程, 学生就能经历从“数学描述”到“合理定义”的概念形成过程, 从单纯地用数学语言描述一个概念到较为完整地定义一个概念, 学生对概念的认识初步到位。

二、依托反例, 让学生经历从“认知混乱”到“清晰界定”的概念同化 (顺应) 过程

很多数学概念都是前后相连的, 概念之间往往还会互相干扰, 形成负迁移。比如“因数和倍数”的教学, 此“因数”非四则运算中的因数, 此“倍数”又不同于学生在二年级时就已经认识的“倍”。笔者在借鉴他人实验的基础上进行课前测试。

1.试着选择有因数和倍数关系的式子:

以上题目全做对的有15.38%。

2.你听说过“因数”和“倍数”吗?请试着举例。

学生中比较典型的回答有:30÷5=6, 5是倍数, 倍数就是除法中的商。4×6=24, 4和6都是因数。45是9的倍数, 3.5是0.5的倍数。

可以发现, 学生对因数和倍数的名称并不陌生, 而且受到了前认知的干扰。那么如何弱化这种干扰?于是, 笔者又尝试了不同的教学。

【设计一】

采用规避法。在因数和倍数概念的教学中不出现如0.5×24=12这样的题目, 不让学生辨析, 避免新知接触, 造成混乱。于是, 课堂教学一路顺风, 学生没遇到什么问题, 也能在练习环节完成多层次的常规习题。

【设计二】以例规例, 在错误辨析中深化概念。

师:看来, 同学们对因数和倍数关系已经有了一定的认识, 那我们来判断几组关于因数、倍数的描述。 (屏幕显示:12是24的因数)

生:对。

师:你能猜到他想的是什么算式吗?

生:他想的是12×2=24。

师:根据这个算式我们还能得到什么信息?

生:24是12的倍数。

生:2是24的因数, 24是2的倍数。

屏幕显示:0.9×2=1.8, 所以1.8是0.9的倍数, 0.9是1.8的因数。

生:对。

生:错。

师:意见不统一了。你为什么认为错呢?

生:因为0.9和1.8是小数, 因数和倍数只研究0以外的整数, 不研究小数。

师:是的。就是这个原因, 这句话是错的。可是, 刚才为什么会有那么多同学认为是对的呢?能不能说说你是怎么想的?

生:因为1.8是0.9的2倍。

师:1.8是0.9的2倍, 这是我们很早就认识的几倍关系。这个几倍关系和我们今天认识的倍数关系一样吗?

生:几倍, 可以是小数倍, 也可以是整数倍。而今天学习的因数和倍数关系是整数倍关系。

师:对, 当整数之间存在整数倍关系时, 才有了因数和倍数关系。同学们, 正是由于刚才一部分同学的错误, 让我们回忆起了以前的几倍关系, 知道了“几倍”和“倍数”的不同, 进一步清晰了因数和倍数关系的研究范围, 这就是错误带来的思考。

屏幕显示:18是倍数。

生:错。没有说清楚18是谁的倍数。

师:18会是谁的倍数呢?

生:3、6。

师:反过来, 3和6都是18的因数。18的因数还有几?

【思考】

设计一中, 为避免出错, 规避了小数的出现, 课堂看似很顺利, 实则不利于学生概念的建立, 本质上并未真正理解因数和倍数概念。设计二中, 在已初步形成概念的前提下, 教师依托反例“0.9×2=1.8, 所以1.8是0.9的倍数, 0.9是1.8的因数”“18是倍数”让学生自己去比较、去发现、去辨析, 以例规例, 真正把握概念的特征, 最终清晰界定概念, 完整地经历概念的同化过程。

三、运用疏联, 让学生经历从“理解掌握”到“巩固拓展”的概念内化 (同化) 过程

概念之间都是相互联系的, 理解概念是从感性认识上升到理性认识的过程, 即从个别的事例总结出一般性的规律。巩固拓展概念, 则是抓住概念间的联系有效疏通并加以灵活运用的过程, 教师可让学生多联想、多角度思考, 使概念在理解的基础上被反复感知、反复回忆, 从而拓展内化。

【教学设计】

师:给你一个式子3×7=21。你能想到什么?

生:3和7是21的因数, 21是3和7的倍数。

生:21的因数还有1、21。

师:真能干, 继续想, 还能想到什么?

生:3的7倍是21, 3的倍数的个数是无限的。

师:3最小的倍数是几?

生:3最小的倍数是本身, 没有最大的倍数。

生:7最小的倍数是本身, 没有最大的倍数。

生:3和7的因数都只有2个, 都是1和本身。

师:10里面还有这样的数吗?

生:还有2、5。

师:20里面呢?

生:11。

生:13、15、17、19。

生:15不是的。15的因数有4个。

师:是的。20以内只有两个因数的数是2、3、5、7、11、13、17、19。

【思考】

通过一个式子, 让学生从小例子中看到了大概念, 从不断地“还能想到什么”中逐步发现具有特点的一类数据, 概念也随之不断被内化。但凡概念课, 往往知识点较多, 且相互穿插。因此, 教师既要全面巩固基本知识点, 又要对学习难点有效疏联, 激发想象, 拓展延伸。

张齐华 因数和倍数 教学实录 篇8

1.结合具体情境,使学生初步理解因数和倍数的含义。

2.引导学生经历求一个数的所有因数和一个数的倍数(100以内)的过程,掌握求一个数的因数和倍数的方法,了解一个数的因数、倍数的基本特征。

3. 培养学生有序思考的能力。

教学过程:

一、动手操作,积累经验

师:你能用12个同样大小的正方形拼成一个长方形吗?试试看。

师:每排摆几个,摆几排?你能用乘法算式把自己的摆法表示出来吗?(生汇报,师板书:1×12=12、2×6=12、3×4=12……)

【设计意图:让学生通过动手操作、数形结合,初步感受乘积是12的算式有多个,为倍数和因数的教学积累丰富的感性经验。】

二、结合算式,建构意义

1.师(以3×4=12为例):12是3的倍数,12也是4的倍数;反过来,3和4都是12的因数。谁来试着再说一遍?

2.师(出示2×6=12):这里哪个数是哪个数的倍数,哪个数是哪个数的因数?

3.师(出示1×12=12):这里哪个数是哪个数的倍数,哪个数是哪个数的因数?

4.判断:因为3×6=18,所以6是因数,18是倍数。

师:这句话对吗?错在哪里?怎样说才对呢?

5.师(小结):今天我们研究的因数和倍数是相互依存的关系,只能说哪个数是哪个数的因数,哪个数是哪个数的倍数。为了方便,我们在研究因数和倍数时,所说的数一般指不是0的自然数。

6.师:老师这里有几个不是0的自然数,如6、12、18、36等,你能从中选两个数,说一说哪个数是哪个数的倍数,哪个数是哪个数的因数吗?

【设计意图:让学生结合乘法算式,建构倍数和因数的意义,并通过反例、变式练习,深化对倍数和因数意义本质的理解。】

三、探索方法,总结规律

1.探索找一个数的因数的方法和规律。

(1)师:刚才我们发现6、12、18都是36的因数,你能说出36的所有因数吗?

(2)学生尝试在作业纸上写出来,教师巡视,寻找有代表性的答案,如不完整的、成对的、按从小到大顺序排列的……

(3)投影反馈,并讨论:怎样找才能不重复、不遗漏?

(4)师(小结):找36的因数,可以想哪两个数相乘得36?也可以想除法算式,按顺序一对一对地找。

(5)试一试:用你喜欢的方法快速地找出15、16的因数。

(6)比较:观察这三个数的所有因数,你有什么发现?(一个数最小的因数是1,最大的因数是它本身,一个数的因数个数是有限的)

2.探索找一个数的倍数的方法和规律。

(1)师:刚才我们通过探索、讨论,发现了找一个数的因数的方法,那找一个数的倍数又会有什么方法呢?你能尝试找出3的所有倍数吗?试试看。

(2)汇报:用什么方法找3的所有的倍数?写不完怎么办?(加省略号)

(3)试一试:2的倍数有 ;5的倍数有 。

(4)观察上面的例子,你有什么发现?(一个数最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的)

【设计意图:让学生在不断尝试中,经历探索找一个数的因数和倍数的方法与其中蕴含的规律,引导他们学会有序思考,不断积累数学活动经验,提升数学学习能力。】

四、拓展延伸,实践应用

1.练习“想想做做”第2题。

(1)尝试填表,并让学生说说是怎么想的。

(2)师(小结):这道题实际上就是要我们找4的倍数。

2.练习“想想做做”第3题。

(1)尝试填表,并让学生说说是怎么想的。

(2)师(小结):这道题实际上就是要我们找24的因数。

3.练习“想想做做”第4题。

让学生先尝试填表,然后交流汇报。

4.练习“想想做做”第6题。

(1)让学生先找4的倍数和6的倍数,然后找一找哪些数既是4的倍数,又是6的倍数。

(2)集体交流汇报。

5.练习“想想做做”第7题。

(1)让学生先找12的因数和18的因数,然后找一找哪些数既是12的因数,又是18的因数。

(2)集体交流汇报。

【设计意图:让学生在实践应用中不断巩固找一个数的因数和倍数的方法,逐步体会到倍数和因数的价值。】

五、全课总结,综合实践

1.师:通过这节课的学习,你有什么收获?

2.师生玩有序离开教室的游戏,规则:学号是7的倍数的同学离开教室;学号是15的因数的同学离开教室;学号是5的倍数的同学离开教室;学号是60的因数的同学离开教室;老师说一句什么话,所有同学都可以离开教室?

【设计意图:通过游戏,让学生在解决问题中深化所学知识。】

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:调皮的表弟作文下一篇:志当存高远 读后感

付费复制
期刊天下网10年专业运营,值得您的信赖

限时特价:7.98元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题