《因数与倍数》教学反思

2025-04-02|版权声明|我要投稿

《因数与倍数》教学反思(精选8篇)

《因数与倍数》教学反思 篇1

《因数与倍数》教学反思

《因数与倍数》教学反思1

《倍数和因数》是四下第九单元的内容。教学时,我首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出倍数和因数的意义。这样在学生已有的知识基础上,从动手操作到直观感知,让学生自主体验数与形的结合,进而形成倍数与因数的意义,使学生初步建立了“倍数与因数”的概念。根据算式直接说明谁是谁的倍数,谁是谁的因数,学生很容易接受,再通过学生自己举例和交流,进一步加深对倍数和因数意义的理解。从学生的反应和课堂气氛来看,教学效果还是不错的。

能不重复、不遗漏、有序地找出一个数的倍数和因数,是本课的教学难点。教学时,我先让学生自己找3的倍数,汇报交流后通过对比(一种是没有顺序,一种是有序的)得出如何有序地找一个数的倍数的方法。对于倍数,学生在以前的学习中已有所接触,所以学生很容易学,用的时间也比较少。

对于找一个数的因数,学生最容易犯的错误就是漏找,即找不全。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。这样的板书帮助学生有序的思考,形成明晰的解题思路。学生通过观察,发现当找到的两个自然数非常接近时,就不需要再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点。

《因数与倍数》教学反思2

XXXX小学 XXXXX

教学内容:教材例1、例2

教学目标

1.知识与技能:让学生初步理解因数和倍数的概念,掌握找因数和倍数的方法。学会用列举法找一个数的因数和倍数。

2.过程与方法:借助直观图,先引导学生观察后列出乘法算式,最后结合乘法算式来理解因数与倍数的概念。

3.情感、态度与价值观:理解因数和倍数的意义能及两者之间相互依存的关系。

教学重点:理解因数和倍数的概念。

教学难点:掌握求一个数的因数和倍数的方法。

教学方法:启发式教学法、指导自主学习法。

教学准备:多媒体。

教学过程:

一、新课导入:

1.出示教材第5页例1。

12÷2=6 9÷5=1.830÷6=5 2÷3=0.6

26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7

(1)观察: 引导观察例1中的算式,你发现了什么?(都是除法算式)

(2)分类:你能把上面的除法算式分类吗?

学生分类后,教师组织学生交流,引导学生根据是否整除分为以下两类

第一类 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二类 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25

2.引入课题。这节课我们就来学习有关数的整除的相关知识。(板书课题:因数和倍数)

二、探索新知:

(一)、明确因数与倍数的意义。(教学例1)

1. 教师引导。教师指出:在整数除法中,如果商是整数而没有余数,我们

就说被除数是除数和商的倍数,除数和商是被除数的因数。例如:12÷2=6,我们说12是2和6的倍数,2和6是12的因数。

2. 学生尝试。

教师让学生说一说第一类的每个算式中,谁是谁的因数?谁是谁的倍数?先同桌互相说一说,再组织全班交流。

3. 深化认识。师:通过刚才的说一说活动,你发现了什么?

引导学生体会:因数和倍数虽是两个不同的概念,但又是相互依存的,二者不能单独存在。我们不能说谁是因数,谁是倍数,而应该说谁是谁的因数,谁是谁的倍数。例如,30÷6=5,30是6和5的倍数,6和5是30的因数。教师强调,并让学生注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括O)。

4. 即时练习。指导学生完成教材第5页“做一做”。

小结:如果a÷b =c(a,b,c均是不为0的自然数),那么a就是b和c的倍数,b和c是a的因数。因数和倍数是相互依存的。

(二)、探索找一个数因数的方法。(教学例2)

1. 出示例2:18的因数有哪几个?

(1) 学生独立思考。

师:根据因数和倍数的意义,想一想18除以哪些整数的结果是整数。

18÷1=18,l和18是18的因数;18÷2=9, 2和9是18的因数;18÷3=6, 3和6是18的因数。引导学生把18的因数按从小到大的顺序排列,每两个因数之间用逗号隔开,全部写完后用句号结束,即18的因数有:1,2,3,6,9 ,18。

(2)小组合作交流。交流时教师要让学生说明找的方法,引导学生认识:只要想18除以哪些整数的结果是整数,并且要从1开始,一对一对地找,避免遗漏。如果学生还有其他想法,只要合理,教师都应给予肯定。

(3)采用集合图的方法。

教师指出也可用右面的集合图来表示18的全部因数。明确:用图示法表示18的因数时,先画一个椭圆,在椭圆的上面写上“18的因数”,再把18的因数按从小到大的顺序有规律地写在椭圆里,每两个因数之间也用逗号隔开,全部写完后不加句号。

(4)练习。让学生找出30的因数和36的因数,并组织交流。

30的因数有1,2,3,5,6,10,15,30。

36的因数有1,2,3,4,6,9,12,18,36。

三、巩固练习

指导学生完成教材“练习二”第1、6题。学生独立完成全部练习后教师组织学生进行集体证正。

四、课堂小结

师:通过本节课的学习,你有什么收获?

板书设计:

因数和倍数

12÷2=6 12是2和6的倍数

2和6是12的因数 18的因数有1,2,3,6,9,18。

一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

作业:教材第7页“练习二”第2(1)题。

第二单元:因数和倍数

第二课时:因数与倍数(2)

教学内容:教材P6例3及练习二第2(1)、3~8题。

教学目标:

知识与技能:通过学习,使学生能自主探究,找出求一个数的倍数的方法。 过程与方法:结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。

情感、态度与价值观:初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。

教学重点:掌握求一个数的倍数的方法。

教学难点:理解因数和倍数两者之间的关系。

教学方法:启发式教学法、指导自主学习法。

教学准备:多媒体。

教学过程:

一、复习导入

10,28,42的因数有哪些?你是用什么方法找出这些数的因数个数的?一个数的因数中,最大的是几?最小的是几?

二、探索新

1.探索找倍数的方法。(教学例3)

出示例3:2的倍数有哪些?

师:你会找2的倍数吗?给你们1分钟的时间,看谁写得又对、又快、又多!准备好了吗?开始!

师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。

师:大家都是用的什么方法呢?

生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。

生2:我也是用乘法,用2去乘1、乘2……

师:哪些同学也是用乘法做的?

师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?

生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。

师:很好!如果给你更长的时间,你能把2的倍数全部写出来吗?

师:为什么?(因为2的倍数有无数个)

师:怎么办?(用省略号)

师:通过交流,你有什么发现?

引导学生初步体会2的倍数的个数是无限的。

追问:你能用集合图表示2的倍数吗?

学生填完后,教师组织学生进行核对。

(4)即时练习。让学生找出3的倍数和5的倍数,并组织交流。学生举例时可能会产生错误,教师要引导学生根据错例进行适时剖析。

4.反思提炼。师:从前面找因数和倍数的过程中,你有什么发现?

先让学生在小组内交流,再组织全班集体交流,通过全班交流,引导学生认识以下三点:

(1)一个数的最小因数是1,最大因数是它本身。

(2)一个数的最小倍数是它本身,没有最大倍数。

(3)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

三、巩固提升

1.指导学生完成教材第7~8页“练习二”第4、5、6、7题。

学生独立完成全部练习后教师组织学生进行集体证正。

集体订正时,教师着重引导学生认识以下几点:

(1)第4题“15的因数有哪些?”和“15是哪些数的倍数”答案是一样的。

(2)第5题中的第(2)小题是错的,因为一个数的倍数的个数是无限的,第(4)小题也是错的,因为在研究因数和倍数时,我们所说的数指的是自然数,不含小数。

(3)思考题:两数如果都是7(或9)倍数,它们的和也一定是7(或9)的倍数,即如果两数都是n的倍数,它的和也是n的倍数。

2.利用求倍数的方法解决生活中的实际问题

出示:妈妈买来几个西瓜,2个2个地数,正好数完,5个5个地数,也正好数完。这些西瓜最少有多少个?

理解题意,分析解答。

教师提示“2个2个地数,正好数完,说明西瓜的个数是2的倍数,5个5

《因数与倍数》教学反思3

本单元注意以下几个方面的教学,可以促进学生巩固基础知识,促进学生发展基本思维能力。

1.加强概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

本册新教材采用整数除法的表示形式教学,便于学生感知因数和倍数的本质意义。注意因数与倍数的相互依存的关系;质数、合数与因数的关系;偶数、奇数与2的倍数的关系等,形成概念链,依靠理解促进记忆!

2.注意培养学生的抽象概括与归纳推理能力

关注由从具体到抽象、由特殊到一般的概括、归纳过程,即从个别性知识推出一般性结论。如质数、合数:写出1——20各数的因数进行归纳推理,熟悉20以内的质数,制作100以内质数表。

3.教给学生养成“有序学习”的良好学习习惯。

4.加强解决问题的教与学,新教材增加了探索两数之和的奇偶性的纯数学问题,可以根据两数之和的奇偶性的规律推理出两数之差、两数之积的奇偶性,并渗透解决问题的策略。

5.拓展学生的知识面。如探究既是2的倍数又是5的倍数特征;4的倍数特征;6的倍数特征等,开拓视野,发展思维!

《因数与倍数》教学反思4

人教版五年级下册数学《因数与倍数》这一单元内容较为抽象,概念多,知识点零散,教学很难结合生活实例或具体情境进行, 而在复习课中要达到温故知新、使知识得到升华则是复习课中的重点与难点。以往的复习课,都是我在强调重点,区别容易混淆的知识点,效果不是很好。因为这些知识,对于优生来说,无需强调,这样的课对他们来说,作用不大,激不起他们的一点兴趣;对于中等生来说,对他们的知识是一种促进,但学生的学习是被动的;对学困生来说,收获也不大。如何改变这种现状,一直困扰着我。今天又要上复习课,真有些发愁。

在这节课开始,我按以往的习惯,首先对基本的概念进行了简单的复习,忽然一个念头在脑中闪过,其余的任务不妨让学生自己来解决。于是改变了原来的教学程序,我让学生写出20以内的自然数,提问:“看着这些数,请你说说它们中的哪些数与其它数与众不同呢?”学生的兴趣马上被激发起来,经过短暂的思考后,张慧同学第一个站起来说:“1与众不同,它既不是质数,也不是合数,是最小的奇数。”“说得很好,哪位同学还能像张慧一样,大胆表述自己的想法?”经我这么表扬,许多零碎的知识点在同学们的脑海中被拾起:“我给张慧补充,1还是所有非零自然数的公因数”;“2是偶数,又是最小的质数,它是所有质数中唯一的一个偶数”;“4是最小的合数”;“9既是奇数,又是合数”;“15也一样”……,这不正是教师所要强调的吗?它不再由我全盘托出,而是由孩子们自己将所学的内容进行了再次的积累与总结,心中暗暗庆幸自己及时调整了教案。我及时进行小结,“看来,同学们已了解了这些数的与众不同了,那你能出几道有关这方面的题,考考大家吗?如果感觉自己有一些困难,我们可以发挥小组的力量,在小组内先进行交流、讨论”。又一个问题抛给了学生,谁知“一石激起千层浪”,学生的积极性再次被调动起来,经过研究讨论,许多问题都被提出来了:“我们组出一个判断题,所有的质数都是奇数”,“一个数的倍数大于或等于它的因数,对吗?”“正方形的边长是质数,它的面积是什么数呢?” ……真正实现了由知识的回顾、整理,再到应用的目的。当孩子们还意犹未尽时,下课钤响了,我们结束了这节课。

课后想想,这节课孩子们在宽松、自然、愉悦的氛围中学到了知识,教师创设的这种学习环境使学生的个性得到了张扬,学生不再被动地接受学习,真正成为了学习的主人。同时这样的教学,学生经历了整理知识、建构知识网络的过程,孩子们能不喜欢上吗?看来,复习课也能上出味道来啊!

《因数与倍数》教学反思5

一、单元主题图体验数学化过程。单元主题图是教材中的一个重要内容,它是选择某一个主题构建的一幅情境图,本单元就出现了“数的世界”单元主题图。在教学中,我是从培养学生的问题意识出发来组织教学的,首先让学生独立观察主题图,通过独立思考提出问题;然后让孩子们通过小组合作,共享学习的成果;最后通过解决问题,体验获取知识的过程。教学中学生不仅很快找到了整数、小数、负数,而且也找到了橙子卖完了用“0”表示,图中有一个凳子、一张桌子用“1”表示,更多的是学生提出了很多的数学问题,如我有50元可以买多少千克苹果?学生真正是在自主学习的过程中提出问题、解决问题,体验“数学化”的.过程。

二、数形结合实现有意义建构。教材中对因数概念的认识,设计了“用小正方形拼长方形”的操作活动,引导学生在方格纸上画一画,写出乘法算式,再与同学进行交流。在思考“哪几种拼法”时,借助“拼小正方形”的活动,使数与形有机地结合,防止学生进行“机械地学习”;学生对因数和理解不仅是数字上的认识,而且能与操作活动与图形描述联系起来,促进了学生的有意义建构,这是一个“先形后数”的过程,是一个知识抽象的过程。

三、探索活动关注解决问题的策略。学生在探索活动中,运用做记号、列表格、画示意图等解决问题的策略来发现规律和特征,在探究的过程中,体会观察、分析、归纳、猜想、验证等过程,孩子们学会了思考,初步形成了解决问题的一些基本策略。

四、困惑:

1、第一次真正开始教北师大教材,最大的感觉是教学的空间真的扩大了,课堂活跃了,但是同时给学生进行课后辅导的时间也增加了,每节课从学生的反馈看来,却有相当一部分的学生存在各种问题,教材中太缺乏那些能让他们成功的“基础性”题目,整个一个单元只有一个练习一,那六道题目真的能解决问题吗?能否多给孩子们一些选择。

2、不太明白为什么一定要使用“因数”这个概念,比较“因数——公因数——最大公因数——约分”和“约数——公约数——最大公约数——约分”,总觉得后者容易接受吧。这一改好像我们还得教学生家长,就真的有学生家长投诉说“老师啊,你教错了,那不是因数,是约数……”,让人哭笑

《因数与倍数》教学反思6

因数与倍数属于数论中的知识,是比较抽象的,学生学习理解起来有一定的难度,本节课是在充分借助学生已有的知识经验的基础上切入课题。学生在此之前已经认识了乘法各部分名称,对“倍”叶有了初步的认识,从而本课由此入手,让学生由熟悉的知识经验开始,结合问题引发学生提升思考并发现新的知识结构,体会到此“因数”非彼“因数”,感觉到“倍”与“倍数”的不同。

在探索找一个数的因数的方法时,为了让学生更加形象地体会出“要按照一定的顺序去找”才不会遗漏和重复,本课制作了动态的数轴图,通过演示18的因数有1、18(闪动),2、9(闪动),3、6(闪动)学生直观地看到了“顺序”,并且在观察中看到区间不断的缩小,到3至6时观察区间,真正体会到了“找前了”这一学生难以真正理解的地方。

本课中还要注意到的就是学生在汇报找到了哪些数的因数时,教师根据学生汇报所选择板书的数字要有多样性,如选择板书的数要有奇数、偶数、质数、合数等,虽然此时学生还不知道这些数的概念,但这时给学生一个全面的正面印象,有的数因数个数多,有的少,不是一个数越大因数的个数越多……为后面的学习做好铺垫。

《因数与倍数》教学反思7

《因数和倍数》是一节概念课。教学时我首先以拼图比赛为素材,让学生动手操作快速把12个小正方形摆出一个长方形,再让学生用乘法算式表示出所摆的长方形,在交流中得到三种不同的摆法和三种不同的乘法算式。借助乘法算式引出因数和倍数的意义,使学生初步建立了“因数与倍数”的概念。 这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。

能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,我紧接着提问:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再提问:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。

最后引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。

由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学手段,提高学困生的学习效率。

《因数与倍数》教学反思8

这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。

本单元内容在编排上与老教材有较大的差异,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题,我也不由得佩服这些孩子对知识的迁移能力。在这个环节的处理上,教材的本意是先由教师提出“想一想,几和几相乘得18?”引导学生从因数的概念,用乘法来找因数,而我考虑到本班孩子的学情(绝大多数学生能够运用所学知识,找到求因数的方法),如教师一开始就引导学生:想几和几相乘,势必会造成先入为主,妨碍学生创造性的思维活动?用已有的经验自主建构新知是提高学生学习能力的有效途径,让学生独立思考、自主探索、促思(促进学生思维发展)、提能(提高学习能力)是我的教学策略主要内容。至于这两种方法孰重孰轻,的确难以定论。实际上,对于数字较小的数(口诀表内的),用乘法来求因数还是比较容易,但是超出口诀表范围的数用除法则更能显示出它的优势,如求54的因数有哪些?学生要直接找出2和几相乘得54,3和几相乘得54,4和几相乘得54,显然加大了思维难度,如用除法不是更简单直接一些吗?学生的学习潜力是巨大的,教师是学生学习的引领者,因此教师的观念和行为决定了学生的学习方式和结果,所以我认为教师要专研教材,充分利用教材,根据学生的实际情况,创造性地使用教材,为学生能力的发展提供素材和创造条件,真正实现学生学习的主体地位。

学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的。

《因数与倍数》教学反思9

《倍数和因数》是我们工作室四月份研究的一个课例,我们是先抽签上二十分钟的课堂教学,再进行研讨,我们研究了每一部分的处理方法,同时,为了让我们的课堂更加连贯、自然,我们也研究了例题之间的过渡环节,尝试找到更加恰当的处理方法。那次研究之后我们工作室的每一位成员都根据自己的想法修改了教案。前几天我们工作室又在活动中上了这节课,这次上课的是我,由于事先准备的不够充分课堂中发现了很多的问题,有上次研讨过还需要改进的问题,也有这次上课出现的新问题。课后工作室的成员给了我很多的很好的建议,我根据好的建议修改了我的教学设计,下面我来具体的说一说。

1、情境导入。本节课的内容是《倍数和因数》为了让学生更清楚地感受倍数和因数的依存关系,我课上用了大头儿子和小头爸爸的例子,也用了我是老师,他们是学生的例子。但这两个例子对于本课的教学或许没有太多的意义,好像不能让学生明确感受出倍数的因数的依存关系,所以我们可以把这一部分的内容去掉,直接进入课堂,让学生进行操作活动。

2、倍数和因数的意义。本课是想通过用12个完全相同的正方形拼成长方形的活动来让学生在活动中初步感知倍数和因数的关系,再用具体的例子向学生说明倍数和因数的含义。在课堂中我直接让学生进行操作,两人小组活动,试着摆一摆,看看有没有不同的摆法,在交流的时候让学生说说自己的摆法,每排摆了几个,摆了几排,怎样用乘法算式表示,再让学生有序地说一说,为后面找一个数的因数做好铺垫。再有一道具体的算式举例说明倍数和因数的含义,用我们过去学习的乘法算式中的乘数乘乘数等于积过渡到倍数和因数,再让学生说一说其他两道乘法算式。说完后再给学生一个提醒,并让学生再根据出示的算式说一说谁是谁的倍数和谁是谁的因数,最后的时候让学生自己写一个算式,并说一说。

3、找一个数的倍数。这应该时本节课的重难点内容,在教学中一定要让学生说一说找倍数的方法,而我在上课的时候把这一个重要的部分一带而过,可以看出来很大一部分学生是没有掌握找倍数的方法的。所以我在思考这一难点该如何突破?是不是应让学生先独立想一想办法,多说一说,给学生足够多的时间让学生去说自己用来找倍数的方法,这样多种方法出来以后,我们可以对方法进行优化,选择快速简单的找法。在教学的时候,同时注培养学生有序写出倍数,注意倍数书写的格式等意识,可以比较有序的找和无序的找,让学生自己感受有序的好处,学生有了有序地找的基本方法后,在进行练习的时候也会选择刚才优化过的好的方法进行练习。

4、找倍数的特征。在完成找一个数的倍数之后,我们可以直接出示3,2,5的倍数是哪些,让学生观察三个倍数,再说一说自己的发现,放手让学生去找或许学生能够很快的找出来,但如果给好具体的问题,可能会限制一些学生的思考。如果学生在观察时没有发现我们所想要总结的特征,可以对学生进行适当的提示,让学生观察一个数最小的倍数,最大的倍数和倍数的个数等。先给学生足够的时间让学生自己去找,我们要相信他们藕能力做到。

5、课堂常规的问题。在上课之前我应先确定好小组的具体分配,以免学生在小组活动中找不到合作的对象,如果上课之前具体的分好了,小组讨论的效率会高很多。在上课时,我要少说,把更多说的机会留给学生,让学生去表达自己的想法,同时还要相信学生,不要怕学生不会,而给出很多的条条框框,限制了学生的思维发展。

《因数与倍数》教学反思10

北师大版五年级数学上、第三单元第一节《倍数与因数》是一节概念课。关于“倍数和因数”教材中没有写出具体的数学好处,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式——倍数和因数——乘法算式——找一个数的倍数。从教材本身来看,这部分知识对于五年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下两个方面谈一点教学体会。

一、设疑迁移,点燃学习的火花。

良好的开头是成功的一半。我采用一道脑筋急转弯题作为谈话引入课题,不仅仅能够调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。

教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找2的倍数、5的倍数,学生发现2的倍数、5的倍数写不完时,通过讨论,认为用省略号表示比较恰当,用语文中的一个标点符号解决了数学问题,自我发现问题自我解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。

二、渗透学法,构成学习的技能。

由于一个数倍数的个数是无限的,那么如何让学生体会“无限”、又如何有序写出来呢?我让学生尝试说出3的倍数。学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。我组织学生展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,能够很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了“宝贵”的学习时光,但是学生从中能体会到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。

三、学练结合,及时把握学生学情。

在学生通过具体例子初步认识了倍数和因数以后,通过超多的练习让学生在练习中感悟,练习中加深理解概念;在探究出找倍数的方法以后,及时让学生写出2的倍数、5的倍数,从而引导学生发现一个数的倍数的特点,并适时进行针对性练习,巩固新知。

课尾,我设计了四道达标检测练习,将整堂课的资料进行整理和概括,对易混淆的概念加以比较,对本节课重要知识点进行检测,及时掌握了学生的学情。

纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。学生在思维上得到了训练,探究问题、寻求解决问题策略的潜力也会逐步得到提高。

《因数与倍数》教学反思11

一、教材与知识点的对比与区别。

1、对比新版教材知识设置与传统教材的区别。

有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别:

(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。

(2)“约数”一词被“因数”所取代。

这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习教参了解到以下信息:

学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。

2、相似概念的对比。

(1)彼“因数”非此“因数”。

在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“X是X的因数”时,两者都只能是整数。

(2)“倍数”与“倍”的区别。

“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。

二、教法的运用实践

1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围,因此,对于学生和第一接触的印象是没有什么可以探究和探索的要求,而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内,与小数无关,与分数无关,与负数无关(虽没学,但有小部分学生了解)。同时强调——非0——因为0乘任何数得0,0除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法,让学生清晰明确。因此,用直接导入法,先复习自然数的概念,再写出乘法算式3*4=12,说明在这个算式中,3和4是12的因数,12是3和4的倍数。

2、在进行延续性教学中,可以让学生探究怎么样找一个数的因数和倍数,在板书要讲究一个格式与对称性,这样在对学生发现倍数与因数个数的有限与无限的对比,再就是发现一个数的因数的最小因数是1,最大因数是它本身。一个数的倍数的最小的倍数是它本身,而没有最大的倍数。这些都是上课时应该要注意的细节,这对于学生良好的学习惯的培养也是很重要的。

《因数与倍数》教学反思12

这段时间我参加省领雁工程数学骨干班学习活动挂职锻炼活动。今天是上课实践,我执教了《因数和倍数》在完成教学后总的来说自己还是比较满意的,但是在与指导师进行交流和自己对本课进行了反思后,发觉自己有几个地方处理得不到位,可以进行改进:

1、课前我认为此课的知识点较多,因此认识倍数和因数、找因数作为本课的主要知识点,找倍数则不放进去,而是放到下一课。但是根据课堂教学的情况来看,完全可以把找倍数这个知识点放进去,因为找倍数这个知识点不难只要5、6分钟处理,而且缺少了这一块内容课堂感觉不太完整。因此第二次试教时我将把这个环节放进去。

2、课堂引入环节,我采用了纯数学的引入方式,但是这样的引入不够好,其实可以采用张齐华老师曾经使用过的图形结合的引入:用12个小正方形搭实心长方形,这样的引入不仅可以图形结合地引入因数倍数,而且可以比较自然地让学生感知限制因数倍数研究范围为非0自然数这个知识点。下次上课我将用张老师的引入方式引入,学习比较好的课例中的好的环节。

3、在课堂中有一个环节我让学生同桌互相写乘法算式说因数倍数关系,有一个学生写了1×1=1,我只是简单地反馈这个算式比较简单好说,其实这是一个比较特殊的算式,因为1很特殊,他的因数和倍数都只有一个,就是他本身。我应该要抓住学生的这个生成,进行引导让他们观察这些数的因数个数,从而为以后教学质数和合数进行潜在渗透。

4、在这节课中我例题与例题之间比较离散,练习不紧密,导致教学时例题与例题之间跳跃性比较强,听起来比较散,不集中,主线不分明。因此我在下一个例题设计时把这些知识点整合整合在一个材料中,增强连续性。

总的来说,今天教学后我感觉本课还有很多课挖掘的地方,我在下一节课中将针对这些地方进行改进,使课堂效率更高

《因数与倍数》教学反思13

本单元的重点是让学生掌握因数、倍数、质数、合数等概念,以及它们之间的联系和区别。还要掌握2、5、3的倍数的特征。这一单元的内容与原来教材比较有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。从学生学习的情况来看,这一改变并没有对学生造成任何影响。

本单元的内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。在教学过程中,本人就忽视了概念的本质,而是让学生死记硬背相关概念或结论,学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,所以教学效果也不怎么理想。要解决教学中出现的问题,经过反思,我认为要做好两点:

(1)加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的公因数、公倍数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。

(2)由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但本单元不太容易与具体情境结合起来,如质数、合数等概念,很难从生活实际中引入。而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。

《因数与倍数》教学反思14

《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念.

“数学是科学中的皇后,而数论又是数学中的皇冠”,因数和倍数这部分知识属于数论中的分支,比较抽象。我觉得这部分内容学生初次接触,对于学生来说是比较难掌握的内容。尤其对因数和倍数是一对相互依存的概念,不能单独存在,不是很好理解。因此在教学中我重视学生主体作用的发挥,注重为学生创造自主探究的时间与空间。采用质疑——探究——释疑——巩固——总结的课堂教学模式收到了较好的教学效果。对于这节课的教学,我特别注意从以下几个方面来帮助学生理解因数和倍数的概念。

一、对比中质疑,激发学习兴趣

学源于思,起于疑。课的开始我从“因数”这一概念入手,问学生我们在什么时候认识过“因数”,学生回忆起在乘法的各部分名称中认识了“因数”。“既然我们已经认识了因数,教材为什么又让我们认识它呢,我们这节课认识的因数和我们前面认识的因数有什么不同呢?”我的问题激发了学生的学习兴趣。于是我因势利导让学生打开书自主学习,看看有什么发现。在这一环节中我虽然没有让学生动手操作,但我很好的利用了教材这一载体,放手让学生自主学习,很好的培养了学生的自学能力。

二、探究中释疑,培养学习能力

教材虽然不是从过去的整除定义出发,而是通过一个乘法算式来引出因数和倍数的概念,但本质上仍是以“整除”为基础。所以我上课时特别注意让学生明白什么情况下才能讨论因数和倍数的概念。我举了一个反例加以说明.0.2×60=12,我们能说0.2和60是12的因数吗,一石激起千层浪,学生面面相觑,我趁热打铁,那就让我们再到书中去寻找答案吧。学生再次读书发现原来为了研究方便,我们所说的因数和倍数指的是整数一般不包括0。二次读书让学生对因数和倍数的研究范围有了明确。很好的帮助学生区分乘法算式中的“因数”和本单元中的“因数”的联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,两者都只能是整数。我在课堂上反复强调,帮助孩子们认真理解辨析,所以学生一节课下来对这组概念就理解透彻了,不会模糊自主探究,合作学习。

三、实践中发现,优化学习方法。

在学生认识了因数与倍数的概念之后,我又放手让每个同学找出36的所有因数,学生围绕我提出的“怎样才能找全36的所有因数呢?”这个问题,去寻找36的所有因数。由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。既为学生留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。通过观察12,36,30,18的因数和2,4,5,7的倍数,让学生自己说一说发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。诱发学生探索与学习的欲望,从而激活学生的思维。让学生在许多的不同中通过合作交流找到相同。

《因数与倍数》教学反思15

简单的内容中蕴藏着复杂的关系,由于新教材把“整除”的概念去掉,再也不提谁被谁整除,而改成借助整除模式na=b,直接引出因数和倍数的概念,这部分内容显得比较容易了,学生在学因数时,对于求一个数的因数,及理解一个数的因数最小是1,最大因数是它本身,及一个数的因数的个数是有限的,感觉很清楚,明白。在学倍数时,对求一个数的倍数及理解一个数的倍数中最小的是它本身,没有最大的倍数也认为容易简单,但有关因数、倍数的综合练习不少学生开始犹豫、混淆。如判断一个数的因数的个数是无限的,不少学生判断为对。练习中:18是的倍数,个别学生选择了18、36、54……。针对这种情况,我调整了练习,组织学生研究了以下几个问题:

1、写出12的因数和倍数,写出16的因数和倍数。

2、观察比较,会打消列问题:一个数的因数和它本身的关系,

3、为什么一个数的因数的个数是有限的?最小是1,最大是它本身,也就是1和它本身之间的整数。为什么一个数的倍数的个数是无限的?最小是它本身,没有最大的。

通过对这几个问题的讨论,多数学生较好的区分了一个数的因数和倍数

《因数与倍数》教学反思 篇2

关键词:因数,倍数,小学

导入新课

1.回忆学过哪些数? (自然数, 分数, 小数……)

2.哪种类型的数学起来最容易? (大部分学生肯定会说自然数学起来最容易)

其实, 在数学中, 真正有分量的题目, 难倒一代又一代数学家的题目都在自然数领域, 以至于有位数学家发出这样的感慨:“自然数, 可真不自然呀!”今天, 我们将重新感受自然数, 看看里面蕴藏着哪些奇妙的内容, 我们又将会有哪些有趣的发现。

反思:苏格拉底的“产婆术”教育法就是通过巧妙设问在谈话中让对方彻悟的。学生根据以往的学习经验自然而然会认为自然数学起来最容易, 这是一种比较普遍的观点。而这时教师话锋陡转, 适时抛出一个与之相反的观点, 并有相应的论据作为支撑, 这足以搅动学生的思维, 激发探究的欲望。更重要的是, 教师对自然数的阐述把学生带入了数学史。让学生产生一种历史的纵深感, 与此同时, 又不露痕迹地将本课的知识点“因数和倍数”归置到了自然数这个知识体系当中。如果把自然数比作大海的话, 因数和倍数就是海面上众多的帆船之一, 它只有置身于大海的怀抱才能扬帆远航。

探索找一个非零自然数的所有因数的方法

找30的因数

反思:找一个数的因数是本节课的难点, 考虑到学生在认知背景、思维品质及思维方式上的差异, 学生中势必会出现不一样的思考过程和结果:或者全面、或者片面;或者有序、或者无序;或者肤浅、或者深刻。此时, 教师应该引导学生将自己的数学思考展示出来, 在师生之间、生生之间多维的对话、思辨、质疑、争论的过程中, 彼此取长补短, 相互吸纳, 使得片面的思维趋于全面, 无序的思维走向有序, 肤浅的认识归于深刻。思维品质在沟通中获得提升, 思维方式在比照中得以修正, 思维能力在对话中得到发展。而“怎么找到5就不找了呢?”这个问题又一次引发学生的思维风暴, 诱发学生的深层思考, 这就是一种本质的数学文化, 也是数学的魅力所在。

拓展延伸

1.在50、60、70、80、100中谁的因数个数最多?

当学生发现60的因数个数最多后, 教师揭示60进制中的奥秘:原来天文学规定, 1小时=60分, 1分=60秒, 与60的因数的个数有关。与24差不多大的数中, 24的因数最多, 1天=24小时;与12差不多大的数中, 12的因数最多, 1年=12个月。

反思:引领学生揭开1小时=60分、1分=60秒、1天=24时、1年=12个月等约定俗成的规则中所蕴含的奥秘, 使学生领略到数学与天文学的完美结合给我们的社会生活带来的便捷。也许此时, 科学的种子已悄悄地在某些学生的心田里生根, 假以时日, 这粒种子定会破土而出, 在阳光雨露的滋养下, 发芽, 开花, 最终结出累累硕果。

2.一个更有趣的规律———完美数。

(1) 拿出2号作业纸, 找出6的所有因数, 把其中最大的因数划掉, 再把剩下的因数加起来, 发现这些因数的和恰好也是6。

小结:这种现象很罕见。数学家把像6这样的, 去掉它的最大因数后, 剩下的因数相加的和是它本身的数叫“全数”, 也叫“完美数”。

(2) 这样的数会有第2个吗?寻找第2个完美数。

学生独立完成 (师提示:比20大, 比30小的偶数)

板书:28:1、2、14、4、7

师:找到了第1、2个完美数, 数学家会停止寻找的脚步吗?第3、4、5个完美数会是多少呢?一定超出你们的想象。屏幕显示:6、28、498、8128、33550336、858986059……)

想想看, 你们刚才找28都花了将近2分钟, 那数学家要从浩如烟海的自然数中找出这些完美数, 该付出怎样的艰辛呀!几年, 几十年, 甚至一辈子。完美数对生产生活并没有什么直接的用处, 是什么力量吸引数学家付了毕生的心血去寻找呢?

小结:伟大的数学家高斯说过:“人们通常把数学誉为科学的皇后, 而专门研究自然数性质的数学分支———‘数论’, 则是数学皇后头顶上的皇冠。”今天, 时间有限, 我们只是看到了皇冠上一粒小小的珠子, 但只要你沿着这条路走下去, 在数学看似抽象的百花园里, 你一定会收获很多东西。

反思:引着学生走进和因数有着密切关系的特殊的数学现象“完美数”, 感受完美数的美妙结构, 领略了凝聚在数学之中的美妙绝伦的思维方法、探索不止的数学精神、臻善达美的数学品格。最后从“数论”的角度重新考察“因数和倍数”, 使新的知识在深度和高度上获得提升。这对于一个人全面和谐的发展, 具有重要意义和积极影响。

关于《因数和倍数》的教学反思 篇3

关键词:因数;倍数;小学

导入新课

1.回忆学过哪些数?(自然数,分数,小数……)

2.哪种类型的数学起来最容易?(大部分学生肯定会说自然数学起来最容易)

其实,在数学中,真正有分量的题目,难倒一代又一代数学家的题目都在自然数领域,以至于有位數学家发出这样的感慨:“自然数,可真不自然呀!”今天,我们将重新感受自然数,看看里面蕴藏着哪些奇妙的内容,我们又将会有哪些有趣的发现。

反思:苏格拉底的“产婆术”教育法就是通过巧妙设问在谈话中让对方彻悟的。学生根据以往的学习经验自然而然会认为自然数学起来最容易,这是一种比较普遍的观点。而这时教师话锋陡转,适时抛出一个与之相反的观点,并有相应的论据作为支撑,这足以搅动学生的思维,激发探究的欲望。更重要的是,教师对自然数的阐述把学生带入了数学史。让学生产生一种历史的纵深感,与此同时,又不露痕迹地将本课的知识点“因数和倍数”归置到了自然数这个知识体系当中。如果把自然数比作大海的话,因数和倍数就是海面上众多的帆船之一,它只有置身于大海的怀抱才能扬帆远航。

探索找一个非零自然数的所有因数的方法

找30的因数

反思:找一个数的因数是本节课的难点,考虑到学生在认知背景、思维品质及思维方式上的差异,学生中势必会出现不一样的思考过程和结果:或者全面、或者片面;或者有序、或者无序;或者肤浅、或者深刻。此时,教师应该引导学生将自己的数学思考展示出来,在师生之间、生生之间多维的对话、思辨、质疑、争论的过程中,彼此取长补短,相互吸纳,使得片面的思维趋于全面,无序的思维走向有序,肤浅的认识归于深刻。思维品质在沟通中获得提升,思维方式在比照中得以修正,思维能力在对话中得到发展。而“怎么找到5就不找了呢?”这个问题又一次引发学生的思维风暴,诱发学生的深层思考,这就是一种本质的数学文化,也是数学的魅力所在。

拓展延伸

1.在50、60、70、80、100中谁的因数个数最多?

当学生发现60的因数个数最多后,教师揭示60进制中的奥秘:原来天文学规定,1小时=60分,1分=60秒,与60的因数的个数有关。与24差不多大的数中,24的因数最多,1天=24小时;与12差不多大的数中,12的因数最多,1年=12个月。

反思:引领学生揭开1小时=60分、1分=60秒、1天=24时、1年=12个月等约定俗成的规则中所蕴含的奥秘,使学生领略到数学与天文学的完美结合给我们的社会生活带来的便捷。也许此时,科学的种子已悄悄地在某些学生的心田里生根,假以时日,这粒种子定会破土而出,在阳光雨露的滋养下,发芽,开花,最终结出累累硕果。

2.一个更有趣的规律——完美数。

(1)拿出2号作业纸,找出6的所有因数,把其中最大的因数划掉,再把剩下的因数加起来,发现这些因数的和恰好也是6。

小结:这种现象很罕见。数学家把像6这样的,去掉它的最大因数后,剩下的因数相加的和是它本身的数叫“全数”,也叫“完美数”。

(2)这样的数会有第2个吗?寻找第2个完美数。

学生独立完成(师提示:比20大,比30小的偶数)

板书:28:1、2、14、4、7

师:找到了第1、2个完美数,数学家会停止寻找的脚步吗?第3、4、5个完美数会是多少呢?一定超出你们的想象。屏幕显示:6、28、498、8128、33550336、858986059……)

想想看,你们刚才找28都花了将近2分钟,那数学家要从浩如烟海的自然数中找出这些完美数,该付出怎样的艰辛呀!几年,几十年,甚至一辈子。完美数对生产生活并没有什么直接的用处,是什么力量吸引数学家付了毕生的心血去寻找呢?

小结:伟大的数学家高斯说过:“人们通常把数学誉为科学的皇后,而专门研究自然数性质的数学分支——‘数论’,则是数学皇后头顶上的皇冠。”今天,时间有限,我们只是看到了皇冠上一粒小小的珠子,但只要你沿着这条路走下去,在数学看似抽象的百花园里,你一定会收获很多东西。

反思:引着学生走进和因数有着密切关系的特殊的数学现象“完美数”,感受完美数的美妙结构,领略了凝聚在数学之中的美妙绝伦的思维方法、探索不止的数学精神、臻善达美的数学品格。最后从“数论”的角度重新考察“因数和倍数”,使新的知识在深度和高度上获得提升。这对于一个人全面和谐的发展,具有重要意义和积极影响。

《倍数与因数》的教学反思 篇4

1.体现“以生为本”的教育理念。课堂设计始终以学生自学为主,在学生相互合作中完成了教材内容的学习与问题思考。前后共设计了两次自学指导,一个是倍数与因数的意义;另一个是如何找一个数倍数。让学生借助教材资源进行自学、问题探讨,同时强调对教材情境图及提示信息的阅读和理解,培养学生自学和独立思考问题的能力,加强小组合作的能力。

2.注重了对教材资源的挖掘与拓展。如:在引导学生找倍数时,我对课后练一练第3题小兔子过河进行了挖掘和重新设计。让学生找出3的倍数的同时,对倍数的特点进行了更深理解。通过河水上涨,让学生思考还需安几个点小兔子才能顺利过河。从而让学生想到了3的倍数的个数是无限的,最小的是它本身。虽然是一个很简单的例子,但是对于学生理解倍数的特点却起到了很大的帮助。

本节课的不足:

1.采用“三段六环”教学模式体现了“以生为本”的教学理念。学生整节课都在自学和与同伴的交流中学习。但学生思维还不够活跃,过分的严格和环节控制,使学生在课堂中过于拘瑾,课堂氛围不够浓厚。

2.对于倍数与因数相互依存关系上强调不够。课堂中针对这一环节缺少必要的练习和情境设计。导致完成“因为9×2=18,所以18是倍数,9是因数。”这道判断时学生对倍数与因数的理解深度不够,出现了很多错误。

《因数与倍数》教学反思 篇5

本单元注意以下七个方面的教学,可以促进学生巩固基础知识,促进学生发展基本思维能力。

1.加强概念间相互关系的梳理

(1)注意因数与倍数的相互依存的关系

(2)质数、合数与因数的关系

(3)2的倍数与偶数、奇数的关系

(4)与大数的读写相关联

如:一个七位数,最高位是最小的奇数,万位是最小的质数,千位是最小的合数,

最低位是最大的一位合数,其余各位都是最小的偶数。

这个数作( ),读作( )。

(5)2、3、5的倍数与乘法口诀紧密联系。

2.要用“活”教材

(1)教学中要用好教材,用活教材,教学实践证明,从单数与双数入手探究奇数与偶数;从乘法口诀入手,探究2的倍数,探究5的倍数,探究3的倍数,比教材安排的教学内容进行教学,学生更容易掌握知识。

(2)注意培养学生的抽象思维能力(本单元知识特点的抽象性)

要用归纳推理:就是从个别性知识推出一般性结论

(1)偶数、奇数

(2)5的倍数:5、10、15、20、25、30——个位是0或5的数是5的倍数

2的倍数:2、4、6、8、10、12、14、16、18、20……

3的倍数:

(3)质数、合数:写出1——20各数的因数进行归纳推理

3.教给学生学习的方法

列举法:

如:18因数6的倍数:

又如:P16一个数既是42的因数,又是7的倍数,这个数可能是( )

4.教给学生养成“有序学习”的良好学习习惯

5.注意知识的联系,与用字母表示数的`结合。如:

数A最小的因数是,最大的因数是()

数B最小的倍数是(),()最大的倍数

6.注意概念的判断

(1)所有自然数.不是奇数,就是偶数()

(2)所有自然数不是质数,就是合数()

(3)所有奇数都是质数()

(4)所有偶数都是合数()

7.注意发散思维的培养

31□是5的倍数,这个数可能是( )

75□0是3的倍数,这个有( )种情况,它们是( )

2□6□是25的倍数,也有因数3,这个有( )种情况,它们是( )

因数和倍数教学反思 篇6

胡桂芬

本节课教学我考虑到“因数和倍数”属于数论的范畴,小学生学习起来容易感到枯燥,为了克服这一学习状况,我首先创设了站队游戏导入新知,激发了学生学习兴趣,调动了学生学习积极性。接着放手让学生在独立思考、自主探索、合作交流的基础上尝试找全一个数的因数和有序找一个数的倍数,充分体现了学生是学习的主体,教师是学习的组织者、引导者与合作者,教学效果特别好。

一、游戏激趣导入,在丰富多彩的教学活动中抓住概念的本质,构建数学模型。上课伊始我一句亲切的询问:“同学们,你们喜欢做游戏吗?”立刻激发了学生的兴趣,当同学们按游戏规则站好队后我提出问题:“谁来裁定:他们站对了吗?”随着问题的提出,势必引发同学们自主地观察、思考出站成甲乙两队的标准“商是整数而没有余数”,在此基础上,由甲队中的整数除法引出因数和倍数的概念。为了使学生切实理解“因数和倍数”这一抽象的概念,我引导学生同桌互相说、个别说、教师举错例等活动理解因数和倍数相互依存的关系。兴趣是最好的老师,整个环节通过游戏、讲解、说一说、设疑等形式引导学生主动观察、思考、释疑,抓住了因数和倍数概念的本质,构建了数学模型。

二、独立思考、合作交流探索出找全一个数的因数的方法,激发了学生的潜能,培养和提高了学生的数学思维能力。前苏联教育家维果斯基的“最近发展区理论”告诉我们,教学时应着眼于学生的最近发展区,为学生提供带有难度的内容,调动学生的积极性,发挥其潜能。教学例2时,在学生理解了因数的概念的基础上,放手让学生独立找18的因数,开始学生的思维是模糊、无序的,我就引导学生围绕如下三个问题:

①你是怎样找出18的因数的? ②你怎样做到既不重复,又不遗漏? ③找到什么时候结束?

进行讨论、交流,其实这三个问题渗透了问题解决要经历的过程,随着对这三个问题不断解决的同时,思维火花不断碰撞、不断完善,找全18的因数的方法逐渐清晰、有序,从而实现了“让学生跳一跳摘到桃子”的目的,激发了学生的潜能,培养和提高了学生的数学思维能力。

三、遵循学生的认知规律,自主建构新知,使学生真正成为学习上的主人。

《数学课程标准》指出,“教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能,体会和运用数学思想和方法,获得基本的数学活动检验”。

1、让学生经历探索、观察、发现、归纳、概括的完整过程。本节课首先创设站队游戏活动引导学生理解因数和倍数的意义,接着在我精心设计的学习提示引领下主动探索找全一个数的因数和有序找一个数的倍数的方法,最后通过观察,抽象概括出一个数的因数或倍数的特点,让学生经历了知识发生、发展和形成的过程,防止了学生机械记忆,既关注了过程,又关注了结果。

2、有目的的启发与引导,促进学习方法的迁移。

在学生探索出找全一个数的因数的方法后,我没有给学生学习提示,只用了一句承上启下的过渡语:我们已经会不遗漏地找全一个数的因数,那你们能不能想办法有序地找2的倍数呢?学生在前面有序找一个数的因数的启发下,能主动地探究有序找一个数的倍数的方法,促进了学习方法的迁移,遵循了学生的认知规律,使学生真正成为学习上的主人。

《因数与倍数》教学反思 篇7

案例一:找一个数因数的初次教学尝试

(教学完因数和倍数的概念后)

师: (过渡) 刚才通过把12个小正方形摆成不同的长方形, 我们写出了一组乘法算式。

1. 想象摆, 找36的因数。

(1) 师:你会用36个小正方形摆成哪些不同的长方形?你能用乘法算式有序地来表示你的摆法吗?要求做到既不重复, 又不遗漏, 可以吗?请大家边想边写。

(2) 生独立写算式:

1×36=36

2×18=36

3×12=36

4×9=36

6×6=36

(3) 交流算式:

还要继续写吗?为什么?到怎样的情况就不要找下去了?

2.说因数

(1) 根据算式你能写一写36的因数有哪些吗?

学生自己练习找36的因数。

教师反馈不同的情况。

(2) 小结方法:对, 为了能把一个数的因数找全不遗漏, 我们可以一对一对地找;但为了写出的数更有条理、更美观, 我们可以从小到大地写。

案例反思

在这个教学过程中, 本课的重点探究内容“怎样找一个数的因数”被“你会摆成不同的长方形吗?你能用乘法算式有序地表示出来吗?”这样的要求牵制着, 探究的目的性从原来的探究“怎样找一个数的因数”转变成了“怎样摆长方形”, 而且整个探究的过程分成一系列连续的小步子, 学生在这种引导下, 只有了一种思维模式, 只能“用乘法算式来表示摆法”, 事实上找一个数的因数还可以想除法算式。在整个学习过程中, 学生只是执行教师命令的操作员, 就好像一台台电脑, 教师编好程序, 点击鼠标, 他们就开始工作。这样的教学如果从掌握知识的角度来说, 的确省时、高效, 可是从“发展学生自主获取知识的能力”的角度分析, 可以发现, 留给学生自主探究的空间过于狭窄, 在学习的过程中, 学生的思维活动连一点“旁逸斜出”的机会都没有了, 创新精神更是无从谈起。

案例二:找一个数因数的再次教学尝试 (教学完因数和倍数的概念后)

1.练习:3、5、18、20、36, 任意选取两个数用倍数和因数来说一说。

生1:3是18的因数, 18是3的倍数。

生2:3是36的因数, 36是3的倍数

生3:5是20的因数, 20是5的倍数

生4:18是36的因数, 36是18的倍数。

2.过渡:刚才的五个数中, 哪些是36的因数?

生:3、18、36是36的因数。

师:3、18、36都是36的因数。那么36的因数只有这三个吗?你能把36所有的因数都找出来吗? (小组探究)

(1) 提出要求, 明确方法:

(1) 提出探究要求, 把36所有的因数都找出来。

(2) 有困难的求助小组成员, 也可以求助老师, 争取把36的所有因数都找出来。

(3) 找到后填在学习纸上, 如果能把找的方法写下来更好。

(4) 小组交流分享。

(2) 自主探究, 教师巡视。

(3) 搜集典型, 交流评价:

展示作业一:因数没有找全的1、36、2、18、3、12、4、9

师:看了这位同学找的36的因数, 你有什么想说的呢?生:没有找全, 有遗漏。

展示作业二:因数有照错的1、36、2、18、3、13、4、9、6

师:这位同学找的对吗?

生:不对。

师:哪个因数不对呢?

生:13不是36的因数。

师:为什么13不是36的因数呢?

生:3×13不等于36。

展示作业三:找全的, 排列无序的1、36、2、18、3、12、4、9、6

师:有错的吗?有遗漏的吗?有重复的吗?真了不起, 想不想听听这位同学是怎样做到不遗漏、不重复的?

生1:我是这样做的:36÷1=36, 36÷2=18, 36÷4=9, 36÷6=6

生2:我是这样做的:1×36=36, 2×18=36, 3×12=36, 6×6=36

师小结方法:第一个同学用36去分别除以1、2、3…除到重复就不除了, 除数和商就是36的因数。

第二个同学想几乘几得36, 从1开始乘起, 乘到重复就不乘了, 两个乘数就是36的因数。

相应板书: () × () =36

36÷ () = ()

师:谁来评价一下这种找因数的方法?对于这样的排列你能评价一下吗?

生:无序、乱。

师:你觉得怎么写好呢?

生:从小到大。

展示作业四:找全排列有序的1、2、3、4、6、9、12、18、36

师:这样好吗?为什么?

生:从小到大, 很整齐美观。到大。业四:找全

(4) 小结方法

师:对, 为了能把一个数的因数找全但不遗漏, 我们可以一对一对地找, 但为了写出的数更有条理、更美观, 我们可以从小到大地写。

案例反思

在这两个教学过程中, 尽管教师给了学生探究的机会, 但案例一的探究更显得机械化, 而案例二的探究更具备人性化, 更符合孩子的认知水平, 更能给孩子广阔的思维空间, 思维得到了更好的锻炼, 这样探究活动就有了更好的价值。

1.教师找准了真探究的基础———正确地把握了学生的知识起点。那就是已经找到了36的几个因数, 还能找到36的其他的因数吗?标准指出, 数学课程:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”所以, 我们在进行探究内容选择时, 应根据自己学生的基础采取适度的原则。在一般情况下, 探究问题的解决所需的能力应在学生的最近发展区之内, 对这样难度水平的问题学生通过努力可以解决。即选择的探究内容对于学生来讲, 通过对他们已有的知识、能力的提取和综合, 是可以进行探究并能得到结果的, 但是, 这些内容对学生来讲绝不能毫无疑问、不费努力即可解决。

2. 教师营造了真探究的空间———案例二的教学为学生提供了充分的探究空间。“你能把36的所有因数都找出来吗?先独立思考, 有困难可以寻求帮助。”“以学生为中心是探究教学的一个基本特征”。让学生成为数学学习的主人, 自主地进行学习活动。作为教师应定位于组织者、合作者、引导者的角色, 定位的宗旨是对学生适时有效地提供必要的帮助与引导, 而不是直接给出解决问题的方案, 对于案例一来说就是教师直接给出了找因数的方法———想乘法算式, 而案例二是由学生自己获得数学猜想, 并与同学分享自己的探索成果, 最后在集体中一起验证交流、修正猜想, 而不是直接肯定或否定他们的猜想。在教学中, 我们设置的探究问题间域要宽, 截距要长, 思维坡度要大, 给学生提供一个充分自由的探索空间。

小学倍数与因数知识教学方法研究 篇8

【关键词】倍数 因数 教学 问题 措施方法

小学生接触数学的时间都还比较短,对于一些数学知识的理解容易出现偏差,尤其是在进行倍数和因数学习的时候,不少同学经常出现一些基本性的错误。这一现象存在,说明在教学方法上还是存在一定不足,没有让学生有效认识到倍数和因数的关键所在。因此,数学教师需要对教学方法展开深入研究,找出更加合理可靠的教学手段。

一、倍数和因数

倍数和因数是小学数学中的一个重要知识点,其涉及到一些定义和规律,让小学生理解起来存在一定困难。具体说来,倍数是指一个整数能够被另一个整数整除,那么整个整数就可以被称作另一个整数的倍数,比如15/3=5,那么就可以说15是3的倍数,也可以说15是5的倍数。在倍数的基础上,还衍生出了公倍数和最小公倍数两个概念,公倍数是指两个或多个整数共有的倍数,就被称为公倍数。而最小公倍数是指两个或多个整数共有倍数中最小的那个倍数,就被称为最小公倍数。

因数是指两个或多个整数相乘得到积,那么这两个或是多个整数就被称为积的因数,比如2x3=6,那么2和3都可以被称作6的因数。在因数的基础上,还衍生出了公因数和最大公因数两个概念。公因数是指两个或多个整数所共有的因数,而最大公因数是指这些公因数中最大的那一个。比如,18和24的公因数有2、3、6,其中6就是最大公因数。

从上述定义可以看出,倍数和因数其实存在一定的相关关系,即从乘法的角度看,参与计算的数是结果的因数;从除法的角度看,除数是被除数和结果的倍数。比如,2×4=8和8÷4=2,2和4就是8的因数,8就是2和4的倍数。

二、小学倍数和因数教学中存在的问题

(一)教学独立,缺乏结合。从上文的分析可以看出,倍数和因数存在一定的相互关系,彼此之间可以实现一定的转化。但是在实际的教学中,不少教师没有将两者结合起来展开教学,而是将其作为两个不同的部分分别进行教学。这样的教学模式显然不能让学生直接理解到倍数和因数之间的相互关系,只是分别独立的对待倍数和因数,进而在认知上产生一定的缺陷和不足。这就使得学生在倍数和因数这方面的知识掌握不牢固,基础存在缺陷,导致在后续的学习中暴露出一定的问题,降低了学习的有效性。而且,两部分知识独立教学会增加教学所花费的时间和精力,不仅提升了教师的教学负担,又降低了教学的效果。

(二)板书教学,不够直观。倍数和因数之间的相关关系以及其各自的特点,都具有很强的逻辑性和抽象性,若是单纯使用板书教学,其就会显得不够直观,导致学生理解起来存在一定困难。比如,要说明倍数、公倍数和最小公倍数三者之间的关系,单纯地在黑板上写下概念和一些式子,学生理解起来就容易抓不住重点,而且容易走神。板书教学缺乏吸引力,难以将学生的注意力紧紧维系在课堂上,从而出现开小差、讲小话的情况,降低了教学的效果。

(三)实践不顾,缺乏巩固。在倍数和因数的教学中,其本身从难度上来说并不是太难的知识点,但是学生的掌握情况并不良好,从中分析可以得出,主要原因在于实践不够,导致学生在学习之后缺少必要的巩固,进而对倍数和因数的相关知识产生遗忘,从而表现出教学效果不佳的问题。具体说来,一是课堂练习不足,大多数课堂时间都被用于知识讲解,学生练习巩固的时间较少,导致部分知识学生在课堂上就没有形成掌握,在课后产生遗忘。二是课后练习局限在书本上,缺少一些新颖的练习题目,导致学生对倍数和因数相关知识的巩固并不牢固。三是没有开展课外实践,使得学生在数学知识的实践应用上存在不少薄弱环节,表现出只会做题,不会运用的问题。

三、加强小学倍数与因数知识教学的策略方法

(一)将倍数与因数结合起来教学。由于倍数和因数之间存在相互关联的关系,所以为了提高教学效率和质量,可以将倍数和因数的相关知识结合起来展开教学,通过两部分知识的对比和联系,让学生对其产生更加深刻的理解和认识。首先,可以将其中一部分知识作为教学的基础,以此展开教学方案的编制。其次,在该部分知识的基础上,将另一部分知识融合进来,形成一个倍数与因素知识结构体系,由此展开教学活动。

比如,将倍数作为基础展开教学,就可以以倍数、公倍数和最小公倍数这三个基本概念为基础设计教学计划。然后在倍数、公倍数和最小公倍数的基础上对应因数、公因数和最大公因数这三个概念。在完成概念框架的设计之后,还需添加一定的实例,确保教学活动有理有据,讲解和练习相结合。比如,在倍数、公倍数和最小公倍数这几个概念进行辨析的时候,可以通过这样的例子进行辅助:“8÷4=2,4÷2=2,分别指出这两个式子的倍数、公倍数和最小公倍数”,像这样一个问题,就可以得出第一个式子中8是4和2的倍数,第二个式子中4是2的倍数,对于4和8而言,其公倍数可以有16,24,32等,其中最小公倍数则是16。将两个式子改写成2×2=4,2×4=8,则可以得出第一个式子中2是4的因数,第二个式子中2和4是8的因数,对于4和8,2和4都是其公因数,其中4是最大公因数。像这样将倍数和因数结合起来展开教学,必然可以让学生理解更加深刻和透彻。

(二)多元化教学方式提高效率。板书式教学存在不少弊端,对倍数和因数的教学存在一定阻碍作用。因此,需要对教学方式实现多元化,提高教学活动的效率和质量。首先,可以利用演示的方法展开教学。比如,在教学因数时,2×3=6,教师就可以从班级中找出5名学生,其中2名男生,3名女生,2名男生站在教师左边,3名女生站在教师右边,这是教师就可以进行演示:我左边是2,右边是3,我代表乘号,那么结果等于多少呢?学生们纷纷回答等于6,这时教师进一步引导学生:正确,等于6,那么这2名男生是6的因数,3名女生也是6的因数。通过这样的实例演示,不仅可以激发学生的兴趣,还可以加深学生的印象。其次,还可以通过多媒体教学的方式,借助多媒体从不同的渠道演示因数和倍数的相关知识,让学生形成理解掌握。

(三) 加强实践练习巩固所学知识。在教学倍数和因数的过程中,实践练习是必不可少的,只有通过多实践、多练习,才能对倍数和因数的知识牢固掌握。首先,需要加强课堂练习环节,在教学中需要更多穿插练习,让学生及时对知识进行巩固和复习。其次,课后作业需要进行优化设计,不能局限于书本,可以从学生熟知的事物设计课后作业。最后,可以设计实践项目,如观察校园,班级调查等,让学生在项目完成中对倍数和因数的相关知识进行应用,巩固所学。

倍数和因数的教学目前看来还是存在一些问题,这些问题的存在使得教学效果尚没有达到预期的目标。所以,在实际的教学中,应该将倍数和因数的相关知识结合起来展开教学,创设多元化的教学方式,利用实践加强对倍数和因数相关知识的巩固,提高教学成效。

(作者单位:江西省东乡县占墟小学)

参考文献:

[1]祁凤芝,蔡万红.“倍数和因数”的教学设计与反思[J].考试周刊,2011,65:99-100.

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:寒假的收获作文600字下一篇:有关过生日作文

付费复制
期刊天下网10年专业运营,值得您的信赖

限时特价:7.98元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题