初二数学经典证明题

2024-08-25|版权声明|我要投稿

初二数学经典证明题(共14篇)

初二数学经典证明题 篇1

初二数学证明题

1、如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E.且BD>CE,证明BD=EC+ED

.解答:证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.又∵AB=AC,∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE,∴BD=EC+ED.2、△ABC是等要直角三角形。∠ACB=90°,AD是BC边上的中线,过C做AD的垂线,交AB于点E,交AD于点F,求证∠ADC=∠BDE

解:作CH⊥AB于H交AD于p,∵在Rt△ABC中AC=CB,∠ACB=90°,∴∠CAB=∠CBA=45°.∴∠HCB=90°-∠CBA=45°=∠CBA.又∵中点D,∴CD=BD.又∵CH⊥AB,∴CH=AH=BH.又∵∠pAH+∠ApH=90°,∠pCF+∠CpF=90°,∠ApH=∠CpF,∴∠pAH=∠pCF.又∵∠ApH=∠CEH,在△ApH与△CEH中

∠pAH=∠ECH,AH=CH,∠pHA=∠EHC,∴△ApH≌△CEH(ASA).∴pH=EH,又∵pC=CH-pH,BE=BH-HE,∴Cp=EB.在△pDC与△EDB中

pC=EB,∠pCD=∠EBD,DC=DB,∴△pDC≌△EDB(SAS).∴∠ADC=∠BDE.2证明:作OE⊥AB于E,OF⊥AC于F,∵∠3=∠4,∴OE=OF.(问题在这里。理由是什么埃我有点不懂)

∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形

过点O作OD⊥AB于D

过点O作OE⊥AC于E

再证Rt△AOD≌Rt△AOE(AAS)

得出OD=OE

就可以再证Rt△DOB≌Rt△EOC(HL)

得出∠ABO=∠ACO

再因为∠OBC=∠OCB

得出∠ABC=∠ABC

得出等腰△ABC

41.E是射线AB的一点,正方形ABCD、正方形DEFG有公共顶点D,问当E在移动时,∠FBH的大小是一个定值吗?并验证

(过F作FM⊥AH于M,△ADE全等于△MEF证好了)

2.三角形ABC,以AB、AC为边作正方形ABMN、正方形ACpQ

1)若DE⊥BC,求证:E是NQ的中点

2)若D是BC的中点,∠BAC=90°,求证:AE⊥NQ

3)若F是Mp的中点,FG⊥BC于G,求证:2FG=BC

3.已知AD是BC边上的高,BE是∠ABC的平分线,EF⊥BC于F,AD与BE交于G

求证:1)AE=AG(这个证好了)2)四边形AEFG是菱形

初二数学经典证明题 篇2

关键词:初中数学,证明题,解题方法

一、证明题解题中“读题”的处理方法

“读题”是解证明题的第一个步骤, 它非常重要, 决定着解题“分析”的思路方向, 如果方向不明确, 或是方向错误, 就会严重降低解题的速度, 甚至得出错误的解题结果。“读题”之所以打引号, 是因为它不只是“阅读问题”这么简单, 在“读题”过程当中除了要弄清楚到底需要证明什么之外, 还应当抓准问题中所有可用的信息, 因为这些信息一般都是解题的关键[1]。

第一, 细心“读题”。在“读题”过程当中, 首先要做到细心, 不能被题目当中的陷阱迷惑, 更不要“犯经验主义”, 因为有的学生在“读题”的时候, 或觉得和曾经做过的练习题一样, 于是就直接开始写证明过程, 岂知自己连问题都没有真正弄清楚, 这是非常低级的错误。所以“读题”必须要细心、严谨, 要从头读到尾, 弄清楚到底要证明什么, 又有哪些条件和信息是可以使用的。

第二, “读题”时要记。这里的“记”包含两个方面的含义, 一个是标记, 另一个是记忆。例如:在几何证明题当中, “读题”时所获得一切条件、信息都应当在图中标记出来, 比如:读题的过程当中, 给出了直接的条件对边相等, 就可以在图中用边相等的符号将其标记出来, 这在解题“分析”过程当中非常有用, 可以直接通过看图来获得信息, 而不需要再次“读题”, 降低解题速度;同时, 还要将一些不能在图中标记出来的信息记录在大脑中, 加强记忆, 以提高解题速度。

第三, “读题”时注意引申。很多证明题解题所需的关键条件都不是直接给出的, 而是以一种更加隐晦的方式存在于问题中, 所以在“读题”的时候必须要对已知的条件进行引申, 从而获得关键的解题条件、基础信息。例如:在下面这个题当中, 平行四边形ABCD中 (图1) , 以CA为斜边作直角三角形ACE, 连结BE和DE, 若∠BED=90°, 求证:四边形ABCD都是矩形。根据四边形ABCD是平行四边形进行引申, 可得到隐含条件O是线段AC和BD的中点, 而线段AC和BD分别是直角三角形AEC和直角三角形BDE的斜边, 连结OE, 线段OE是直角三角形AEC和直角三角形BDE的斜边上的中线, 利用直角三角形斜边上的中线等于斜边的一半即可完成求证解题。

二、证明题解题中“分析”的处理方法

“分析”是证明题解题的核心步骤, 它和最终的解题结果正确与否直接相关。在实际的证明题“分析”过程当中, 应当掌握3种不同的思维方法。

第一, 正向思维。这是一种较为常规的思维方式, 即根据已知的条件, 逐步推论, 最终得出结果。

第二, 逆向思维。逆向思维是一种和正向思维完全相反的思维方式, 它不是根据已知的条件进行逐步推论, 而是从结论往源头进行反方向思考与分析, 看要证明结论需要哪些条件, 这些条件又要怎么获得, 然后逐步解决这些问题, 获得条件, 直到得出最后的证明结果。例如:有证明题需要证明三角形全等, 利用逆向思维就是先思考一个全等三角形具有哪些必须要的条件, 然后再看已知条件中还缺少什么条件才能证明三角形全等, 这些缺少的条件又需要怎么获得, 是否需要做辅助线……一直这样逆流而上的进行思考、分析, 就能够找到解决问题的途径, 从而证明三角形全等[2]。

第三, 正逆结合思维。正逆结合思维是一种将正向思维和逆向思维结合起来的思维方法, 在实际的解题过程当中, 可以将已知条件与需要证明的结论结合起来进行分析, 找出要证明结论所缺失的一环, 然后再想办法得出这一环, 从而得到最终的证明结果, 在现实的证明题解题中, 正逆结合思维往往是运用得最多得一种思维, 所以学生必须要掌握这种思维方法。

三、证明题解题中“书写”的处理方法

“书写”是证明题解题的最后一个环节, 它对数学符号与数学语言的应用要求较高, 任何的“因为、所以”在书写时都要符合公理、定理、推论或与已知条件相吻合。所有的表述都要有根有据, 已知条件要表达清楚, 未知条件要写清楚求得过程, 不能无中生有。证明过程书写完后, 对证明过程的每一步进行检查是非常重要的, 这是防止证明过程出现遗漏的关键。

总之, 在初中证明题的解题过程当中, 掌握正确的解题方法非常重要, 教师不仅要重视对学生基础知识的教学, 更要重视对学生证明题解题方法的传授, 这样才能让学生快速、正确的完成解题。

参考文献

[1]张绿平.分析初中数学证明题的解题策略[J].数理化解题研究 (初中版) , 2014, 11:16.

议论文不是数学证明题 篇3

各位看官,《老残游记新编》主打篇目“近年目睹作文之怪现状”——遍观议论,文将不文。乍看观点鲜明,实例丰富,洋洋洒洒,论证有力,齐整有序,而至滴水不漏;再看结构呆板,数学模式,死守步骤,干瘪无味,套路刻意,实为简单肤浅。且劝诸生:文章不是无情物,老师都是有心人,作文不是纯粹证明,思维不可浅尝辄止,有我有感手写我心,多想心思拓展引申。文之为文,有情有魂!

【考纲概述】

高考议论文写作要求:观点明确,论证有力,论据充实。因此有些老师和同学据此得出一个写作公式:论据1+论据2+论据3=观点。这样,就把议论文当成数学证明题了。

走在最前,落于最后

不要总羡慕那些站立云端之上的人,其实站得太高更容易跌落,他们害怕跌落;不要总轻视最底层的人,他们在承受巨大的压力。所以说,世上最痛苦的人有两种:一种是走在最前端的人;一种是走在最后的人。

一条犹如长龙的队伍,第一个人很快地就买到了物品,而最后一个在焦急不安中等待着。第一个之所以能是第一,说明他必须比其他人来得更加早,他害怕,他担心:“我会不会是第一个?不是怎么办?”最后一个人痛苦地等待,他也害怕,他也担心:等轮到他了是否还会有;轮到他了是不是变凉了,变烂了,变质了。

中国经济快速发展,超越日本,位居世界第二。美国一直在围堵中国,企图阻碍中国的发展。美国为什么这样做?美国是世界上最强大的国家,站立云端。但美国又处在痛苦之中,他自己被中国超越,因此总是处处提防着中国,与中国为敌,甚至叫嚣“中国威胁论”。而非洲一些国家因历史原因,在世界队伍中,落于最后。他们处在水深火热的痛苦之中,忍受着饥饿、寒冷、疾病等一系列常人无法想象的痛苦。身处云端,走在最前,便就幸福,便就没有痛苦吗?不,他们最为痛苦,因为他们害怕跌落,害怕自己领先的位置被人取代。落于最后的人就无忧虑吗?不,他们最为痛苦,因为他们忍受着种种苦难,承受着最为巨大的压力,被忽略,被轻视。世界上最痛苦的人莫过于此:身处云端,害怕跌落;落于最后,压力巨大。

“本是同根生,相煎何太急”。是啊,相煎何太急!曹丕、曹植都是曹操的儿子。曹操死后,曹丕子承父业,建立魏国,正所谓“最前面的人”。曹丕却处在痛苦中,害怕兄弟夺权,便命曹植作七步诗,若作不出来,便要杀他。至亲兄弟却如此,不就是因为曹丕身处云端,害怕跌落吗?身处云端并不幸福,甚至最为痛苦。害怕跌落,因为不知道下面是不是无底深渊。

好比学生,第一名的人总是害怕被超越,虽然第一总会喜悦,但也最为痛苦;最后一名的人得面对家长、老师,在巨大的压力中痛苦徘徊。世界上最为痛苦的两种人:第一名、最后一名。

大雁南飞,带头的大雁会时刻担心后面的一群大雁是否都能跟上;最后一只会害怕跟不上,迷了路,回不了家。群雁南飞:二雁最苦,第一与最后。

世界上最痛苦的人便是身处云端的人,他们害怕跌落;落于最后面的人,他们承受巨大压力。所谓“最穷人”与“最富人”。“最穷人”每天都在忧虑生活问题:“下一顿呢?下一顿怎么办?”最富人每天都在担心:“钱藏哪儿?被偷了怎么办?”

不要落于最后,要勇往直前;不要担心跌落,云端之上风景未必最好。世界上最痛苦的是两种人:走在最前,落于最后。走在最前的人跌落也没关系,沿途风光无限。

[范文解析]

本文开篇提出论点:走在最前和走在最后的人是世上最痛苦的人。然后罗列众多自然的、社会的、中国的、外国的、现在的、过去的事例来证明论点。最后重申观点,仅此而已。显然,本文除了证明“走在最前和走在最后的人是世上最痛苦的人”这个观点之外,没能给读者提供有益的人生启示。只是为证明而证明,像是在解答一道数学证明题。这是对议论文写作的一种误解。

我们写文章,特别是写议论文,不仅要提出观点,证明观点,更重要的是在论证观点的同时,对读者进行规劝引导,为读者提供有益的人生启示。

[范文例举]

走在最前,落于最后

有人认为,世界上有两种人最痛苦:一种是走在最前面的人,另一种是走在最后面的人。可是,我并不认为走在最后面的人最痛苦。

生活速度的加快逼着我们加快脚步,可是我们为什么不能试着让自己的生活慢下来呢?为什么有那么多的压力呢?何为压力?不过是人与人相比,落后的那个人感受到的痛苦。生活那么美好,他们仅仅因为走在别人后面而选择了最愚蠢的方法;如果他们愿意用乐观的心态面对落后,那么将会有多少家庭可以继续快乐的日子。为什么总要争第一呢?走在最后的人也有一鸣惊人的机会。别为你的落后感到痛苦,落后只是为了让你更好地前进。

古人云:“胜者为王,败者为寇。”难道失败的人就是最痛苦的人吗?不,看看轨道上行驶的火车吧。几百年前,史蒂芬将他发明的火车在轨道上试行时,当时一辆马车的速度都能超过火车,于是人们认为史蒂芬的火车只是一堆烂铁,可史蒂芬并不认为自己是一个失败者,他并不为失败而感到痛苦。在他的努力下,高速火车终于问世。在高速发展的现代,当时的马车早已不见踪影。试想:如果当时的史蒂芬为自己的落后感到失望、痛苦,也许也就不会有今天的高铁了。

走在最后的人未必痛苦,人生总是要面对各种失败,如果只是因为一次失败而痛苦,因为走在最后而痛苦,我们的人生岂不少了很多乐趣?落后只是为了让我们更好地前进。

时间会忘记很多人,但是时间不会忘记那些蓄势待发的人。作为一名歌手,朴树的歌真是少之又少:10年前的一张专辑和一首《平凡的路》。整整相距10年,10年中,朴树应当是走在最后面的人,可他并不为此感到痛苦,而是蓄势待发,等待那个不平凡的《平凡的路》。落后的人也许是个幸福的人,未必是痛苦的人。走在最后,也许会看到别样的风景。

落后是常有的,有时候走在最后也是不可避免的,如果你现在正走在最后,请不要痛苦,作一个乐观的人,蓄势待发,等待着一鸣惊人。

[范文解析]

本文作者论证观点时,不是为证明而证明,而是给了读者几个启示,比如,“落后只是为了让你更好地前进”和“落后是常有的,有时候走在最后也是不可避免的,如果你现在正走在最后,请不要痛苦,作一个乐观的人,蓄势待发,等待着一鸣惊人”等句充满了人生教益。

[类文生成]

一篇议论文,首先要有启发性。那种为说理而说理、心中没有读者的议论文,既没有说服力,也没有启发性;其次要有现实性,所谓现实性就是在论证完观点后,一定要与现实生活联系起来,不要脱离现实生活,空说道理。比如一篇《人生的“出”与“入”》的高考满分作文,作者论证完数学家“在推算过程中经常客观地审查自己的步骤和数据,就可能不会留下这个遗憾了”这一观点后,进一步引申“科学如此,人生又何尝不是?常常有人后悔自己什么做得不好,什么不该做,事后再多的悔恨也于事无补,我们应该从中吸取教训,对‘出’的意义有一个更好的认识”。这种引申说理的写法会使读者得到启发和教育。

[有感写作]

请以“逼,然后飞”为题写一篇议论文,不少于800字。切忌当成数学证明题。

初二数学经典证明题 篇4

初中数学培优训练题

补形法的应用

班级________姓名__________分数_______

一些几何题的证明或求解,由原图形分析探究,有时显得十分繁难,若通过适当的“补形”来进行,即添置适当的辅助线,将原图形填补成一个完整的、特殊的、简单的新图形,则能使原问题的本质得到充分的显示,通过对新图形的分析,使原问题顺利获解。这种方法,我们称之为补形法,它能培养思维能力和解题技巧。我们学过的三角形、特殊四边形、圆等都可以作为“补形”的对象。现就常见的添补的图形举例如下,以供参考。

一、补成三角形

1.补成三角形

例1.如图1,已知E为梯形ABCD的腰CD的中点;

证明:△ABE的面积等于梯形ABCD面积的一半。

分析:过一顶点和一腰中点作直线,交底的延长线于一点,构造等面积的三角形。这也是梯形中常用的辅助线添法之一。

略证:

2.补成等腰三角形

例2 如图2.已知∠A=90°,AB=AC,∠1=∠2,CE⊥BD,求证:BD=2CE

分析:因为角是轴对称图形,角平分线是对称轴,故根据对称性作出辅助

线,不难发现CF=2CE,再证BD=CF即可。

略证:

3.补成直角三角形

例3.如图3,在梯形ABCD中,AD∥BC,∠B+∠C=90°,F、G分别

是AD、BC的中点,若BC=18,AD=8,求FG的长。

分析:从∠B、∠C互余,考虑将它们变为直角三角形的角,故延长BA、CD,要求FG,需求PF、PG。

略解:

34.补成等边三角形

例4.图4,△ABC是等边三角形,延长BC至D,延长BA至E,使AE=BD,连结CE、ED。证明:EC=ED

分析:要证明EC=ED,通常要证∠ECD=∠EDC,但难以实现。这样可采

用补形法即延长BD到F,使BF=BE,连结EF。

略证:

二、补成特殊的四边形

1.补成平行四边形

例5.如图5,四边形ABCD中,E、F、G、H分别是AB、CD、AC、BD的中点,并且E、F、G、H不在同一条直线上,求证:EF和GH互相平分。

分析:因为平行四边形的对角线互相平分,故要证结论,需考虑四边

形GEHF是平行四边形。

略证:

2.补成矩形

例6.如图6,四边形ABCD中,∠A=60°,∠B=∠D=90°,AB=200m,CD=100m,求AD、BC的长。

分析:矩形具有许多特殊的性质,巧妙地构造矩形,可使问题转化为解直角三角

形,于是一些四边形中较难的计算题不难获解。

略解:

图6

3.补成菱形

例7.如图7,凸五边形ABCDE中,∠A=∠B=120°,EA=AB=BC=2,CD=

DE=4,求其面积

分析:延长EA、CB交于P,根据题意易证四边形PCDE为菱形。

略解:

4.补成正方形

例8.如图8,在△ABC中,AD⊥BC于D,∠BAC=45°,BD=3,DC=2。

求△ABC的面积。

分析:本题要想从已知条件直接求出此三角形的面积确实有些困难,如果

从题设∠BAC=45°,AD⊥BC出发,可以捕捉到利用轴对称性质构造一个正方

形的信息,那么问题立即可以获解。

略解:

5.补成梯形

例9.如图9,已知: G是△ABC中BC边上的中线的中点,L是△ABC外的一条直线,自A、B、图8

图7

C、G向L作垂线,垂足分别为A1、B1、C1、G1。求证:GG1=4(2AA1+BB

1+CC1)。

分析:本题从已知条件可知,中点多、垂线多特点,联想到构造直角梯形

来加以解决比较恰当,故过D作DD1⊥L于D1,则DD1既是梯形BB1C1C的中

位线,又是梯形DD1A1A的一条底边,因而,可想到运用梯形中位线定理突破,使要证的结论明显地显示出来,从而使问题快速获证。

略证:

初二几何证明题 篇5

求证:角EMD=2角DAC

证明:

∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA

∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA

∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC

2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D

求证:∠AHE=∠BGE

证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:

∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点

∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF

∵FM‖BG,∴∠MFE=∠BGF

∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题

这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受

如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC

证明:

BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)

==>BE=AB*BC/(BC+AC)

同理:CD=AC*BC/(BC+AB)

假设AB≠AC,不妨设AB>AC.....(*)

AB>AC==>BC+ACAC*BC

==>AB*AB/(BC+AC)>AC*BC/(BC+AB)

==>BE>CD

AB>AC==>∠ACB>∠ABC

∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/

2==>∠BEC>∠BDC

过B作CE平行线,过C作AB平行线,交于F,连DF

则BECF为平行四边形==>∠BFC=∠BEC>∠BDC.....(1)

BF=CE=BD==>∠BDF=∠BFD

CF=BE>CD==>∠CDF>∠CFD

==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC...(2)

(1)(2)矛盾,从而假设(*)不成立

所以AB=AC。

2、两地角的平分线相等,为等腰三角形

作三角形ABC,CD,BE为角C,B的角平分线,交于AB,BE.两平分线交点为O

连结DE,即DE平行BC,所以三角形DOC与COB相似。

有DO/DC=EO/EB,又EB=DC所以DO=EO,三角形COB为等腰

又角ODE=OCB=OED=OBC

初二上几何证明题008 篇6

1.C已知:如图,在△ABC中,BE、CF分别是边AC、AB上的高,BP = AC,CQ = AB,求证:AP = AQ. A Q

FE

CB

2.C如图,已知∠BDA =∠CEA,CE与BD交于点P,PB = PC,求证:AB = AC.

A

ED

CB

3.C如图,在△ABC中,AB=AC,BD与CE相交于点O,BO=CO.求证:∠B=∠C.

A

ED

BC

4.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,求证:⑴OD=OC;⑵∠ECD=∠EDC;⑶OE是CD的中垂线.

A

O

C B

5.C如图,在∠MON的两边分别截取OA = OB,OC = OD,如果连结AD、BC相交于点P;

M求证:OP平分∠MON. C A O

B

D N

C如图:已知,AB = AD,∠ABC =∠ADC,求证:△ABC ≌ △ADC.

C

DB

初二数学经典证明题 篇7

一、数学归纳法定义

数学归纳法是一种数学证明方法, 主要用于证明在局部或整个自然数范围内某一个给定的命题是否成立, 在数论中, 数学归纳法主要是通过不同的方式证明无穷序列情形 (第一个, 第二个, 第三个……第N个, 一直下去无例外) 都是正确的数学定理。

在数列题中比较常见的数学归纳法应用情形是证明N值等于任何一个自然数时整个命题成立。证明过程主要包含两部分:首先, 证明n等于1时命题是成立的, 其次, 假设n等于m (m为任意自然数) 时命题成立, 从而推断出n等于m+1时命题也是成立的。原理就是先证明起点值是成立的, 再证明从一个值到下一个值的过程也是成立的, 只要满足这两点, 就可以证明所有自然数都能够适用于这个方法, 从而运用此方法解决问题。

二、在证明数列题中数学归纳法的应用

1. 先猜想再假设, 最后证明结论

本质上来讲, 数学归纳法是一种归纳与递推的数学思想, 是通过演绎法去解决无穷问题所采用的一种工具, 有了前面的P (n) , 必然会有后面P (n+1) 的证明过程。

以2014年广东省高考题为例进行应用分析:

题目:设数列{}的前n项和为Sn, 满足=-3-4, ∈N*, 且S3=15,

(1) 求a1, a2, a3的值

(2) 求数列{}的通项公式

解析:第 (1) 题为常规题, 通过已知条件就可以将前三项的值分别计算出来, 即a1=3, a2=5, a3=7。第 (2) 题中, 我们已经知道了数列前项和之间的关系, 这样就可以通过和的关系式来解答:

在解答过程中运用数学归纳法来验证:

=1时, 结论成立;

假设= (1) 时, =2+1,

=3+5+7+…+ (2+1) == (+2)

又因为=-3-4

所以 (+2) =-3-4

即=+6→=+1

所以=+1时, 结论成立

这样就可以得出{}的通项公式:=+1, ∈N*

在解题过程中通过猜想与假设, 再加上数学归纳法的特点, 借由=的情况推出=+1的情况, 一步步将结论证明出来, 即方便快捷又条理清晰。先猜想再假设最后证明结论, 这种数学归纳法的解题套路是一样的, 通过假设某一个条件, 使后面证明的结论更加简单, 这就要求我们必须认真思考题目中已知的条件, 从题目中获取信息做出正确的猜想, 只有这样才能最终得到正确的结论。

以2014年安徽省高考题为例进行应用分析:

题目:设实数>0, 整数>1, ∈N*, 证明:当x>-1且x≠0时, >1+px。

虽然这道题不是像我们熟识的其他题目一样用和来表示, 但本质上来说是一样的, 用数学归纳法来解答时步骤如下:

当p=2时, =+2x+1>1+2x, 此时不等式成立;

假设p=k, 不等式>1+kx成立, 那么当p=k+1时, 则

= (1+x) > (1+kx) (1+x) =+ (1+k) x+1>1+ (1+k) x

因此, 当x>-1且x≠0时, 整数>1, >1+px都是成立的。

2. 加强命题后再用数学归纳法证明

以2008年辽宁省高考题为例进行应用分析:

题目:在数列{}, {}中, =2, =4, 且, , 成等差数列, , , 成等比数列 (∈N*)

(1) 求, , 及, , , 由此猜测{}, {}的通项公式, 并加以证明

(2) 证明:+++…+<

在第 (2) 题中右边的式子和无关, 不能直接采用数学归纳法, 但可以先加强结论再用数学归纳法证明。

当=1时, ==<, 不等式成立

这时候用数学归纳法证明, 当时, ++…+<-

由第 (1) 题可以得出+=, =2时结论成立。

假设=时结论成立,

当=+1时, ++…++<-+<-+=-=-, 因此, 当=+1时, 结论也成立。

也就是说, 当时, +++…+<恒成立,

因此, ∈N*, +++…+<命题成立。

结语:

综上所述, 在高中数学课堂中, 数学归纳法是学生必学的一种方法, 熟练掌握数学归纳法能够帮助学生快速且条理的解决数列论证问题, 但目前, 由于学生缺乏对数学归纳法性质的理解, 难以熟练掌握数学归纳法, 在数列问题中也很少主动采用数学归纳法解决问题, 这对高中生的学习效果非常不利。在掌握方法的同时, 还要通过实例加以实践巩固, 熟练掌握数学归纳法, 在数列问题中主动应用, 提高做题速度和效率, 使数学教学效率事半功倍, 进一步提高高中学生的综合能力。

参考文献

[1]买买提阿不拉·阿吉.关于数学归纳法教学[J].和田师范专科学校学报, 2004 (02) .

中学数学证明题应培养的几种思想 篇8

关键词:数学证明题 联系性 严密性 反证法 归谬法

笔者从事高中数学教学多年,发现数学证明题令中学生特别头痛。无论大考小考,学生失分多在数学证明题上面。近年来,笔者在教学思路和教学方法上稍做了些调整,发现调整后学生数学证明能力大有提高。笔者认为,要提高学生的数学证明能力,就应加强培养学生以下几个方面的素质:

一、培养各知识点的联系性思想

数学是一门具有严格逻辑体系的学科,各知识点的联系是非常密切的。例如立体几何中的公理1:直线上的两点在一个平面上,那么这条直线也在这个平面上。这是典型的点线关系,一条直线可以由两点来确定位置。再例如证明面面平行应先从线面平行出发,证明面面垂直应先从线面垂直出发。可见线面关系可以用来证明面面关系,反之已知面面关系可以显现线面关系,这就是各知识点的密切联系。在教学中我们要让学生高度认识到这一点。把各个零散的知识串联成一个完整的知识模块,这样有利于对数学知识的整体把握,夯实基础知识,是解答数学证明题的保障。

二、培养逻辑推理的严密性思想

学生在证明过程中,极容易想当然,而忽视推理的严密性,从而导致推导缺乏理论依据,条理不清,思维混乱。这是数学证明题的大忌。因此,在学习定理或性质的时候,教师要讲明这种逻辑关系,实现推理的层层推进,不急不躁。这样才能实现完善的数学证明。

造成推理不够严密的主要原因在概念模糊、判断失误、推理错误等几个方面,因此我们要帮助学生强化对概念的理解,从而提高判断与推理的准确性。在平时的训练中,我们还要及时对学生做题时的错误判断和不够严密的推理进行纠错、反思和归纳,培养学生逻辑推理的严密性思想,最后达到数学证明推理的无隙可乘。

三、培养间接证明的反证法思想

反证法是数学证明的上乘方法,是在综合法、演绎法等方法难于证明的时候惯用的方法。例如,证明面面平行的判定定理:“一个平面内的两条相交直线分别与另一个平面平行,那么这两个平面平行”很难正面证明,因此我们要用反证法,要让学生从两点正确认识它的依据:第一点,证明P成立,等价于证明非P不成立;第二点,证明P则Q,等价于证明非Q则非R(R可以是原命题的条件P,也可以是已知的定理或性质、法则)。对于第二点,有些学生误认为反证法就是证明原命题的逆否命题,这是错误的认识。教学中我们应让学生了解这两者之间本质的区别。把握好这两者之间的区别与联系,有利于学生深刻理解反证法思想,从而运用好反证法思想证明数学题。

四、培养间接否定的归谬法思想

归谬法与反证法有不同之处,归谬法是论证某一论题为假的反驳方法。为了反驳某一论题,首先假定它是真的,然后由此却推出一个荒谬的结论,最后根据充分条件假言推理的“否定后件就要否定前件”的规则。这种思想如运用得好,可以大大提高我们的数学思维能力,从而提高数学证明能力。

五、培养数学证明的良好思想情操

数学证明题对众多学生来讲是难题,主要是因为学生缺少对待数学证明题的良好思想情操。数学证明虽说没有诗与画的美妙,可它的构思确像艺术一样灵巧。打开数学思维的闸门,用巧妙的方法,把各知识点按照特定方式组织起来,构筑成一个完美的“数学建筑”。在这个过程中,只要形成良好的数学思维习惯,就能享受到完成数学证明的成就感。培养好这种良好思想情操,即培养了数学证明的兴趣,还从而提高了证明的效率。

以上几种思想笔者认为在数学证明过程中非常重要。把握各个知识的联系,吃透各个知识点,这是实现证明的基础;利用严密的推理,培养学生逻辑思维的能力,这是完善数学证明过程的要求;运用恰当的证明方法与思路,这是实现数学证明的必然选择;培养良好的数学证明情操,提高学习数学证明题的兴趣,这样才能让学生轻松、快乐地学习数学证明,进而提高学习数学学科的兴趣。

初二证明题中辅助线的做法 篇9

1.在△ABC中,D是BC边上的一点,CD=AB且∠BDA=∠BAD,AE是△ABD的中线,求证:

AC=2AE

2.在△ABC中,AB=5,AC=3,AD是BC边上的中线,且AD=2,求BC的长

3.在△ABC中,∠C=2∠B,AD为角平分线,求证:

AB=AC+CD

4.在△ABC中,AD为中线,交AC与E,且AF=FD求证:AE=AC 31

5.AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:

BF=AC

6.BD,CE是△ABC的高,G F是BC和DE中点,求证:FG⊥

DE

7.边长为6的菱形ABCD中∠DAB=600,E为AB的中点,F是AC上一动点,则EF+BF的最小值为

如图已知AC⊥BC,AD//BC,E是BD中点,当BC=3,AC=4,AD=6,求CE的长

在正方形ABCD中,E是AB的中点,F是AD上的一点,且AF=1

4AD,求证:CE平分∠FAB

8.已知一个凸四边形的四条边长顺次分别是a b c d且a2+ab-ac-bc=0,b2+bc-bd-cd=0那么这个四边形是

1.已知对角线互相垂直的四边形其对角线分别为6和8,那么顺次连接这个四边形的各边中点所得到的四边形的面积为()

A 12B 13C 15D 10

2.如图在梯形ABCD中,AD//BC,现分别以A,B,C,D为圆心,1cm长为半径画图,则图中阴影部分面积是()A.πcm231B.πcm2 21C.πcm2D.2πcm2 3.已知x为正数,求x21(4x)24的最小值是()

A 4B 5C 6D 7

4.已知:a,b是整数,且a+b=2,则a21b24的最小值是()ABCD

5.已知正方形ABCD的边长为8,点E,F在AB 和AC边上。AE=1,AF=3,P是对角线上的动点,则PE+PF的最小值是

6.已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值是

7.如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=6cm,BD6cm,则此梯形的高为cm.

8.如图,在梯形ABCD中,AD∥BC,ABCDAD1,B60,直线MN为梯形的对称轴,P为MN上一点,那么PCPD的最小

值为. ABCD

B

C

9.菱形ABCD中,EF分别是BC,CD上的点,若∠B=∠EAF=600,∠BAE=200求∠CEF的度数

010.已知六边形ABCDEF的6个内角都是120,CD=20,BC=8,AB=8AF=5,求这个六边形的周长

9.从等边三角形内一点向三边做垂线,已知这三条垂线段的长分别为1,3,5求这个三角形的面积。

10.在矩形ABCD中AE⊥D B,已知AB=2,AD=22,连接EC求,求EC的长

如图在正方形ABCD中,GE⊥CB,GF⊥DC,求证:AE=EF

在梯形ABCD中E,F分别是两底的中点,求证:EF=1

初二数学经典证明题 篇10

1.已知:D是AB中点,∠ACB=90°,求证:CD

1AB

2延长CD与P,使D为CP中点。连接AP,BP

∵DP=DC,DA=DB

∴ACBP为平行四边形

又∠ACB=90

∴平行四边形ACBP为矩形

∴AB=CP=1/2AB

CE平分∠BCD

CE=CE

∴⊿DCE≌⊿FCE(AAS)

∴CD=CF

∴BC=BF+CF=AB+CD

14.已知:AB=CD,∠A=∠D,求证:∠B=∠C

证明:设线段AB,CD所在的直线交于E,(当ADBC时,E点是射线AB,DC的交点)。则:

△AED是等腰三角形。

∴AE=DE

AB=CD

∴BE=CE(等量加等量,或等量减等量)

∴△BEC是等腰三角形

∴∠B=∠C.15.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:

AC-AB=2BE

证明:

在AC上取一点D,使得角DBC=角C

∵∠ABC=3∠C

∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;

∵∠ADB=∠C+∠DBC=2∠C;

∴AB=AD

∴AC – AB =AC-AD=CD=BD

在等腰三角形ABD中,AE是角BAD的角平分线,∴AE垂直BD

∵BE⊥AE

∴点E一定在直线BD上,在等腰三角形ABD中,AB=AD,AE垂直BD

∴点E也是BD的中点

∴BD=2BE

∵BD=CD=AC-AB

∴AC-AB=2BE

16.已知,E是AB中点,AF=BD,BD=5,AC=7,求DC

∵作AG∥BD交DE延长线于G

∴AGE全等BDE

∴AG=BD=

5∴AGF∽CDFAF=AG=5

∴DC=CF=2

20.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.

P E

D

做BE的延长线,与AP相交于F点,∵PA//BC BA∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线

∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形

在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线

∴三角形FAB为等腰三角形,AB=AF,BE=EF

在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC

∴AB=AF=AD+DF=AD+BC

F

证明:

CEB=∠CAB=90°

∴ABCE四点共元

∵∠AB E=∠CB E

∴AE=CE

∴∠ECA=∠EAC

取线段BD的中点G,连接AG,则:AG=BG=DG

∴∠GAB=∠ABG

而:∠ECA=∠GBA(同弧上的圆周角相等)

∴∠ECA=∠EAC=∠GBA=∠GAB

而:AC=AB BA∵ED∠C

∴△AEC≌△AGB

∴EC=BG=DG

∴BE=2CE25、如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。

DEFC

AB

证明:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵ AD=BC,∠D=∠C,DE=CF

∴△AED≌△BFC(SAS)

40.在△ABC中,ACB90,ACBC,直线MN经过点C,且ADMN于D,BEMN于E.(1)当直线MN绕点C旋转到

图1的位置时,求证: ①ADC≌CEB;②DEADBE;

(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立

吗?若成立,请给出证明;若不成立,说明理由

.(1)

①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.

∴∠CAD=∠BCE.

∵AC=BC,∴△ADC≌△CEB.

②∵△ADC≌△CEB,∴CE=AD,CD=BE.

∴DE=CE+CD=AD+BE.

(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.

又∵AC=BC,∴△ACD≌△CBE.

∴CE=AD,CD=BE.

∴DE=CE﹣CD=AD﹣BE

41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF

EC

(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵AE=AB,∠EAC=∠BAF,AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;

(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,∴EC⊥BF.

44.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由

在AB上取点N ,使得AN=AC

∵∠CAE=∠EAN

∴AE为公共,∴△CAE≌△EAN

∴∠ANE=∠ACE

又∵AC平行BD

∴∠ACE+∠BDE=180

而∠ANE+∠ENB=180

∴∠ENB=∠BDE

∠NBE=∠EBN

∵BE为公共边

∴△EBN≌△EBD

∴BD=BN

数学证明题 篇11

在梯形ABCD中,AD∥BC,AC垂直BD,若AD=2,BC=8,BD=6,求(1)对角线AC的 长。(2)梯形的面积。

梯形

解: AC于BD交接点为O 设OC=x,OA=y,OD=z,则BO=6-y,三角形而AOD以AD为底得高h1,三角形BOC以BC为底的高h2.,因为AC垂直BD,AD=2,BC=8,BD=6。故AOD和BOC都为直接三角形,根据面积法得出两个①等式三角形AOD(2h1=yz),②三角形BOC(8h2=(6-z)x).③三角形BDC(6x=8(h1+h2))根据勾股定理求的2个等式,④y^2+z^2=4,⑤x^2+(6-z)^2=64 ,由①②③解得x=4y,通过这个x,y的关系带入④⑤可以解得z=6/5,y==8/5,x=32/5,h1=24/25,h2=96/25 ,故梯形的高位 24/5。则 AC=8.梯形面积为(2+8)*24/5*1/2=24在-44,-43,-42,…0,1,2,3,…2005,2006 这一串连续整数中,前100个数的和是多少?方法一 解:前100个数的和=-(1+2+----------------------+44)+(0+1+2+3+-----------------+55)

=-(1+44)*44/2+(1+55)*55/2=550方法二 解:前100个数的和

已知p[-1,2],点p关于x轴的对称点p1,关于直线y=-1的对称点为p2,关于直线y=3的对称点为p3,关于直线y=a的对称点为p4,分别写出p1,p2,p3,p4的坐标,从中你发现了什么规律?选择题 给出任意个选项,再把正确答案的序号填在括号里,而不是正确答案,但自己首先要算出正确答案,再把正确选项的序号填在括号里。(一般在答题卡是涂

“A”,“B”,“C”或“D”)例如:x+y=3 2x=y x=(1)y=(2)A1;2 B2;1 C0;0 D无解

要看清楚是不是直接写得数,如果是,就不能写过程,不是直接写得数的要写出过程,初学者过程要求详细,学的时间久些就可以适当简略些。记得要写“解”(特别是解方程),在考试时这样的题目因为解失分很不值,也要尽量不让它失分。

算完再验算一下。直接将得数代入即可。

初中数学证明题 篇12

初中数学证明题

在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。 对不起啊 我不知道怎么把画的.图弄上来 所以可能麻烦大家了 谢谢

1.

过D作DH∥AC交BC与H。∵AB=AC,∴∠B=∠ACB.∵DH∥AC,∴∠DHB=∠ACB,∴∠B=∠DHB,∴DB=DH.∵BD=CE,∴DH=CE.∵DH∥AC,∴∠HDF=∠FEC.∵∠DFB=∠CFE,∴△DFH≌△EFC,∴DF=EF.

2.

证明:过E作EG∥AB交BC延长线于G

则∠B=∠G

又AB=AC有∠B=∠ACB

所以∠ACB=∠G

因∠ACB=∠GCE

所以∠G=∠GCE

所以EG=EC

因BD=CE

所以BD=EG

在△BDF和△GEF中

∠B=∠G,BD=GE,∠BFD=∠GFE

则可视GEF绕F旋转1800得△BDF

故DF=EF

3.

解:

过E点作EM∥AB,交BC的延长线于点M,

则∠B=∠BME,

因为AB=AC,所以∠ACB=∠BME

因为∠ACB=∠MCE,所以∠MCE=∠BME

所以EC=EM,因为BD=EC,所以BD=EM

在△BDF和△MEF中

∠B=∠BME

BD=EM

∠BFD=∠MFE

所以△BDF以点F为旋转中心,

旋转180度后与△MEF重合,

所以DF=EF

4.

已知:a、b、c是正数,且a>b。

求证:b/a

要求至少用3种方法证明。

(1)

a>b>0;c>0

1)(a+c)/(b+c)-a/b=[(a+c)b-a(b+c)]/[b(b+c)]=(ab+ac-ab-bc}/(b^2+bc)

=(ac-bc)/(b^2+bc)=c(a-b)/[b(b+c)]

a>b--->a-b>0; a>0;b>0;c>0--->b(b+c)>0

-->c(a-b)/[b(b+c]>0--->(a+c)/(b+c)>a/b

2)a>b>0;c>0--->bc

---ab+bc

--->a(b+c)

--->a(b+c)/[b(b+c)]

--->a/b<(a+c)/(b+c)

3)a>b>0--->1/a<1/b;c>0

--->c/a

--->c/a+1

--->(c+a)/a<(c+b)/b

--->(a+c)/(b+c)>a/b

(2)

make b/a=k<1

b=ka

b+c=ka+c

(b+c)/(a+c)=(ka+c)/(a+c)=(ka+kc-[k-1]c)/(a+c)=k(a+c)/(a+c)-(k-1)c/(a+c)

数学证明题解题方法 篇13

第二步:借助几何意义寻求证明思路。一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

初一数学几何证明题 篇14

1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z

证明;过E点分别作AB,BC上的高交AB,BC于M,N点.过F点分别作AC,BC上的高交于p,Q点.根据角平分线上的点到角的2边距离相等可以知道FQ=Fp,EM=EN.过D点做BC上的高交BC于O点.过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.则X=DO,Y=HY,Z=DJ.因为D是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD

同理可证Fp=2DJ。

又因为FQ=Fp,EM=EN.FQ=2DJ,EN=2HD。

又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN

又因为

FQ=2DJ,EN=2HD。所以DO=HD+JD。

因为X=DO,Y=HY,Z=DJ.所以x=y+z。

2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠BON=108°时。BM=CN还成立

证明;如图5连结BD、CE.在△BCI)和△CDE中

∵BC=CD,∠BCD=∠CDE=108°,CD=DE

∴ΔBCD≌ΔCDE

∴BD=CE,∠BDC=∠CED,∠DBC=∠CEN

∵∠CDE=∠DEC=108°,∴∠BDM=∠CEN

∵∠OBC+∠ECD=108°,∠OCB+∠OCD=108°

∴∠MBC=∠NCD

又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECN。

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:护理论文骨科下一篇:八年级思品第一学期期末试卷

付费复制
期刊天下网10年专业运营,值得您的信赖

限时特价:7.98元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题