八年轴对称图形练习题(共12篇)
八年轴对称图形练习题 篇1
六年级人教版上册数学轴对称图形同步练习题
一、认真思考,仔细填空
1.一百七十六万五千二百写作,改写成以“万”作单位的数是()万,精确到万位的近似数是()万。
2.在1到9这九个数字中,相邻的两个数都是质数的是(和),相邻的`两个数是合数的是(和)。(先填较小的数)
3.比x的8倍少5.5的数,用含有字母的式子表示是(),当x=5时,这个式子的值是()。
4.圆是轴对称图形,有()条对称轴。
5.商店出售一种圆珠笔,单价2.4元,买四送一,实际是打(8)折出售。
6.把一个长、宽、高分别是12厘米、6厘米、6厘米的长方体截成两个正方体后,表面积增加了()平方厘米。
7.在比例尺是1:40000的地图上量得两地之间的距离是5厘米,这两地之间的实际距离是()千米。
8.数据102、100、99、104、107、112、33、120、106、97的中位数是()。
9.比值一定,比的前项和后项成()比例;如果ab=1,那么a和b成()比例。
二、判断正误
1.压路机滚筒在地面上滚动一周所压路面的面积,正好是压路机滚筒的表面积。()
2.扇形统计图可以清楚地表示出各部分数量的多少。()
3.做种子发芽试验,结果100粒发了牙,30粒没有发芽,这次试验的发芽率是70%。()
4.东东身高1.40米,准能趟过平均水深1.3米的小河,不会有危险。()
八年轴对称图形练习题 篇2
一、基本图形———垂直平分线
性质:如图1, 已知AD是线段BC的垂直平分线, 则AB=AC. (线段垂直平分线上的点到线段两端的距离相等)
判定:如图1, 已知AB=AC, BD=CD, 则AD是线段BC的垂直平分线. (到线段两端距离相等的点在线段的垂直平分线上)
应用:
【分析】添辅助线往往是找出基本图形的首要条件, 它能将不完整的基本图形补充完整.这里辅助线的着眼点就是“垂直平分线”, 所以连接AF得到等腰三角形, 再利用等腰三角形性质定理证明.
证明:连接AF.
∵EF为AB的垂直平分线,
∴AF=BF,
∴∠B=∠FAB.
∵AB=AC, ∴∠B=∠C.
∵∠BAC=120°, ∴∠B=∠C=30°,
∴∠FAB=30°,
∴∠FAC=∠BAC-∠FAB=90°,
例2如图3, 在△ABC中, M、N分别是BC与EF的中点, CF⊥AB, BE⊥AC.求证:MN⊥EF.
【分析】这里辅助线的着眼点依然是“垂直平分线”.要证明的MN与EF的垂直关系以及条件中N是EF的中点, 就是提示我们MN是EF的垂直平分线, 所以连接MF与ME得到等腰三角形, 再利用等腰三角形“三线合一”证明, 从而轻松解决问题.
证明:连接MF、ME.
∵CF⊥AB,
∴△CFB是直角三角形.
又∵M是BC边上的中点,
∴MF=ME.
又∵N是EF的中点, ∴MN⊥EF.
二、基本图形———角平分线
性质:如图4, 点P是∠BOA的角平分线OE上的一点, PD⊥OB, PC⊥OA, 垂足分别为D、C.则DP=CP. (角平分线上的点到角的两边距离相等.)
判定:如图4, 点P是∠BOA内的一点, PD⊥OB, PC⊥OA, 垂足分别为D、C, 且DP=CP, 则点P在∠BOA的平分线上. (角的内部到角的两边距离相等的点在角的平分线上.)
应用:
例3如图5, OC平分∠AOB, P是OC上一点, D是OA上一点, E是OB上一点, 且PD=PE, 求证:∠PDO+∠PEO=180°.
【分析】要证∠PDO+∠PEO=180°, 而∠PDO、∠PEO在图形的不同位置, 且无平行线使它们联系起来, 若设法把其中的一个角转化为另一个角的邻补角, 问题便可以解决.由于OC是角平分线, 故可过P点作两边的垂线, 构造出两个直角三角形, 再证明这两个三角形全等即可.
证明:过点P作PM⊥OA, PN⊥OB, 垂足分别为M、N.
∵OC是角平分线,
∴PM=PN.
在Rt△PMD和Rt△PNE中,
∴Rt△PMD≌Rt△PNE,
∴∠MDP=∠NEP.
又∵∠MDP+∠PDO=180°,
∴∠PDO+∠PEO=180°.
例4如图6, 已知:∠A=90°, AD∥BC, P是AB的中点, PD平分∠ADC.求证:CP平分∠DCB.
【分析】点P在∠ADC的平分线上, 欲证点P在∠DCB的角平分线上, 可转化为证点P到这个角两边的距离相等, 这是本题证明的关键.过点P向DC引垂线, 以便充分运用角平分线的性质定理和判定定理.
证明:过点P作PE⊥DC, 垂足为E.
则∠1=∠2=90°.
又∵∠A=90°, ∴∠1=∠2=∠A=90°.
又∵PD平分∠ADC, ∴PA=PE.
∵P是AB的中点, ∴PA=PB, ∴PE=PB.
∵AD∥BC, ∴∠A+∠B=180°,
∴∠B=90°.
∴点P在∠DCB的平分线上,
∴CP平分∠DCB.
“轴对称图形”学法导航 篇3
如果两个点是以某一条直线为对称轴的对称点,那么这条直线就是连接这两点的线段的垂直平分线.
反过来,如果直线MN是线段AA'的垂直平分线,则OA=OA',∠AOM=∠A'OM=90°,沿着直线MN对折,∠AOM和∠A' OM重合,线段OA和OA'重合,从而点A和A'重合,则点A和A'是以直线MN为对称轴的对称点,于是得到:一条线段的两个端点是以这条线段的垂直平分线为对称轴的对称点.
由此可以得出对称点的作法,要作出点 A以直线MN为对称轴的对称点A',可以过点A作AO⊥MN,并延长AO到A',使OA'=OA,则点A'就是所求的对称点.
二、两个图形如果沿着一条直线对折,能够完全重合,那么称这两个图形成轴对称.
如图2,△ABC和△A'B'C'沿着直线MN对折能完全重合,则称△ABC和△A'B'C'关于MN成轴对称.
显然,在以某一条直线为对称轴的两个对称图形中,其中一个图形上的点关于这条对称轴的对称点,都在另一个图形上.
根据全等形的定义可知,以某一条直线为对称轴的两个对称图形必定全等.
三、如果一个图形沿着一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.
要注意轴对称和轴对称图形的区别,这是两个不同的概念,表示两种不同的图形,不能互相混淆.前者是两个图形关于某一条直线对称,后者是一个图形的两个部分关于某一条直直线对称.
明白轴对称图形的有关知识后,下面举例说明它在解题中的应用.
例1 某居民小区搞绿化,要在一块矩形空地上建花坛.现征集设计方案,要求设计的图案有圆和正方形(圆和正方形的个数不限),并且使整个矩形场地成轴对称图形,请在图3的矩形中画出你设计的两个方案.
解析:如图4,给出了两个设计方案(注意方案不是惟一的,只要设计出两个合理的方案即可).
例2 已知∠MON=40°,P是∠MON内一点,A为OM上的点,B为ON上的点,则当△PAB的周长取最小值时,∠APB的度数等于_______.
解析:如图5,过P作PC⊥OM于C,并延长PC到D,使CD=PC;
再过P作PE⊥ON于E,并延长PE到F,使EF=PE.
连接DF,分别交OM于A,交ON于B.连接AP、BP.
则此时所得的△PAB的周长取最小值.
易知∠CPE=140°,
于是∠APB=140°-∠APC-∠BPE=140°-(90°-∠PAC)-(90°-∠PBE)=∠PAC+∠PBE -40°=∠DAC+∠FBE-40°=∠OAB+∠OBA-40°=180°-∠O-40°=100°.
轴对称图形教案 篇4
轴对称图形
教学目标
1.知识与技能:通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识图形的对称轴,探索图形成轴对称的特征和性质。
2.过程与方法:掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴,并能在方格纸上画出一个图形的轴对称图形。
3.情感态度与价值观:培养和发展学生的实验操作能力,发现美和创造美的能力。教学重点难点
会利用轴对称的知识画对称图形。教学过程
一、创设情境,导入新课: 出示轴对称图片。
师:请欣赏下面的图形,这些图片好看吗?为什么好看?在我们生活中有许多因为对称而让人觉得美的物体。
找出各个图形的对称轴。学生相互交流。
你们还见过哪些轴对称图形?
今天我们就一起来研究这些美丽的对称图形。(板书:轴对称图形。)
二、例题讲解
(一)通过例题1探究轴对称图形的性质:
例题1:同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律?
学生交流。
引出轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
教师小结:在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等,我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
教学画对称图形。出示例题2:
引导学生思考:怎样画?先画什么?再画什么?每条线段都应该画多长?
小组讨论:
1.在讨论的基础上,让学生用铅笔试画
2.通过课件演示画的全过程,帮助学生纠正不足。师小结:
1.找出所给图形有关键点。
2.数出或量出图形关键点到对称轴的距离。3.在对称轴的另一侧找出关键点的对称点。
4.按照所给图形,顺次连结各点,就画出所给图形的轴对称图形。
三、习题巩固:
课本第83页“做一做”第1、2题。
《轴对称图形》教案 篇5
1、通过观察、操作等深入认识轴对称图形。会画一个图形的轴对称图形,掌握画图的方法和步骤。
2、经历操作、观察、想象、交流等活动,增强观察能力、想象能力和表达能力,发展空间观念?。
3、感受现实世界中普遍存在的对称现象,体验到生活中处处有数学,感受物体或图形的对称美,激发对数学学习的积极情感。
教学重点:
进一步认识轴对称图形的特点,建立轴对称图形的概念,能根据轴对称图形的概念准确地判断生活中哪些物体是轴对称图形。
教学难点:
如何通过观察、操作,使学生初步认识对称现象并找出轴对称图形的对称轴;
掌握画图的方法和步骤,能在放个纸上画出轴对称图形的另一半。
教学过程:
一、创设情境,导入新课。
欣赏图片,建立表象?师:同学们,我们先来观察这几个图片,你们发现了什么?这些图片有什么共同点?展示幻灯片中飞机、蜻蜓,蝴蝶的图片生:它们两侧的图形是完全一样的。
师:是的,还有吗?
生:从中间对折后两侧能够完全重合。
师:同学们真是火眼金睛!说得真棒!像这样对折之后完全重合的图形就是轴对称图形(动画展示飞机、蜻蜓、蝴蝶从中间对着重合过程)那么生活中还有像这样的的`对称现象吗?师生总结出:美丽的树叶、剪纸艺术、车标中的轴对称设计、北京奥运会的图标五环、古今中外许多著名的建筑等等都是轴对称图形。我们的大自然因这些轴对称图形变得更加美丽绚烂。
师展示一片轴对称叶子的对折后两侧完全重合的动画,并引出轴对称图形和对称轴的概念。
师:这些是轴对称图形吗?若是,请画出它们的对称轴。
生判断出是否是轴对称图形并在每个轴对称图形上画出它的对称轴。
师:同学们掌握得可真好!
二、探索新知师:看一看,数一数,你发现了什么?
生1:这个是轴对称图形
生2:点A与点A'到对称轴的距离都是3小格。
生3:A与A'点的连线与对称轴垂直。
总结:对称轴图形中,能够完全重合的两个对称点到对称轴的距离是相等的;
两个对称点的连线与对称轴是相互垂直的。
三、知识运用师:
1.动手操作:剪下教材附页上的图形,先折一折,再画出下面图形的对称轴,看看能画几条。
师生共同画出这些里面轴对称图形的对称轴,进一步学会分辨出哪些是轴对称图形。正方形有4条对称轴,等腰三角形有1条对称轴,圆形有好多条永远折不完?,我们就说圆形有无数条对称轴。
师:2.下面的图形各是从哪张纸上剪下来的?连一连。
进一步掌握轴对称图形的特点,体验到生活中处处有数学,感受物体或图形的对称美。
3.试一试,画出下面这个轴对称图形的另一半。
师:想要顺利画出图形的另一半,你有什么办法呢?根据是什么呢?学生讨论并交流。
师生共同总结:第一步:标出点A和点B;
第二步:通过数格找到对称点A'和B';
第三步:顺次连线。
四、巩固提升根据上面的方法,你能画出下面图形的另一半吗?试一试。
生根据掌握的画图方法和步骤成功画出了这个图形的完整样子(确定对称轴后,先找到对称轴左边图形的几个关键点的对称点,再连线。)
轴对称图形的课件 篇6
本课的教学对象是小学三年级的学生,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物很多,也为学生奠定了感性基础。他们的思维特点是以具体形象思维为主,同时具有初步的抽象思维能力,对于具体、直观的内容有较大的依赖性。所以,本课尽量营造一种轻松愉悦的氛围,让学生在玩中学,在观察、操作中探索研究,以多媒体课件为学习媒体,让学生自主探索,在探索中发现,在探索中学习。在教学中,我通过让学生找生活中的对称物体,欣赏图片,加强了知识与生活之间的联系。同时,学生通过动手、折一折、画一画、猜一猜、剪一剪等活动,建立起了轴对称图形的概念,探索出了轴对称图形的特征以及判断轴对称图形的方法。
教学目标:
1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。
2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。激发对数学学习的积极情感。
教学重点:
使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
教学难点:
引导学生自己发现和认识轴对称图形的一些基本特征。
教学准备:
多媒体课件一套,每小组有不同的图形一套,小剪刀等。
教学过程:
一、创设情境,引入新课
情境导入:昆虫家族今天开了个舞会,它们正欢快的飞舞着。看!它们向这儿飞来了,不过只有它们的半个身影。它们说:“只要你猜对我们是谁,我们就会出现。”
1、请你猜一猜,他们分别是什么?
2、提问:你们怎么猜得这么准啊?(它们的两边都是一模一样的。)
小结:像这些昆虫的两边是一模一样,我们就说它是对称的。
【设计意图:从学生熟悉的事物入手,根据学生的感知规律,创设了有趣的“猜一猜”情境,不但激发了学生的学习兴趣,同时昆虫图形的介入为学生感知轴对称图形的特征作了铺垫。】
师:老师这还带来了一组对称物体的照片,请大家来观察,看看这些照片有什么共同之处。
生:左右两边一模一样。
二、合作交流,感悟新知
1、初步感知
过渡:刚才同学们的观察都很准确。生活中还有哪些物体是对称的?
生:蝴蝶,裤子,鞋子,七星瓢虫等。
师:日常生活中,我们不但可以经常看到一些对称的物体,还能看到很多对称的图形。今天老师也要给你们露一手,看看我要表演什么啊?(剪纸)嗯,不过,你能猜出我剪的是什么吗?
学生回答:(剪一棵松树)。
提问:那么仔细观察这两个图形,看看它们有什么相同的地方?
引导学生,让他们说出:这两个图形的两边是一模一样的,它们是对称的,中间有一条折痕。
继续提问:(出示提前准备好的一张音符图)那这个图形的两边也是一模一样的,中间也有一条折痕,那它和上面两个图形有什么不同的地方?请你们把它们对折后想一想。
引导:音符图对折后只上半部分重叠在一起,下半部分不重叠。像这样只有一部分重合在一起,我们就称为是部分重合。(板书:部分重合)而松树图和爱心图对折后能全都重合在一起。
小结:对折后能全都重合在一起,我们称为是完全重合。(板书:完全重合)像这样对折后能完全重合的图形我们叫它轴对称图形。这条折痕就是对称轴,我们用点划线来表示。
揭题:这就是我们这节课要学习的内容轴对称图形。(板书:轴对称图形)
同桌互相说一说什么是轴对称图形。
【设计意图:通过折音符图形,得出音符图形只有部分重合,在与松树、爱心图形的比较中,感受部分重合与完全重合的区别,学生对“完全重合”的认知已经非常地清晰,从而深刻理解轴对称图形的特征。】
2、加深理解
过渡:同学们说的真好。这里有三张照片,是我对同一只杯子从不同的角度拍的。
(1)出示这是从杯子的正面拍的。这个图形是轴对称图形吗?对称轴在哪?
(2)出示这是从杯子的上面拍的。这个图形是轴对称图形吗?对称轴在哪?
小结:对称轴可以有不同的方向。
(3)出示这是从杯子的侧面拍的。这个图形是轴对称图形吗?那你有办法把它变成轴对称图形吗?(添柄、去柄)
小结:同一只杯子由于观察的角度不一样,看到的图形有时是轴对称图形,有时不是轴对称图形。
【设计意图:通过不同角度的杯子照片,让学生明白可以横着画对称轴,也可以竖着画对称轴,也可以斜着画对称轴,对称轴可以有不同的方向。】
三、动手操作,巩固新知
1、折一折
过渡:今天我给大家带来了一些老朋友,你还认识它们吗?那我们就一起说出它们的名字。
(1)下面请你们用对折的方法,看看哪些是轴对称图形,哪些不是轴对称图形?
(2)生折交流汇报。
平行四边形不是轴对称图形。为什么不是,你是如何证明的?(对折后不能完全重合)
能不能折一次就好了?
小结:我们要判断一个图形是不是轴对称图形,要看它对折后能否完全重合。
(3)那其他四个图形都是轴对称图形吗?你是怎样判断的?
生演示并说明理由
等腰三角形、等腰梯形有一种对折方法,长方形有两种对折方法,圆有无数种对折方法。
小结:这些图形不管只有一种对折方法还是很多种对折方法,只要对折后能完全重合的图形,就是轴对称图形。
2、判断
过渡:刚才同学们都用对折的方法来判断是不是轴对称图形。现在,不对折,你能用眼睛看出来吗?真的?现在就考考你们。
出图生判断,说说对称轴在哪?
【设计意图:练习设计体现生活化、多样化、层次分明,同时也让学生再一次感受到数学与生活的密切联系。即让学生巩固理解轴对称图形的特征,同时又突出轴对称图形的重要性。】
四、再次探索,掌握画图方法
过渡:刚才我们是根据一半的图形猜出另一半,那如果告诉你轴对称图形的一半,你能画出它的另一半吗?
(1)生尝试画一个,汇报交流
你是如何画的?你为什么要和这个点连起来?这两个点为什么不用找?
(2)方法小结:第一步找对称点,第二步依次连线。
说明在找对称点的时候,如果图形的顶点在对称轴上,那么这个点的对称点就是它自己,就不用找了。
(3)用这种方法完成其他两幅图并汇报交流。
五、全课总结,分享收获
今天,我们学习了轴对称图形,你有哪些收获呢?
六、欣赏图片,拓展知识
留心我们的生活,你会发现轴对称图形、对称现象的物体无时无刻都在美化我们的生活。蝴蝶、蜻蜓等因为有了对称的翅膀,才能自由飞翔;我们的服装因为对称才显得大方、典雅;古今中外,有许多著名的建筑也是对称的,多么神奇,多么美丽。我们只要用心思考,就会感到对称的力量。
轴对称图形教学反思 篇7
遵义县尚嵇中学八(3)班教师刘昌华
对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征
一、1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。
2、剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称
图形特征的初步感知。
二、这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后
折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。
三、想办法做出一个轴对称图形、并分组展示自己的作品。这是本节课第三次操作安排,且是在学生对轴对称图形有一个较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对
《轴对称图形》教学反思 篇8
讲过《轴对称》这节课,我有了新的认识,以下是我的几点收获:
第一、要明白课一开始复习对称轴是为了什么,也就是要明白你的每一节课上每一处的教学设计的意图。我想,在这里复习对称轴是为了唤起学生已有的轴对称图形、对称轴的生活经验,同时为本节课进一步认识轴对称图形的对称轴,探索轴对称图形的对应点与对称轴之间的关系——轴对称图形上两个对称点到对称轴的方格数(距离)相等做铺垫吧!
第二、在我让孩子举例说明“生活中你见过哪些轴对称图形?”,学生说的都是生活中的物体,这时老师可以指出我们今天研究的轴对称图形是平面图形,比如他们说黑板,课桌时,我可以适当的加以纠正“黑板,课桌的面是轴对称图形”!
第三、开始让学生指出图形的对称轴时,不能只让她们简单地用手比划一下,而是应该让他们在书上画一画,语言上的叙述也要在老师的引导下进一步规范严谨。比如说:中间那条线是对称轴,应该是“上下两条线的中点的连线所在的直线是对称轴”。
第四、在处理本节课的重点“在操作中探索轴对称图形的特征和性质时”,老师一定要放手,主动权给孩子,重点要让学生说,然后他们才会画。先让学生找一对对称点,然后连接对称点,从图中发现两条虚线相交之处有直角符号,直角符号表示两条虚线垂直,这样才会清楚地发现对称点的连线与对称轴是垂直的关系。接着再数一数点A和其对称点到对称轴的距离,知道点A与其对称点到对称轴的距离都是3小格。这两个特征要给孩子时间去操作去发现去尝试,尝试才有发现,发现才有创新!耐下心来,总有学生会发现的!
然后再找其他对称点,去验证这两个特征,这个过程是需要时间的,没有经过具体的操作,学生是发现不了的。经过几次这样的操作活动,使学生明白轴对称图形上两个对称点到对称轴的方格数(距离)相等,加深学生对轴对称图形特征的认识。
第五、在发现对称轴两边的对称点到对称轴的距离相等之后,还要指出特殊的一类点:对称轴上的点,他们的对称点在哪?使学生明白点沿着对称轴折过去之后跟谁重合对称点就是谁,从而他们才明白这一类点的对称点就是它本身,也在对称轴上。
第六、要给学生强调画图的时候要用铅笔和直尺,而我在课堂上只强调了画图要用直尺,这一点以后一定改正。
第七、在讲本节课的第二个知识点补全轴对称图形的另一半时,最后要引导学生归纳总结这类画图题的方法步骤:
1、“找”,找出图形上的端点或者说关键点。
2、“定”,根据对称轴确定每一个端点的对称点。
3、“连”,依次连接这些对称点,得到轴对称图形的另一半。
小学阶段的画图,还是要给学生规范方法步骤的。
《轴对称图形》教学反思 篇9
本课教学内容在课本的基础上作了一些调整,包括作线段的垂直平分线、作对称轴、作轴对称图形等内容。
最大的优点是:两个重要的题型能够比较地理解和掌握,已知直线和直线的同侧有两点A、B,在直线上求一点P,使点P到点A、B的距离相等;已知直线和直线的同侧有两点A、B,在直线上求一点P,使点P到点A、B的距离和最小相等。
最难处理的问题是第二个典型应用的引导,作法为:作点A关于交直线l的对称点A′,连接A′B,交直线l于点P,证明这个点使距离之和最小很好启发引导,但是为什么能够想到这样作图,是比较难处理的问题,我在设计这个问题时,要求学生把直线想象成镜子(平面镜),由点A经过平面镜看点B,光线经过的路线就是最短的路径,因此,使我们选择了这样的作图方法。更难的应用,已知∠XOY,和角内部的点A,在OX、OY上分别作点B、C,使△ABC的周长最小。引导学生思考时,还是可以把OX、OY看成两面镜子,学生理解起来能够更便利些。
《轴对称图形》教学反思 篇10
参加参加第23届现代与经典小学数学观摩研讨会后,模了刘老师的《轴对称图形》一课。应该说这节课上得非常成功,用了老师原版的课件,老师课堂上设计意图和对学生的思维训练也都落实到位了。会后,老师们也给予了一定的肯定。
刘老师的课自然、朴实、亲切、睿智、深刻而又不失幽默。首先在题目上做文章。从倒过来的题目开始,教师就渗透轴对称的现象,让学生直观感受。接下来老师有意画坏一个轴对称图形,让学生初步感知不对称、不一样。然后启迪思维怎样一次得到一个完整的轴对称图形,有同学说用电脑,有同学想到折纸的方法。刘老师的课能让学生放松下来,参与到活动中去,比如课上让学生边做动作、做喊“翻上去”、“打开”学北风“呼-呼”,看起来好似学生表面参与,其实在学生的一翻一开当中,建立了空间观念。教学思路非常明确,学生的学习进展感觉是水到渠成,自然需要。练习设计有趣且有较强的思考价值。有判断实物图古汉字、交通标志是否成轴对称图形,找红点的对应点等题目。多角度备课,以使教学资源更广泛,学生在辨析中学习。
简单剪纸轴对称图形 篇11
剪纸民间剪纸来源于生活,剪纸的创作者把他们对生活、对自然的认识、感悟以剪纸这种特殊的艺术形式表现出来,是他们内心情感的一种表达,因此,这种艺术表达重在表现神似,而不是表现形似。同时,受剪纸工艺的限制不宜采取完全写实的手法,只能采用突出表现对象轮廓特征的手法,运用变形、夸张,以突出表现对象的特征;因此夸张和变形成为剪纸中最常用的表达语言之一。夸张变形是人类创造性劳动的成果和智慧的结晶,无论是仰韶文化的彩陶纹饰,殷商青铜器的图形纹样,还是秦汉的石刻艺术,都是以艺术夸张之美来显示其永恒的艺术魅力;剪纸作为原始艺术的.直接承载体,在夸张变形方面有着突出的表现。民间剪纸的表现内容多来源于现实生活,并且大多反映劳动人民身边的生活、事物,但它并非只是对其作品所要表现的物象进行简单、直观的模拟,而是超越现实客观表现,通过夸张和变形改变对象的性质、形式等来改变自然原形的惯常标准。
民间剪纸的创造者把剪纸视为生活的一部分,对美好生活的向往以及对远古图腾的崇拜,是民间剪纸表达的主要内容;而表现这些充满民俗、信仰、哲学的主题,只能从主观出发去想象,这就使剪纸的形象随心所欲,而描绘内心物象离不开夸张的艺术语言。
民间剪纸造型的夸张,是对繁杂内容条理化,规范化的过程,不是对自然客观的描摹;因此,剪纸中的形象比原型更突出,更引人注目。这是由大的历史文化背景和生存环境所决定的,源于充实丰富的人生生活。同时,对生活素材进行去粗取精,删繁就简的处理,也是民间剪纸造型的基础。剔除非本质的东西,突出有特征,有性格的部分,化复杂为单纯进行艺术再创造即是民间剪纸的夸张。夸张是在省略的基础上强调对象的特征,对物象最特殊的部分作扩大、缩小、伸长、加粗、变形等的处理,使形象更具特征性和艺术魅力;在很多民间剪纸作品中,人物的面部造型几乎只能看到眼睛,因为在人们的观念中,眼睛最能传神,所以创造者对人的眼睛进行了夸张的处理。
民间剪纸的夸张,在为体现物象特征的同时,也要求达到装饰美的目的,并在装饰美的效果中表现出创作者对生活的理想、愿望等精神追求;为了让需突出的部分更明确、更集中、更引人注目,往往在物象上添加一些纹饰,以达到完美的装饰性目的。求美的意愿也成为夸张的内容之一。表现人物时,把人物的衣服上缀满花朵;描绘动物时,把动物身上的毛皮夸张成漩涡状,或在其身上直接添加图案,这使原本普通的形象变得通透,体现出很强的装饰性。锯齿形和月牙形是民间剪纸常用的装饰纹样。
轴对称图形的认识教案 篇12
一.教学目标
1、初步认识轴对称图形的基本特征。使学生理解对称轴的 含义,能画出轴对称图形的对称轴。
2、通过学生动手操作等实践活动,培养学生的观察能力和想象能力。
二、教学重点:认识轴对称图形的基本特征,能画出轴对称图形的对称轴教学难点:能画出轴对称图形的对称轴。
三、教学过程
(一)故事导入,激发兴趣。
(二)探究新知,感受对称
(1)引导观察,感知对称。
(2)认识“轴对称图形”。
想象一下,如果我们把这些图形的左边和右边对折起来,会发生什么情况呢?
小结:如果把一个图形对折以后,两边的图形能够完全重合,我们就把这样的图形叫做轴对称图形。
(3)怎样剪一个轴对称图形。
(4)认识对称轴。仔细观察,这些轴对称图形的中间都有什么?
三、巩固深化,拓展延伸
(1)显身手。(辨对称)
(2)猜图形、画图形。(猜对称)
(2)对称轴。(玩对称)
四、全课总结:同学们,今天这节课你有什么收获?
板书设计:
轴对称图形的认识
1.什么是对称轴?
【八年轴对称图形练习题】推荐阅读:
小学轴对称图形的练习05-26
图形的运动《轴对称图形》教案05-08
教案轴对称图形08-02
作轴对称图形教案07-13
轴对称图形教学反思08-15
数学《轴对称图形》的教案08-10
轴对称图形演讲稿09-07
美丽的轴对称图形作文11-10
轴对称图形教学设计12-18
轴对称图形教学案例01-07