数量关系之抽屉原理

2024-09-20

数量关系之抽屉原理(精选10篇)

数量关系之抽屉原理 篇1

国家公务员考试行测辅导:数量关系之抽屉原理

【导读】抽屉原理是一类特别典型的考察数学思维能力的题型,在各类公务员考试中也是频频出现。然而在考试过程中,主要考察到的是抽屉原理中的最不利原则应用,也就是所谓的“答案=最不利+1”。这个原则几乎可以应对现有的题目,但有的考生对什么抽屉原理,还不是很清楚。

推荐:华图内部教案全面升级抢购中 包邮仅39.9元可抢华图千元大礼包 Q群:84482807

下面给大家主要介绍完整的抽屉原理,供基础较好的考生复习。

抽屉原理在小学时候就学过,对其两个版本的认识,考试中出现最多的是第二种。

抽屉原理1:将n+1个物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。抽屉原理2(加强版的抽屉原理):

将m件物品任意放入n个抽屉(m>n),(1)当m是n的整数倍时,那么至少有一个抽屉中的物品件数是不少于m÷n件;

(2)当m不是n的整数倍时,那么至少有一个抽屉中的物品件数是不少于[m÷n]+1件。注:若m÷n =a„b,那么就说[m÷n]=a,也就是只要商,余数不要了。

重点分解:

(1)物品数比抽屉数多,抽屉原理1的情形包含于这个原理中;

(2)解决的是抽屉的存在性;

(3)在解题时,遇到“有一个抽屉中的物品数不少于A件”,其中A>2时,应使用抽屉原理2。

(4)原理的结论也可以理解为:“总有不少于m÷n件(或[m÷n]+1件)物品在同一个抽屉中。”相同的即为“抽屉”。

通俗一点的说,最不利的情形就是“平均分”,这样每个抽屉中的物品数都不太多都是[m÷n]个。若m÷n有余数,那么多出来的余数个物品也按照最不利的情形来分配,这国家公务员| 事业单位 | 村官 | 选调生 | 教师招聘 | 银行招聘 | 信用社 | 乡镇公务员| 各省公务员|

政法干警 | 招警 | 军转干 | 党政公选 | 法检系统 | 路转税 | 社会工作师

样就能保证抽屉中的物品尽量地少。也就是说这余数个物品也平均地往抽屉中放,这样有的抽屉会再放入一个物品,而有的就分不到,那么至少会有一个抽屉中的物品数不少于[m÷n]+1个。这也解释了物品数是不少于[m÷n]+1,而不是“不少于[m÷n]+余数”。

【例】某单位组织25名党员参加党史、党风廉政建设,科学发展观和业务能力四项培训,要求每名党员参加且只参加其中的两项。无论如何安排,都有至少有多少名党员参加的培训完全相同?

A.3 B.4 C.5 D.6

分析:从问题出发找抽屉,相同的是答案,这就是抽屉。求抽屉数可采用组合,从4个科目中选2个,共有6中组合方式,所以构成6个抽屉。物品为25名同学。由25÷6=4„„1,由抽屉原理2,至少有4+1=5名同学的科目是完全一样的。故本题选C。

抽屉原理还有一种就是反过来求总人数,比如说本题改为“某单位组织党员参加党史、党风廉政建设,科学发展观和业务能力四项培训,要求每名党员参加且只参加其中的两项。无论如何安排,都有至少5名党员参加的培训完全相同,问该单位至少有多少名党员?”那么着就变成了你应用,解法也是先构造最不利情形,每种组合科目最不利时有4人选,所以一共有4*6+1=25人。

抽屉原理最难的也无外如是,它需要结合排列组合先求出总抽屉数,各位考生需要下去多在网上找找相关题目出来做。

国家公务员| 事业单位 | 村官 | 选调生 | 教师招聘 | 银行招聘 | 信用社 | 乡镇公务员| 各省公务员|

政法干警 | 招警 | 军转干 | 党政公选 | 法检系统 | 路转税 | 社会工作师

数量关系之抽屉原理 篇2

二、数字推理:一般5-10道小题,

①试题特点:主要考查考生对一组数列的敏感性及规律把握。

②题型:两种:1。数列填空推理

2。圆圈数字推理

③ 应试方法:

1、观察题干,大胆假设:观察题干数列,分析数列中规律,尤其注意前两个数、前三个数、前四个数之间的关系,大胆提出假设,用以验证前后数,若得到验证,即找出规律;若假设被否定,应改变思考角度,重新寻找规律。

2、根据题型,合理用法:数列空缺项在最后,从前往后推导;数列空缺项在最前面,从后往前推导;数列空缺项在中间可以两边开花,同时推导。

3、强记数字,增强题感:记20以内的平方,10以内的立方,30以内的质数。

4、拓宽思路,克服定思:克服习惯的等差数列等惯性思维来解题。应拓宽思路,从①正负数、奇偶数交叉,②加减乘除,③升降幂,④两数组合,⑤项数的平方、立方或加减常数等多角度观察,灵活思考,找出解题的规律。

5. 掌握规律,便于应对:日常学习训练时,要善于总结常考题型规律和解题方法并熟得灵活掌握,以便考场应对。

6.圆圈数字推理:(1)。注意每个圆圈的四个数字之间的加减乘除的关系;

(2)。注意它们之间加减乘除的顺序、方向和组合关系:上下数字、左右数字、对角数字的关系。

三、数学运算;

①试题特点:

a 题量:10-15道

b 题型:数学算式题   数学文字应用题  以数学文字应用题为主

c 难度:不超过初高中数学水平部分题型偏难,略带智力测验的倾向

d 目的:考查考生的数学基本运算能力和技巧,考生思维敏捷,运算速度,熟练掌握和运用一些解题方法与技巧。考查考生对数学的敏感性。

②应试方法:

a 认真审题,仔细观察:仔细观察题型特征和答案选项的特点,寻找解题的突破口。

b 缜密思考,寻找捷径:部分技巧性的题目,硬算浪费时间,效果不好,必须正确运用一些捷径的解题方法。数字运算题解题方法:1、凑整法题2、观察尾数法题 ;3、基准数法题;4、求等差数列和法题等。数学运算题解题方法:1、画图法,2、代入法,3、假设法,4、试错法,5、排除法,6、列公式法,7、列方程法,8、猜测法等。方法得当,事半功倍。

c 总结规律,思考方法:平时训练时,注意总结常考题型的解题规律和思考方法,若

能熟练、灵活的运用,亦会事半功倍。常考题型如:行程问题,工程问题,比例问题,分数问题,水池放水问题,年龄问题,降价问题,栽树问题等等。

d 心算为主,笔算为辅:所谓“心算”就是计算前先理出解题思路,再用“笔算”算

出准确结果;必要时需解方程。往往许多技巧性的题根本不需直接笔算,“心算”就能使答案一目了然。

e 先易后难,先质量后数量:先解容易的,难题置于后,把该拿到的分拿到手,是考

试致胜的法宝。难易题对大家往往都是公平的。而该拿的分拿不到手,往往是某些考生的致命伤,做题顺序必须调整。

f 注意常识运用,防止误导受骗:部分有些生活经验的常识性考题,在解题中必须注

抽屉原理 篇3

一、起源

抽屉原理最先是由19 世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的.这个原理可以简单地叙述为“把10个苹果,任意分放在9 个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”.这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果.抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用.二、抽屉原理的基本形式

定理1,如果把n+1 个元素分成n 个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素.证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1 个元素,从而n 个集合至多有n 个元素,此与共有n+1 个元素矛盾,故命题成立.在定理1 的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名.同样,可以把“元素”改成“鸽子”,把“分成n 个集合”改成“飞进n 个鸽笼中”.“鸽笼原理”由此得名.解答抽屉原理的关键:

假设有3 个苹果放入2 个抽屉中,则必然有一个抽屉中有2 个苹果,她的一般模型可以表述为:

第一抽屉原理:把(mn+1)个物体放入n 个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。

若把3 个苹果放入4 个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:

第二抽屉原理:把(mn-1)个物体放入n 个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

抽屉原理一

把4 只苹果放到3 个抽屉里去,共有4 种放法,不论如何放,必有一个抽屉里至少放进两个苹果。

同样,把5 只苹果放到4 个抽屉里去,必有一个抽屉里至少放进两个苹果。

更进一步,我们能够得出这样的结论:把n+1 只苹果放到n 个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。

利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所 学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。

抽屉原理二

这里我们讲抽屉原理的另一种情况。先看一个例子:如果将13 只鸽子放进6 只鸽笼里,那么至少有一只笼子要放3 只或更多的鸽子。道理很简单。如果每只鸽笼里只放2 只鸽子,6 只鸽笼共放12 只鸽子。剩下的一只鸽子无论放入哪 只鸽笼里,总有一只鸽笼放了3 只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。

抽屉原理2:将多于m×n 件的物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的。假定这n 个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m 件,这样,n 个抽屉中可放物品的总数就不会超过m×n 件。这与多于m×n 件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n 个抽屉中每 个都放入m 件物品,共放入(m×n)件物品,此时再放入1 件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m +1)件物品。这就说明了抽屉原理2。

不难看出,当m=1 时,抽屉原理2 就转化为抽屉原理1。即抽屉原理2 是抽屉原理1 的推广。我们很容易理解这样一个事实:把3 只苹果放到两个抽屉中,肯定有一个抽屉中有2 只或2 只以上的苹果。用数学语言表达这一事实,就是:将n+1 个元素放入n 个集合内,则一定有一个集合内有两个或两个以上的元素(n 为正整数)。

这就是抽屉原理,也称为“鸽笼(巢)”原理。这一原理最先是由德国数学家狄里克雷明确提出来的,因此,称之为狄 里克雷原理。

抽屉原理还有另外的常用形式:

抽屉原理2:把m 个元素任意放入n(n < m)个集合里,则一定有一个集合里至少有k 个元素,其中:

抽屉原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

抽屉原理又叫重叠原则,抽屉原则有如下几种情形。

抽屉原则①:把n+1 件东西任意放入n 只抽屉里,那么至少有一个抽屉里有两件东西。

抽屉原则②:把m 件东西放入n 个抽屉里,那么至少有一个抽屉里至少有[m/n]件东西。

《抽屉原理》教学反思 篇4

仙居县岭下张小学王胜

《抽屉原理》是义务教育小学数学六年级下册数学广角的内容,《抽屉原理》教学反思。数学课程标准指出,数学教学是师生互动与发展的过程,学生是数学学习的主人,教师是课堂的组织者、引导者和合作者。本节课的教学我依据学校的新课堂理念,注重先学后教,给学生提供自主学习的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解抽屉原理,学会用抽屉原理解决简单的实际问题,教学反思《《抽屉原理》教学反思》。回顾本堂课的教学,有以下几点思考:

1、通过一道世界名题,激发学生的探究兴趣,让学生在思想上产生学习新知识的愿望,产生一种需要认识和学习的心理。

2、“激趣导入---建立模型---解释应用”是新课程所倡导的教学模式。本节课运用这一模式,让学生经历探究“抽屉原理”的过程,初步了解“抽屉原理”的一般模型,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。

3、本节课的教学,有意识的培养学生的“模型思想”,让学生理解抽屉原理的一般化模型。在学生解决了“4枝铅笔放进3个盒子中”的问题后,继续思考类推,得出一般性的结论。这样设计,循序渐进,提升了学生的思维,发展了学生的能力。

当然,本堂课还有许多值得商榷和不足的地方,课后,在听了张校长的点评之后,更是对这堂课的不足之处有了更深的认识:

1、世界名题的设计对于六年级的学生来说相对偏难,应该在设计上下点功夫,深入浅出。

2、课前的先学部分,可以设计一张导学单来代替看书,可以让学生通过动手操作,亲身经历“把4支铅笔放进3个文具盒中”所有情况,进而得出结论“不管怎么放,总有一个文具盒中至少放进2支铅笔”,紧接着再回过头去解释结论,从而重点引出“假设法”。通过“操作——总结——解释”等一系列活动,真正提高学生的自学兴趣和自学能力。

抽屉原理 篇5

赵民强

抽屉原理一

把n+1个苹果放入n个抽屉中,则必有一个抽屉中至少放了两个苹果.在解答实际问题时,关键在于找准什么是“抽屉”和什么是“苹果”.下面包通过几个例题来熟悉、掌握这个原理。

1、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

解: 首先要确定摸出的3枚棋子的颜色可以有多少种不同的情况.可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,我们把它看作是4个抽屉.把每人取的3枚棋子作为一组,每组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?

解: 扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,把摸牌的人看成”苹果”,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。

3、从2、4、6、„、30这15个偶数中,任取9个数,证明:其中一定有两个数之和是34。解:我们用题目中的15个偶数配对,制造8个抽屉:如下图

凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。

现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。

4、从1、2、3、4、„、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

解:在这20个自然数中,差是12的有以下8对:

{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到 :只少有两个数在同一个抽屉中,保证它们的差是12。

例5、证明:在任取的5个自然数中,必有3个数,它们的和是3的倍数。

解: 自然数按照被3除所得的余数分别为0、1、2,把全体自然数分成3类,即构成3个抽屉.如果任选的5个自然数中

(1)有3个数在同一个抽屉,那么这3个数除以3得到相同的余数r,所以它们的和一定是3的倍数(3r被3整除)。(2)如果每个抽屉至多有2个选定的数,那么5个数在3个抽屉中的分配方案,必为1个,2个,2个,即3个抽屉中都有选定的数.这样可以在每个抽屉中各取1个数,那么这3个数除以3得到的余数分别为0、1、2.因此,它们的和一定是3的倍数。(0+1+2被3整除)例6 某校校庆,来了n位校友,彼此认识的握手问候.证明:无论什么情况,在这n个校友中至少有两人握手的次数一样多。解: 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.校友人数与握手次数的不同情况(0,1,2,„,n-1)数都是n,还无法用抽屉原理解。为此另辟蹊径

如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、„、n-2,还是后一种状态1、2、3、„、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

练习

52张扑克牌有红桃、黑桃、方块、梅花4种花色各13张,问: ①至少从中取出多少张牌,才能保证有花色相同的牌至少2张。②至少从中取出几张牌,才能保证有花色相同的牌至少5张。③至少从中取出几张牌,才能保证有4种花色的牌。

④至少从中取出几张牌,才能保证至少有2张梅花牌和3张红桃。⑤至少从中取出几张牌,才能保证至少有2张牌的数码(或字母)相同。答案: 5张, 17张,40张,43张,14张.简单的抽屉原理

(二)如果把m×n+R(R≥1)个苹果放入n个抽屉,那么,必定有一个抽屉里有n+1个苹果.再来研究几个题目

1、证明:任取8个自然数,必有两个数的差是7的倍数。

解: 在与整除有关的问题中有这样的性质: 如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是建立7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。

把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],„,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,„.在研究与整除有关的问题时,常用剩余类作为抽屉 根据抽屉原理,可以证明:

任意n+1个自然数中,总有两个自然数的差是n的倍数。

在有些问题中,“抽屉”和“苹果”不是很明显的,需要精心制造“抽屉”和“苹果”.如何制造“抽屉”和“苹果”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。

2、在边长为3米的正方形内,任意放入28个点,求证:必有4个点,以它们为顶点的四边形的面积不超过1平方米。

解:根据题目的结论,考虑把这个大正方形分割成面积为1平方米的9个小正方形(如右图)。

因为28=3×9+1,所以根据抽屉原理,至少有4个点落在同一个边长为1米的小正方形内(或边上)

如上(图),这4个点所连成的四边形的面积总小于或等于小正方形的面积,即以这4个点为顶点的四边形的面积不超过1平方米。例

3、放体育用品的仓库里有许多足球、排球和篮球.有66名同学来仓库拿球,要求每人至少拿1个球,至多拿2个球.问:至少有多少名同学所拿的球种类是完全一样的? 解:拿球的配组方式有以下9种: {足},{排},{篮},{足,足},{排,排},{篮,篮},{足,排},{足,篮},{排,篮}。把这9种配组方式看作9个抽屉。

因为66÷9=7„3,所以至少有7+1=8(名)同学所拿的球的种类是完全一样的。

4、把1、2、3、„、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17。

解:把这一圈从某一个数开始按顺时针方向分别记为a1、a2、a3、„、a10(见图).相邻的三个数为一组,有a1a2a3、a2a3a4、a3a4a5、„、a9a10d1、a10a1a2共10组。

这十组数的和的总和为

(a1+a2+a3)+(a2+a3+a4)+„+(a10+a1+a2)

=3(a1+a2+a3+„+a10)=3×55=165=16×10+5。

根据抽屉原理这十组数中至少有一组数的和不小于17。这道题还可以用下面的方法证明:

在10个数中一定有一个数是1,设a10=1,除去a10之外,把a1、a2、„、a9这9个数按顺序分为三组a1a2a3、a4a5a6、a7a8a9.下面证明这三组中至少有一组数之和不小于17。因为这三组数之和的总和为

(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)=a1+a2+„+a9 =2+3+„+10=54=3×16+6。

根据抽屉原理这三组数中至少有一组数之和不小于17。

第二种证法中去掉了最小数1,其实若去掉2、3、4也可以的,因为54=3×17+3,所以用第二种证法还可以得出至少有一组数的和不小于18的结论,而第一种证法却不能得出这个结论。

此外,由于54=3×18,因此即使第二种证法也不能由抽屉原理得出三组数中至少有一组数的和不小于19的结论.事实上,如右图中所示,划了线的三组数的和都是18(并且其他任何三个相邻数之和都小于18)。

习题

1.某校的小学生年龄最小的6岁,最大的13岁,从这个学校中任选几位同学就一定保证其中有两位同学的年龄相同?

2.中午食堂有5种不同的菜和4种不同的主食,每人只能买一种菜和一种主食,请你证明某班在食堂买饭的21名学生中,一定至少有两名学生所买的菜和主食是一样的。

3.证明:任取6个自然数,必有两个数的差是5的倍数。

4.为了欢迎外宾来校参观,学校准备了红色、黄色、绿色的小旗,每个同学都左右两手各拿一面彩旗列队迎接外宾.至少有多少位同学参加,才能保证其中至少有两个人不但所拿小旗颜色一样,而且(左、右)顺序也相同?

5.从10至20这11个自然数中,任取7个数,证明其中一定有两个数之和是29。

6.从1、2、3、„、20这20个数中,任选12个数,证明其中一定包括两个数,它们的差是11。7.20名小围棋手进行单循环比赛(即每个人都要和其他任何人比赛一次),证明:在比赛中的任何时候统计每人已经赛过的场次都至少有两位小棋手比赛过相同的场次。解答

1.从6岁到13岁共有8种不同的年龄,根据抽屉原理,任选9名同学就一定保证其中有两位同学的年龄相同。

2.共有4×5=20(种)不同的买饭菜的方式,看作20个抽屉,21名同学按照买饭菜的方式进入相应的抽屉,根据抽屉原理,至少有两人属于同一抽屉,即他们所买的菜和主食是一样的。

3.把自然数按照除以5的余数分成5个剩余类,即5个抽屉.任取6个自然数,根据抽屉原理,至少有两个数属于同一剩余类,即这两个数除以5的余数相同,因此它们的差是5的倍数。4.持两面彩旗的方式共有以下9种:

红红、黄黄、绿绿、红黄、黄红、红绿、绿红、黄绿、绿黄.把这9种持旗方式看作9个抽屉,根据抽屉原理可得出,至少要有10个同学,才能保证他们当中至少有两人不但拿小旗的颜色一样而且顺序相同。

5.将这11个自然数分成下列6组: {10,19},{11,18},{12,17},{13,16},{14,15},{20},从中任取7个数,根据抽屉原理,一定有两个数取自同一数组,则这两个数的和是29。6.把这20个数分成下列11个组。{1,12},{2,13},{3,14},„{9,20},{10},{11}.其中前9组中的两数差为11.任取12个数,其中必有两个数取自同一数组,则它们的差是11.7.如果有一个人赛过0次(即他还未与任何人赛过),那么最多的只能赛过18次;如果有人赛过19次(即他已与每个人都赛过了),那么最少的只能赛过1次.无论怎样,都只有19种情况,根据抽屉原理,20名棋手一定有两人赛过的场次相同。

数学竞赛简单的抽屉原理

把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:

抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。

如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。

比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、„等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。

应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

分析与解答 首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 分析与解答 扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。

例3 证明:任取8个自然数,必有两个数的差是7的倍数。

分析与解答 在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。

把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],„,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,„.在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。

在有些问题中,“抽屉”和“苹果”不是很明显的,需要精心制造“抽屉”和“苹果”.如何制造“抽屉”和“苹果”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。

例4 从2、4、6、„、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。分析与解答 我们用题目中的15个偶数制造8个抽屉: 26 24

凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。

现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。

例5 从1、2、3、4、„、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。分析与解答在这20个自然数中,差是12的有以下8对:

{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。

另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,„,12),那么这12个数中任意两个数的差必不等于12)。例6 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质):

{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。

从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。

例7 证明:在任取的5个自然数中,必有3个数,它们的和是3的倍数。

分析与解答 按照被3除所得的余数,把全体自然数分成3个剩余类,即构成3个抽屉.如果任选的5个自然数中,至少有3个数在同一个抽屉,那么这3个数除以3得到相同的余数r,所以它们的和一定是3的倍数(3r被3整除)。

如果每个抽屉至多有2个选定的数,那么5个数在3个抽屉中的分配必为1个,2个,2个,即3个抽屉中都有选定的数.在每个抽屉中各取1个数,那么这3个数除以3得到的余数分别为0、1、2.因此,它们的和也一定能被3整除(0+1+2被3整除)。

例8 某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

分析与解答 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.校友人数与握手次数的不同情况(0,1,2,„,n-1)数都是n,还无法用抽屉原理。

然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、„、n-2,还是后一种状态1、2、3、„、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

抽屉原理 篇6

一、最不利原则

点子最背的情况就是最少的情况(保证完成任务)例

1、盒子里有5个蓝球,3个红球,7个黄球,① 至少取几个,才能保证三种颜色的球都有? ② 至少取几个,才能保证有2个球的颜色相同? ③ 至少取几个,才能保证有3个球的颜色相同? ④ 至少取几个,才能保证一定有红色?

练习:

1、口袋中有红、黑、白、黄球各10个,它们的外型与重量都一样,至少要摸出几个球,才能保证有6个颜色相同的球?

2、有6种颜色的小球各若干个,从中至少取多少个才能保证有5个球的颜色相同?

3、布袋里有10块红木块、10块白木块、10块蓝木块,他们的形状、大小都一样。当你被蒙上眼睛去容器中取出木块时,位确保取出的木块中至少有四块颜色相同,应该至少取出多少块?

2、黑、白、黄筷子各6根,① 至少取几个,才能保证取出两双颜色不同的筷子? ② 至少取几个,才能保证取出两双颜色相同的筷子?

③ 至少取几个,才能保证取出两双筷子(2根颜色相同位一双)?

练习:

1、有尺寸、规格相同的6种颜色的袜子各20只,混装在箱内,从箱内至少取出多少只袜子才能保证有3双袜子?

2、黑色、白色、黄色的筷子各有8根,混杂着放在一起。黑暗中想从这些筷子中取出颜色不同的两双筷子,至少要取多少根才能保证达到要求?

3、口袋中放有红、黄、白、黑四种颜色的袜子各10只,只许用手摸,不许用眼看,至少要从口袋中摸出多少只袜子才能保证配成5双?(一双是指同颜色的袜子两只)

3、一副没有王的扑克牌,至少拿几张,保证有3张同花?

4、一副扑克牌有54张,至少取几张,保证有2张点数相同?

练习:

1、一副扑克牌,至少取几张,才能保证有5张同花?

2、一副扑克牌,至少取几张,才能保证有3张点数相同?

3、一副扑克牌(大王、小王除外)有四种花色,每种花色有13张,从中任意抽牌,最少要抽几张,才能保证有四张牌是同一张花色的?

5、在1、2、3、4、5、……48、49、50这50个数中至少取多少个,才能保证一定有5的倍数?

练习:

1、在1、2、3、4、5、……48、49、100这100个数中至少取多少个,才能保证一定有8的倍数?

二、原理(重点是找抽屉)

把m个物体放到n个抽屉里,至少有k个物体同屉(m≥n),则: K=

1、某校六年级有367人,请问至少有几人是同一天生日?

练习:

1、42只鸽子飞进5个笼子里,可以保证至少有一个笼子中可以有几只鸽子?

2、某校有30名学生是2月份出生的,至少有几个同学的生日相同?

3、15个小朋友中,至少有几个是在同一个月中出生的?

2、某运输公司有35辆载客汽车,最少的有16个座位,最多的有32个座位,至少有几辆车的座位数相同?

3、某校有500名同学,参加a、b、c三个小组,每人至少参加一个小组,至少有多少个人参加的组相同?

练习:

1、某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几

种,那么其中至少有多少名学生订的报刊种类完全相同?

2、体育室里有许多足球、排球和篮球,四年级(1)班50名同学来拿球,规定每人至少拿1个球,至多拿2个球。问:至少有几名同学所拿球的种类是完全一致的?

《抽屉原理》说课稿 篇7

今天我将要为大家讲的课题是《抽屉原理》。

首先,我对本节教材进行一些分析:

一、教材结构与内容简析

本节内容在全书及章节的地位:《抽屉原理》是义务教育课程标准实验教科书第十二册第五单元第一节。本节共三个例题,例

1、例2的教材通过几个直观例子,借助实际操作向学生介绍抽屉原理,例3则是在学生理解抽屉原理这一数学方法的基础上,用这一原理解决简单的实际问题。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生的展示数学原理的灵活应用,让学生感受数学的魅力,贯穿初步的数论及组合知识。

二、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:、基础知识目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。、能力训练目标:

1)、会用“抽屉原理”解决简单的实际问题。

2)、通过操作发展学生有根据、有条理地进行思考和推理的能力,形成比较抽象的数学思维。、个性品质目标:

通过“抽屉原理”的灵活应用感受数学的魅力,产生主动学数学的兴趣。

三、教学重点、难点、关键

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。

重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。通过设计教学环节让学生动手操作,自主探索,小组合作交流的方法找到解决问题的关键,总结出解决问题的办法。

难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。通过不同类型的练习,以及观看鸽巢原理演示图,建构知识,从本质上认识抽屉原理,将抽屉原理模型化,从而突破难点。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

四、教法

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。由于本节课的教学内容较为抽象,着重采用情境教学法,直观演示法与谈话法相结合的方式进行教学。

五、学法

教学最重要的就是让学生学会学习的方法。授之以渔,而非授之以鱼!因此在教学中要特别重视学法的指导。本节课学生主要采用了自主、合作、探究式的学习方式。

六、教学程序及设想

1、由鲁宾孙航海故事 引入:把三枚金币放进两个盒子里,至少有一个盒子会放几枚金币?把教学内容转化为具有潜在意义的让学生感兴趣的问题,让学生产生强烈的求知欲望,使学生的整个学习过程成为“探索”,继而紧张地沉思,寻找理由,证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

什么是抽屉原理 篇8

在上方的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,。。。,5的手套各有两只,同号的两只是一双。任取6只手套,它们的.编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。

抽屉原理的一种更一般的表述为:

“把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么必须有一个抽屉中放进了至少k+1个东西。”

利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”正因任一整数除以3时余数只有0、1、2三种可能,因此7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。

如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:

“把无限多个东西任意分放进n个空抽屉(n是自然数),那么必须有一个抽屉中放进了无限多个东西。”

《抽屉原理》教学反思 篇9

数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。

一、生活情境导入 激发学习兴趣

情境导入,目的是让学生很快的排除外界及内心因素的干扰而进入教学内容。营造一个恰当的教学情境,让学生在思想上产生学习新知识的愿望,产生一种需要认识和学习的心理,具有极其重要的作用。基于以上认识,在引入新课时我设计了对学生来说很感兴趣的猜扑克牌游戏:任意在52张牌中抽出5张牌,不看牌面,老师敢肯定至少会有2张同花色的牌。充分调动他们思维的翅膀,给学生造成了“疑而不解又欲解之”的强烈欲望,激发他们积极思维,快速进入学习情境。

二、注重自主探究,培养问题意识。

在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的过程。

1、采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“抽屉原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。

2、在例2的教学中让学生借助直观操作发现,把书尽量多的“平均分“个各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。

3、大量例举之后,再引导学生总结归纳这一类“抽屉问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识抽屉原理。

三、注重“说理“活动,培养学生逻辑能力。

在这节课中,由于我提供的数据比较小,为学生自主探究和自主发现“抽屉原理”提供了很大的空间。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。

“金无足金,人无完人”,我们的课堂教学永远是一门遗憾的艺术,在这堂课的难点突破处,也就是让学生借助直观操作发现,把书尽量多的“平均分“个各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,我还可以对教学环节进行再安排,让学生体会到多余的物体只要不超过抽屉的个数,总有一个抽屉至少放2个物体,这样学生对“抽屉原理”规律会更清晰更明了。同时,我们要明确,教学知识不光是让学生按照公式来套用公式,这样很容易造成学生的思维定势,所以在让学生充分说理的基础上,明确把什么当作“抽屉数”,把什么当作“物体数”是相当重要的。

如果把教育教学看作一门艺术,那么我就是那个孜孜不倦追求艺术的人,虽然前进的路上会有坎坷,会有荆棘,但是有了我的坚持不懈,有了我们团队的共同努力,我相信我们一定能转变教育教学观念,在教师专业成长的道路上收获硕果。

《抽屉原理》评课稿 篇10

今天上午第三节课,代老师执教的《抽屉原理》一课,给我整体的感觉是教师教得扎实,学生学得有效。抽屉原理很抽象,依靠学生的逻辑思维能力进行教学,对于师生而言,这节课比较难上。数学广角主要是数学思想方法的渗透,提升思维水平。虽然小学阶段的抽屉原理的内容比较简单,但是学生建立抽屉原理的一般化模型是比较困难的。

本节课代老师充分放手,让学生自主思考,采用自己的方法“证明” 。 本课最大的亮点是简化了知识结构,梳理了教学内容。教师首先出示:“把3本书放进两个抽屉里,可以怎样放?”让学生叙述分法,感知:不管怎么放,至少有两本书在同一个抽屉里。本环节的设计是为了初步感知抽屉原理的特点,至少等关键词非常重要,同时也渗透了解决抽屉原理的可行性方法——枚举法。本环节初步达到了预设的教学目标。

接着出示:“把4枝铅笔放入3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔”这正是本课的难点内容。代老师用导学提纲,引导学生学生动手实验,让学生在动手操作中,体验和理解“抽屉原理”的最基本原理。然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个 物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。

上一篇:关于联谊会的领导致辞下一篇:乡土人才基本情况表