初二数学分单元测试(通用6篇)
初二数学分单元测试 篇1
初二数学单元测试题
初二数学单元测试题
第十四章 一次函数测试题
一、填空题(共13小题,每小题2分,满分26分)
1.已知:2x-3y=1,若把 看成 的函数,则可以表示为
2.已知y是x的一次函数,又表给出了部分对应值,则m的值是
3.若函数y=2x+b经过点(1,3),则b= _________.
4.当x=_________时,函数y=3x+1与y=2x-4的函数值相等。
5.直线y=-8x-1向上平移___________个单位,就可以得到直线y=-8x+3.
6.已知直线y=2x+8与x轴和y轴的交点的坐标分别是______________;与两条坐标轴围成的三角形的面积是__________.
7.一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就伸长0.5cm写出挂重后的弹簧长度y(cm)与挂重x(kg)之间的函数关系式是_______________.
8.写出同时具备下列两个条件的一次函数表达式:(写出一个即可) ______________.
(1)y随着x的增大而减小;
(2)图象经过点(0,-3).
9.若函数 是一次函数,则m=_______,且 随 的增大而_______.
10.如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是______米.
11. 如图所示,表示的是某航空公司托运行李的费用y(元)中.考.资.源.网与托运行李的质量x(千克)的关系,由图中可知行李的质量,中.考.资.源.网只要不超过_________千克,就可以免费托运.
12.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线 (k>0)和x轴上,已知点B1(1,1),B2(3,2),B3(7,4), 则Bn的坐标是______________.
13.如下图所示,利用函数图象回答下列问题:
(1)方程组 的解为__________;
(2)不等式2x>-x+3的解集为___________;
二、选择题(每小题3分,满分24分)
1. 一次函数y=(2m+2)x+m中,y随x的增大而减小,且其图象不经过第一象限,则m的取值范围是( )中.考.资.源.网
A. B. C. D. 中.考.资.源.网
2.把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6则直线AB的解析式是( ).
A、y=-2x-3 B、y=-2x-6 C、y=-2x+3 D、y=-2x+6
3.下列说法中: ①直线y=-2x+4与直线y=x+1的交点坐标是(1,1);
②一次函数 =kx+b,若k>0,b<0,那么它的图象过第一、二、三象限;
③函数y=-6x是一次函数,且y随着x的增大而减小;
④已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为y=-x+6;
⑤在平面直角坐标系中,函数 的图象经过一、二、四象限
⑥若一次函数 中,y随x的增大而减小,则m的取值范围是m>3学
⑦点A的坐标为(2,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为(-1,1);
⑧直线y=x—1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有5个.
正确的有( )
A.2个 B.3个 C.4个 D.5个
4.已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的值的大小关系是( )
A.y1>y2>y3 B.y1y2 D.y3
5.下列函数中,其图象同时满足两个条件①у随着χ的增大而增大;②与轴的正半轴相交,则它的解析式为( )
(A)у=-2χ-1 (B)у=-2χ+1 (C)у=2χ-1 (D)у=2χ+1
6.已知y-2与x成正比例,且x=2时,y=4,若点(m,2m+7),在这个函数的图象上,则m的值是( )
A.-2 B.2 C.-5 D.5
7.某公司市场营销部的个人月收入与其每月的.销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是( )
A.310元 B.300元 C.290元 D.280元
8.已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是( )
三、解答题(共50分)
1.(10分)两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答问题:
(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x (个)之间的一次函数解析式(不要求写出自变量x的取值范围);
(2 )若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度。
2.(10分)已知一次函数的图象经过A(-2,-3),B(1,3)两点.
⑴ 求这个一次函数的解析式;
⑵ 试判断点P(-1,1)是否在这个一次函数的图象上.中.考.资.源.网⑶ 求此函数与x轴、y轴围成的三角形的面积.
3.(10分)鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]
鞋长(cm) 16 19 21 24
鞋码(号) 22 28 32 38
(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上?
(2)求x、y之间的函数关系式;
(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?
4. (10分)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库。已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨。从甲、乙两库到A、B两
库的路程和运费如下表(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)
(1)若甲库运往A库粮食 吨,请写出将粮食运往A、B两库的总运费 (元)与 (吨)的函数关系式
(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
5.(10分)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)若需要这种规格的纸箱 个,请分别写出从纸箱厂购买纸箱的费用 (元)和蔬菜加工厂自己加工制作纸箱的费用 (元)关于 (个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
参考答案:
一、填空题 1. 2.-7 3. 1 4.-5 5. 4 6.(-4,0)、(0,8),16
7. y=0.5x+12 8.略 9. 1,增大 10. 504 11.20 12. 13. (1)x=1,y=2 (2)x>1
二、选择题 1.B 2.D 3.B 4.A 5.D 6.C 7. B 8.C
三、解答题
1. (1) y=1.5x+4.5 (2) 22.5
2. (1) y=2x+1 (2)不在 (3)0.25
3.解:(1)一次函数.
(2)设 .
由题意,得 解得
∴ .(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、…、26、26.5、27等)
说明:只要求对k、b的值,不写最后一步不扣分.
(3) 时, . 答:此人的鞋长为27cm.
4.解(1)(略)
(2)上述一次函数中
∴ 随 的增大而减小
∴当 =70吨时,总运费最省
最省的总运费为:37100元
答:从甲库运往A库70吨粮食,往B库运送30吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元。
5(略)
初二数学分单元测试 篇2
一、选择题
1.设等比数列{an}的前n项和为Sn, 若8a2+a5=0, 则下列式子中数值不能确定的是 () .
2.已知x>0, y>0, x, a, b, y成等差数列, x, c, d, y成等比数列, 则的最小值是 () .
(A) 4 (B) 2
(C) 1 (D) 0
3.若等比数列{an}的各项均为正数, 且a10a11+a9a12=2e5, 则ln a1+ln a2+…+ln a20等于 () .
(A) 50 (B) 25
(C) 75 (D) 100
4.设Sn是等比数列{an}的前n项和, 若, 则.
(A) 2 (B) 7/3
(C) 3/ (10) (D) 1或2
5.设Sn是等差数列{an}的前n项和, 且S1, S2, S4成等比数列, 则.
(A) 1 (B) 1或2
(C) 1或3 (D) 3
6.已知数列{an}满足a1=1, 且anan+1=2n, 则数列{an}的前20项的和为 () .
(A) 3×211-3 (B) 3×211-1
(C) 3×210-2 (D) 3×210-3
7.已知数列{an}满足 (n∈N*) , 则使不等式a2 016>2 016成立的所有正整数a1的集合为 () .
(A) {a1|a1≥2 016, a1∈N*}
(B) {a1|a1≥2 015, a1∈N*}
(C) {a1|a1≥2 014, a1∈N*}
(D) {a1|a1≥2 013, a1∈N*}
8.设数列{an}的前n项和为Sn, 且a1=a2=1, {nSn+ (n+2) an}为等差数列, 则{an}的通项公式an= () .
9.已知数列{an}满足:a1=1, (n∈N*) .若 (n∈N*) , b1=-λ, 且数列{bn}是单调递增数列, 则实数λ的取值范围是 () .
10.已知等差数列{an}中, a1>0, d>0, 前n项和为Sn, 等比数列{bn}满足b1=a1, b4=a4, 前n项和为Tn, 则 () .
(A) S4>T4 (B) S4<T4
(C) S4=T4 (D) S4≤T4
11.已知数列{an}的首项为a1=1, 且满足对任意的n∈N*, 都有an+1-an≤2n, an+2-an≥3×2n成立, 则a2 016= () .
(A) 22 015-1 (B) 22 015+1
(C) 22 016-1 (D) 22 016+1
12.在正项等比数列{an}中, , a6+a7=3, 则满足a1+a2+…+an>a1·a2·…·an的最大正整数n的值为 () .
(A) 12 (B) 10
(C) 8 (D) 6
二、填空题
13.在等差数列{an}中, a2=6, a5=15, 则a2+a4+a6+a8+a10=____.
14.已知等差数列{an}中, Sn为其前n项和.若a1+a3+a5+a7=-4, S8=-16, 则公差d=____;数列{an}的前____项和最大.
15.已知数列{an}满足a1=1, an=logn (n+1) (n≥2, n∈N*) , 定义:使乘积a1·a2·…·ak为正整数的k (k∈N*) 叫做“简易数”.
(1) 若k=3时, 则a1·a2·a3=____;
(2) 求在2 000内所有“简易数”的和为____.
16.将自然数按如下图排列, 其中处于从左到右第m列、从下到上第n行的数记为A (m, n) , 如A (3, 1) =4, A (4, 2) =12, 则A (1, n) =____;A (10, 10) =____.
三、解答题
17.已知等比数列{an}的前4项和S4=5, 且成等差数列.
(1) 求{an}的通项公式;
(2) 设{bn}是首项为2, 公差为-a1的等差数列, 其前n项和为Tn, 求满足Tn-1>0的最大正整数n.
18.已知数列{an}的前n项和为Sn, 且Sn+an=4, n∈N*.
(1) 求数列{an}的通项公式;
(2) 已知cn=2n+3 (n∈N*) , 记dn=cn+logCan (C>0且C≠1) , 是否存在这样的常数C, 使得数列{dn}是常数列, 若存在, 求出C的值;若不存在, 请说明理由.
(3) 若数列{bn}, 对于任意的正整数n, 均有成立, 求证:数列{bn}是等差数列.
19.已知数列{an}的前n项和 (n=1, 2, 3, …) .
(1) 求a1的值;
(2) 求证: (n-2) an+1= (n-1) an-1 (n≥2) ;
(3) 判断数列{an}是否为等差数列, 并说明理由.
20. (理) 已知数列{an}的首项为1, 记f (n) =a1C1n+a2C2n+…+akCkn+…+anCnn (n∈N*) .
(1) 若{an}为常数列, 求f (4) 的值.
(2) 若{an}是公比为2的等比数列, 求f (n) 的解析式.
(3) 是否存在等差数列{an}, 使得f (n) -1= (n-1) 2n对一切n∈N*都成立?若存在, 求出数列{an}的通项公式;若不存在, 请说明理由.
(文) 在数列{an}中, a1=1, (n≥2, n∈N*) .
(1) 若数列{bn}满足 (n∈N*) , 求证:数列{bn}是等比数列;
21.已知直线ln:与圆Cn:x2+y2=2an+n交于不同的两点An, Bn, n∈N*.数列{an}满足:a1=1, .
(1) 求数列{an}的通项公式;
(2) 若, 求数列{bn}的前n项和Tn;
(3) 记数列{an}的前n项和为Sn, 在 (2) 的条件下, 求证:对任意正整数n, .
22.已知数列{an}满足数列{an}的前n项和为Sn, bn=a2n, 其中n∈N*.
(1) 求a2+a3的值.
(2) 证明:数列{bn}为等比数列.
(3) 是否存在n (n∈N*) , 使得?若存在, 求出所有的n的值;若不存在, 请说明理由.
23.已知数列{an}的前n项和为Sn, 且an>0, (n∈N*) .
(1) 若bn=1+log2 (an·Sn) , 求数列{bn}的前n项和Tn;
(2) 若, 2n·an=tanθn, 求证:数列{θn}为等比数列, 并求出其通项公式;
九、不等式与线性规划
一、选择题
1.已知a>b>0, 则下列不等式成立的是 () .
2.已知p, q∈R, 则“q<p<0”是“”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
3.设a=log0.80.9, b=log1.10.9, c=1.10.9, 则a, b, c的大小关系是 () .
(A) a<b<c (B) a<c<b
(C) b<a<c (D) c<a<b
4.设a, b∈R, 则“ab>0且a>b”是“”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
5.若“x>0”是“不等式2a>a2-x成立”的必要不充分条件, 则正实数a的取值范围是 () .
(A) a>2 (B) a<4
(C) 2<a<4 (D) a>4
6.已知x, y∈ (0, +∞) , , 则的最小值为 () .
(A) 8/3 (B) 3
(C) 4 (D) 9
7.已知x, y满足约束条件若z=y-ax取得最大值的最优解不唯一, 则实数a的值为 () .
(A) 1/2或-1 (B) 2或1/2
(C) 2或1 (D) 2或-1
8.如果实数a, b满足条件则的取值范围是 () .
9.设关于x, y的不等式组表示的平面区域为D, 已知点O (0, 0) , A (1, 0) , 点M是D上的动点, , 则λ的取值范围是 () .
10.设变量x, y满足约束条件则z=|x-3y|的最大值为 () .
(A) 10 (B) 8
(C) 6 (D) 4
11.曲线y=1/x (x>0) 在点P (x0, y0) 处的切线为l, 若直线l与x, y轴的交点分别为A, B, 则△OAB的周长的最小值为 () .
12. (理) 已知满足条件x2+y2≤1的点 (x, y) 构成的平面区域的面积为S1, 满足条件[x]2+[y]2≤1的点 (x, y) 构成的平面区域的面积为S2, 其中[x], [y]分别表示不大于x, y的最大整数, 例如:[-0.4]=-1, [1.7]=1, 则S1与S2的关系是 () .
(A) S1<S2 (B) S1=S2
(C) S1>S2 (D) S1+S2=π+3
(文) 已知b>a>0, ab=2, 则的取值范围是 () .
(A) (-∞, -4] (B) (-∞, -4)
(C) (-∞, -2] (D) (-∞, -2)
二、填空题
13.一元二次不等式x2+ax+b>0的解集为x∈ (-∞, -3) ∪ (1, +∞) , 则一元一次不等式ax+b<0的解集为_____.
14.已知函数y=aex (其中a∈R) 经过不等式组所表示的平面区域, 则实数a的取值范围是____.
15.已知x, y满足条件若目标函数z=ax+y (其中a>0) 仅在点 (2, 0) 处取得最大值, 则a的取值范围是____.
16.已知函数f (x) 是R上的减函数, 且y=f (x-2) 的图象关于点 (2, 0) 成中心对称.若u, v满足不等式组则u2+v2的最小值为____.
三、解答题
17.已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率e∈ (1, 2) .若p, q有且只有一个为真命题, 求实数m的取值范围.
18.一艘船每小时的燃料费与船的速度的平方成正比, 如果此船速度是10km/h, 那么每小时的燃料费是80元.已知船航行时其他费用为500元/时, 在100km的航程中, 航速为多少时船行驶的总费用最少?此时总费用为多少元?
19.某家电生产企业根据市场调查分析, 决定调整新产品生产方案, 准备每周 (按40个工时计算) 生产空调、彩电、冰箱共120台, 且冰箱至少生产20台.已知生产这些家电产品每台所需工时和每台产值如下表:
问每周应生产空调、彩电、冰箱各多少台, 才能使产值最高?最高产值是多少? (以千元为单位)
20.设a为常数, 且a<1.
(1) 解关于x的不等式 (a2-a-1) x>1;
(2) 解关于x的不等式组
21.设函数, L为曲线C:y=f (x) 在点处的切线.
(1) 求L的方程;
(2) 当时, 证明:除切点之外, 曲线C在直线L的下方;
(3) 设x1, x2, x3∈R, 且满足x1+x2+x3=-3, 求f (x1) +f (x2) +f (x3) 的最大值.
十、三视图和立体几何
一、选择题
1.已知一个圆锥的侧面展开图是一个半径为3, 圆心角为的扇形, 则此圆锥的体积为 () .
2.a, b, c表示不同的直线, α表示平面, 下列命题正确的是 () .
(A) 若a∥b, a∥α, 则b∥α
(B) 若a⊥b, b⊥α, 则a⊥α
(C) 若a⊥c, b⊥c, 则a∥b
(D) 若a⊥α, b⊥α, 则a∥b
3.某几何体的三视图如图1所示, 该几何体的各面中互相垂直的面的对数是 () .
(A) 2 (B) 4
(C) 6 (D) 8
4.已知底面边长为1, 高为2的正六棱柱的顶点都在一个球面上, 则该球的表面积为 () .
5.一个几何体的三视图如图2所示, 则这个几何体的体积为 () .
6.若某几何体的三视图如图3所示, 则此几何体的直观图是 () .
7.某四棱锥的三视图如图4所示, 其中正 (主) 视图是等腰直角三角形, 侧 (左) 视图是等腰三角形, 俯视图是正方形, 则该四棱锥的表面积是 () .
8.已知直线m和平面α, β, 则下列四个命题中正确的是 () .
(B) 若α∥β, m∥α, 则m∥β
(C) 若α∥β, m⊥α, 则m⊥β
(D) 若m∥α, m∥β, 则α∥β
9.某几何体的三视图如图5所示, 则该几何体的体积为 () .
(A) 48 (B) 32
(C) 16 (D) (32) /3
10.如图6, 在正四棱锥S-ABCD中, E, M, N分别是BC, CD, SC的中点, 动点P在线段MN上运动时, 下列四个结论:
①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC.
其中恒成立的为 () .
(A) ①③
(B) ③④
(C) ①②
(D) ②③④
11.在正方体ABCD-A1B1C1D1中, 点E为底面ABCD上的动点.若三棱锥B-D1EC的表面积最大, 则E点位于 () .
(A) 点A处
(B) 线段AD的中点处
(C) 线段AB的中点处
(D) 点D处
12. (理) 如图7, 已知正方体ABCD-A1B1C1D1的棱长为1, E, F分别是边AA1, CC1的中点, 点M是BB1上的动点, 过点E, M, F的平面与棱DD1交于点N, 设BM=x, 平行四边形EMFN的面积为S, 设y=S2, 则y关于x的函数y=f (x) 的解析式为 () .
(文) 在正方体ABCD-A1B1C1D1中, P为底面ABCD上一动点, 如果P到点A1的距离等于P到直线CC1的距离, 那么点P的轨迹所在的曲线是 () .
(A) 直线 (B) 圆
(C) 抛物线 (D) 椭圆
二、填空题
13.空间一线段的主视图、左视图、俯视图的长度均为, 则该线段的长度为____.
14.一个几何体的三视图如图8所示, 其中正 (主) 视图和侧 (左) 视图是腰长为1的两个全等的等腰直角三角形, 则该几何体的外接球的表面积为____.
15.在四棱锥V-ABCD中, B1, D1分别为侧棱VB, VD的中点, 则四面体AB1CD1的体积与四棱锥V-ABCD的体积之比为____.
16. (理) 在长方体ABCD-A1B1C1D1中, , BC=AA1=1, 点M为AB1的中点, 点P为对角线AC1上的动点, 点Q为底面ABCD上的动点 (点P, Q可以重合) , 则MP+PQ的最小值为____.
(文) 如图9, 在正方体ABCD-A1B1C1D1中, 点E是边BC的中点.动点P在直线BD1 (除B, D1两点) 上运动的过程中, 平面DEP可能经过的该正方体的顶点是____ (写出满足条件的所有顶点) .
三、解答题
17.如图10, 在四棱锥P-ABCD中, PD⊥平面ABCD, 又AD∥BC, AD⊥DC, 且PD=BC=3AD=3.
(1) 在图11所示的方框中画出四棱锥P-ABCD的正 (主) 视图;
(2) 求证:平面PAD⊥平面PCD;
(3) 求证:棱PB上存在一点E, 使得AE∥平面PCD, 并求PE/EB的值.
18.如图12, 在边长为12的正方形AA′A′1A1中, BB1∥CC1∥AA1, 且AB=3, 且BC=4, AA′1分别交BB1, CC1于点P, Q, 将该正方形沿BB1, CC1折叠, 使得A′A′1与AA1重合, 构成图13所示的三棱柱ABC-A1B1C1.在图13中:
(1) 求证:AB⊥PQ;
(2) 在底边AC上有一点M, 使得BM∥平面APQ, 求点M到平面PAQ的距离.
19.数学课上, 张老师用六根长度均为a的塑料棒搭成了一个正三棱锥 (如图14所示) , 然后他将其中的两根换成长度分别为的塑料棒, 又搭成了一个三棱锥, 陈成同学边听课边动手操作, 也将其中的两根换掉, 但没有成功, 不能搭成三棱锥, 如果两人都将BD换成了长为的塑料棒.
(1) 试问张老师换掉的另一根塑料棒是什么, 而陈成同学换掉的另一根塑料棒又是什么?请你用学到的数学知识解释陈成同学失败的原因.
(2) 试证平面ABD⊥平面BCD.
(3) 求新三棱锥的外接球的表面积.
20.在如图15所示的几何体中, 平面ACDE⊥平面ABC, CD∥AE, F是BE的中点, ∠ACB=90°, AE=2CD=2, AC=BC=1, .
(1) 求证:DF∥平面ABC;
(2) 求证:DF⊥平面ABE;
(3) 求三棱锥D-BCE的体积.
21.如图16, 在三棱柱ABC-A1B1C1中, 侧棱AA1⊥底面ABC, M为棱AC的中点.AB=BC, AC=2, .
(1) 求证:B1C∥平面A1BM.
(2) 求证:AC1⊥平面A1BM.
(3) 在棱BB1上是否存在点N, 使得平面AC1N⊥平面AA1C1C?如果存在, 求此时BN/BB1的值;如果不存在, 请说明理由.
22.如图17所示, 在三棱柱ABC-A1B1C1中, AA1B1B为正方形, BB1C1C是菱形, 平面AA1B1B⊥平面BB1C1C.
(1) 求证:BC∥平面AB1C1;
(2) 求证:B1C⊥AC1;
(3) 设点E, F, H, G分别是B1C, AA1, A1B1, B1C1的中点, 试判断E, F, H, G四点是否共面, 并说明理由.
十一、空间向量和立体几何
一、选择题
1.下列命题正确的是 () .
(A) 垂直于同一直线的两条直线互相平行
(B) 平行四边形在一个平面上的平行投影一定是平行四边形
(C) 锐角三角形在一个平面上的平行投影不可能是钝角三角形
(D) 平面截正方体所得的截面图形不可能是正五边形
2.如图1, 在三棱锥D-ABC中, 点G是△ABC的重心, 记, 则用a, b, c表示.
3.已知平面α, β不重合, 直线, 那么“m⊥β”是“α⊥β”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
4.如图2, 在正六棱柱ABCDEF-A1B1C1D1E1F1中, 若.
(A) a+b+c
(B) 2a+2b+c
(C) a+2b+2c
(D) 2a+2b+2c
5.如图3, 一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发, 经正方体的表面, 按最短路线爬行到达顶点C1位置, 则图4中可以表示正方体及蚂蚁最短爬行路线的正 (主) 视图是 () .
(A) ①② (B) ①③
(C) ②④ (D) ③④
6.在正三棱锥S-ABC中, M是SC的中点, 且AM⊥SB, 底面边长, 则正三棱锥S-ABC的外接球的表面积为 () .
(A) 6π (B) 12π
(C) 32π (D) 36π
7.某三棱锥的三视图如图5所示, 该三棱锥四个面的面积中最大的是 () .
8.如图6, 在四棱锥P-ABCD中, 其底面是边长为a的正方形, 已知PA⊥平面ABCD, 且PA=a, 则直线PB与平面PCD所成的角的余弦值为 () .
9.已知一个三棱柱, 其底面是正三角形, 且侧棱与底面垂直, 一个体积为的球与棱柱的所有面均相切, 那么这个三棱柱的表面积是 () .
10.三棱柱ABC-A1B1C1的直观图及三视图 (正 (主) 视图和俯视图是正方形, 侧 (左) 视图是等腰直角三角形) 如图7所示, D为AC的中点, 则二面角A-BC1-D的正切值为 () .
11.三棱锥S-ABC中, ∠SBA=∠SCA=90°, △ABC是斜边AB=a的等腰直角三角形, 则以下结论中:
①异面直线SB与AC所成的角为90°;
②直线SB⊥平面ABC;
③平面SBC⊥平面SAC;
④点C到平面SAB的距离是.
其中正确结论的个数是 () .
(A) 1 (B) 2
(C) 3 (D) 4
12.如图9, 已知直线l⊥平面α, 垂足为O, 在△ABC中, BC=2, AC=2, , 点P是边AC上的动点.该三角形在空间按以下条件作自由移动: (1) A∈l, (2) C∈α, 则的最大值为 () .
二、填空题
13.如图10, 在直三棱柱ABC-A1B1C1中, AB⊥BC, AB=BC=BB1, 则平面A1B1C与平面ABC所成的二面角的大小为____.
14.点A, B, C, D在同一球面上, , AC=2, 若球的表面积为, 则四面体ABCD体积的最大值为____.
15.如图11, 在长方体ABCD-EFGH中, AD=2, AB=AE=1, M为矩形AEHD内的一点, 如果∠MGF=∠MGH, MG和平面EFG所成角的正切值为1/2, 那么点M到平面EFGH的距离是____.
16.如图12所示的一块长方体木料中, 已知AB=BC=4, AA1=1, 设E为底面ABCD的中心, 且, 则该长方体中经过点A1, E, F的截面面积的最小值为____.
三、解答题
17.如图13, 四边形ABCD是边长为2的菱形, ∠ABC=60°, PA⊥平面ABCD, AB=2PA.
(1) 求异面直线AC与PB所成角的余弦值;
(2) 求点A到平面PBC的距离.
18.如图14, PD垂直于梯形ABCD所在的平面, ∠ADC=∠BAD=90°.F为PA的中点, .四边形PDCE为矩形, 线段PC交DE于点N.
(1) 求证:AC∥平面DEF;
(2) 求二面角A-BC-P的大小;
(3) 在线段EF上是否存在一点Q, 使得BQ与平面BCP所成角的大小为π/6?若存在, 求出FQ的长;若不存在, 说明理由.
19.在直三棱柱ABC-A1B1C1中, AA1=AB=AC=1, E, F分别是CC1, BC的中点, AE⊥A1B1, D为棱A1B1上的点.
(1) 证明:DF⊥AE.
(2) 是否存在一点D, 使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在, 说明点D的位置, 若不存在, 说明理由.
20.如图16, 已知等腰梯形ABCD中, AD∥BC, , E是BC的中点, AE∩BD=M, 将△BAE沿着AE翻折成△B1AE, 使平面B1AE⊥平面AECD.
(1) 求证:CD⊥平面B1DM;
(2) 求二面角D-AB1-E的余弦值;
(3) 在线段B1C上是否存在点P, 使得MP∥平面B1AD, 若存在, 求出的值;若不存在, 说明理由.
21.如图17, 在四棱锥P-ABCD中, 底面ABCD是平行四边形, PA⊥平面ABCD, 点M, N分别为BC, PA的中点, 且AB=AC=1, .
(1) 证明:MN∥平面PCD;
(2) 设直线AC与平面PBC所成角为α, 当α在 (0, π/6) 内变化时, 求二面角P-BC-A的取值范围.
十二、直线与圆、曲线与方程
一、选择题
1.已知直线l1:ax+y=1和直线l2:4x+ay=2, 则“a+2=0”是“l1∥l2”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分也不必要条件
2.若直线l1:2x+3y-1=0的方向向量是直线l2:ax-y+2a=0的法向量, 则实数a的值等于 () .
(A) 1 (B) 3/2
(C) 2 (D) 5/2
3.“|b|<2是“直线与圆x2+y2-4y=0相交”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
4.若经过点P (-1, 1) 的直线与圆x2+y2=2相切, 则此直线在y轴上的截距是 () .
(A) -2 (B) -1
(C) 1 (D) 2
5.已知圆C:x2+y2=4, 过点A (2, 3) 作C的切线, 切点分别为P, Q, 则直线PQ的方程为 () .
(A) 2x+3y+4=0 (B) 2x+3y-4=0
(C) 2x-3y-4=0 (D) 2x-3y+4=0
6.已知点A (-3, -2) 和圆C: (x-4) 2+ (y-8) 2=9, 一束光线从点A发出, 射到直线l:y=x-1后反射 (入射点为B) , 反射光线经过圆周C上一点P, 则折线ABP的最短长度是 () .
(A) 10 (B) 8
(C) 6 (D) 4
7.已知直线l:x, 点P (x, y) 是圆C: (x-2) 2+y2=1上的动点, 则点P到直线l的距离的最小值为 () .
8.已知圆C:x2+y2=1, 点M (t, 2) , 若C上存在两点A, B满足, 则t的取值范围是 () .
9.若直线与圆x2+y2=1相交于A, B两点, 则.
10.已知在圆M:x2+y2-4x+2y=0内, 过点E (1, 0) 的最长弦和最短弦分别是AC和BD, 则四边形ABCD的面积为 () .
11. (理) 已知曲线C:x2+y2+xy=1, 则下列说法中, 正确的个数有 () .
①曲线C关于x轴对称;②曲线C关于y轴对称;
③曲线C关于原点对称;④曲线C关于直线y=x轴对称.
(A) 1 (B) 2
(C) 3 (D) 4
(文) 已知两圆C1: (x+1) 2+y2=1与C2: (x-1) 2+y2=25, 动圆Μ与这两个圆都内切, 则动圆的圆心Μ的轨迹方程为 () .
12. (理) 如图1所示, 在平面直角坐标系xOy中, 点B, C分别在x轴和y轴非负半轴上, 点A在第一象限, 且∠BAC=90°, AB=AC=4, 那么O, A两点间距离的 () .
(A) 最大值是, 最小值是4
(B) 最大值是8, 最小值是4
(C) 最大值是, 最小值是2
(D) 最大值是8, 最小值是2
(文) 在平面直角坐标系xOy中, 圆C的方程为 (x-1) 2+ (y-1) 2=9, 直线l:y=kx+3与圆C相交于A, B两点, M为弦AB上一动点, 以M为圆心, 2为半径的圆与圆C总有公共点, 则实数k的取值范围为 () .
(A) 4 (B) 8
二、填空题
13.已知圆C的圆心在直线x-y=0上, 且圆C与两条直线x+y=0和x+y-12=0都相切, 则圆C的标准方程是____.
14.若圆C: (x-a) 2+ (y-a-1) 2=a2与x, y轴都有公共点, 则实数a的取值范围是____.
15.已知⊙O:x2+y2=1, 若直线y=kx+2上总存在点P, 使得过点P的⊙O的两条切线互相垂直, 则实数k的取值范围是____.
16.动直线与曲线相交于A, B两点, O为坐标原点, 当△AOB的面积取得最大值时, k的值为____.
三、解答题
17.已知点F (-6, 0) , 直线l:x=-4与x轴的交点是圆C的圆心, 圆C恰好经过坐标原点O, 设G是圆C上任意一点.
(1) 求圆C的方程;
(2) 若直线FG与直线l交于点T, 且G为线段FT的中点, 求直线FG被圆C所截得的弦长.
18.如图2, 在平面直角坐标系xOy中, 点A (0, 3) , 直线l:y=2x-4, 设圆C的半径为1, 圆心在l上.
(1) 若圆心C也在直线y=x-1上, 过点A作圆C的切线, 求切线的方程;
(2) 若圆C上存在点M, 使MA=2 MO, 求圆心C的横坐标a的取值范围.
19.已知圆O:x2+y2=4, 点, 以线段AB为直径的圆内切于圆O, 记点B的轨迹为Γ.
(1) 求曲线Γ的方程;
(2) 直线AB交圆O于C, D两点, 当Β为CD的中点时, 求直线AB的方程.
20.在平面直角坐标系xOy中, 已知点A (-3, 4) , B (9, 0) , C, D分别为线段OA, OB上的动点, 且满足AC=BD.
(1) 若AC=4, 求直线CD的方程;
(2) 证明:△OCD的外接圆恒过定点 (异于原点O) .
21.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A, B.
(1) 求圆C1的圆心坐标;
(2) 求线段AB的中点M的轨迹C的方程;
(3) 是否存在实数k, 使得直线L:y=k (x-4) 与曲线C只有一个交点:若存在, 求出k的取值范围;若不存在, 说明理由.
十三、圆锥曲线
一、选择题
1.已知点P在焦点为F1, F2的椭圆上, 若∠F1PF2=90°, 则|PF1|·|PF2|的值等于 () .
(A) 10 (B) 20
(C) 30 (D) 40
2.若方程表示双曲线, 则实数k的取值范围是 () .
(A) (-2, 2)
(B) (3, +∞)
(C) (-2, 2) ∪ (3, +∞)
(D) (-2, +∞)
3.已知点A (3, 2) , F是抛物线y2=2x的焦点, 若点P在抛物线上运动, 当|PA|+|PF|取最小值时, 点P的坐标为 () .
(A) (2, 2) (B) (0, 0)
(C) (2, -2) (D) (1/2, 1)
4.双曲线 (a>0, b>0) 的一个顶点到一条渐近线的距离为a/2, 则双曲线的离心率为 () .
5.若双曲线 (a>0, b>0) 截抛物线y2=4x的准线所得线段长为b, 则a= () .
6.已知双曲线 (a>0, b>0) 与抛物线y2=4x有一个公共的焦点F, 且两曲线的一个交点为P.若|PF|=5/2, 则双曲线的渐近线方程为 () .
7.若直线ax+by-3=0与圆x2+y2=3没有公共点, 设点P的坐标为 (a, b) , 则过点P的一条直线与椭圆的公共点的个数为 () .
(A) 0 (B) 1
(C) 2 (D) 1或2
8.已知P是椭圆上的一点, 点M (m, 0) (m>0) , 则|PM|的最小值为 () .
9.已知双曲线C1: (a>0, b>0) 的离心率为, 一条渐近线为l, 抛物线C2:y2=4x的焦点为F, 点P为直线l与抛物线C2异于原点的交点, 则|PF|= () .
(A) 2 (B) 3
(C) 4 (D) 5
10.已知直线l:y=kx+3-k与双曲线有交点, 则实数k的取值范围是 () .
11.如图1, 已知双曲线C: (a>0, b>0) 的右顶点为A, O为坐标原点, 以A为圆心的圆与双曲线C的某渐近线交于两点P, Q.若∠PAQ=60°且, 则双曲线C的离心率为 () .
12.已知双曲线C: (a>0, b>0) , 斜率为1的直线l过双曲线C的左焦点且与该曲线交于A, B两点, 若与向量n= (-3, -1) 共线, 则双曲线C的离心率为 () .
二、填空题
13.斜率为的直线与焦点在x轴上的椭圆 (b>0) 交于不同的两点P, Q.若点P, Q在x轴上的投影恰好为椭圆的两焦点, 则该椭圆的焦距为_____.
14.已知椭圆C: (a>0) 的左顶点、上顶点分别为A, B, 椭圆C的左焦点为F, 且△ABF的面积等于, 则椭圆C的方程为____.
15.点P到曲线C上每一个点的距离的最小值称为点P到曲线C的距离.已知点P (2, 0) , 若点P到曲线C的距离为.在下列曲线中:
符合题意的是_____ (填序号) .
16.已知椭圆C: (a>b>0) 的左、右顶点分别为A, B, 左、右焦点分别为F1, F2, 点O为坐标原点, 线段OB的中垂线与椭圆在第一象限的交点为P, 设直线PA, PB, PF1, PF2的斜率分别为k1, k2, k3, k4, 若, 则k3·k4=____.
三、解答题
17.已知椭圆C: (a>b>0) , 右焦点, 点在椭圆上.
(1) 求椭圆C的标准方程.
(2) 若直线y=kx+m (k≠0) 与椭圆C有且只有一个公共点M, 且与圆O:x2+y2=a2+b2相交于P, B两点, 问kOM·kPB=-1是否成立?请说明理由.
18.已知椭圆C: (a>b>0) , 经过点, 离心率是.
(1) 求椭圆C的方程;
(2) 设直线l与椭圆C交于A, B两点, 且以AB为直径的圆过椭圆右顶点M, 求证:直线l恒过一定点.
19.已知椭圆C: (a>b>0) , 其左、右焦点分别为F1, F2, 右焦点在椭圆上.
(1) 求椭圆C的标准方程.
(2) 已知直线l:y=kx与椭圆C交于A, B两点, P为椭圆C上异于A, B的动点.
(i) 若直线PA, PB的斜率都存在, 证明:;
(ii) 若k=0, 直线PA, PB分别与直线x=3相交于点M, N, 直线BM与椭圆C相交于点Q (异于点B) , 求证:A, Q, N三点共线.
20.已知抛物线C的顶点为O (0, 0) , 焦点为F (0, 1) .
(1) 求抛物线C的方程;
(2) 过点F作直线交抛物线C于A, B两点.若直线AO, BO分别交直线l:y=x-2于M, N两点, 求|MN|的最小值.
21. (理) 已知椭圆C:, 点D为椭圆C的左顶点.对于正常数λ, 如果存在过点M (x0, 0) (-2<x0<2) 的直线l与椭圆C交于A, B两点, 使得S△AOB=λS△AOD, 则称点M为椭圆C的“λ分点”.
(1) 判断点M (1, 0) 是否为椭圆C的“1分点”, 并说明理由;
(2) 证明:点M (1, 0) 不是椭圆C的“2分点”;
(3) 如果点M为椭圆C的“2分点”, 写出x0的取值范围 (直接写出结果) .
(文) 已知椭圆C:x2+4y2=16.
(1) 求椭圆C的离心率;
(2) 设椭圆C与y轴下半轴的交点为B, 如果直线y=kx+1 (k≠0) 交椭圆C于不同的两点E, F, 且B, E, F构成以EF为底边, B为顶点的等腰三角形, 判断直线EF与圆x2+y2=1/2的位置关系.
参考答案
八、数列
1.D.
【变式】设等差数列{an}的前n项和为Sn, 若a5=5, 则S9= () .
(A) 9 (B) 45
(C) 90 (D) 不能确定
(答案:B.)
2.A.
【变式】已知x>0, y>0, x, a, b, y成等差数列, x, c, d, y成等比数列, 则的最小值是 () .
(A) 4 (B) 2
(C) 1 (D) 0
(答案:A.)
3.A.由a10a11+a9a12=2e5, 得a10a11+a10a11=2e5, 即a10a11=e5.又ln a1+ln a2+…+ln a20=ln (a1a2·…·a20) , 令T=a1a2·…·a20, 则T=a20a19·…·a1, 有T2= (a1a20) 20, 则T= (a1a20) 10= (a10a11) 10=e50, 从而ln T=50.
4.B.
【变式】设Sn是等比数列{an}的前n项和, 若.
(A) 2 (B) 6/5
(C) 0 (D) 0或6/5
(答案:D.)
5.C.
【变式】设Sn是等差数列{an}的前n项和, 且S1, S2, S4成等差数列, 则S9= () .
(A) 0 (B) 0或1
(C) 1或2 (D) 3
(答案:A.)
6.D.算得a1=1, a2=2, a3=2, a4=22, a5=22, …, a18=29, a19=29, a20=210, 所以.
【变式】已知数列{an}满足a1=1, 且an+an+1=3, 则数列{an}的前20项的和为 () .
(A) 1 (B) 2
(C) 30 (D) 90
(答案:C.提示:a1=1, a2=2, a3=1, a4=2, …, a19=1, a20=2, 所以S20=10 (1+2) =30.)
【点拨】把变形为 (an+1-1) 2- (an-1) 2=1, 构造等差数列{ (an-1) 2}求得 (an-1) 2后再求an, 是解决本题的基本思路, 也是解决此类问题的常用思路, 即把递推数列转化为基本数列 (等差数列、等比数列) 求通项, 常见有如下情形:
(1) an+1=pan+q, an+1=pan+kn+q, an+2=pan+1+qan型———通过待定系数法转化;
(2) an+1=pan+qn型———通过两边同除qn来转化;
(4) an+1=parn型———通过取对数转化.
【变式】已知数列{an}满足an+1=a2n-2an+2 (n∈N*) , 且a1=3, 则an= () .
(C) 2n-1 (D) 2n+1
【变式】设数列{an}中, a1=2, , 则通项an= () .
(A) n+1 (B) 2n
(C) 2+ln n (D) ln n
(答案:C.提示:累加法.)
【变式】已知 (n∈N*) , 则数列{an}的最大项是 () .
(A) a1 (B) a2
(C) a3 (D) a4
10.A.方法一:由a1>0, d>0, 得a1<a2<a3<a4, 有b1<b2<b3<b4, 则{bn}的公比q>1, 而b1=a1, b4=a4, 所以S4-T4= (a2+a3) - (b2+b3) = (a1+a4) - (b2+b3) = (b1+b4) - (b2+b3) =b1+b1q3-b1q-b1q2=b1 (q-1) (q2-1) >0, 即S4>T4.
方法二:取{bn}的前4项为1, 2, 4, 8;{an}的前4项为1, , 8, 则S4>T4.
【变式】已知{an}是等差数列, 记M=a1·a6, N=a3·a4, 则M, N的大小关系是 () .
(A) M>N (B) M<N
(C) M=N (D) M≤N
(答案:D.)
11.C.由an+1-an≤2n, 得-an+1+an≥-2n.而an+2-an≥3×2n, 两式相加, 得an+2-an+1≥3×2n-2n=2n+1, 即an+1-an≥2n.所以2n≤an+1-an≤2n, 则an+1-an=2n.又a1=1, 所以a1=1, a2-a1=21, a3-a2=22, …, anan-1=2n-1, 累加, 得.所以a2 016=22 016-1.
12.A.由, a6+a7=3, 得, 即q+q2-6=0, q>0, 所以q=2, 有an=2n-6, 数列{an}的前n项和Sn=2n-5-2-5, 而.于是, 由, 可求得n的最大值为12, 而当n=13时, 28-2-5>213不成立, 所以n的最大值为12.
13.90.
14.-2;3.
【变式】已知等差数列{an}的前n项和Sn=n2-7n, 则当n=____, Sn取得最小值.
(答案:3或4.)
15. (1) 2; (2) 2 035.a1·a2·a3=1×log23×log34=log24=2.
a1·a2·…·ak=1×log23×…×logk (k+1) =log2 (k+1) .
令log2 (k+1) =m, m≥2, m∈N*, 则k=2m-1.由k=2m-1≤2 000, 得m≤10.
所以在2 000内所有“简易数”的和.
16.;181.A (1, 1) =1, A (1, 2) -A (1, 1) =2, A (1, 3) -A (1, 2) =3, …, A (1, n) -A (1, n-1) =n, 则.所以.而A (2, 10) -A (1, 10) =10, A (3, 10) -A (2, 10) =11, A (4, 10) -A (3, 10) =12, …, A (10, 10) -A (9, 10) =18, 所以A (10, 10) =55+10+11+…+18=181.
【点拨】对于以数表形式出现的数列问题, 需要注意观察数表的呈现规律.如本题的数表, 发现第一列相邻两数之差依次为2, 3, 4, 5, …;第二列相邻两数之差依次为3, 4, 5, …;第一行相邻两数之差依次为1, 2, 3, 4, …;第二行相邻两数之差依次为2, 3, 4, 5, …;因而可运用累加法解之.事实上, 可得.
【变式】已知数列{an}是首项为1, 公比为1/2的等比数列.数列{bn}的项排列如下:
则数列{bn}的前n项和Sn=____ (用n表示) .
(2) 满足Tn-1>0的最大正整数为13.
18. (1) 由题意, 得a1=4-a1, 所以a1=2.
由Sn+an=4, 得当n≥2时, Sn-1+an-1=4.
所以数列{an}是以2为首项, 1/2为公比的等比数列.所以an=22-n (n∈N*) .
(2) 由于数列{dn}是常数列, 即dn=cn+logCan=2n+3+ (2-n) logC2=2n+3+2logC2-nlogC2= (2-logC2) n+3+2logC2为常数,
所以2-logC2=0, 解得, 此时dn=7.
所以数列{bn}是以为首项, 为公差的等差数列.
(3) 数列{an}是等差数列.理由如下:
因为n≥3, 所以an-2an-1+an-2=0, 即an-an-1=an-1-an-2 (n≥3) .
所以数列{an}是以1为首项, a2-1为公差的等差数列.
20. (理) (1) 因为{an}为常数列, 所以an=1 (n∈N*) .所以f (4) =C14+C24+C34+C44=15.
(2) 因为{an}是公比为2的等比数列, 所以an=2n-1 (n∈N*) .
所以f (n) =C1n+2C2n+4C3n+…+2n-1Cnn.
所以1+2f (n) =1+2C1n+22C2n+23C3n+…+2nCnn= (1+2) n=3n.
(3) 假设存在等差数列{an}, 使得f (n) -1= (n-1) 2n对一切n∈N*都成立.
设公差为d, 则f (n) =a1C1n+a2C2n+…+akCkn+…+an-1Cn-1n+anCnn,
且f (n) =anCnn+an-1Cn-1n+…+akCkn+…+a2C2n+a1C1n.
两式相加, 得2f (n) =2an+ (a1+an-1) (C1n+C2n+…+Ckn+…+Cn-1n) .
所以f (n) -1= (d-2) +[2+ (n-2) d]·2n-1= (n-1) 2n恒成立, 即 (d-2) + (d-2) (n-2) 2n-1=0, n∈N*恒成立.所以d=2.
故{an}能为等差数列, 使得f (n) -1= (n-1) 2n对一切n∈N*都成立, 它的通项公式为an=2n-1.
所以满足条件的最小正整数n等于15.21. (1) 圆Cn的圆心到直线ln的距离, 半径, 所以.
又a1=1, 所以{an}是首项为1, 公比为2的等比数列, 所以an=2n-1.
22. (1) 易得a2=1, a3=-3, 所以a2+a3=-2.
(2) bn+1=a2n+2=2a2n+1+4n=2 (-a2n-2n) +4n=-2a2n=-2bn.又b1=a2=1, 故数列{bn}是首项为1, 公比为-2的等比数列.
(3) 由 (2) 知bn= (-2) n-1, 所以b2n= (-2) 2n-1=-22n-1.
设cn=a2n+a2n+1 (n∈N*) , 则cn=-2n.
设f (x) =4x-2x2-2x-40 (x≥2) , 则g (x) =f′ (x) =4xln 4-4x-2, g′ (x) =4xln24-4>0 (x≥2) , 所以g (x) 在[2, +∞) 上单调递增.
所以g (x) ≥g (2) =f′ (2) >0, 即f′ (x) >0.所以f (x) 在[2, +∞) 上单调递增.
又因为f (1) <0, f (2) <0, f (3) =0, 所以仅存在唯一的n=3, 使得成立.
23. (1) 由题意, 得bn=1-2n, n∈N*, 其前n项和.
当n=1时, a1=S1, a1·a1=1/4.
因为an>0, 所以a1=1/2, tanθ1=1, θ1=π/4.
所以数列{θn}是等比数列, 首项为π/4, 公比为1/2, 其通项公式为, n∈N*.
(3) 由 (2) , 得, n∈N*, 它是个单调递减的数列.
对任意的n∈N*, cn≥m恒成立, 所以m≤ (cn) min.
所以数列c{}n是单调递增的, cn的最小值为c1=0, m≤ (cn) min=0.
因此, 实数m的取值范围是 (-∞, 0].
九、不等式与线性规划
1.D.
2.A.
【变式】已知a, b, c∈R, 则“a>b”是“ac2>bc2”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
(答案:B.)
3.C.
【变式】设a=log23, b=log34, c=log45, 则a, b, c的大小关系是 () .
(A) a<b<c (B) c<b<a
(C) b<a<c (D) c<a<b
4.A.5.C.
6.B.
【变式1】已知x, y∈ (-∞, 0) , 且x+y+3=0, 则的最大值为 () .
(A) - (8/3) (B) -3
(C) 8/3 (D) 3
(答案:B.)
【变式2】若两个正实数x, y满足, 且x+2y>a2-2a恒成立, 则实数a的取值范围是 () .
(A) (-2, 0) (B) (0, 4)
(C) (-2, 4) (D) (4, +∞)
(答案:C.)
7.D.由题意作出可行域如图1所示, 将z=y-ax化为y=ax+z, z相当于直线y=ax+z的纵截距.由题意, 得y=ax+z与y=2x+2或与y=2-x平行, 所以a=2或a=-1.故选D.
【变式】已知x, y满足则z=x+y取得最大值的最优解为 () .
(A) 1 (B) 2
(C) (0, 0) (D) (1, 1)
(答案:D.)
(A) (-1, 1]
(B) [-1, 1]
(C) (-∞, 1]
(D) [1, +∞)
(答案:B.提示:当x=0时, z=-1, 当x≠0时, 令单调递减, 则-1<z≤1.故-1≤z≤1.)
10.B.令b=x-3y, 则, 画出可行域知, 当直线过点 (-2, 2) 时, bmin=-2-3×2=-8;当直线过点 (-2, -2) 时, bmax=-2-3× (-2) =4.所以-8≤b≤4, 于是z=|b|∈[0, 8], 即zmax=8.
【变式】已知x, y满足|x|+|y|≤1, 则z=2|x|-|y|的最大值为 () .
(A) 2 (B) 3
(C) 4 (D) 6
(答案:A.提示:令X=|x|, Y=|y|, 则可行域变形为目标函数变形为z=2 X-Y.可知直线Y=2 X-z经过点 (1, 0) 时, zmax=2×1-0=2.)
13. (-∞, 3/2) .
【变式】一元二次不等式ax2+bx+c>0的解集为x∈ (-∞, -3) ∪ (1, +∞) , 则一元二次不等式cx2+bx+a>0的解集为____.
(答案: (- (1/3) , 1) .
14. (-∞, 1) .可行域Ω如图3中阴影部分所示, 函数y=aex的图象与y轴交于点 (0, a) .当a≥1时, y=aex不经过区域Ω;当a<1时, y=aex经过区域Ω.
【变式】若直线y=3x上存在点 (x, y) 满足约束条件, x≤m烅烄烆, 则实数m的取值范围是____.
(答案: (-1, +∞) .提示:x+y+4=0表示的边界为虚线.)
15. (3/2, +∞) .
【变式】已知x, y满足条件若存在无数组解 (x, y) 使得z=ax+y取得最大值, 则实数a的值等于____.
(答案:0或3/2.)
16.1/2.把函数y=f (x) 的图象向右平移2个单位长度得y=f (x-2) 的图象, 由y=f (x-2) 的图象关于点 (2, 0) 成中心对称, 知y=f (x) 的图象关于原点对称, 即f (x) 为奇函数且在R上单调递减.由
在uOv平面上画出可行域Ω, u2+v2为区域Ω上的点 (u, v) 与原点间距离的平方.而原点到直线u+v=1的距离, 于是u2+v2的最小值为.
【变式】已知奇函数f (x) 在R上单调递减, 且x, y满足则x2+y2+4y的取值范围为____.
(答案:[1, 37].提示:x2+y2+4y=[ (x-0) 2+ (y+2) 2]-4, 即点 (x, y) 与点 (0, -2) 间距离的平方, 再减去4.由图形 (图略) 知点 (x, y) 取 (1, 0) 时, 可得最小值, 取 (4, 3) 时, 可得最大值.)
17.实数m的取值范围是[1/3, 15) .
18.当航速为25km/h时, 总费用最少, 此时总费用为4 000元.
19.设每周生产空调x台、彩电y台, 则生产冰箱120-x-y台, 产值为z千元.
依题意, 得z=4x+3y+2 (120-x-y) =2x+y+240, 且x, y满足
可行域如图4所示.
让目标函数表示的直线2x+y+240=z在可行域上平移, 可得z=2x+y+240在M (10, 90) 处取得最大值, 即zmax=2×10+90+240=350 (千元) .
答:每周应生产空调10台, 彩电90台, 冰箱20台, 才能使产值最高, 最高产值是350千元.
②当时, 解原不等式, 得无解, 即其解集为;
(2) 依2x2-3 (1+a) x+6a>0, (*)
令2x2-3 (1+a) x+6a=0, (**)
可得Δ=9 (1+a) 2-48a=3 (3a-1) (a-3) .
①当时, Δ<0, 此时方程 (**) 无解, 解不等式 (*) , 得x∈R,
因此原不等式组的解集为{x|0≤x≤1}.
②当a=1/3时, Δ=0, 此时方程 (**) 有两个相等的实根,
解不等式 (*) , 得x≠1, 因此原不等式组的解集为{x|0≤x<1}.
ⅱ) 当a≤0时, 原不等式组的解集为Ø.
综上, 当a≤0时, 原不等式组的解集为Ø;当时, 原不等式组的解集为时, 原不等式组的解集为{x|0≤x<1};当1/3<a<1时, 原不等式组的解集为{x|0≤x≤1}.
因为5x2+16x+23>0,
所以只需证明, 5x3+11x2+7x+1<0恒成立即可.
令g′ (x) =0, 解得x1=-1, .
当x在上变化时, g′ (x) , g (x) 的变化情况如下表:
所以, 5x3+11x2+7x+1<0恒成立, 结论得证.
三式相加, 得.
因为x1+x2+x3=-3,
所以f (x1) +f (x2) +f (x3) ≤1/4, 且当x1=x2=x3=-1时取等号.
(ⅱ) 当x1, x2, x3中至少有一个大于等于时,
综上所述, 当x1=x2=x3=-1时, f (x1) +f (x2) +f (x3) 取到最大值1/4.
十、三视图和立体几何
1.B.
【变式】已知一个圆锥的侧面积为3π, 则其体积取得最大值时, 底面半径r= () .
2.D.
3.D.该几何体的直观图如图1所示 (可从正方体中截取) , 则与平面ABB1A1垂直的面有4个, 与平面DCC1D1垂直的面也有4个, 故互相垂直的面共有8对.
4.B.
【变式】正方体的外接球与内切球的体积之比为 () .
(答案:C.)
5.A.该几何体是一个底面半径为1, 高为的半圆锥与一个底面为边长是2, 高为的四棱锥的组合几何体, 其体积为.
【变式】已知某几何体的三视图如图2所示, 则该几何体的体积是 () .
(答案:D.)
6.B.
【变式】某三棱锥的正 (主) 视图如图3所示, 则这个三棱锥的俯视图是 () .
(答案:C.)
7.D.该四棱锥的直观图如图4, 四棱锥P-ABCD的底面ABCD是对角线长为2的正方形, 高PA=2, 则BC⊥平面PAB⇒BC⊥PB, 而, 所以所求的表面积.
【变式】一个正四棱台的上、下底面是边长分别为2, 4的正方形, 高为1, 则该正四棱台的侧面积为 () .
(答案:B.)
8.C.
【变式】已知m和n是两条不同的直线, α和β是两个不重合的平面, 下面给出的条件中一定能推出m⊥β的是 () .
(B) α⊥β且m∥α
(C) m∥n且n⊥β
(D) m⊥n且α∥β
(答案:C.提示:m∥n且n⊥β⇒m⊥β.)
9.B.
10.A.如图5, 设AC∩BD=O, AC∩EM=Q, 由AC⊥EM, AC⊥QN, EM∩NQ=Q, 得AC⊥平面EMN, EP⊂平面EMN, 有EP⊥AC, ①成立;由BD∥EM, EM∩EP=E, 得EP与BD异面, 则②不成立;可证得平面EMN∥平面BDS, EP⊂平面EMN, 得EP∥平面SBD, ③成立;当P与N重合时, ④不成立.
11.A.设正方体的棱长为1, 则为定值, 当点E在AD上时, S△BCE有最大值1/2, 当点E位于点A处时, S△BED1, S△CED1均取最大值, 这时三棱锥B-D1EC的表面积最大.
【变式】在正方体ABCD-A1B1C1D1中, 点E为底面ABCD上的动点.若三棱锥B-D1EC的体积最大, 则E点位于 () .
(A) 线段AB上
(B) 线段AD上
(C) 线段AB的中点处
(D) 线段BD上
(答案:B.提示:为定值, 考虑点E到平面BCD1距离的最大值.)
(文) A.方法一:设正方体的棱长为1, 点P到直线CC1的距离为PC=d, 则, 有PC2-PA2=1.以DA, DC分别为x轴, y轴的正半轴建立平面直角坐标系, 则A (1, 0) , C (0, 1) , P (x, y) , 有[x2+ (y-1) 2]-[ (x-1) 2+y2]=1, 即x-y=1/2为直线.
方法二:设正方体的棱长为1, 以D为原点, DA, DC, DD1分别为x轴, y轴, z轴的正半轴建立空间直角坐标系.设P (x, y, 0) , 而A1 (1, 0, 1) , C (0, 1, 0) , 由|PC|=|PA1|, 得|PC|2=|PA1|2, 即x2+ (y-1) 2= (x-1) 2+y2+1, 有x-y=1/2为直线.
13..在正方体ABCD-A1B1C1D1中, BD1的三视图分别为CD1, BC1, BD, 其长度均为 (a为正方体的棱长) .由, 得a=1, 这时.
【变式】空间一线段的主视图、左视图、俯视图的长度分别为, 则该线段的长度为___.
(答案:.提示:构造长方体.)
14.3π.该几何体是一个四棱锥 (正方体的一部分) , 其底面是边长为1的正方形, 高为1, 将其放置于一个棱长为1的正方体中, 则其外接球的直径, 球的表面积.
【变式】一个几何体的三视图如图6所示, 其中正 (主) 视图和侧 (左) 视图是腰长为1的两个全等的等腰直角三角形, 则该几何体的内切球的半径为____.
【变式】设三棱锥A-BCD的体积为V, 以该三棱锥各棱的中点为顶点的多面体的体积为V′, 则.
16. (理) 34.要MP+PQ取得最小值, 点Q必在AC上, 且PQ⊥AC, 将平面AB1C1与平面ACC1翻折到同一个平面上 (如图7) , 则.
【变式】在长方体ABCD-A1B1C1D1中, AB=2, BC=AA1=1, 点M为AB1的中点, 点P为对角线AC1上的动点, 点Q为底面ABCD上的动点 (点P, Q可以重合) , 则MP+PQ的最小值为____.
(答案:5/6.)
(文) A1, B1, D.平面A1DE、平面B1DE与直线BD1均相交, 而BD1∥平面C1DE (可取DC1的中点F, 通过BD1∥EF给出证明) , 于是平面DEP可能经过的该正方体的顶点是A1, B1, D.
17. (1) 图略.
(2) 证明略.
(3) 在棱PB上取一点E, 使得, 可使AE∥平面PCD.证明略.
18. (1) 由BB1⊥平面ABC, 得BB1⊥AB.
由AB=3, BC=4, AA′=12知, AC=5, 所以AB2+BC2=AC2, 即AB⊥BC.
又BC∩BB1=B, 所以AB⊥平面BCC1B1.
因为PQ平面BCC1B1, 所以AB⊥PQ.
(2) 因为BM∥平面APQ,
所以点M到平面PAQ的距离等于点B到平面PAQ的距离.
连结BQ, 构造三棱锥A-BPQ.
由△ABP为等腰直角三角形, 得BP=AB=3.
另一方面, 在题图12中, 由△ACQ为等腰直角三角形, 得CQ=AC=7.所以在题图13中, .
在△APQ中, 由余弦定理, 得.
设点B到平面PAQ的距离为d,
19. (1) 张老师换掉的另一根塑料棒是CD (或AD, BC, BA) , 而陈成同学换掉的另外一根塑料棒是AC.陈成同学想搭成的三棱锥中, 取AC中点E, 连结BE, DE.因为AB2+CB2=AC2=2a2, 所以BE是直角三角形ABC斜边上的中线, 得.同理.从而由, 不能构成三角形.
(2) 不妨设张老师换掉的另一根塑料棒是CD, 取BD中点F, 连结AF, CF.
因为△ABD是等腰三角形, 所以AF⊥BD.
又△BCD是直角三角形, 所以CF=BF=DF.
又AB=AC=AD, 所以△ABF≌△ACF, 从而AF⊥CF.又CF与BD确定平面BCD, 所以AF⊥平面BCD.又AF平面ABD, 所以平面ABD⊥平面BCD.
(3) 由 (2) 可知, 三棱锥的外接球的球心必在直线AF上.设球的半径为R, 因为, AB=a, 所以.由, 得R=a.
所以新三棱锥的外接球的表面积S=4πa2.
20. (1) 设M为AB的中点, 连结FM, CM.
在△ABE中, F为BE的中点, FM∥AE, FM= (1/2) AE.
又因为CD∥AE, 且, 所以CD∥FM, CD=FM.
所以四边形CDFM为平行四边形.所以DF∥CM.
因为DF平面ABC, CM平面ABC,
所以DF∥平面ABC.
(2) 在Rt△ABC中, AC=BC=1, 所以.
在△ABE中, AE=2, .
因为BE2=AE2+AB2, 所以△ABE为直角三角形.所以AE⊥AB.
已知平面ACDE⊥平面ABC, 平面ACDE∩平面ABC=AC.
又因为∠ACB=90°, 所以AC⊥BC.所以BC⊥平面ACDE.所以BC⊥AE.
又BC∩AB=B, 所以AE⊥平面ABC.因为CM平面ABC, 所以AE⊥CM.
在△ABC中, 因为AC=BC, M为AB的中点, 所以CM⊥AB.又AE∩AB=A, 所以CM⊥平面ABE.
由 (1) 知DF∥CM, 所以DF⊥平面ABE.
(3) 由 (2) 可知BC⊥平面ACDE, 所以BC为三棱锥B-CDE的高, 所以.
21. (1) 如图8, 连结AB1交A1B于O, 连结OM.
在△B1AC中, 因为M, O分别为AC, AB1的中点, 所以OM∥B1C.
又因为OM平面A1BM, B1C平面A1BM, 所以B1C∥平面A1BM.
(2) 因为侧棱AA1⊥底面ABC, BM平面ABC, 所以AA1⊥BM.
又因为M为棱AC的中点, AB=BC, 所以BM⊥AC.
因为AA1∩AC=A, 所以BM⊥平面ACC1A1.所以BM⊥AC1.
因为M为棱AC的中点, AC=2, 所以AM=1.
又因为, 所以在Rt△ACC1和Rt△A1AM中, .
所以∠AC1C=∠A1MA, 即∠AC1C+∠C1AC=∠A1MA+∠C1AC=90°.
所以A1M⊥AC1.
因为BM∩A1M=M,
所以AC1⊥平面A1BM.
(3) 当点N为BB1的中点, 即时, 平面AC1N⊥平面AA1C1C.
设AC1的中点为D, 连结DM, DN, 如图9.
因为D, M分别为AC1, AC的中点,
所以DM∥CC1, 且.
又因为N为BB1的中点, 所以DM∥BN, 且DM=BN.所以四边形DMBN为平行边形边.所以BM∥DN.
因为BM⊥平面ACC1A1,
所以DN⊥平面ACC1A1.
又因为DN⊂平面AC1N,
所以平面AC1N⊥平面ACC1A1.
22. (1) 在菱形BB1C1C中, BC∥B1C1.
因为BC平面AB1C1, B1C1⊂平面AB1C1, 所以BC∥平面AB1C1.
(2) 连结BC1, 如图10.在正方形ABB1A1中, AB⊥BB1.
因为平面AA1B1B⊥平面BB1C1C, 平面AA1B1B∩平面BB1C1C=BB1, AB⊂平面ABB1A1,
所以AB⊥平面BB1C1C.
因为B1C⊂平面BB1C1C, 所以AB⊥B1C.
在菱形BB1C1C中, BC1⊥B1C.
因为BC1∩AB=B, 所以B1C⊥平面ABC1.
因为AC1⊂平面ABC1, 所以B1C⊥AC1.
(3) E, F, H, G四点不共面.理由如下:
因为E, G分别是B1C, B1C1的中点, 所以GE∥CC1.
同理可证:GH∥C1A1.
因为GE⊂平面EHG, GH⊂平面EHG, GE∩GH=G,
CC1⊂平面AA1C1C, A1C1⊂平面AA1C1C,
所以平面EHG∥平面AA1C1C.
因为F∈平面AA1C1C,
所以F平面EHG, 即E, F, H, G四点不共面.
十一、空间向量和立体几何
1.D.2.D.3.A.4.B.
5.C.如图1, 通过翻折为平面的方法, 蚂蚁最短爬行路线有6种, ①中正方形内的线段应为虚线, ①错;②正确;排除A, B, D.③正方形内的线段应为实线.故选C.
6.B.在正三棱锥S-ABC中, 有SB⊥AC.又SB⊥AM, AC∩AM=A, 从而SB⊥平面SAC.由正三棱锥的对称性知SA, SB, SC两两互相垂直.将该正三棱锥放置于一个棱长为a的正方体中, 如图2.由2, 得a=2, 正三棱锥与正方体有相同的外接球.于是, 即, 外接球的表面积.
【变式】在正三棱锥S-ABC中, M是SC上一点, 且AM⊥SB, 底面边长, 则正三棱锥S-ABC的体积为 () .
(答案:B.提示:可得SA, SB, SC两两互相垂直, 所求体积.)
所以三棱锥四个面的面积中最大的是.
8.D.方法一 (补形作角法) :如图4, 将四棱锥补形为正方体, 取CE的中点M, 可证得BM⊥平面PECD.
所以∠BPM是直线PB与平面PCD所成的角, 而, 有.
方法三 (向量法) :设a=1, 以A为原点, AB, AD, AP分别为x, y, z轴建立空间直角坐标系, 则.
设PB与平面PCD所成的角为θ, 则.
【点拨】“作角法”“距离法”“向量法”是求直线与平面所成的角的三种常用方法, 作角法是根据直线与平面所成角的定义, 作出其平面角再计算, 距离法是将其转化为距离, 通过sinθ=d/ PB求解, 向量法是通过求解.
9.C.设球的半径为r.由, 得r=1, 于是正三棱柱的侧棱长为2.
10.A.以B1为原点, B1C1, B1B, B1A1分别为x, y, z轴建立空间直角坐标系, .
11.D.方法一 (几何法) :由∠SCA=90°, 得AC⊥SC.又△ABC是斜边AB=a的等腰直角三角形, 得AC⊥BC, SC∩BC=C, 所以AC⊥平面SBC.又SB⊂平面SBC, 所以SB⊥AC.而∠SBA=90°, 即SB⊥AB, AC∩AB=A, 从而SB⊥平面ABC, 知①②均正确.由AC⊥平面SBC, AC⊂平面SAC, 有平面SBC⊥平面SAC, ③正确.又SB⊥平面ABC, 可得平面ABC⊥平面SAB, 取AB的中点M, 有CM⊥AB.又平面ABC∩平面SAB=AB, 则CM⊥平面SAB, 知点C到平面SAB的距离为, ④也正确.
方法二 (向量法) :同方法一得SB⊥平面ABC, 知①②均正确;以B为原点, BA为y轴, BS为z轴, 垂直于平面SBA的方向为x轴建立空间直角坐标系.设BS=b, 则.
又平面SBC的法向量为, 则, ③正确.
平面SAB的法向量为n′= (1, 0, 0) , 点C到平面SAB的距离, ④也正确.
【点拨】研究空间角问题通常需将几何法与向量法结合在一起运用.如本题用几何法证得SB⊥平面ABC后才便于建立空间直角坐标系, 用向量法解决问题.另外, 在取值求法向量时, 需以降低运算量为原则.如由取x=b, 得n= (b, b, a) , 对后面的计算带来方便, 否则, 若取x=1, 得, 后面的计算量稍大.
12.C.△ABC为等腰直角三角形, 且∠ACB=90°, 而, 要取得最大值, 必有O, A, B, C四点共面, 以O为原点, OC为y轴, OA为z轴, 垂直于平面AOC的方向为x轴.设∠OAC=θ, 则∠BCy=θ, 有B (0, 2sinθ+2cosθ, 2sinθ) ,
13.π/4.
14.2/3.设球的半径为R, 由, 得R=5/4.由, AC=2, 得Rt△ABC外接圆的圆心为AC的中点O′, 设球心为O, 则.
当点D在O′O的延长线上时, 四面体ABCD的体积有最大值.
17. (1) 异面直线AC与PB所成角的余弦值为.
(2) 点A到平面PBC的距离为.
18. (1) 连结FN, 在△PAC中, F, N分别为PA, PC的中点, 所以FN∥AC.因为FN⊂平面DEF, AC平面DEF, 所以AC∥平面DEF.
(2) 如图5, 以D为原点, 分别以DA, DC, DP所在直线为x, y, z轴, 建立空间直角坐标系, 则, B (1, 1, 0) , C (0, 2, 0) .
设平面PBC的法向量为m= (x, y, z) ,
因为平面ABC的法向量n= (0, 0, 1) ,
由图可知二面角A-BC-P为锐二面角, 所以二面角A-BC-P的大小为π/4.
故在线段EF上存在一点Q, 且.
19. (1) 因为AE⊥A1B1, A1B1∥AB, 所以AB⊥AE.
又因为AB⊥AA1, AE∩AA1=A, 所以AB⊥平面A1ACC1.
又因为AC⊂平面A1ACC1, 所以AB⊥AC.
令z=2 (1-λ) , 所以n= (3, 1+2λ, 2 (1-λ) ) .
由题可知平面ABC的法向量m= (0, 0, 1) .
因为平面DEF与平面ABC所成锐二面角的余弦值为,
解得λ=1/2或λ=7/4 (舍去) .
所以当点D为A1B1的中点时, 满足要求.
20. (1) 由题意可知四边形ABED是平行四边形, 所以AM=ME.又因为AB=BE, M为AE的中点, 所以BM⊥AE, 即DM⊥AE.
又因为AD∥BC, AD=CE=2, 所以四边形ADCE是平行四边形.
所以AE∥CD.所以CD⊥DM.
因为平面B1AE⊥平面AECD, 平面B1AE∩平面AECD=AE, B1M⊥AE, 所以B1M⊥平面AECD.
因为CD⊂平面AECD, 所以B1M⊥CD.
因为MD∩B1M=M, 所以CD⊥平面B1MD.
(2) 如图7, 以ME为x轴, MD为y轴, MB1为z轴建立空间直角坐标系, 则.
平面AB1E的法向量为.
设平面DB1A的法向量为m= (x, y, z) .
因为二面角D-AB1-E为锐角, 所以二面角D-AB1-E的余弦值为.
(3) 设在线段B1C上存在点P, 使得MP∥平面B1AD.
因为MP∥平面B1AD, 所以.
又因为MP平面B1AD,
所以在线段B1C上存在点P, 使得MP∥平面B1AD, 且.
21. (1) 取PD的中点Q, 连结NQ, CQ,
因为点M, N分别为BC, PA的中点, 所以NQ∥AD∥CM, , 四边形CQNM为平行四边形, 则MN∥CQ.
又MN平面PCD, CQ⊂平面PCD.
所以MN∥平面PCD.
(2) 连结PM.因为AB=AC=1, 点M分别为BC的中点, 则AM⊥BC.
又PA⊥平面ABCD, 则PM⊥BC.所以∠PMA即为二面角P-BC-A的平面角, 设为θ.以AB, AC, AP所在的直线分别为x轴、y轴、z轴, 建立的空间直角坐标系, 则A (0, 0, 0) , B (1, 0, 0) , C (0, 1, 0) , .
设平面PBC的一个法向量为n= (x, y, z) ,
因为0<α<π/6,
十二、直线与圆、曲线与方程
1.C.
【变式】已知直线l1:ax+y=1和直线l2:x+ay=2, 则“a+1=0”是“l1∥l2”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
(答案:A.)
2.B.
【变式】在下列直线中, 与非零向量n= (A, B) 垂直的直线是 () .
(A) Ax+By=0 (B) Ax-By=0
(C) Bx+Ay=0 (D) Bx-Ay=0
(答案:A.)
3.A.方法一 (几何法) :由直线与圆相交, 得, 则-2<b<6.
|b|<2成立-2<b<6成立, -2<b<6成立/|b|<2成立.
由直线与圆相交, 得Δ=12× (b-2) 2-4×4 (b2-4b) >0, 解得-2<b<6.|b|<2是-2<b<6的充分不必要条件.
【点拨】研究直线与圆的位置关系问题时, 一般而言, 用几何法运算量较低, 且直观, 更为方便.
【变式】若直线与曲线有两个不同的交点, 则b的取值范围是 () .
(答案:B.提示:由, 得x2+ (y-2) 2=4, y≤2, 表示半圆.当直线与相切时, 由, 得b=-2或b=6 (舍去) .当直线过点 (2, 2) 时, .)
4.D.
【变式】若经过点P (-2, 0) 的直线与圆x2+y2=2相切, 则此直线在y轴上的截距是 () .
(A) -2 (B) 2
(C) -2或2 (D) 4
(答案:C.)
5.B.方法一:以O (0, 0) , A (2, 3) 为直径端点的圆的方程为x (x-2) +y (y-3) =0, 即x2+y2-2x-3y=0, 与圆C:x2+y2=4相减, 得2x+3y-4=0.
所以直线PQ的方程为2x+3y-4=0.
方法二:设切点P (x1, y1) , Q (x2, y2) , 则, 则切线方程为, 即x1x+y1y=x21+y21=4, 其经过点A (2, 3) , 有2x1+3y1=4.同理2x2+3y2=4.
所以直线2x+3y=4过A, B两点, 即直线AB的方程为2x+3y-4=0.
【点拨】 (1) 方法一用到了下面的结论:①已知A (x1, y1) , B (x2, y2) , 则以AB为直径的圆的方程为 (x-x1) (x-x2) + (y-y1) (y-y2) =0 (在圆上任取一点P (x, y) , ) ;
②圆O1:x2+y2+D1x+E1y+F1=0与圆O2:x2+y2+D2x+E2y+F2=0相交于点A (x1, y1) , B (x2, y2) , 则直线AB的方程为 (D1-D2) x+ (E1-E2) y+ (F1-F2) =0.
(2) 以上两种方法在运算量方面相差不远, 但方法二对椭圆、双曲线、抛物线也适用.
6.A.
7.C.
【变式】已知点A是直线l:上的动点, 过点A作圆C: (x-2) 2+y2=1的切线, 切点为P, 则|AP|的最小值为 () .
(答案:B.)
8.C.设B (x1, y1) .由, 得A是MB的中点, 则,
所以圆O:x2+y2=1与圆O′: (x+t) 2+ (y+2) 2=4有公共点.
方法二 (几何法) :直线的倾斜角为30°, 于是在△AOB中, ∠A=∠B=30°, 从而∠AOB=120°, 则.
【变式】过点P (-1, -1) 的直线与圆O:x2+y2=1相交于A, B两点, 则.
(C) -1 (D) 1
(答案:D.提示:过点P作圆O的切线, 设切点为Q, 有|PQ|=1.由切割线定理, 得.)
10.D.
【变式】已知在圆M:x2+y2-4x+2y=0内, 过点E (1, 0) 的两条弦AC, BD互相垂直, 则四边形ABCD面积的最小值为 () .
(A) 4 (B) 8
(答案:B.提示:设圆心M (2, -1) 到弦AC, BD的距离分别为m, n, 则, 仅当m=n=1时取等号.)
11. (理) B.
(文) D.设圆M与圆C1内切于点A, 圆M与圆C2内切于点B, 圆M的半径为r, 则|C1M|=|AM|-|C1A|=r-1, |C2M|=|C2B|-|MB|=5-r, 有|C1M|+|C2M|=4, 所以点M的轨迹是以C1 (-1, 0) , C2 (1, 0) 为焦点的椭圆.设其方程为 (a>b>0) , 且2a=4, c=1, 有a=2, b2=a2-c2=3, 即.
(文) C.由圆M与圆C总有公共点, 得3-2≤|CM|≤3+2, 即1≤|CM|≤5.由于点M在圆C内, |CM|≤5显然成立, 故|CM|≥1.点M在直线l:kx-y+3=0上, 且直线l过定点 (0, 3) , 只需使直线l与圆 (x-1) 2+ (y-1) 2=1相切或相离, 所以.
13. (x-3) 2+ (y-3) 2=18.
【变式】已知圆C的圆心在直线x-y=0上, 且圆C与直线x+y=0相切, 直线x+y-12=0被圆C截得的弦长为, 则圆C的标准方程是____.
(答案: (x-4) 2+ (y-4) 2=32.)
15. (-∞, -1]∪[1, +∞) .设过点P的直线与圆相切于A, B两点, 则四边形PAOB是边长为1的正方形, 有, 于是直线y=kx+2与圆x2+y2=2有公共点, 所以, 得k2≥1, 即k≤-1或k≥1.
17. (1) 圆C的方程为 (x+4) 2+y2=16.
(2) 直线FG被圆C截得的弦长为7.
18. (1) 由得圆心C为 (3, 2) .
因为圆C的半径为1,
所以圆C的方程为 (x-3) 2+ (y-2) 2=1.
显然切线的斜率一定存在, 设所求圆C的切线方程为y=kx+3, 即kx-y+3=0.
所以所求圆C的切线方程为y=3或, 即y=3或3x+4y-12=0.
(2) 因为圆C的圆心在直线l:y=2x-4上, 所以设圆心C为 (a, 2a-4) ,
则圆C的方程为 (x-a) 2+[y- (2a-4) ]2=1.
设圆D:x2+ (y+1) 2=4, 所以点M应该既在圆C上又在圆D上, 即圆C和圆D有交点.
由5a2-12a+8≥0, 得a∈R;由5a2-12a≤0, 得.
所以a的取值范围为.
19. (1) 如图1, 设AB的中点为M, 切点为N, 连结OM, MN, 则|OM|+|MN|=|ON|=2, 取A关于y轴的对称点A′, 连结A′B, 故|AB|+|A′B|=2 (|OM|+|MN|) =4.
所以点B的轨迹是以A, A′为焦点, 长轴长为4的椭圆.其中, a=2, , b=1, 则曲线Γ的方程为.
(2) 如图2, 因为B为CD的中点, 所以OB⊥CD, 则.
又因为AC=4, 所以OC=1.所以.
所以直线CD的方程为, 即x+7y-5=0.
(2) 设C (-3m, 4m) (0<m≤1) , 则OC=5m, 则AC=OA-OC=5-5m.
因为AC=BD, 所以OD=OB-BD=5m+4.所以点D的坐标为 (5m+4, 0) .
又设△OCD的外接圆的方程为x2+y2+Dx+Ey+F=0,
解得D=- (5m+4) , F=0, E=-10m-3.
所以△OCD的外接圆的方程为x2+y2- (5m+4) x- (10m+3) y=0.
整理, 得x2+y2-4x-3y-5m (x+2y) =0.
所以△OCD的外接圆恒过定点 (2, -1) .
21. (1) 由x2+y2-6x+5=0, 得 (x-3) 2+y2=4.所以圆C1的圆心坐标为 (3, 0) .
(2) 设M (x, y) .因为点M为弦AB的中点, 即C1M⊥AB,
所以kC1M·kAB=-1, 即.
所以线段AB的中点M的轨迹的方程为.
(3) 由 (2) 知点M的轨迹是以为圆心, 为半径的部分圆弧EF (图3所示, 不包括两端点) , 且.
又直线L:y=k (x-4) 过定点D (4, 0) ,
当直线L与圆C相切时,
十三、圆锥曲线
1.D.
【变式】已知椭圆C: (a>b>0) 的焦点为F1, F2, 若椭圆C上存在一点P, 使得∠F1PF2=90°, 则椭圆C离心率的取值范围是 () .
(答案:B.)
2.C.
【变式】若方程表示椭圆, 则实数k的取值范围是 () .
(A) (-∞, -2)
(B) (2, 5/2)
(C) (5/2, 3)
(答案:D.)
3.A.
【变式】已知点A (1, 1) , F是椭圆的左焦点, 若点P在椭圆上运动, 则|PA|+|PF|的最小值为 () .
(答案:C.)
4.D.
5.B.
【变式】设双曲线 (a>0, b>0) 的左、右焦点分别为F1, F2, 直线l经过F1且与双曲线交于两点A, B, 若△AF2B为正三角形, 则双曲线的离心率为 () .
(答案:C.)
7.C.由题意, 得, 则a2+b2<3, 即点P (a, b) 在圆x2+y2=3的内部.又圆x2+y2=3在椭圆的内部, 于是点P在椭圆的内部, 故过点P的一条直线与椭圆有2个公共点.
9.D.由, 得c2=2a2=a2+b2, 即a=b, 因此双曲线的一条渐近线为l:y=x.
由得P (4, 4) .而抛物线的准线为x=-1, 于是|PF|=4- (-1) =5.
10.D.
【变式】已知直线y=kx-k与双曲线x2-y2=4在右支有两个不同的交点, 则实数k的取值范围是 () .
(答案:D.)
15.①②④.16.- (3/8) .
17. (1) 椭圆C的方程是.
(2) kOM·kPB=-1不成立, 理由略.
(2) (i) 由题意可知, 直线l的斜率为0时, 不合题意.
(ii) 不妨设直线l的方程为x=ky+m.
因为以AB为直径的圆过点M (2, 0) , 所以.
将x1=ky1+m, x2=ky2+m代入上式,
综上, 直线l经过定点 (6/5, 0) .
故椭圆C的标准方程为.
两式作差, 得.因为直线PA, PB的斜率都存在, 所以x20-x21≠0.
所以当PA, PB的斜率都存在时, kPA·kPB=- (1/2) .
(ii) k=0时, P (x0, y0) , A (-2, 0) , B (2, 0) , 设PA的斜率为n, 则PB的斜率为.
直线PA:y=n (x+2) , M (3, 5n) , 直线PB:,
20. (1) 由题意可设抛物线C的方程为x2=2py (p>0) , 则p/2=1, 所以抛物线C的方程为x2=4y.
(2) 由题意知, 直线AB的斜率存在.设A (x1, y1) , B (x2, y2) , 直线AB的方程为y=kx+1.
同理点N的横坐标.
令4k-3=t, t≠0, 则.
综上所述, 当, 即时, |MN|的最小值是.
21. (理) (1) 点M (1, 0) 是椭圆C的“1分点”, 理由如下:
(2) 假设点M (1, 0) 为椭圆C的“2分点”, 则存在过点M的直线l与椭圆C交于A, B两点, 使得S△AOB=2S△AOD, 显然直线l不与y轴垂直.设l:x=my+1, A (x1, y1) , B (x2, y2) .
因为S△AOB=2S△AOD,
将④代入⑤中得, 无解.
所以点M (1, 0) 不是椭圆C的“2分点”.
(3) x0的取值范围为 (-2, -1) ∪ (1, 2) .
(文) (1) 椭圆C的离心率.
设点E, F的坐标分别为 (x1, y1) , (x2, y2) , EF的中点M的坐标为 (xM, yM) ,
因为△BEF是以EF为底边, B为顶点的等腰三角形, 所以BM⊥EF.
因此BM的斜率.
又点B的坐标为 (0, -2) ,
所以EF的方程为.
又圆的圆心O (0, 0) 到直线EF的距离为,
初二数学分单元测试 篇3
关键词:初二数学;因材施教;教学方案
一、分层次制定教学方案
在分层教学的实践过程中,老师针对不同层次的学生进行教学,所以老师要明确教学任务和教学目标。首先,老师要根据学生理解能力的不同制定出相应的教学方案,在实践过程中,老师先将各层次的学生进行明确的分层,分为A等、B等和C等三个小组,然后根据学生不同的学习情况设定不同难易度的课程及问题。老师根据各层次学生对课程难易度的需要,对他们提出相应难易度的问题。比如,在学习初二数学函数时,有这么一道题:已知直线y=-3x+1与x轴相交于A点,与y轴相交于B点,以线段AB边为直角边在第一象限内作等腰直角△ABC,∠BAC=90°,且动点P(1,a)在坐标系中。(1)求△ABC的面积;(2)证明:a取任何实数时,S△BOP是一个常数;(3)要使得△ABC和△ABP的面积相等,求实数a的值。这三个问题分别针对C、B、A等的学生来进行解答,这就是根据他们学习程度的不同来做不同难易程度的题。
二、根据情况教学任务要分层制定
老师要制定出不同难易程度的教学任务和教学目标进行分层次教学。根据课程的难易程度来设定问题的难易度,由浅入深,以此来提高学生学数学的兴趣。老师在设计问题时,可以将题与题联系起来,让学生从不同方面着手,来提高学生的分析思维能力和解题能力。比如,下面这道题可以设定三个问题,已知y+5与3+4成正比例1,当x=1,y=2。(1)求x、y之间的函数关系式;
(2)求当x=-1时,y的值;(3)如果0≤y≤5,求x的取值范围。对于这样的题型,让C等生做第1问,B等生做第2问,A等生做第3问。以这样的任务分层学习和测试,提高学生学习数学的兴趣,增加学生学习数学的自信,让每个学生都可以通过做题得到锻炼和提高。最后老师对学生进行测试,根据不同的成绩来调整分组,对学生实施进一步的分层教学,让学生在分层教学中不断提升
自我。
三、评价不同层次学生的表现
在分层教学的过程中,老师要根据学生的学习情况予以合理的评价,以此来达到分层教学的教学目标。以各层次学生课前、课后的表现为评价标准。比如说,对C等生进步的评价实施鼓励和表扬式,以此来激发他们学习数学的兴趣和信心;对B等的学生要实施激励式,要指出他们的不足,点明他们进步的方向和方法;对A等学生,则要采取竞争式,对他们严格要求,让他们谦虚向上,不断学习,超越自我,发挥自己最高的水平。在分层次教学过程中,老师通过对学生在课前、课后对知识的掌握度和理解度及作业的完成度来评价学生,旨在激发学生对数学产生兴趣,提高数学成绩,同时另一方面提高了数学老师的教学质量,让学生的应变能力和思维能力协调发展。所以要提高学生的学习能力,要从学生的理解接受能力着手,正如一位德国教育家所说:“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞。”
四、同学之间互相辅导
对所学知识有何种掌握程度是学生学习情况的重要表现,为了让学生对知识的掌握更牢固,课后巩固学习十分重要。但要如何去巩固呢?老师可以实施分层辅导法,让学生互相帮助学习,共同解决问题。学困生在课后遇到不懂的问题时可以找中等及优等的学生寻求帮助,同时中等学生在遇到不懂的题时也可以向优等学生寻求帮助,而优等学生则相互请教,以此来提高作业完成度。同学之间互相辅导学习,可以不断地提高自己,创造一种良好的学习环境,同时也让学生对所学知识有所掌握和巩固,学生学习成绩得到不断提高。
所以,根据上面几种分层教学方法可以使学生在自身接受能力的基础上激发学生对数学学习的兴趣,提高学习成绩。分层教学根据学生对学习的理解能力和需求程度,让学生从自身程度上得到不断提升,使其学习数学的积极性不断提高。而且分层教学为学生提供了一个良好的学习环境,不仅减轻了学生学数学的负担,而且使学生的学习效率得到提高,数学成绩明显上升。而要让分层教学法更充分发挥其功效,需要我们在教学实践中不断探索和学习。
参考文献:
[1]杨斌.初中数学激趣教学的策略分析[J].中学数学教学参考,2015(36).
[2]马玉娟.论生本理念指导下的初中数学分层教学[J].考试周刊,2016(12).
初二数学分单元测试 篇4
全册单元要点小结
Unit 15 What do people eat?
单元小结
简单句的五种基本句型
1. 主语+谓语(不及物动词) [S + V]
如:The children are playing happily.
孩子们正在高兴地玩。
2. 主语+谓语(及物动词)+宾语 [S+V+O]
如:The Greens enjoy living in China.
格林一家喜欢住在中国。
3. 主语+谓语+表语 [S+V+P]
该句型谓语动词为连系动词。常见的系动词有:be(是); get(变得), become(成为), turn(变得), look(看起来), feel(感到), smell(闻起来), taste(尝起来), sound(听起来), seem(似乎) 等。如:
① He became a famous doctor.
他成为了一名著名的医生。
② The apple pie tastes really delicious.
苹果派吃起来真是好吃。
4. 主语+谓语+间接宾语+直接宾语 [S+V+InO+DO]
这种句型中的及物动词后跟双宾语,既指人的间接宾语和指物的直接宾语。也可以把间接宾语放在直接宾语之后,但要加介词for或to。如:
① My aunt bought me a computer. = My aunt bought a computer for me. 我阿姨买给我一台电脑。
② I passed him the salt. = I passed the salt to him.
我把盐递给他。
5. 主语+谓语+宾语+宾语补足语 [S+V+O+OC]
如:We must keep our school clean.
我们必须保持我们的学校清洁。
Unit 16
单元小结
情态动词can的用法
情态动词can只有:can和过去式could两种形式,后面跟动词原形,用于一切人称和单、复数。
1. 表示客观条件的许可,意思是“可以”。如:
-Can I borrow your bike for today?
我可以借你的自行车用一天吗?
-Yes, you can. 行。
-No, you can’t. 不行。
2. 表示具有某种能力,意思是“会”“能”=(be able to)。如:He can speak English. 他会讲英语。
3. 与否定词not连用,表示否定的推测,意为“不可能”。如:He can’t be only fifteen. 他不可能只有十五岁。
情态动词may的用法
情态动词 may有:may现在式和might过去式两种形式,后面跟动词原形,用于一切人称和单、复数。
1. 表示说话人同意,或在疑问句中征求对方许可。意思是“可以”。如:
You may take it away. 你可以把它拿走。
【注】否定式常用must not(mustn’t),表示“不可以”“不许”。如:You mustn’t smoke here. 你不可以在这里吸烟。
2. 表示可能性,意为“可能”。如:
He may not come tomorrow. 明天他可能不来。
【注】could和might有时作为can和may的过去式,而是表示语气更为客气或委婉。如:
Could you tell me how to get to the cinema, please? 你可以告诉我去电影院的路怎么走吗?
Unit 17 You must be more careful
单元小结
情态动词must的用法
情态动词must只有一种形式must,只用于一般现在时和一般将来时,没有人称和数的变化,后接动词原形。
1. 表示义务或必要性,意思是“应该,必须”,通常用于肯定句及疑问句。如:
You must close the windows when you leave the classroom. 你离开教室时一定要关好窗户。
2. must的否定形式是mustn’t,意思是“不应该、禁止”,语气较强烈。如:
You mustn’t smoke here. 你不许在这里吸烟。
3. 由must引出的一般疑问句,肯定回答用must,否定回答用needn’t或don’t have to,但不可以用mustn’t。如:-You must go there on foot, mustn’t you?
你必须走着去那里,是吗?
-Yes, I must. 是的。
-No, I needn’t./No, I don’t have to. 不是的。
4. 表示说话人对事情进行的肯定推测,意思是“一定、准是”。否定句用can’t。如:
He must be a teacher. 他一定是个老师。
【注】must表示推测时,其反意疑问句疑问部分不能用must,而要与它后面的动词保持一致。如:
David must have a sister, doesn’t he? 大卫肯定有个妹妹,是吗?
由when, before, after, if等连词引导的时间和条件状语从句当主句是一般将来时,从句要用一般现在时。如:
If it rains, we won’t go there. 如果下雨,我们就不去。
Unit 18 Seeing the doctor
单元小结
情态动词have to的用法
1. have to意为“不得不”“必须”,后面跟动词原形;第三人称单数形式是has to,过去式是had to,将来式是will have to。如:
He has to go to school now. 他现在必须去上学。
2. 含有have to的句子否定式通常是在have to前加don’t, doesn’t或didn’t;疑问句通常是在主语前加do, does或did。如:
You don’t have to tell Jim about it. 你不必告诉吉姆这件事。
3. have to与must的区别:
have to和must都表示“必须”。have to有人称、数和时态的变化,而must没有人称、数和时态的变化;have to常表示因外界客观因素所致,而must表示说话人的主观看法。另外,have to有多种时态,而must一般只用于现在时。如:
① It’s raining hard. You have to take the raincoat.
雨下得很大,你必须带上雨衣。
② I must be off. Thank you for your help.
我得走了。谢谢你的帮助。
系动词的用法
1. 连系动词在句子中与其后表语一起构成谓语,表语一般是名词、形容词、副词或介词词组。
2. 常见系动词有:be动词;表示状态变化:become, get, grow, fall, turn等;表示感觉:feel, taste, look, smell, sound, seem等。
【Unit 15单元小结讲解3】
Unit 19 A visit to an island
单元小结
复合不定代词的用法
1. some, any, every, no都能和one, body, thing一起构成代词,这些代词叫复合不定代词。它们基本含义为:
指
人 somebody
someone 某人 anybody
anyone
任何人 everybody
everyone每人 nobody
no one
没人
指物 Something某物某事 anything任何事物 everything一切 nothing没东西
2. 一般情况下,some构成的复合不定代词,其作用和some相同,用于肯定句;any构成的复合不定代词用于否定句或疑问句;no构成的复合不定代词表示否定含义,用于否定句。如:
① I have something to tell you. 我有事要告诉你。
② He didn’t say anything at the meeting yesterday. 昨天在会上他没发言。
③ Everybody likes swimming. 每个人都喜欢游泳。
④ There is nothing wrong with your ears.
你耳朵没毛病。
3. something可用于提建议或请求的问句中,以及希望说话对方作出肯定回答的问句中。如:
Would you like something to eat? 你要吃点东西吗?
4. 复合不定代词在句子中作主语时,谓语动词一般用单数形式。如:
Nobody knows his name. 没有人知道他的名字。
5. 不定代词的定语要后置。如:
Is there anything important in today’s newspaper? 今天的报纸上有什么重要新闻吗?
Unit 20 Mainly revision
单元小结
情态动词need的用法
1. need作为情态动词表示“需要”“必须”,没有人称、数和时态的变化,主要用于否定句和疑问句。如:
He said he need not hurry. 他说他不必匆忙。
2. need的否定形式needn’t常用来回答以must提问的一般疑问句的否定回答。如:
-Must I give the book back in two days?
我应该在两天里归还这本书吗?
-No, you needn’t. 不,不用。
3. need主要作实义动词,后面接带to的动词不定式,有人称、数和时态的变化。如:
You don’t need to stay. 你没有必要留下。
时间、条件状语从句的时态
1. 当主句的谓语动词是一般将来时时,从句要用一般现在时。如:
We’ll have a picnic if it doesn’t rain tomorrow. 如果明天不下雨我们将要去野餐。
2. 主句的谓语动词是“情态动词+动词原形”时,从句也要用一般现在时。如:
When the lights are red, the traffic must stop. 红灯亮时,车辆必须停下。
3. 主句是祈使句时,从句也要用一般现在时。如:
Please close the window before you leave the classroom. 在你离开教室前请关好窗户。
4. 主句谓语用一般过去时时,从句也要用一般过去时。如:They talked about the party after people left.
人们离开后,他们谈论这次晚会的情况。
Unit 21 She taught herself
单元小结
句子的分类:
1. 句子按其用途可分为下列4种类型:陈述句;疑问句;祈使句;感叹句。
2. 按其结构可分为下列3种类型:
① 简单句:由一个主语部分和一个谓语部分组成的句子。
② 并列句:由并列连词把两个或两个以上的简单句连在一起组成的句子。
③ 复合句:由主句和其它从句组成的句子。
并列句及并列连词
常见的并列连词有:and表示并列或承接; so表示因果; but表示转折; or表示选择或转折等。如:①He spoke, and all was still.
他一说话,大家都肃静了。
②It was late, so I went home.
天晚了,因此我就回家去了。
③We love peace but we have to fight for it.
我们热爱和平,但我们必须去争取它。
④Hurry up, or else we’ll be late.
赶快,不然就晚了。
反身代词的用法
1. 单数:myself, yourself, himself, herself, itself
复数:ourselves, yourselves, themselves
2. 用法:①作动词或介词的宾语。如:
The child can dress himself. 这小孩会自己穿衣服。
②作同位语,意为“亲自”“本人”。如:
I myself did the work. 我亲自做的这件事。
Unit 22 The sports meeting
单元小结
形容词、副词的比较等级
1. 形容词、副词比较等级的构成:形容词、副词比较等级有原级、比较级、最高级。原级既形容词或副词的本身,比较级和最高级有规则和不规则变化。【具体变化见本书第三册第三、四单元单元小结。】
2. 原级的用法:表示双方程度相等,用“as…as”,意为“和…一样”;表示双方程度不相等用“not so(as)…as”,意思是“和…不一样”或“不如…”。如:①It is as cold as it was yesterday.
今天和昨天一样冷。
②Jim didn’t jump so far as Li Lei.
吉姆跳得没有李雷高。
3. 比较级的用法:表示两个人或事物的比较用比较级。基本句式为:主语+谓语+比较级+than+比较对象。注意比较双方的性质要一致。如:
Your jacket is longer than mine. 你的夹克比我的长。
4. 最高级的用法:表示三个或三个以上的人或事物进行比较用最高级。基本句式为:主语+谓语+最高级+比较范围。比较范围常由of或in词组构成,of指同类人或物;in指地方或单位。如:
She did best in the test of all the students in his class. 在他班里所有同学中,她在这次考试中考得最好。
【注】副词最高级前不加the。
5. 有时原级、比较级和最高级之间可互相转换。如:
She is not as tall as her brother. 她比她弟弟矮。
=She is shorter than her brother.
还有Lesson 86讲解2的情况等。
Unit 23 A famous person
单元小结
冠词及其用法
冠词是位于名词之前,说明名词说指的人或物的一种虚词。分不定冠词(a, an)和定冠词(the)两种。不定冠词a用在以辅音音素开头的单词之前;an用在以元音音素开头的单词前。
1. 不定冠词的用法:
不定冠词用于可数名词单数形式前。表示某一类人或事物;或指某人或某物但不具体说明何人何物。如:①A bike is very useful in the countryside.
自行车在农村里很有用。
②A Wang is looking for you.
一位姓王的同志组正在找你。
2. 定冠词的用法:
①表示特指某(些)人或物,或者说话双方共同所指的人或物。如:The flowers in Mary’s garden are very sweet.
玛丽花园中的花很香。
②表示上文已经提到的人或物。如:
The old lady has a son and a daughter. The son is a doctor. The daughter is a teacher. 老太太有一个儿子一个女儿,儿子是个医生,女儿是教师。
③在序数词和形容词最高级前。如:the first第一
④在世界上独一无二的事物前。如:the earth地球
⑤在由普通名词构成的专有名词前。如:
the Summer Palace 颐和园
⑥在姓氏复数前表示“一家人”;在形容词前表示“某一类人。如:the Browns 布朗一家人 the rich 富人
3. 冠词还用在习语中:a little一些 on the left在左边
Unit 24 What were they doing?
单元小结
过去进行时的用法(一)
过去进行时由“was/were+现在分词”构成。表示过去某一时刻或某段时间正在进行的动作。其用法有:
1. 表示过去某一时刻正在进行的动作。如:
I was doing my homework at eight o’clock last night. 昨晚八点我正在做作业。
2. 表示过去某段时间正在进行的动作。如:
They were building a house last winter. 去年冬天他们在建一座房子。
3. 表示过去频繁发生的习惯性动作。常与always等词连用。如:
Little Tom was always asking many questions. 小汤姆总是会问许多的问题。
4. 动词come, go, leave, start, arrive等表示位置转移的动词用过去进行时表示过去将要发生的动作。如:They wanted to know when we were leaving for Shanghai. 他们想知道我们什么时候去上海。
过去进行时和一般过去时的用法比较:
一般过去时强调过去某个时候或某段时间曾有过的某个已结束的动作;过去进行时则强调过去某个时候或某段时间正在进行的动作。如:
Lily wrote a letter to her aunt last night. 莉莉昨晚给她阿姨写了封信。(信已写完了。)
Lily was writing a letter to her aunt last night. 莉莉昨晚一直在给她阿姨写信。(强调写的动作一直在进行,信不一定写完。)
Unit 25 The accident
单元小结
五种时态的总结
时态 含义 构成 时态标志
一般现在时 表示经常、反复发生的动作 动词原形动词第三人称单数形式 always, usually, sometimes, every day
现在进行时 表示正在进行或发生的动作 is/am/are+动词的现在分词 look, listen, now …
一般将来时 表示将要发生的动作 will+动词原形; is/am/are going to+动词原形 tomorrow, next week,
…
一般过去时 表示过去发生的动作或存在的状态 动词过去式 yesterday, last night, a moment ago …
过去进行时 表示在过去某一时刻或某一时间内正在进行的动作 was/were +现在分词 this time yesterday, at noon last Sunday
…
动词时态中需要注意的几点
1. 表示客观真理、事实要用一般现在时。
2. 在时间和条件状语从句中必须用一般现在时不是将来的动作或存在的状态。
3. 表示不以人的意志为转移的将来时只能用will,不可以用be going to。
4. 动词go, come, leave, start, arrive等可用一般现在时或现在进行时表示按计划或安排将要发生的事。
‘
Unit 26 Mainly revision
单元小结
英语情景对话中的中西文化差异
我们在用英语进行交际时,往往会将汉语的思维方式、表达习惯、文化习俗转移到英语中,导致表达不正确。注意下列几种情况:
1. 当你受到赞扬时,答谢时不能“自谦”或“自贬”,而应该高兴地接受他人的赞扬。如:
-Your English is very good.
误:-No, my English is very poor.
正:-Thank you./Very glad to hear that.
2. 当别人因你的帮忙表示感谢时,回答时不好说“这是我该做的”等。应该接受对方的谢意。如:-Thank you for helping me.
误:-It’s my duty.
正:It’s my pleasure./My pleasure.
3. 当你接受别人的礼物时,不可以说“真不好意思,让你破费了”等之类的话。应该诚恳的收下,当面打开礼物并说一些表示欣赏的话。如:
-Here is the birthday present for you.
误:-I’m really ashamed of myself. You shouldn’t spend so much money.
正:-It’s so nice of you. Thank you very much.
4. 在就餐时,不好说“多吃点”或“多喝点”来表示热情、好客。如:
-I enjoy the meal very much.
误:-If you really think so, eat slowly, eat more.
正:-Help yourself, please.
初二物理上册第一单元测试题 篇5
一.实验探究(6分)
17.为了探究声的产生条件,有人建议利用以下几个实验现象.
甲.放在钟罩内的闹钟正在响铃,把钟罩内的空气抽去一些后,铃声明显减小.
乙.使正在发声的音叉接触水面,水面溅起水花.
丙.吹笛子时,手指按住不同的孔便会发出不同的声音.
丁.在吊着的大钟上固定一支细小的笔,把钟敲响后,用纸在笔尖上迅速拖过,可以在纸上画出一条来回弯曲的细线.
你认为,能说明声的产生条件的实验现象有_______.其他现象虽然不能说明声的产生条件,但是分别说明______________________________、_______________________.
二.综合应用(6分)
18.有一首校园歌曲《童年》中,歌词是这样的`:“池塘边的榕树上知了在声声地叫着夏天,操场边的秋千上只有蝴蝶停在上面,黑板上老师的粉笔还在拼命吱吱喳喳嗄嗄写个不停.”分析歌词的内容异找出哪些物体发出了声音,发声体分别是什么?
B?创新思维拓展(40分)
三.认真选一选(4分×2=8分)
19.下列实验活动,不能探究声音的产生与传播条件的是( )
A.观察蟋蟀翅膀在摩擦振动时,能够听到清脆的声音
B.扬声器播放音乐时,放些纸片在纸盆上,看到纸片不断跳动
C.雨天先看到闪电,几秒钟后才听到远处的雷声
D.把一个收音机用塑料袋密封后浸没在水中,仍能听到播音
20.在下雨打雷时,每一次雷电后,雷声总是隆隆不绝于耳,这是因为( )
A.声音的反射 B.多次打雷的原因
C.双耳效应 D.雷声分裂所致
四.细心填一填(4分×2=8分)
21.如图6-7所示,将正在发声的音叉紧靠用线悬挂的小球,会发现小球多次被弹开,这个现象说明 ,如果将这个实验拿到月球表面去做,你会发现 .
初二地理上册第二单元综合测试题 篇6
一、选择题(共20题,每题2分,共40分)
题号12345678910
答案
题号11121314151617181920
答案
1、关于我国的地势特点的说法,正确的是
A.地形多种多样,山区面积广大B.西高东低,呈阶梯状分布
C.多山地高原,四周低、中间高D.西高东低,山脉呈网状分布
2、世界最高的高原是()
A、青藏高原B、内蒙古高原C、黄土高原D、云贵高原
3、我国地势第一、二级阶梯的分界线是()
A、天山—阴山B、昆仑山—祁连山—横断山脉
C、长白山—武夷山D、大兴安岭—太行山—巫山—雪峰山
4、“天苍苍,野茫茫,风吹草低见牛羊”描述的是()的景观
A、青藏高原B、内蒙古高原C、黄土高原D、云贵高原
5、分布在第三级阶梯上的主要地形类型是()
A.丘陵和平原B.丘陵和盆地
C.山地和高原D.平原和高原
6、我国以肥沃黑土著称的平原是()
A、东北平原B、华北平原C、长江中下游平原D、成都平原
7、世界大多数农作物和动植物都能在我国找到适合生长的地区,是因为我国()
A.季风气候显著B.夏季普遍高温
C.气候复杂多样D.雨热同期
8、冬季我国最冷的地方在()
A、青藏高原B、x疆的吐鲁番C、云贵高原D、黑龙江省的漠河[来源:]
9、我国内流河大多分布在()
A.东南沿海地区B.东部季风区内
C.西部非季风区内D.黄河和长江流域
10、古诗“羌笛何须怨杨柳,春风不度玉门关”是指这里()
A、年降水量多B、夏季风来得早
C、不受夏季风影响D、雨季来得迟
11、我国最大的内流河是()
A、黑龙江B、塔里木河C、长江D、黄河
12、被称为“塞上江南”的平原是()
A、宁夏平原B、华北平原C、东北平原D、长江中下游平原
13、治理黄河水害的根本是()[来源:]
A、在上游修建水电站B、在中游黄土高原地区加强水土保持
C、通过裁弯取直工程,疏浚河道D、在下游修筑大堤
14、世界上最长、开凿最早的运河是()
A、苏伊士运河B、巴拿马运河C、京杭运河D、灵渠
15、有“黄金水道”和“水能宝库”之称的河流是()
A、黄河B、京杭运河C、长江D、珠江
16、我国干湿地区的划分依据是()
A、降水量的多少B、蒸发量的多少
C、净流量的多少D、降水量和蒸发量的对比
17.长江与黄河共同流经的地形区有()
A.四川盆地B.华北平原C.横断山区D.青藏高原
18.我国秦岭-淮河一线是()
A.热带与亚热带分界线B.暖温带与中温带分界线
C.湿润与半湿润区分界线D.半湿润与半干旱地区的`分界线
19、下列灾害与夏季风相关的是()
A、洪涝和干旱B、台风和寒潮C、冰雹和大风D、沙尘暴和寒潮
20、下列山脉中,走向和其他三个不同的是()
A、天山B、昆仑山C、巫山D、秦岭
二、综合题(本题包括5小题,共50分。)
1、连线(4分)①冬季最冷A火烧寮
②夏季最热B托克逊
③降水最少C漠河镇
④降水最多D吐鲁番
2、读“中国略图”,完成下列问题。(每空2分,共12分)
(1)填出图中序号所代表的地理事物名称:
山脉:①天山②祁连山
③秦岭
河流:④黄河
地形区:⑤四川盆地⑥青藏高原
3、读下图,完成下列各题。(每空2分,共16分)
(1)A线是____季风区和非季风区______分界线,此线以西为__非季风区_。
(2)B线是___第一二阶梯___分界线,此线以东地形以__平原和丘陵__为主。
(3)C线为一月__0℃_等温线,大体与__800___毫米等降水量线一致。此线以北耕地以__旱地___为主,以南以___水田______为主。
4、读我国沿北纬36度附近地形剖面图,完成下列问题:(每空2分,共12分)
(1)受地势的影响,我国大多数河流流向为__自西向东___奔流入海,沟通了__东西_____交通,方便了沿海与内地的联系,并在各阶梯的交界地带形成巨大的落差,蕴藏着丰富的_水能_资源。
(2)我国地势平均海拔在4000米以上的是第___一__级阶梯;地形以盆地和高原为主的是第___一、二__级阶梯;黑龙江位于第___三___级阶梯上。
5、填出下列山脉两侧的地形区(16分)
山脉名称[两侧的地形区
东侧西侧
大兴安岭东北平原内蒙古平原
太行山脉华北平原黄土高原
巫山长江中下游平原四川盆地
【初二数学分单元测试】推荐阅读:
初二物理第一单元测试题08-22
初二数学测试题08-25
测试题初二数学10-01
初二下册政治第八单元测试题09-08
初二数学分式测试题07-27
初二数学平行四边形测试题06-12
初二数学期中调研性测试试卷分析07-17
人教版初二物理测试09-21
仁爱英语初二单词测试09-21
初二物理上册期末测试10-10