初二数学测试题(精选8篇)
初二数学测试题 篇1
一.选择题(每小题3分,共30分)
1、一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()
A.3cm B.4cm C.7cm D.11cm2、下列运算中,正确的是()。
A.aa2=a2 B.(a2)2=a
4C.a2a3=a6 D.(a2b)3=a2b33、已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()
A.∠BCA=∠FB.∠B=∠E
C.BC∥EFD.∠A=∠EDF4、下列各式由左边到右边的变形中,是分解因式的为()。
A、a(x+y)=ax+ay B、x2-4x+4=x(x-4)+
4C、10x2-5x=5x(2x-1)D、x2-16+3x=(x-4)(x+4)+3x
5.下列命题中,假命题是()
A.9的算术平方根是3 B.的平方根是±
2C.27的立方根是±3 D.立方根等于﹣1的实数是﹣
16、下列命题中,假命题是()
A.垂直于同一条直线的两直线平行
B.已知直线a、b、c,若a⊥b,a∥c,则b⊥c
C.互补的角是邻补角
D.邻补角是互补的角
7、△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()
8、使分式有意义的x的取值是()
A.x≠0B.x≠±
3C.x≠-3D.x≠39、点M(3,-4)关于x轴的对称点的坐标是()
A.(3,4)B.(-3,-4)
C.(-3,4)D.(-4,3)
10、点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()
A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)
二.填空题(每小题4分,共32分)
11、五边形的内角和是.12、一个汽车牌在水中的倒影为,则该车牌照号码
是____________。
13.已知x+y=1,则=。
14、分解因式:2a2-4a=.15、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是。
16、微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.0000007mm2,用科学记数法表示为mm2.17、多项式加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是___________。(填上一个你认为正确的即可)
18.若点A(m,5)与点B(2,n)关于原点对称,则3m+2n的值为____.
三、简答题:(共8大题,共88分)
19、计算与化简求值(1、2小题各5分,3小题8分,共18分)
(1)(2)[(x+y)2-(x-y)2]÷(-2xy).
(3)先化简,再求值:(),其中x2﹣4=0.
20.分解因式(每题6分,共12分)
21、已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()
24、(10分)甲,乙两人准备整理一批新到的试验器材,若甲单独整理需要40分钟完工,甲、乙共同整理20分钟,乙再需单独整理20分钟才能完工。
(1)乙单独整理这批试验器材需多少分钟完工?
(2)若乙因工作的需要,他整理的时间不超过30分钟,则甲至少整理多少分钟才能完工?
25、(12分)请仔细观察表中数据,并回答下列问题。
边数34567…n
从一个顶点出发的对角线的条数0123
4上述对角线分成的三角形个数02345…
总的对角线条数025914…
(1)用含n的式子分别表示从一个顶点出发的对角线的条数,上述对角线分成的三角形个数,总的对角线条数。答案直接写在表格中。
(2)若一个多边形的总对角线数为54条,求该多边形的边数和以及内角和度数
26、(12分)观察下列等式
12×231=132×2113×341=143×3123×352=253×
3234×473=374×4362×286=682×26......以上每个等式中两边数字是分别对称的,且每个等式中组成的两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”。
(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”
①52×=×2
5②×396=693×
(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明。
初二数学测试题 篇2
学习数学调查表
1.你每天数学课前预习的时间()
A.接近1小时B.接近半小时C.接近10分钟
D.不经常预习E没有预习的习惯
2.进入初二以后你学习数学的动力是()
A.兴趣爱好B.中考C.为高考打基础
D.有实用价值E老师父母管得严
3.在你的心目中,数学在所有的学科中按你喜欢的程度排在()
A第一B第二C第三D第四或以下
4.你在数学学习中遇到难题时你经常()
A不了了之B问老师同学
C与同学讨论D自己思考
5.你认为学好数学的关键是()
A优秀的老师B好的学习方法
C自己的天资D自己付出的努力
6.你最喜欢的数学老师是()
A幽默风趣B知识渊博C一丝不苟
7.你最不喜欢老师上课方法()
A老师从头讲到尾B让同学们自己讨论
C节奏太快D课堂气氛沉闷
8.课堂作业和家庭作业经常()
A认真完成B马虎完成
C不做D抄别人的
9.作业出现错误时,你经常()
A订正B不经常订正C没必要订正
10.在课堂上你对老师的例题解法()
A满足听懂B老师讲很简单,自己做不会
C无从下手D努力寻找做题的办法和规律
E先自己思考,暂时不理会别人的解法
从以上的调查结果分析,78.8%的学生出现不预习和经常不预习的习惯,这将严重影响学生的自学能力和自觉性的培养。再者,学生对学习的主动性还是很差,从调查中有66.2%的学生是因为父母老师管得严,在“加压的条件”下才得以被动学习,这是学生学不好数学的一个突出问题。初中学生的特点时自控能力差,学生需要老师和家长进行正确的引导,变被动为主动,才能取得好的效果。从调查中得知任有21.4%的学生有兴趣和爱好,这是学生学习数学的热情,对老师也是一种鼓励。
调查表中,老师的自身素质很重要。76.2%的学生最喜欢“风趣幽默”,说明学生从关注老师的学识转移到关注老师授课的风格;从关注知识交流到关注情感交流。57.1%的学生认为学好数学的关键是有一名优秀的数学老师。
另外,学生的学习态度也很重要。46.8%的学生遇到难题时,都不了了之;72.3%的学生对作业和试卷中出现的错误经常不订正;还有25.4%的学生甚至出现抄作业的现象。这些数据让笔者感到触目惊心。为什么学生采取这种态度来对待学习中的困难,这是值得我们深思的一个问题。29.3%的学生对于数学课只满足听懂,听懂与自己会做题以及到能迅速正确解答出来是有着本质的区别。这需要依靠老师的点拨和学生角色的变化,怎样让学生从学习中的配角变为钻研学习中的主角,使学生成为真正学习的主体,这也是老师面对现实的一个新课题。
从调查中发现,学生学习不是很理想的原因是多方面的,但是在偏远的少数民族地区,除了以上的原因以外,地理环境和家庭环境有着很重要的关系。在学习时间上不能象城市孩子一样只管自己的学习,有些家庭因为家务多,而让学生抽出有限的学习时间去干农活或家务,时间上不能予以保证,对于少数民族的地区家里孩子比较多,重男轻女的思想还很严重,好多家庭不管学生的学习成绩好坏,上完九年义务教育就让孩子辍学回家,还有些家庭一点也不重视孩子的学习,尤其现在社会就业形势不太好,课本上的理论好多都用不上,学习的好坏都没有关系,这种现象也影响学生学习的积极性。
初二数学测试题 篇3
1.红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图1所示,红丝带重叠部分形成的图形是().
A.正方形B.矩形C.菱形D.梯形
2.设、、是不为零的实数,那么 = 的值最多有().
A. 3种B. 4种 C. 5种D. 6种
3.△ABC的边长分别是 = 、 = 、 = 2(>0),则△ABC是().
A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形
4.古人用天干和地支记次序,其中天干有10个,甲乙丙丁戊已庚辛壬癸,地支有12个,子丑寅卯辰巳午末申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行:
甲乙丙丁戌已庚辛壬癸甲乙丙丁戊已庚辛壬癸甲乙丙丁……
子丑寅卯辰巳午末申酉戌亥子丑寅卯辰巳午末申酉戌亥子丑寅卯……
从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……我国农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年的公历中是().
A. 2019年B. 2031年C. 2043年D. 没有对应的年号
5.实数、、、满足<、<<,若M = 、N = ,则M与N的大小关系是().
A. M>NB. M = NC. M<ND.无法确定的
6.若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm,则正方形A、B、C、D的面积和是().
A. 14cm2 B. 42cm2
C. 49cm2 D. 64cm2
7.已知关于的不等式组恰有3个整数解,则的值范围是().
A. ≤≤ B. ≤≤ C. <≤ D. ≤<
8.Thenumberofintersectionpointofthegraphsoffunction=and function= (≠0) is ().
A. 0B. 1 C. 2 D. 0or2
(英汉词典:intersection point交点、graph图象、function曲线)
9.某医药研究所开发一种新药.成年人按规定的剂量服用,服药后每毫升血液中的含药量(毫克)与时间(小时)之间的函数关系近似满足如图3所示曲线.当每毫升血液中的含药量不少于0.25毫克时,治疗有效,则服药一次,有效治疗疾病的时间为().
A. 16小时 B. 15小时
C. 15小时D. 17小时
10.某公司组织员工到公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后,仅有一只船不空也不满,参加划船的员工共有().
A. 48人 B. 45人 C. 44人 D. 42人
二、填空题(本大题共10小题,每小题4分,共40分)
11.已知、、为△ABC三边的长,则化简|+| + 的结果是_______.
12.自从扫描隧道显微镜发明后,世界上便诞生了一门新科学,这就是“纳米技术”,已知1毫米 = 1000微米,1微米=1000纳米,那么2007纳米的长度用科学记法表示为______米.
13.若不等式组中的未知数的取值范围是1<<1,那么( + 1)(1)的值等于______.
14.已知1、2、3,…、2007是彼此互不相等的负数,且M = (1 + 2 + … 2006)· (2 + 3 + …2007), N = (1 + 2 + …2005)·(2 + 3 + …2004),那么M与N的大小关系是M______N.
15.叫做二阶行列式,它的算法是:,将四个数2,3,4,5,排成不同的二阶行列式,则不同的计算结果有_____个,其中,数值最大的是_____.
16.如图4,一只小猫沿着斜立在墙边的木板往上爬,木板底端距离墙角0.7米.当小猫从木板底爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了_______米.
17.Xiao Ming says to Xiao Hua that my age adds your age ,adds your age when I was your age is 48.The age of Xiao Hua is ________now.
(英汉词典:age 年龄 add加上 when当…时)
18.长方体的长、宽、高分别为正整数、、,且满足 ++++++= 2006,那么这个长方体的体积为_______.
19.已知为实数,且 + 2与2都是整数,则的值是_______.
20.为确保信息安全,信息传输需要加密,发送方由明文→密文(加密),接收方由密文→明文(解密).现规定英文26个字母的加密规律则是:26个字母按顺序分别对应整数0到25,例如,英文、、、写出它们的明文(对应整数0、1、2、3) ,然后将这4个对应的整数(分别为1、2、3、4,)按1+22、32、3+24、34,计算,得到密文,即、、、四个字母对应的密文分别是2、3、8、9,现在接收方收到的密码为35、42、23、12,则解密得到的英文单词为______.
三、解答题(本大题共3小题,共40分)要求:写出推算过程
21.(本题满分10分)
如图5,一个大的六角星形(粗实线)的顶点是周围六个全等的小六角星形(细实线)的中心,相邻的两个小六角星形各有一个公共顶点,如果小六角星形的顶点C到中心A的距离为,求:
(1)大六角星形的顶点A到其中心O的距离;
(2)大六角星形的面积;
(3)大六角星形的面积与六个小六角星形的面积之和的比值.
(注:本题中的六角星形由12个相同的等边三角形拼接而成)
22.(本题满分15分)
甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离(千米)随时间(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回,请根据图象中的数据回答:
(1)甲车出发多长时间后被乙车追上?
(2)甲车与乙车在距离A地多远处迎面相遇?
(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?
23.(本题满分15分)
平面上有若干个点,其中任意三点都不在同一直线上,将这些点分成三组,并按下面的规则用线段连接:①在同一组的任意两点间都没有线段连接,②不在同一组的任意两点间一定有线段连接.
(1)若平面上恰好有9个点,且平均分成三组,那么平面上有多少条线段?
(2)若平面上恰好有9个点,且点数分成2、3、4三组,那么平面上有多少条线段?
(3)若平面上共有192条线段,那么平面上至少有多少个点?
参考答案
一、选择题(每小题4分)
1. C; 2. B; 3. C; 4. D; 5. A; 6.C; 7. B; 8. D; 9. C; 10. A.
二、填空题(每小题4分,第15小题,每个空2分,第19小题,答对一个答案2分)
11. 2;12. 2.007×10-4; 13. ; 14. >; 15. 6,14; 16. 2.5; 17. 16 ;18. 888; 19. 或; 20. hope.
三、解答题
21.(1)连结CO,易知△AOC是直角三角形,∠ACO = 90O,∠AOC=30O,所以AO = 2AC = 2.
(2)如图1,大六角星形的面积是等边△AMN面积的12倍.因为AM2 =+ ,解得AM = ,所以大六角星形的面积是S = 12××× = 4. (7分)
(3)小六角星形的顶点C到其中心A的距离为,大六角星形的顶点A到其中心O距离为2,所以大六角星形的面积是一个小六角星形的面积的4倍,所以大六角星形的面积∶六个小六角星形的面积 = 2∶3. (10分)
22.(1)由图2知,可设甲车由A地前往B地的函数解析式为 = ,将(2.4,48)代入,解得 = 20,所以 = 20. (2分)
由图2可知,在距A地30千米处,乙车追上甲车,所以当 = 30千米时,=== 1.5(小时),即甲车出发1.5小时后被乙车追上.(5分)
(2)由图2知,可设乙车由A地往B地的函数的解析式为 =+ ,将(1.0,0)和(1.5,30)代入,得解得
所以 = 60. (7分)
当乙车到达B地时, = 48千米,代入 = 60,得 = 1.8小时.又设乙车由B地返回A地的函数的解析式为 =+ ,将(1.8,48)代入得48 =×1.8 + ,解得 = 102,所以 =+ 102. (9分)
当甲车与乙车迎面相遇时,有30 + 102 = 20 ,解得 = 2.04小时,代入 = 20 ,得 = 40.8千米,即甲车与乙车在距离A地40.8千米处迎面相遇.(12分)
(3)当乙车返回到A地时,有30 + 102 = 0,解得 = 3.4小时.甲车要比乙车先回到A地,速度应在大于 = 48(千米/小时). (15分)
23.(1)平面上恰好有9个点,且平均分成三组,每组3个点,其中每个点可以与另个两组的6个点连接,共有线段 = 27(条). (5分)
(2)若平面上恰好有9个点,且点数分成2,3,4三组,则平面上共有线段[2×(3 + 4) + 3×(2 + 4) + 4×(2 + 3)] = 26(条). (10分)
(3)设第一组有个点,第二组有个点,第三组有个点,则平面上共有线段[( + ) + ( + ) + ( + )] =++ (条).
若保持第三组点数不变,将第一组中的一个划归到第二组,则平面上线段的条数为(1)( + 1) + ( + 1) + (1) =+++ 1,与原来线段的条数的差是1, 即当>时,1≥0,此时平面上的线段条数不减少;当≤时,1<0,此时平面上的线段条数一定减少.
由此可见,当从点数较多的一组中划出一个点到点数较少的一组中时,平面上的线段条数不减少,所以当三组中点数一样多(或基本平均)时,平面上线段的条数最多. (13分)
设三组中都有个点,则线段条数为32= 192,解得= 8,所以平面上至少有24个点. (15分)(周敏荐)
初二数学因式分解测试题 篇4
1、下列各式中从左到右的变形属于分解因式的是()
A .a(a+b-1)=a2+ab-aB. a2 –a-2=a(a-1)-2 C .-4 a2+9b2=(-2a+3b)(2a+3b)D. 2x+1=x(2+1/x)2、下列各式分解因是正确的是()
A .x2y+7xy+y=y(x2+7x)B. 3 a2b+3ab+6b=3b(a2+a+2)C. 6xyz-8xy2=2xyz(3-4y)D. -4x+2y-6z=2(2x+y-3z)
18(a+b)3-12b(b-a)2(2a+b)(2a-3b)-3a(2a+b)
(4)(x2+6x)2-(2x-4)29(m+n)2-(m-n)2(2x+3y)2-1
3、下列多项式中,能用提公因式法分解因式的是()
A. x2-yB. x2+2xC. x2+y2D.x2-xy+y2
4、2(a-b)3-(b- a)2分解因式的正确结果是()
A.(a-b)2(2a-2b+1)B. 2(a-b)(a-b-1)C.(b-a)2(2a-2b-1)D.(a-b)2(2a-b-1)5、下列多项式分解因式正确的是()
A. 1+4a-4a2=(1-2a)2B. 4-4a+a2=(a-2)2C. 1+4x2=(1+2x)2D.x2+xy+y2=(x+y)2
6、运用公式法计算992,应该是()
A.(100-1)2B.(100+1)(100-1)C.(99+1)(99-1)D.(99+1)2
7、多项式:①16x2-8x;②(x-1)2 -4(x-1)2;③(x+1)4-4(x+1)2+4x2④-4x2-1+4x分解
因式后,结果中含有相同因式的是()
A.①和②B.③和④C.①和④D.②和③
8、无论x、y取何值,x2+y2
-2x+12y+40的值都是()
A.正数B.负数C.零D.非负数 9、下列正确的是()
A.x2+y2=(x+y)(x-y)B.x2-y2
=(x+y)(x-y)
C.-x2+y2=(-x+y)(-x-y)D.-x2-y2
=-(x+y)(x-y)
一、填空题
1、25x2y6=()
22、多项式-9x2y+36xy2
-3xy提公因式后的另一个因式是___________;
3、把多项式-x4
+16分解因式的结果是_____________;
4、已知xy=5,a-b=3,a+b=4,则xya2-yxb2的值为_______________; 5、若x2+2mx+16是完全平方式,则m=______;
6、分解因式:-x2
+4x-4=;
7、+3mn+9n2+3n)2;
8、若x+y=1则1/2x2+xy+1/2y2
二、解答题
-24x3-12x2+28x6(m-n)3-12(n-m)23(a-b)2+6(b-a)
9(a-b)2-16(a+b)2
3ax2-3ay2
(m+n)2-6(m+n)+9
-x2-4y2+4xy
(a2+4)2-16a2
(x+y)2-16(x-y)22x3-8x(3)(a-b)2-2(a-b)+1;-2xy-x2-y2(a2+b2)2-4a2b2-16x4+81y4 7x2-634xy2-4x2y-y3a+2a2-a3 1
初二数学上册试题 篇5
一、填空题(2分×16)
1、我国国旗上的一个五角星有 条对称轴.
地球七大洲的总面积约是149480000 ,如对这个数据保留3个有效数字可表示 km
2、9 的平方根为 ; 当a>2时,(2-a)2 = ;
若 +(b+27)2=0,则 + =__________.
3、64、400分别为所在正方形的面积,则字母A所代表的正方形面积是 .
4、在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为56°,则∠B等于_ ___.
若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角是___ __.
5、一等腰三角形底边长10cm,腰长为13cm,则腰上的高为 cm.
6、线段AB=4,P 是m上的一个动点, m∥AB,AB与m间的距离为1.5,PA+PB的最小值为 .
7、,折叠长方形的一边AD,点D落在BC边的.点F处,已知AB=8cm,BC=10cm,则 CE= cm
① ② ③ ④
8、在四边形ABCD中,∠B=90°,AB=BC=4,CD=6,DA=2,则∠DAB的度数 。
9、我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a、b,那么(a+b)2的值是___ ___.
10、在△等腰ABC中,AB=AC, A=50?,边AB的垂直平分线交边AC于点E,则 EBC=
11、将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露出在杯子外面长为hcm,则h的取值范围是
12、有一个圆柱,它的高为9cm,底面半径为4cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面B点处的食物,则沿着圆柱的表面需要爬行的最短路程是 cm(?取3)
13、在△ABC中,AB=A C=7㎝,BC=4cm,D为BC的中点,动点P从B点出发,以每秒1㎝的速度沿B—A—C的方向运动.如果设运动时间为t,那么当t= 秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.
二、选择题(2分×8)
1、小明从镜子里看到对面电子钟的像 ,则实际时间是 ( )
A、21∶10 B、10∶21 C、10∶51 D、12∶01
2、下列实数 , , , , ,0.1,3.23223222322223…(两个3之间依次多个2),其中无理数有 ( )
A.2个 B.3个 C.4个 D.5个
3、若一个直角三角形的两条边长为6和8,则第三边的长为 ( )
A、10 B、28 C、10或28 D、7或10
4、在等边三角形所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形,这样的点一共有 ( )
A、1个 B、4个 C、7个 D、10个
5、3.002×106精确到万位是 ( )
A、3.0020×106 B、3.002×106 C、3.00×106 D、3.0×106
6、小方格的面积是1,则以格点为端点且长度为5的线段有( )
A.1条 B.2条 C.3条 D.4条
7、下面给出两个结论:①若PA=PB,QA=QB,则PQ垂直平分AB。
②若点P到OA,OB的垂线段PC,PD相等,则OP平分∠AOB,其中 ( )
A、只有①正确 B、只有②正确 C、①、②都正确 D、①、②都不正确
① ②
8、在Rt△ABC中,∠ACB=90°,∠ABC=60°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有 ( )
初二数学一次函数单元测试题 篇6
一、选择题(每题3分,共30分)
1、下列函数关系中表示一次函数的有()①②③④⑤
A.1个B.2个C.3个D.4个
2、下列函数中,图象经过原点的为()
A.y=5x+1B.y=-5x-
1C.y=-D.y=
3、一水池蓄水20m3,打开阀门后每小时流出5m3,放水后池内剩下的水的立方数Q(m3)与放水时间t(时)的函数关系用图表示为()
4、已知点(-4,y1),(2,y2)都在直线y=-12x+b上,则y1、y2大小关系是()
(A)y1>y2(B)y1=y2(C)y15、每上5个台阶升高1米,升高米数h是台阶数S的函数关系式是()
A.h=5SB.h=S+5C.h=D.h=S-
56、直线,共同具有的特征是()
A.经过原点B.与轴交于负半轴
C.随增大而增大D.随增大而减小
7、如果直线经过一、二、四象限,则有()
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<08、直线经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()
(A)(B)(C)(D)
9、下面哪个点不在函数的图像上()
A、(-5,13)B.(0.5,2)C(3,0)D(1,1)
10、星期天晚饭后,小红从家里出发去散步,图描述了她散步过程中离家s(米)与散步所用的时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是()
(A)从家出发,到了一个公共阅报栏,看了一会报后,就回家了.(B)从家出发,一直散步(没有停留),然后回家了.(C)从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一会,然后回家了.(D)从家出发,散了一会步,就找同学去了,18分钟后
才开始返回.二、填空题(每空3分,共30分)
1、圆的周长公式,其中常量是_______,变量是_________。
2、自变量x的取值范围是。
3、写出同时具备下列两个条件的一次函数表达式(写出一个即可).(1)y随着x的增大而减小。(2)图象经过点(1,-3)
4、直线y=2x-5与y=-x+1的交点坐标是__________
5、已知直线y=2x与y=-kx+1平行,则k=_______
6、如图,先观察图形,然后填空:
(1)当x时,>0;
(2)当x时,<0;
7、如果直线与两坐标轴所围成的三角形面积是9,则b的值为
三、解答题(共40分)
1、(6分)某安装工程队现已安装机器40台,计划今后每天安装12台,求:⑴安装机器的总台数y与天数x的函数关系式;
⑵一个月后安装机器的台数(以30天计)
2、(6分)一个长方形的周长为18,一边长为xcm,⑴求它的另一边长y关于x的函数解析式,以及x的取值范围;
⑵若x为整数,当x为何值时,y的值最小,最小值是多少?
3、(6分)已知y是x的一次函数,且当x=8时,y=15:当x=-10时,y=-3,求:⑴这个一次函数的解析式;
⑵当y=-2时,求x的值;
⑶若x的取值范围是-
24、(6分)已知一次函数y=3-2x
(1)求图像与两条坐标轴的交点坐标,并在下面的直角坐标系中画出它的图像;
(2)从图像看,y随着x的增大而增大,还是随x的增大而减小?
(3)x取何值时,y>0?
5、(8分)右图是某汽车行驶的路程S(km)与时间t(分)的函数关系图,观察图中所提
供的信息,解答下列问题:
⑴汽车在前9分钟内的平均速度是km/分;
⑵汽车在中途停了多长时间?;
⑶当16≤t≤30时,S与t的函数关系式.6、(8分)一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题:
(1)农民自带的零钱是多少?
(2)试求降价前与之间的关系式.(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
拓展题(每题5分)
初二数学测试题 篇7
一、选择题
1.设等比数列{an}的前n项和为Sn, 若8a2+a5=0, 则下列式子中数值不能确定的是 () .
2.已知x>0, y>0, x, a, b, y成等差数列, x, c, d, y成等比数列, 则的最小值是 () .
(A) 4 (B) 2
(C) 1 (D) 0
3.若等比数列{an}的各项均为正数, 且a10a11+a9a12=2e5, 则ln a1+ln a2+…+ln a20等于 () .
(A) 50 (B) 25
(C) 75 (D) 100
4.设Sn是等比数列{an}的前n项和, 若, 则.
(A) 2 (B) 7/3
(C) 3/ (10) (D) 1或2
5.设Sn是等差数列{an}的前n项和, 且S1, S2, S4成等比数列, 则.
(A) 1 (B) 1或2
(C) 1或3 (D) 3
6.已知数列{an}满足a1=1, 且anan+1=2n, 则数列{an}的前20项的和为 () .
(A) 3×211-3 (B) 3×211-1
(C) 3×210-2 (D) 3×210-3
7.已知数列{an}满足 (n∈N*) , 则使不等式a2 016>2 016成立的所有正整数a1的集合为 () .
(A) {a1|a1≥2 016, a1∈N*}
(B) {a1|a1≥2 015, a1∈N*}
(C) {a1|a1≥2 014, a1∈N*}
(D) {a1|a1≥2 013, a1∈N*}
8.设数列{an}的前n项和为Sn, 且a1=a2=1, {nSn+ (n+2) an}为等差数列, 则{an}的通项公式an= () .
9.已知数列{an}满足:a1=1, (n∈N*) .若 (n∈N*) , b1=-λ, 且数列{bn}是单调递增数列, 则实数λ的取值范围是 () .
10.已知等差数列{an}中, a1>0, d>0, 前n项和为Sn, 等比数列{bn}满足b1=a1, b4=a4, 前n项和为Tn, 则 () .
(A) S4>T4 (B) S4<T4
(C) S4=T4 (D) S4≤T4
11.已知数列{an}的首项为a1=1, 且满足对任意的n∈N*, 都有an+1-an≤2n, an+2-an≥3×2n成立, 则a2 016= () .
(A) 22 015-1 (B) 22 015+1
(C) 22 016-1 (D) 22 016+1
12.在正项等比数列{an}中, , a6+a7=3, 则满足a1+a2+…+an>a1·a2·…·an的最大正整数n的值为 () .
(A) 12 (B) 10
(C) 8 (D) 6
二、填空题
13.在等差数列{an}中, a2=6, a5=15, 则a2+a4+a6+a8+a10=____.
14.已知等差数列{an}中, Sn为其前n项和.若a1+a3+a5+a7=-4, S8=-16, 则公差d=____;数列{an}的前____项和最大.
15.已知数列{an}满足a1=1, an=logn (n+1) (n≥2, n∈N*) , 定义:使乘积a1·a2·…·ak为正整数的k (k∈N*) 叫做“简易数”.
(1) 若k=3时, 则a1·a2·a3=____;
(2) 求在2 000内所有“简易数”的和为____.
16.将自然数按如下图排列, 其中处于从左到右第m列、从下到上第n行的数记为A (m, n) , 如A (3, 1) =4, A (4, 2) =12, 则A (1, n) =____;A (10, 10) =____.
三、解答题
17.已知等比数列{an}的前4项和S4=5, 且成等差数列.
(1) 求{an}的通项公式;
(2) 设{bn}是首项为2, 公差为-a1的等差数列, 其前n项和为Tn, 求满足Tn-1>0的最大正整数n.
18.已知数列{an}的前n项和为Sn, 且Sn+an=4, n∈N*.
(1) 求数列{an}的通项公式;
(2) 已知cn=2n+3 (n∈N*) , 记dn=cn+logCan (C>0且C≠1) , 是否存在这样的常数C, 使得数列{dn}是常数列, 若存在, 求出C的值;若不存在, 请说明理由.
(3) 若数列{bn}, 对于任意的正整数n, 均有成立, 求证:数列{bn}是等差数列.
19.已知数列{an}的前n项和 (n=1, 2, 3, …) .
(1) 求a1的值;
(2) 求证: (n-2) an+1= (n-1) an-1 (n≥2) ;
(3) 判断数列{an}是否为等差数列, 并说明理由.
20. (理) 已知数列{an}的首项为1, 记f (n) =a1C1n+a2C2n+…+akCkn+…+anCnn (n∈N*) .
(1) 若{an}为常数列, 求f (4) 的值.
(2) 若{an}是公比为2的等比数列, 求f (n) 的解析式.
(3) 是否存在等差数列{an}, 使得f (n) -1= (n-1) 2n对一切n∈N*都成立?若存在, 求出数列{an}的通项公式;若不存在, 请说明理由.
(文) 在数列{an}中, a1=1, (n≥2, n∈N*) .
(1) 若数列{bn}满足 (n∈N*) , 求证:数列{bn}是等比数列;
21.已知直线ln:与圆Cn:x2+y2=2an+n交于不同的两点An, Bn, n∈N*.数列{an}满足:a1=1, .
(1) 求数列{an}的通项公式;
(2) 若, 求数列{bn}的前n项和Tn;
(3) 记数列{an}的前n项和为Sn, 在 (2) 的条件下, 求证:对任意正整数n, .
22.已知数列{an}满足数列{an}的前n项和为Sn, bn=a2n, 其中n∈N*.
(1) 求a2+a3的值.
(2) 证明:数列{bn}为等比数列.
(3) 是否存在n (n∈N*) , 使得?若存在, 求出所有的n的值;若不存在, 请说明理由.
23.已知数列{an}的前n项和为Sn, 且an>0, (n∈N*) .
(1) 若bn=1+log2 (an·Sn) , 求数列{bn}的前n项和Tn;
(2) 若, 2n·an=tanθn, 求证:数列{θn}为等比数列, 并求出其通项公式;
九、不等式与线性规划
一、选择题
1.已知a>b>0, 则下列不等式成立的是 () .
2.已知p, q∈R, 则“q<p<0”是“”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
3.设a=log0.80.9, b=log1.10.9, c=1.10.9, 则a, b, c的大小关系是 () .
(A) a<b<c (B) a<c<b
(C) b<a<c (D) c<a<b
4.设a, b∈R, 则“ab>0且a>b”是“”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
5.若“x>0”是“不等式2a>a2-x成立”的必要不充分条件, 则正实数a的取值范围是 () .
(A) a>2 (B) a<4
(C) 2<a<4 (D) a>4
6.已知x, y∈ (0, +∞) , , 则的最小值为 () .
(A) 8/3 (B) 3
(C) 4 (D) 9
7.已知x, y满足约束条件若z=y-ax取得最大值的最优解不唯一, 则实数a的值为 () .
(A) 1/2或-1 (B) 2或1/2
(C) 2或1 (D) 2或-1
8.如果实数a, b满足条件则的取值范围是 () .
9.设关于x, y的不等式组表示的平面区域为D, 已知点O (0, 0) , A (1, 0) , 点M是D上的动点, , 则λ的取值范围是 () .
10.设变量x, y满足约束条件则z=|x-3y|的最大值为 () .
(A) 10 (B) 8
(C) 6 (D) 4
11.曲线y=1/x (x>0) 在点P (x0, y0) 处的切线为l, 若直线l与x, y轴的交点分别为A, B, 则△OAB的周长的最小值为 () .
12. (理) 已知满足条件x2+y2≤1的点 (x, y) 构成的平面区域的面积为S1, 满足条件[x]2+[y]2≤1的点 (x, y) 构成的平面区域的面积为S2, 其中[x], [y]分别表示不大于x, y的最大整数, 例如:[-0.4]=-1, [1.7]=1, 则S1与S2的关系是 () .
(A) S1<S2 (B) S1=S2
(C) S1>S2 (D) S1+S2=π+3
(文) 已知b>a>0, ab=2, 则的取值范围是 () .
(A) (-∞, -4] (B) (-∞, -4)
(C) (-∞, -2] (D) (-∞, -2)
二、填空题
13.一元二次不等式x2+ax+b>0的解集为x∈ (-∞, -3) ∪ (1, +∞) , 则一元一次不等式ax+b<0的解集为_____.
14.已知函数y=aex (其中a∈R) 经过不等式组所表示的平面区域, 则实数a的取值范围是____.
15.已知x, y满足条件若目标函数z=ax+y (其中a>0) 仅在点 (2, 0) 处取得最大值, 则a的取值范围是____.
16.已知函数f (x) 是R上的减函数, 且y=f (x-2) 的图象关于点 (2, 0) 成中心对称.若u, v满足不等式组则u2+v2的最小值为____.
三、解答题
17.已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率e∈ (1, 2) .若p, q有且只有一个为真命题, 求实数m的取值范围.
18.一艘船每小时的燃料费与船的速度的平方成正比, 如果此船速度是10km/h, 那么每小时的燃料费是80元.已知船航行时其他费用为500元/时, 在100km的航程中, 航速为多少时船行驶的总费用最少?此时总费用为多少元?
19.某家电生产企业根据市场调查分析, 决定调整新产品生产方案, 准备每周 (按40个工时计算) 生产空调、彩电、冰箱共120台, 且冰箱至少生产20台.已知生产这些家电产品每台所需工时和每台产值如下表:
问每周应生产空调、彩电、冰箱各多少台, 才能使产值最高?最高产值是多少? (以千元为单位)
20.设a为常数, 且a<1.
(1) 解关于x的不等式 (a2-a-1) x>1;
(2) 解关于x的不等式组
21.设函数, L为曲线C:y=f (x) 在点处的切线.
(1) 求L的方程;
(2) 当时, 证明:除切点之外, 曲线C在直线L的下方;
(3) 设x1, x2, x3∈R, 且满足x1+x2+x3=-3, 求f (x1) +f (x2) +f (x3) 的最大值.
十、三视图和立体几何
一、选择题
1.已知一个圆锥的侧面展开图是一个半径为3, 圆心角为的扇形, 则此圆锥的体积为 () .
2.a, b, c表示不同的直线, α表示平面, 下列命题正确的是 () .
(A) 若a∥b, a∥α, 则b∥α
(B) 若a⊥b, b⊥α, 则a⊥α
(C) 若a⊥c, b⊥c, 则a∥b
(D) 若a⊥α, b⊥α, 则a∥b
3.某几何体的三视图如图1所示, 该几何体的各面中互相垂直的面的对数是 () .
(A) 2 (B) 4
(C) 6 (D) 8
4.已知底面边长为1, 高为2的正六棱柱的顶点都在一个球面上, 则该球的表面积为 () .
5.一个几何体的三视图如图2所示, 则这个几何体的体积为 () .
6.若某几何体的三视图如图3所示, 则此几何体的直观图是 () .
7.某四棱锥的三视图如图4所示, 其中正 (主) 视图是等腰直角三角形, 侧 (左) 视图是等腰三角形, 俯视图是正方形, 则该四棱锥的表面积是 () .
8.已知直线m和平面α, β, 则下列四个命题中正确的是 () .
(B) 若α∥β, m∥α, 则m∥β
(C) 若α∥β, m⊥α, 则m⊥β
(D) 若m∥α, m∥β, 则α∥β
9.某几何体的三视图如图5所示, 则该几何体的体积为 () .
(A) 48 (B) 32
(C) 16 (D) (32) /3
10.如图6, 在正四棱锥S-ABCD中, E, M, N分别是BC, CD, SC的中点, 动点P在线段MN上运动时, 下列四个结论:
①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC.
其中恒成立的为 () .
(A) ①③
(B) ③④
(C) ①②
(D) ②③④
11.在正方体ABCD-A1B1C1D1中, 点E为底面ABCD上的动点.若三棱锥B-D1EC的表面积最大, 则E点位于 () .
(A) 点A处
(B) 线段AD的中点处
(C) 线段AB的中点处
(D) 点D处
12. (理) 如图7, 已知正方体ABCD-A1B1C1D1的棱长为1, E, F分别是边AA1, CC1的中点, 点M是BB1上的动点, 过点E, M, F的平面与棱DD1交于点N, 设BM=x, 平行四边形EMFN的面积为S, 设y=S2, 则y关于x的函数y=f (x) 的解析式为 () .
(文) 在正方体ABCD-A1B1C1D1中, P为底面ABCD上一动点, 如果P到点A1的距离等于P到直线CC1的距离, 那么点P的轨迹所在的曲线是 () .
(A) 直线 (B) 圆
(C) 抛物线 (D) 椭圆
二、填空题
13.空间一线段的主视图、左视图、俯视图的长度均为, 则该线段的长度为____.
14.一个几何体的三视图如图8所示, 其中正 (主) 视图和侧 (左) 视图是腰长为1的两个全等的等腰直角三角形, 则该几何体的外接球的表面积为____.
15.在四棱锥V-ABCD中, B1, D1分别为侧棱VB, VD的中点, 则四面体AB1CD1的体积与四棱锥V-ABCD的体积之比为____.
16. (理) 在长方体ABCD-A1B1C1D1中, , BC=AA1=1, 点M为AB1的中点, 点P为对角线AC1上的动点, 点Q为底面ABCD上的动点 (点P, Q可以重合) , 则MP+PQ的最小值为____.
(文) 如图9, 在正方体ABCD-A1B1C1D1中, 点E是边BC的中点.动点P在直线BD1 (除B, D1两点) 上运动的过程中, 平面DEP可能经过的该正方体的顶点是____ (写出满足条件的所有顶点) .
三、解答题
17.如图10, 在四棱锥P-ABCD中, PD⊥平面ABCD, 又AD∥BC, AD⊥DC, 且PD=BC=3AD=3.
(1) 在图11所示的方框中画出四棱锥P-ABCD的正 (主) 视图;
(2) 求证:平面PAD⊥平面PCD;
(3) 求证:棱PB上存在一点E, 使得AE∥平面PCD, 并求PE/EB的值.
18.如图12, 在边长为12的正方形AA′A′1A1中, BB1∥CC1∥AA1, 且AB=3, 且BC=4, AA′1分别交BB1, CC1于点P, Q, 将该正方形沿BB1, CC1折叠, 使得A′A′1与AA1重合, 构成图13所示的三棱柱ABC-A1B1C1.在图13中:
(1) 求证:AB⊥PQ;
(2) 在底边AC上有一点M, 使得BM∥平面APQ, 求点M到平面PAQ的距离.
19.数学课上, 张老师用六根长度均为a的塑料棒搭成了一个正三棱锥 (如图14所示) , 然后他将其中的两根换成长度分别为的塑料棒, 又搭成了一个三棱锥, 陈成同学边听课边动手操作, 也将其中的两根换掉, 但没有成功, 不能搭成三棱锥, 如果两人都将BD换成了长为的塑料棒.
(1) 试问张老师换掉的另一根塑料棒是什么, 而陈成同学换掉的另一根塑料棒又是什么?请你用学到的数学知识解释陈成同学失败的原因.
(2) 试证平面ABD⊥平面BCD.
(3) 求新三棱锥的外接球的表面积.
20.在如图15所示的几何体中, 平面ACDE⊥平面ABC, CD∥AE, F是BE的中点, ∠ACB=90°, AE=2CD=2, AC=BC=1, .
(1) 求证:DF∥平面ABC;
(2) 求证:DF⊥平面ABE;
(3) 求三棱锥D-BCE的体积.
21.如图16, 在三棱柱ABC-A1B1C1中, 侧棱AA1⊥底面ABC, M为棱AC的中点.AB=BC, AC=2, .
(1) 求证:B1C∥平面A1BM.
(2) 求证:AC1⊥平面A1BM.
(3) 在棱BB1上是否存在点N, 使得平面AC1N⊥平面AA1C1C?如果存在, 求此时BN/BB1的值;如果不存在, 请说明理由.
22.如图17所示, 在三棱柱ABC-A1B1C1中, AA1B1B为正方形, BB1C1C是菱形, 平面AA1B1B⊥平面BB1C1C.
(1) 求证:BC∥平面AB1C1;
(2) 求证:B1C⊥AC1;
(3) 设点E, F, H, G分别是B1C, AA1, A1B1, B1C1的中点, 试判断E, F, H, G四点是否共面, 并说明理由.
十一、空间向量和立体几何
一、选择题
1.下列命题正确的是 () .
(A) 垂直于同一直线的两条直线互相平行
(B) 平行四边形在一个平面上的平行投影一定是平行四边形
(C) 锐角三角形在一个平面上的平行投影不可能是钝角三角形
(D) 平面截正方体所得的截面图形不可能是正五边形
2.如图1, 在三棱锥D-ABC中, 点G是△ABC的重心, 记, 则用a, b, c表示.
3.已知平面α, β不重合, 直线, 那么“m⊥β”是“α⊥β”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
4.如图2, 在正六棱柱ABCDEF-A1B1C1D1E1F1中, 若.
(A) a+b+c
(B) 2a+2b+c
(C) a+2b+2c
(D) 2a+2b+2c
5.如图3, 一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发, 经正方体的表面, 按最短路线爬行到达顶点C1位置, 则图4中可以表示正方体及蚂蚁最短爬行路线的正 (主) 视图是 () .
(A) ①② (B) ①③
(C) ②④ (D) ③④
6.在正三棱锥S-ABC中, M是SC的中点, 且AM⊥SB, 底面边长, 则正三棱锥S-ABC的外接球的表面积为 () .
(A) 6π (B) 12π
(C) 32π (D) 36π
7.某三棱锥的三视图如图5所示, 该三棱锥四个面的面积中最大的是 () .
8.如图6, 在四棱锥P-ABCD中, 其底面是边长为a的正方形, 已知PA⊥平面ABCD, 且PA=a, 则直线PB与平面PCD所成的角的余弦值为 () .
9.已知一个三棱柱, 其底面是正三角形, 且侧棱与底面垂直, 一个体积为的球与棱柱的所有面均相切, 那么这个三棱柱的表面积是 () .
10.三棱柱ABC-A1B1C1的直观图及三视图 (正 (主) 视图和俯视图是正方形, 侧 (左) 视图是等腰直角三角形) 如图7所示, D为AC的中点, 则二面角A-BC1-D的正切值为 () .
11.三棱锥S-ABC中, ∠SBA=∠SCA=90°, △ABC是斜边AB=a的等腰直角三角形, 则以下结论中:
①异面直线SB与AC所成的角为90°;
②直线SB⊥平面ABC;
③平面SBC⊥平面SAC;
④点C到平面SAB的距离是.
其中正确结论的个数是 () .
(A) 1 (B) 2
(C) 3 (D) 4
12.如图9, 已知直线l⊥平面α, 垂足为O, 在△ABC中, BC=2, AC=2, , 点P是边AC上的动点.该三角形在空间按以下条件作自由移动: (1) A∈l, (2) C∈α, 则的最大值为 () .
二、填空题
13.如图10, 在直三棱柱ABC-A1B1C1中, AB⊥BC, AB=BC=BB1, 则平面A1B1C与平面ABC所成的二面角的大小为____.
14.点A, B, C, D在同一球面上, , AC=2, 若球的表面积为, 则四面体ABCD体积的最大值为____.
15.如图11, 在长方体ABCD-EFGH中, AD=2, AB=AE=1, M为矩形AEHD内的一点, 如果∠MGF=∠MGH, MG和平面EFG所成角的正切值为1/2, 那么点M到平面EFGH的距离是____.
16.如图12所示的一块长方体木料中, 已知AB=BC=4, AA1=1, 设E为底面ABCD的中心, 且, 则该长方体中经过点A1, E, F的截面面积的最小值为____.
三、解答题
17.如图13, 四边形ABCD是边长为2的菱形, ∠ABC=60°, PA⊥平面ABCD, AB=2PA.
(1) 求异面直线AC与PB所成角的余弦值;
(2) 求点A到平面PBC的距离.
18.如图14, PD垂直于梯形ABCD所在的平面, ∠ADC=∠BAD=90°.F为PA的中点, .四边形PDCE为矩形, 线段PC交DE于点N.
(1) 求证:AC∥平面DEF;
(2) 求二面角A-BC-P的大小;
(3) 在线段EF上是否存在一点Q, 使得BQ与平面BCP所成角的大小为π/6?若存在, 求出FQ的长;若不存在, 说明理由.
19.在直三棱柱ABC-A1B1C1中, AA1=AB=AC=1, E, F分别是CC1, BC的中点, AE⊥A1B1, D为棱A1B1上的点.
(1) 证明:DF⊥AE.
(2) 是否存在一点D, 使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在, 说明点D的位置, 若不存在, 说明理由.
20.如图16, 已知等腰梯形ABCD中, AD∥BC, , E是BC的中点, AE∩BD=M, 将△BAE沿着AE翻折成△B1AE, 使平面B1AE⊥平面AECD.
(1) 求证:CD⊥平面B1DM;
(2) 求二面角D-AB1-E的余弦值;
(3) 在线段B1C上是否存在点P, 使得MP∥平面B1AD, 若存在, 求出的值;若不存在, 说明理由.
21.如图17, 在四棱锥P-ABCD中, 底面ABCD是平行四边形, PA⊥平面ABCD, 点M, N分别为BC, PA的中点, 且AB=AC=1, .
(1) 证明:MN∥平面PCD;
(2) 设直线AC与平面PBC所成角为α, 当α在 (0, π/6) 内变化时, 求二面角P-BC-A的取值范围.
十二、直线与圆、曲线与方程
一、选择题
1.已知直线l1:ax+y=1和直线l2:4x+ay=2, 则“a+2=0”是“l1∥l2”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分也不必要条件
2.若直线l1:2x+3y-1=0的方向向量是直线l2:ax-y+2a=0的法向量, 则实数a的值等于 () .
(A) 1 (B) 3/2
(C) 2 (D) 5/2
3.“|b|<2是“直线与圆x2+y2-4y=0相交”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
4.若经过点P (-1, 1) 的直线与圆x2+y2=2相切, 则此直线在y轴上的截距是 () .
(A) -2 (B) -1
(C) 1 (D) 2
5.已知圆C:x2+y2=4, 过点A (2, 3) 作C的切线, 切点分别为P, Q, 则直线PQ的方程为 () .
(A) 2x+3y+4=0 (B) 2x+3y-4=0
(C) 2x-3y-4=0 (D) 2x-3y+4=0
6.已知点A (-3, -2) 和圆C: (x-4) 2+ (y-8) 2=9, 一束光线从点A发出, 射到直线l:y=x-1后反射 (入射点为B) , 反射光线经过圆周C上一点P, 则折线ABP的最短长度是 () .
(A) 10 (B) 8
(C) 6 (D) 4
7.已知直线l:x, 点P (x, y) 是圆C: (x-2) 2+y2=1上的动点, 则点P到直线l的距离的最小值为 () .
8.已知圆C:x2+y2=1, 点M (t, 2) , 若C上存在两点A, B满足, 则t的取值范围是 () .
9.若直线与圆x2+y2=1相交于A, B两点, 则.
10.已知在圆M:x2+y2-4x+2y=0内, 过点E (1, 0) 的最长弦和最短弦分别是AC和BD, 则四边形ABCD的面积为 () .
11. (理) 已知曲线C:x2+y2+xy=1, 则下列说法中, 正确的个数有 () .
①曲线C关于x轴对称;②曲线C关于y轴对称;
③曲线C关于原点对称;④曲线C关于直线y=x轴对称.
(A) 1 (B) 2
(C) 3 (D) 4
(文) 已知两圆C1: (x+1) 2+y2=1与C2: (x-1) 2+y2=25, 动圆Μ与这两个圆都内切, 则动圆的圆心Μ的轨迹方程为 () .
12. (理) 如图1所示, 在平面直角坐标系xOy中, 点B, C分别在x轴和y轴非负半轴上, 点A在第一象限, 且∠BAC=90°, AB=AC=4, 那么O, A两点间距离的 () .
(A) 最大值是, 最小值是4
(B) 最大值是8, 最小值是4
(C) 最大值是, 最小值是2
(D) 最大值是8, 最小值是2
(文) 在平面直角坐标系xOy中, 圆C的方程为 (x-1) 2+ (y-1) 2=9, 直线l:y=kx+3与圆C相交于A, B两点, M为弦AB上一动点, 以M为圆心, 2为半径的圆与圆C总有公共点, 则实数k的取值范围为 () .
(A) 4 (B) 8
二、填空题
13.已知圆C的圆心在直线x-y=0上, 且圆C与两条直线x+y=0和x+y-12=0都相切, 则圆C的标准方程是____.
14.若圆C: (x-a) 2+ (y-a-1) 2=a2与x, y轴都有公共点, 则实数a的取值范围是____.
15.已知⊙O:x2+y2=1, 若直线y=kx+2上总存在点P, 使得过点P的⊙O的两条切线互相垂直, 则实数k的取值范围是____.
16.动直线与曲线相交于A, B两点, O为坐标原点, 当△AOB的面积取得最大值时, k的值为____.
三、解答题
17.已知点F (-6, 0) , 直线l:x=-4与x轴的交点是圆C的圆心, 圆C恰好经过坐标原点O, 设G是圆C上任意一点.
(1) 求圆C的方程;
(2) 若直线FG与直线l交于点T, 且G为线段FT的中点, 求直线FG被圆C所截得的弦长.
18.如图2, 在平面直角坐标系xOy中, 点A (0, 3) , 直线l:y=2x-4, 设圆C的半径为1, 圆心在l上.
(1) 若圆心C也在直线y=x-1上, 过点A作圆C的切线, 求切线的方程;
(2) 若圆C上存在点M, 使MA=2 MO, 求圆心C的横坐标a的取值范围.
19.已知圆O:x2+y2=4, 点, 以线段AB为直径的圆内切于圆O, 记点B的轨迹为Γ.
(1) 求曲线Γ的方程;
(2) 直线AB交圆O于C, D两点, 当Β为CD的中点时, 求直线AB的方程.
20.在平面直角坐标系xOy中, 已知点A (-3, 4) , B (9, 0) , C, D分别为线段OA, OB上的动点, 且满足AC=BD.
(1) 若AC=4, 求直线CD的方程;
(2) 证明:△OCD的外接圆恒过定点 (异于原点O) .
21.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A, B.
(1) 求圆C1的圆心坐标;
(2) 求线段AB的中点M的轨迹C的方程;
(3) 是否存在实数k, 使得直线L:y=k (x-4) 与曲线C只有一个交点:若存在, 求出k的取值范围;若不存在, 说明理由.
十三、圆锥曲线
一、选择题
1.已知点P在焦点为F1, F2的椭圆上, 若∠F1PF2=90°, 则|PF1|·|PF2|的值等于 () .
(A) 10 (B) 20
(C) 30 (D) 40
2.若方程表示双曲线, 则实数k的取值范围是 () .
(A) (-2, 2)
(B) (3, +∞)
(C) (-2, 2) ∪ (3, +∞)
(D) (-2, +∞)
3.已知点A (3, 2) , F是抛物线y2=2x的焦点, 若点P在抛物线上运动, 当|PA|+|PF|取最小值时, 点P的坐标为 () .
(A) (2, 2) (B) (0, 0)
(C) (2, -2) (D) (1/2, 1)
4.双曲线 (a>0, b>0) 的一个顶点到一条渐近线的距离为a/2, 则双曲线的离心率为 () .
5.若双曲线 (a>0, b>0) 截抛物线y2=4x的准线所得线段长为b, 则a= () .
6.已知双曲线 (a>0, b>0) 与抛物线y2=4x有一个公共的焦点F, 且两曲线的一个交点为P.若|PF|=5/2, 则双曲线的渐近线方程为 () .
7.若直线ax+by-3=0与圆x2+y2=3没有公共点, 设点P的坐标为 (a, b) , 则过点P的一条直线与椭圆的公共点的个数为 () .
(A) 0 (B) 1
(C) 2 (D) 1或2
8.已知P是椭圆上的一点, 点M (m, 0) (m>0) , 则|PM|的最小值为 () .
9.已知双曲线C1: (a>0, b>0) 的离心率为, 一条渐近线为l, 抛物线C2:y2=4x的焦点为F, 点P为直线l与抛物线C2异于原点的交点, 则|PF|= () .
(A) 2 (B) 3
(C) 4 (D) 5
10.已知直线l:y=kx+3-k与双曲线有交点, 则实数k的取值范围是 () .
11.如图1, 已知双曲线C: (a>0, b>0) 的右顶点为A, O为坐标原点, 以A为圆心的圆与双曲线C的某渐近线交于两点P, Q.若∠PAQ=60°且, 则双曲线C的离心率为 () .
12.已知双曲线C: (a>0, b>0) , 斜率为1的直线l过双曲线C的左焦点且与该曲线交于A, B两点, 若与向量n= (-3, -1) 共线, 则双曲线C的离心率为 () .
二、填空题
13.斜率为的直线与焦点在x轴上的椭圆 (b>0) 交于不同的两点P, Q.若点P, Q在x轴上的投影恰好为椭圆的两焦点, 则该椭圆的焦距为_____.
14.已知椭圆C: (a>0) 的左顶点、上顶点分别为A, B, 椭圆C的左焦点为F, 且△ABF的面积等于, 则椭圆C的方程为____.
15.点P到曲线C上每一个点的距离的最小值称为点P到曲线C的距离.已知点P (2, 0) , 若点P到曲线C的距离为.在下列曲线中:
符合题意的是_____ (填序号) .
16.已知椭圆C: (a>b>0) 的左、右顶点分别为A, B, 左、右焦点分别为F1, F2, 点O为坐标原点, 线段OB的中垂线与椭圆在第一象限的交点为P, 设直线PA, PB, PF1, PF2的斜率分别为k1, k2, k3, k4, 若, 则k3·k4=____.
三、解答题
17.已知椭圆C: (a>b>0) , 右焦点, 点在椭圆上.
(1) 求椭圆C的标准方程.
(2) 若直线y=kx+m (k≠0) 与椭圆C有且只有一个公共点M, 且与圆O:x2+y2=a2+b2相交于P, B两点, 问kOM·kPB=-1是否成立?请说明理由.
18.已知椭圆C: (a>b>0) , 经过点, 离心率是.
(1) 求椭圆C的方程;
(2) 设直线l与椭圆C交于A, B两点, 且以AB为直径的圆过椭圆右顶点M, 求证:直线l恒过一定点.
19.已知椭圆C: (a>b>0) , 其左、右焦点分别为F1, F2, 右焦点在椭圆上.
(1) 求椭圆C的标准方程.
(2) 已知直线l:y=kx与椭圆C交于A, B两点, P为椭圆C上异于A, B的动点.
(i) 若直线PA, PB的斜率都存在, 证明:;
(ii) 若k=0, 直线PA, PB分别与直线x=3相交于点M, N, 直线BM与椭圆C相交于点Q (异于点B) , 求证:A, Q, N三点共线.
20.已知抛物线C的顶点为O (0, 0) , 焦点为F (0, 1) .
(1) 求抛物线C的方程;
(2) 过点F作直线交抛物线C于A, B两点.若直线AO, BO分别交直线l:y=x-2于M, N两点, 求|MN|的最小值.
21. (理) 已知椭圆C:, 点D为椭圆C的左顶点.对于正常数λ, 如果存在过点M (x0, 0) (-2<x0<2) 的直线l与椭圆C交于A, B两点, 使得S△AOB=λS△AOD, 则称点M为椭圆C的“λ分点”.
(1) 判断点M (1, 0) 是否为椭圆C的“1分点”, 并说明理由;
(2) 证明:点M (1, 0) 不是椭圆C的“2分点”;
(3) 如果点M为椭圆C的“2分点”, 写出x0的取值范围 (直接写出结果) .
(文) 已知椭圆C:x2+4y2=16.
(1) 求椭圆C的离心率;
(2) 设椭圆C与y轴下半轴的交点为B, 如果直线y=kx+1 (k≠0) 交椭圆C于不同的两点E, F, 且B, E, F构成以EF为底边, B为顶点的等腰三角形, 判断直线EF与圆x2+y2=1/2的位置关系.
参考答案
八、数列
1.D.
【变式】设等差数列{an}的前n项和为Sn, 若a5=5, 则S9= () .
(A) 9 (B) 45
(C) 90 (D) 不能确定
(答案:B.)
2.A.
【变式】已知x>0, y>0, x, a, b, y成等差数列, x, c, d, y成等比数列, 则的最小值是 () .
(A) 4 (B) 2
(C) 1 (D) 0
(答案:A.)
3.A.由a10a11+a9a12=2e5, 得a10a11+a10a11=2e5, 即a10a11=e5.又ln a1+ln a2+…+ln a20=ln (a1a2·…·a20) , 令T=a1a2·…·a20, 则T=a20a19·…·a1, 有T2= (a1a20) 20, 则T= (a1a20) 10= (a10a11) 10=e50, 从而ln T=50.
4.B.
【变式】设Sn是等比数列{an}的前n项和, 若.
(A) 2 (B) 6/5
(C) 0 (D) 0或6/5
(答案:D.)
5.C.
【变式】设Sn是等差数列{an}的前n项和, 且S1, S2, S4成等差数列, 则S9= () .
(A) 0 (B) 0或1
(C) 1或2 (D) 3
(答案:A.)
6.D.算得a1=1, a2=2, a3=2, a4=22, a5=22, …, a18=29, a19=29, a20=210, 所以.
【变式】已知数列{an}满足a1=1, 且an+an+1=3, 则数列{an}的前20项的和为 () .
(A) 1 (B) 2
(C) 30 (D) 90
(答案:C.提示:a1=1, a2=2, a3=1, a4=2, …, a19=1, a20=2, 所以S20=10 (1+2) =30.)
【点拨】把变形为 (an+1-1) 2- (an-1) 2=1, 构造等差数列{ (an-1) 2}求得 (an-1) 2后再求an, 是解决本题的基本思路, 也是解决此类问题的常用思路, 即把递推数列转化为基本数列 (等差数列、等比数列) 求通项, 常见有如下情形:
(1) an+1=pan+q, an+1=pan+kn+q, an+2=pan+1+qan型———通过待定系数法转化;
(2) an+1=pan+qn型———通过两边同除qn来转化;
(4) an+1=parn型———通过取对数转化.
【变式】已知数列{an}满足an+1=a2n-2an+2 (n∈N*) , 且a1=3, 则an= () .
(C) 2n-1 (D) 2n+1
【变式】设数列{an}中, a1=2, , 则通项an= () .
(A) n+1 (B) 2n
(C) 2+ln n (D) ln n
(答案:C.提示:累加法.)
【变式】已知 (n∈N*) , 则数列{an}的最大项是 () .
(A) a1 (B) a2
(C) a3 (D) a4
10.A.方法一:由a1>0, d>0, 得a1<a2<a3<a4, 有b1<b2<b3<b4, 则{bn}的公比q>1, 而b1=a1, b4=a4, 所以S4-T4= (a2+a3) - (b2+b3) = (a1+a4) - (b2+b3) = (b1+b4) - (b2+b3) =b1+b1q3-b1q-b1q2=b1 (q-1) (q2-1) >0, 即S4>T4.
方法二:取{bn}的前4项为1, 2, 4, 8;{an}的前4项为1, , 8, 则S4>T4.
【变式】已知{an}是等差数列, 记M=a1·a6, N=a3·a4, 则M, N的大小关系是 () .
(A) M>N (B) M<N
(C) M=N (D) M≤N
(答案:D.)
11.C.由an+1-an≤2n, 得-an+1+an≥-2n.而an+2-an≥3×2n, 两式相加, 得an+2-an+1≥3×2n-2n=2n+1, 即an+1-an≥2n.所以2n≤an+1-an≤2n, 则an+1-an=2n.又a1=1, 所以a1=1, a2-a1=21, a3-a2=22, …, anan-1=2n-1, 累加, 得.所以a2 016=22 016-1.
12.A.由, a6+a7=3, 得, 即q+q2-6=0, q>0, 所以q=2, 有an=2n-6, 数列{an}的前n项和Sn=2n-5-2-5, 而.于是, 由, 可求得n的最大值为12, 而当n=13时, 28-2-5>213不成立, 所以n的最大值为12.
13.90.
14.-2;3.
【变式】已知等差数列{an}的前n项和Sn=n2-7n, 则当n=____, Sn取得最小值.
(答案:3或4.)
15. (1) 2; (2) 2 035.a1·a2·a3=1×log23×log34=log24=2.
a1·a2·…·ak=1×log23×…×logk (k+1) =log2 (k+1) .
令log2 (k+1) =m, m≥2, m∈N*, 则k=2m-1.由k=2m-1≤2 000, 得m≤10.
所以在2 000内所有“简易数”的和.
16.;181.A (1, 1) =1, A (1, 2) -A (1, 1) =2, A (1, 3) -A (1, 2) =3, …, A (1, n) -A (1, n-1) =n, 则.所以.而A (2, 10) -A (1, 10) =10, A (3, 10) -A (2, 10) =11, A (4, 10) -A (3, 10) =12, …, A (10, 10) -A (9, 10) =18, 所以A (10, 10) =55+10+11+…+18=181.
【点拨】对于以数表形式出现的数列问题, 需要注意观察数表的呈现规律.如本题的数表, 发现第一列相邻两数之差依次为2, 3, 4, 5, …;第二列相邻两数之差依次为3, 4, 5, …;第一行相邻两数之差依次为1, 2, 3, 4, …;第二行相邻两数之差依次为2, 3, 4, 5, …;因而可运用累加法解之.事实上, 可得.
【变式】已知数列{an}是首项为1, 公比为1/2的等比数列.数列{bn}的项排列如下:
则数列{bn}的前n项和Sn=____ (用n表示) .
(2) 满足Tn-1>0的最大正整数为13.
18. (1) 由题意, 得a1=4-a1, 所以a1=2.
由Sn+an=4, 得当n≥2时, Sn-1+an-1=4.
所以数列{an}是以2为首项, 1/2为公比的等比数列.所以an=22-n (n∈N*) .
(2) 由于数列{dn}是常数列, 即dn=cn+logCan=2n+3+ (2-n) logC2=2n+3+2logC2-nlogC2= (2-logC2) n+3+2logC2为常数,
所以2-logC2=0, 解得, 此时dn=7.
所以数列{bn}是以为首项, 为公差的等差数列.
(3) 数列{an}是等差数列.理由如下:
因为n≥3, 所以an-2an-1+an-2=0, 即an-an-1=an-1-an-2 (n≥3) .
所以数列{an}是以1为首项, a2-1为公差的等差数列.
20. (理) (1) 因为{an}为常数列, 所以an=1 (n∈N*) .所以f (4) =C14+C24+C34+C44=15.
(2) 因为{an}是公比为2的等比数列, 所以an=2n-1 (n∈N*) .
所以f (n) =C1n+2C2n+4C3n+…+2n-1Cnn.
所以1+2f (n) =1+2C1n+22C2n+23C3n+…+2nCnn= (1+2) n=3n.
(3) 假设存在等差数列{an}, 使得f (n) -1= (n-1) 2n对一切n∈N*都成立.
设公差为d, 则f (n) =a1C1n+a2C2n+…+akCkn+…+an-1Cn-1n+anCnn,
且f (n) =anCnn+an-1Cn-1n+…+akCkn+…+a2C2n+a1C1n.
两式相加, 得2f (n) =2an+ (a1+an-1) (C1n+C2n+…+Ckn+…+Cn-1n) .
所以f (n) -1= (d-2) +[2+ (n-2) d]·2n-1= (n-1) 2n恒成立, 即 (d-2) + (d-2) (n-2) 2n-1=0, n∈N*恒成立.所以d=2.
故{an}能为等差数列, 使得f (n) -1= (n-1) 2n对一切n∈N*都成立, 它的通项公式为an=2n-1.
所以满足条件的最小正整数n等于15.21. (1) 圆Cn的圆心到直线ln的距离, 半径, 所以.
又a1=1, 所以{an}是首项为1, 公比为2的等比数列, 所以an=2n-1.
22. (1) 易得a2=1, a3=-3, 所以a2+a3=-2.
(2) bn+1=a2n+2=2a2n+1+4n=2 (-a2n-2n) +4n=-2a2n=-2bn.又b1=a2=1, 故数列{bn}是首项为1, 公比为-2的等比数列.
(3) 由 (2) 知bn= (-2) n-1, 所以b2n= (-2) 2n-1=-22n-1.
设cn=a2n+a2n+1 (n∈N*) , 则cn=-2n.
设f (x) =4x-2x2-2x-40 (x≥2) , 则g (x) =f′ (x) =4xln 4-4x-2, g′ (x) =4xln24-4>0 (x≥2) , 所以g (x) 在[2, +∞) 上单调递增.
所以g (x) ≥g (2) =f′ (2) >0, 即f′ (x) >0.所以f (x) 在[2, +∞) 上单调递增.
又因为f (1) <0, f (2) <0, f (3) =0, 所以仅存在唯一的n=3, 使得成立.
23. (1) 由题意, 得bn=1-2n, n∈N*, 其前n项和.
当n=1时, a1=S1, a1·a1=1/4.
因为an>0, 所以a1=1/2, tanθ1=1, θ1=π/4.
所以数列{θn}是等比数列, 首项为π/4, 公比为1/2, 其通项公式为, n∈N*.
(3) 由 (2) , 得, n∈N*, 它是个单调递减的数列.
对任意的n∈N*, cn≥m恒成立, 所以m≤ (cn) min.
所以数列c{}n是单调递增的, cn的最小值为c1=0, m≤ (cn) min=0.
因此, 实数m的取值范围是 (-∞, 0].
九、不等式与线性规划
1.D.
2.A.
【变式】已知a, b, c∈R, 则“a>b”是“ac2>bc2”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
(答案:B.)
3.C.
【变式】设a=log23, b=log34, c=log45, 则a, b, c的大小关系是 () .
(A) a<b<c (B) c<b<a
(C) b<a<c (D) c<a<b
4.A.5.C.
6.B.
【变式1】已知x, y∈ (-∞, 0) , 且x+y+3=0, 则的最大值为 () .
(A) - (8/3) (B) -3
(C) 8/3 (D) 3
(答案:B.)
【变式2】若两个正实数x, y满足, 且x+2y>a2-2a恒成立, 则实数a的取值范围是 () .
(A) (-2, 0) (B) (0, 4)
(C) (-2, 4) (D) (4, +∞)
(答案:C.)
7.D.由题意作出可行域如图1所示, 将z=y-ax化为y=ax+z, z相当于直线y=ax+z的纵截距.由题意, 得y=ax+z与y=2x+2或与y=2-x平行, 所以a=2或a=-1.故选D.
【变式】已知x, y满足则z=x+y取得最大值的最优解为 () .
(A) 1 (B) 2
(C) (0, 0) (D) (1, 1)
(答案:D.)
(A) (-1, 1]
(B) [-1, 1]
(C) (-∞, 1]
(D) [1, +∞)
(答案:B.提示:当x=0时, z=-1, 当x≠0时, 令单调递减, 则-1<z≤1.故-1≤z≤1.)
10.B.令b=x-3y, 则, 画出可行域知, 当直线过点 (-2, 2) 时, bmin=-2-3×2=-8;当直线过点 (-2, -2) 时, bmax=-2-3× (-2) =4.所以-8≤b≤4, 于是z=|b|∈[0, 8], 即zmax=8.
【变式】已知x, y满足|x|+|y|≤1, 则z=2|x|-|y|的最大值为 () .
(A) 2 (B) 3
(C) 4 (D) 6
(答案:A.提示:令X=|x|, Y=|y|, 则可行域变形为目标函数变形为z=2 X-Y.可知直线Y=2 X-z经过点 (1, 0) 时, zmax=2×1-0=2.)
13. (-∞, 3/2) .
【变式】一元二次不等式ax2+bx+c>0的解集为x∈ (-∞, -3) ∪ (1, +∞) , 则一元二次不等式cx2+bx+a>0的解集为____.
(答案: (- (1/3) , 1) .
14. (-∞, 1) .可行域Ω如图3中阴影部分所示, 函数y=aex的图象与y轴交于点 (0, a) .当a≥1时, y=aex不经过区域Ω;当a<1时, y=aex经过区域Ω.
【变式】若直线y=3x上存在点 (x, y) 满足约束条件, x≤m烅烄烆, 则实数m的取值范围是____.
(答案: (-1, +∞) .提示:x+y+4=0表示的边界为虚线.)
15. (3/2, +∞) .
【变式】已知x, y满足条件若存在无数组解 (x, y) 使得z=ax+y取得最大值, 则实数a的值等于____.
(答案:0或3/2.)
16.1/2.把函数y=f (x) 的图象向右平移2个单位长度得y=f (x-2) 的图象, 由y=f (x-2) 的图象关于点 (2, 0) 成中心对称, 知y=f (x) 的图象关于原点对称, 即f (x) 为奇函数且在R上单调递减.由
在uOv平面上画出可行域Ω, u2+v2为区域Ω上的点 (u, v) 与原点间距离的平方.而原点到直线u+v=1的距离, 于是u2+v2的最小值为.
【变式】已知奇函数f (x) 在R上单调递减, 且x, y满足则x2+y2+4y的取值范围为____.
(答案:[1, 37].提示:x2+y2+4y=[ (x-0) 2+ (y+2) 2]-4, 即点 (x, y) 与点 (0, -2) 间距离的平方, 再减去4.由图形 (图略) 知点 (x, y) 取 (1, 0) 时, 可得最小值, 取 (4, 3) 时, 可得最大值.)
17.实数m的取值范围是[1/3, 15) .
18.当航速为25km/h时, 总费用最少, 此时总费用为4 000元.
19.设每周生产空调x台、彩电y台, 则生产冰箱120-x-y台, 产值为z千元.
依题意, 得z=4x+3y+2 (120-x-y) =2x+y+240, 且x, y满足
可行域如图4所示.
让目标函数表示的直线2x+y+240=z在可行域上平移, 可得z=2x+y+240在M (10, 90) 处取得最大值, 即zmax=2×10+90+240=350 (千元) .
答:每周应生产空调10台, 彩电90台, 冰箱20台, 才能使产值最高, 最高产值是350千元.
②当时, 解原不等式, 得无解, 即其解集为;
(2) 依2x2-3 (1+a) x+6a>0, (*)
令2x2-3 (1+a) x+6a=0, (**)
可得Δ=9 (1+a) 2-48a=3 (3a-1) (a-3) .
①当时, Δ<0, 此时方程 (**) 无解, 解不等式 (*) , 得x∈R,
因此原不等式组的解集为{x|0≤x≤1}.
②当a=1/3时, Δ=0, 此时方程 (**) 有两个相等的实根,
解不等式 (*) , 得x≠1, 因此原不等式组的解集为{x|0≤x<1}.
ⅱ) 当a≤0时, 原不等式组的解集为Ø.
综上, 当a≤0时, 原不等式组的解集为Ø;当时, 原不等式组的解集为时, 原不等式组的解集为{x|0≤x<1};当1/3<a<1时, 原不等式组的解集为{x|0≤x≤1}.
因为5x2+16x+23>0,
所以只需证明, 5x3+11x2+7x+1<0恒成立即可.
令g′ (x) =0, 解得x1=-1, .
当x在上变化时, g′ (x) , g (x) 的变化情况如下表:
所以, 5x3+11x2+7x+1<0恒成立, 结论得证.
三式相加, 得.
因为x1+x2+x3=-3,
所以f (x1) +f (x2) +f (x3) ≤1/4, 且当x1=x2=x3=-1时取等号.
(ⅱ) 当x1, x2, x3中至少有一个大于等于时,
综上所述, 当x1=x2=x3=-1时, f (x1) +f (x2) +f (x3) 取到最大值1/4.
十、三视图和立体几何
1.B.
【变式】已知一个圆锥的侧面积为3π, 则其体积取得最大值时, 底面半径r= () .
2.D.
3.D.该几何体的直观图如图1所示 (可从正方体中截取) , 则与平面ABB1A1垂直的面有4个, 与平面DCC1D1垂直的面也有4个, 故互相垂直的面共有8对.
4.B.
【变式】正方体的外接球与内切球的体积之比为 () .
(答案:C.)
5.A.该几何体是一个底面半径为1, 高为的半圆锥与一个底面为边长是2, 高为的四棱锥的组合几何体, 其体积为.
【变式】已知某几何体的三视图如图2所示, 则该几何体的体积是 () .
(答案:D.)
6.B.
【变式】某三棱锥的正 (主) 视图如图3所示, 则这个三棱锥的俯视图是 () .
(答案:C.)
7.D.该四棱锥的直观图如图4, 四棱锥P-ABCD的底面ABCD是对角线长为2的正方形, 高PA=2, 则BC⊥平面PAB⇒BC⊥PB, 而, 所以所求的表面积.
【变式】一个正四棱台的上、下底面是边长分别为2, 4的正方形, 高为1, 则该正四棱台的侧面积为 () .
(答案:B.)
8.C.
【变式】已知m和n是两条不同的直线, α和β是两个不重合的平面, 下面给出的条件中一定能推出m⊥β的是 () .
(B) α⊥β且m∥α
(C) m∥n且n⊥β
(D) m⊥n且α∥β
(答案:C.提示:m∥n且n⊥β⇒m⊥β.)
9.B.
10.A.如图5, 设AC∩BD=O, AC∩EM=Q, 由AC⊥EM, AC⊥QN, EM∩NQ=Q, 得AC⊥平面EMN, EP⊂平面EMN, 有EP⊥AC, ①成立;由BD∥EM, EM∩EP=E, 得EP与BD异面, 则②不成立;可证得平面EMN∥平面BDS, EP⊂平面EMN, 得EP∥平面SBD, ③成立;当P与N重合时, ④不成立.
11.A.设正方体的棱长为1, 则为定值, 当点E在AD上时, S△BCE有最大值1/2, 当点E位于点A处时, S△BED1, S△CED1均取最大值, 这时三棱锥B-D1EC的表面积最大.
【变式】在正方体ABCD-A1B1C1D1中, 点E为底面ABCD上的动点.若三棱锥B-D1EC的体积最大, 则E点位于 () .
(A) 线段AB上
(B) 线段AD上
(C) 线段AB的中点处
(D) 线段BD上
(答案:B.提示:为定值, 考虑点E到平面BCD1距离的最大值.)
(文) A.方法一:设正方体的棱长为1, 点P到直线CC1的距离为PC=d, 则, 有PC2-PA2=1.以DA, DC分别为x轴, y轴的正半轴建立平面直角坐标系, 则A (1, 0) , C (0, 1) , P (x, y) , 有[x2+ (y-1) 2]-[ (x-1) 2+y2]=1, 即x-y=1/2为直线.
方法二:设正方体的棱长为1, 以D为原点, DA, DC, DD1分别为x轴, y轴, z轴的正半轴建立空间直角坐标系.设P (x, y, 0) , 而A1 (1, 0, 1) , C (0, 1, 0) , 由|PC|=|PA1|, 得|PC|2=|PA1|2, 即x2+ (y-1) 2= (x-1) 2+y2+1, 有x-y=1/2为直线.
13..在正方体ABCD-A1B1C1D1中, BD1的三视图分别为CD1, BC1, BD, 其长度均为 (a为正方体的棱长) .由, 得a=1, 这时.
【变式】空间一线段的主视图、左视图、俯视图的长度分别为, 则该线段的长度为___.
(答案:.提示:构造长方体.)
14.3π.该几何体是一个四棱锥 (正方体的一部分) , 其底面是边长为1的正方形, 高为1, 将其放置于一个棱长为1的正方体中, 则其外接球的直径, 球的表面积.
【变式】一个几何体的三视图如图6所示, 其中正 (主) 视图和侧 (左) 视图是腰长为1的两个全等的等腰直角三角形, 则该几何体的内切球的半径为____.
【变式】设三棱锥A-BCD的体积为V, 以该三棱锥各棱的中点为顶点的多面体的体积为V′, 则.
16. (理) 34.要MP+PQ取得最小值, 点Q必在AC上, 且PQ⊥AC, 将平面AB1C1与平面ACC1翻折到同一个平面上 (如图7) , 则.
【变式】在长方体ABCD-A1B1C1D1中, AB=2, BC=AA1=1, 点M为AB1的中点, 点P为对角线AC1上的动点, 点Q为底面ABCD上的动点 (点P, Q可以重合) , 则MP+PQ的最小值为____.
(答案:5/6.)
(文) A1, B1, D.平面A1DE、平面B1DE与直线BD1均相交, 而BD1∥平面C1DE (可取DC1的中点F, 通过BD1∥EF给出证明) , 于是平面DEP可能经过的该正方体的顶点是A1, B1, D.
17. (1) 图略.
(2) 证明略.
(3) 在棱PB上取一点E, 使得, 可使AE∥平面PCD.证明略.
18. (1) 由BB1⊥平面ABC, 得BB1⊥AB.
由AB=3, BC=4, AA′=12知, AC=5, 所以AB2+BC2=AC2, 即AB⊥BC.
又BC∩BB1=B, 所以AB⊥平面BCC1B1.
因为PQ平面BCC1B1, 所以AB⊥PQ.
(2) 因为BM∥平面APQ,
所以点M到平面PAQ的距离等于点B到平面PAQ的距离.
连结BQ, 构造三棱锥A-BPQ.
由△ABP为等腰直角三角形, 得BP=AB=3.
另一方面, 在题图12中, 由△ACQ为等腰直角三角形, 得CQ=AC=7.所以在题图13中, .
在△APQ中, 由余弦定理, 得.
设点B到平面PAQ的距离为d,
19. (1) 张老师换掉的另一根塑料棒是CD (或AD, BC, BA) , 而陈成同学换掉的另外一根塑料棒是AC.陈成同学想搭成的三棱锥中, 取AC中点E, 连结BE, DE.因为AB2+CB2=AC2=2a2, 所以BE是直角三角形ABC斜边上的中线, 得.同理.从而由, 不能构成三角形.
(2) 不妨设张老师换掉的另一根塑料棒是CD, 取BD中点F, 连结AF, CF.
因为△ABD是等腰三角形, 所以AF⊥BD.
又△BCD是直角三角形, 所以CF=BF=DF.
又AB=AC=AD, 所以△ABF≌△ACF, 从而AF⊥CF.又CF与BD确定平面BCD, 所以AF⊥平面BCD.又AF平面ABD, 所以平面ABD⊥平面BCD.
(3) 由 (2) 可知, 三棱锥的外接球的球心必在直线AF上.设球的半径为R, 因为, AB=a, 所以.由, 得R=a.
所以新三棱锥的外接球的表面积S=4πa2.
20. (1) 设M为AB的中点, 连结FM, CM.
在△ABE中, F为BE的中点, FM∥AE, FM= (1/2) AE.
又因为CD∥AE, 且, 所以CD∥FM, CD=FM.
所以四边形CDFM为平行四边形.所以DF∥CM.
因为DF平面ABC, CM平面ABC,
所以DF∥平面ABC.
(2) 在Rt△ABC中, AC=BC=1, 所以.
在△ABE中, AE=2, .
因为BE2=AE2+AB2, 所以△ABE为直角三角形.所以AE⊥AB.
已知平面ACDE⊥平面ABC, 平面ACDE∩平面ABC=AC.
又因为∠ACB=90°, 所以AC⊥BC.所以BC⊥平面ACDE.所以BC⊥AE.
又BC∩AB=B, 所以AE⊥平面ABC.因为CM平面ABC, 所以AE⊥CM.
在△ABC中, 因为AC=BC, M为AB的中点, 所以CM⊥AB.又AE∩AB=A, 所以CM⊥平面ABE.
由 (1) 知DF∥CM, 所以DF⊥平面ABE.
(3) 由 (2) 可知BC⊥平面ACDE, 所以BC为三棱锥B-CDE的高, 所以.
21. (1) 如图8, 连结AB1交A1B于O, 连结OM.
在△B1AC中, 因为M, O分别为AC, AB1的中点, 所以OM∥B1C.
又因为OM平面A1BM, B1C平面A1BM, 所以B1C∥平面A1BM.
(2) 因为侧棱AA1⊥底面ABC, BM平面ABC, 所以AA1⊥BM.
又因为M为棱AC的中点, AB=BC, 所以BM⊥AC.
因为AA1∩AC=A, 所以BM⊥平面ACC1A1.所以BM⊥AC1.
因为M为棱AC的中点, AC=2, 所以AM=1.
又因为, 所以在Rt△ACC1和Rt△A1AM中, .
所以∠AC1C=∠A1MA, 即∠AC1C+∠C1AC=∠A1MA+∠C1AC=90°.
所以A1M⊥AC1.
因为BM∩A1M=M,
所以AC1⊥平面A1BM.
(3) 当点N为BB1的中点, 即时, 平面AC1N⊥平面AA1C1C.
设AC1的中点为D, 连结DM, DN, 如图9.
因为D, M分别为AC1, AC的中点,
所以DM∥CC1, 且.
又因为N为BB1的中点, 所以DM∥BN, 且DM=BN.所以四边形DMBN为平行边形边.所以BM∥DN.
因为BM⊥平面ACC1A1,
所以DN⊥平面ACC1A1.
又因为DN⊂平面AC1N,
所以平面AC1N⊥平面ACC1A1.
22. (1) 在菱形BB1C1C中, BC∥B1C1.
因为BC平面AB1C1, B1C1⊂平面AB1C1, 所以BC∥平面AB1C1.
(2) 连结BC1, 如图10.在正方形ABB1A1中, AB⊥BB1.
因为平面AA1B1B⊥平面BB1C1C, 平面AA1B1B∩平面BB1C1C=BB1, AB⊂平面ABB1A1,
所以AB⊥平面BB1C1C.
因为B1C⊂平面BB1C1C, 所以AB⊥B1C.
在菱形BB1C1C中, BC1⊥B1C.
因为BC1∩AB=B, 所以B1C⊥平面ABC1.
因为AC1⊂平面ABC1, 所以B1C⊥AC1.
(3) E, F, H, G四点不共面.理由如下:
因为E, G分别是B1C, B1C1的中点, 所以GE∥CC1.
同理可证:GH∥C1A1.
因为GE⊂平面EHG, GH⊂平面EHG, GE∩GH=G,
CC1⊂平面AA1C1C, A1C1⊂平面AA1C1C,
所以平面EHG∥平面AA1C1C.
因为F∈平面AA1C1C,
所以F平面EHG, 即E, F, H, G四点不共面.
十一、空间向量和立体几何
1.D.2.D.3.A.4.B.
5.C.如图1, 通过翻折为平面的方法, 蚂蚁最短爬行路线有6种, ①中正方形内的线段应为虚线, ①错;②正确;排除A, B, D.③正方形内的线段应为实线.故选C.
6.B.在正三棱锥S-ABC中, 有SB⊥AC.又SB⊥AM, AC∩AM=A, 从而SB⊥平面SAC.由正三棱锥的对称性知SA, SB, SC两两互相垂直.将该正三棱锥放置于一个棱长为a的正方体中, 如图2.由2, 得a=2, 正三棱锥与正方体有相同的外接球.于是, 即, 外接球的表面积.
【变式】在正三棱锥S-ABC中, M是SC上一点, 且AM⊥SB, 底面边长, 则正三棱锥S-ABC的体积为 () .
(答案:B.提示:可得SA, SB, SC两两互相垂直, 所求体积.)
所以三棱锥四个面的面积中最大的是.
8.D.方法一 (补形作角法) :如图4, 将四棱锥补形为正方体, 取CE的中点M, 可证得BM⊥平面PECD.
所以∠BPM是直线PB与平面PCD所成的角, 而, 有.
方法三 (向量法) :设a=1, 以A为原点, AB, AD, AP分别为x, y, z轴建立空间直角坐标系, 则.
设PB与平面PCD所成的角为θ, 则.
【点拨】“作角法”“距离法”“向量法”是求直线与平面所成的角的三种常用方法, 作角法是根据直线与平面所成角的定义, 作出其平面角再计算, 距离法是将其转化为距离, 通过sinθ=d/ PB求解, 向量法是通过求解.
9.C.设球的半径为r.由, 得r=1, 于是正三棱柱的侧棱长为2.
10.A.以B1为原点, B1C1, B1B, B1A1分别为x, y, z轴建立空间直角坐标系, .
11.D.方法一 (几何法) :由∠SCA=90°, 得AC⊥SC.又△ABC是斜边AB=a的等腰直角三角形, 得AC⊥BC, SC∩BC=C, 所以AC⊥平面SBC.又SB⊂平面SBC, 所以SB⊥AC.而∠SBA=90°, 即SB⊥AB, AC∩AB=A, 从而SB⊥平面ABC, 知①②均正确.由AC⊥平面SBC, AC⊂平面SAC, 有平面SBC⊥平面SAC, ③正确.又SB⊥平面ABC, 可得平面ABC⊥平面SAB, 取AB的中点M, 有CM⊥AB.又平面ABC∩平面SAB=AB, 则CM⊥平面SAB, 知点C到平面SAB的距离为, ④也正确.
方法二 (向量法) :同方法一得SB⊥平面ABC, 知①②均正确;以B为原点, BA为y轴, BS为z轴, 垂直于平面SBA的方向为x轴建立空间直角坐标系.设BS=b, 则.
又平面SBC的法向量为, 则, ③正确.
平面SAB的法向量为n′= (1, 0, 0) , 点C到平面SAB的距离, ④也正确.
【点拨】研究空间角问题通常需将几何法与向量法结合在一起运用.如本题用几何法证得SB⊥平面ABC后才便于建立空间直角坐标系, 用向量法解决问题.另外, 在取值求法向量时, 需以降低运算量为原则.如由取x=b, 得n= (b, b, a) , 对后面的计算带来方便, 否则, 若取x=1, 得, 后面的计算量稍大.
12.C.△ABC为等腰直角三角形, 且∠ACB=90°, 而, 要取得最大值, 必有O, A, B, C四点共面, 以O为原点, OC为y轴, OA为z轴, 垂直于平面AOC的方向为x轴.设∠OAC=θ, 则∠BCy=θ, 有B (0, 2sinθ+2cosθ, 2sinθ) ,
13.π/4.
14.2/3.设球的半径为R, 由, 得R=5/4.由, AC=2, 得Rt△ABC外接圆的圆心为AC的中点O′, 设球心为O, 则.
当点D在O′O的延长线上时, 四面体ABCD的体积有最大值.
17. (1) 异面直线AC与PB所成角的余弦值为.
(2) 点A到平面PBC的距离为.
18. (1) 连结FN, 在△PAC中, F, N分别为PA, PC的中点, 所以FN∥AC.因为FN⊂平面DEF, AC平面DEF, 所以AC∥平面DEF.
(2) 如图5, 以D为原点, 分别以DA, DC, DP所在直线为x, y, z轴, 建立空间直角坐标系, 则, B (1, 1, 0) , C (0, 2, 0) .
设平面PBC的法向量为m= (x, y, z) ,
因为平面ABC的法向量n= (0, 0, 1) ,
由图可知二面角A-BC-P为锐二面角, 所以二面角A-BC-P的大小为π/4.
故在线段EF上存在一点Q, 且.
19. (1) 因为AE⊥A1B1, A1B1∥AB, 所以AB⊥AE.
又因为AB⊥AA1, AE∩AA1=A, 所以AB⊥平面A1ACC1.
又因为AC⊂平面A1ACC1, 所以AB⊥AC.
令z=2 (1-λ) , 所以n= (3, 1+2λ, 2 (1-λ) ) .
由题可知平面ABC的法向量m= (0, 0, 1) .
因为平面DEF与平面ABC所成锐二面角的余弦值为,
解得λ=1/2或λ=7/4 (舍去) .
所以当点D为A1B1的中点时, 满足要求.
20. (1) 由题意可知四边形ABED是平行四边形, 所以AM=ME.又因为AB=BE, M为AE的中点, 所以BM⊥AE, 即DM⊥AE.
又因为AD∥BC, AD=CE=2, 所以四边形ADCE是平行四边形.
所以AE∥CD.所以CD⊥DM.
因为平面B1AE⊥平面AECD, 平面B1AE∩平面AECD=AE, B1M⊥AE, 所以B1M⊥平面AECD.
因为CD⊂平面AECD, 所以B1M⊥CD.
因为MD∩B1M=M, 所以CD⊥平面B1MD.
(2) 如图7, 以ME为x轴, MD为y轴, MB1为z轴建立空间直角坐标系, 则.
平面AB1E的法向量为.
设平面DB1A的法向量为m= (x, y, z) .
因为二面角D-AB1-E为锐角, 所以二面角D-AB1-E的余弦值为.
(3) 设在线段B1C上存在点P, 使得MP∥平面B1AD.
因为MP∥平面B1AD, 所以.
又因为MP平面B1AD,
所以在线段B1C上存在点P, 使得MP∥平面B1AD, 且.
21. (1) 取PD的中点Q, 连结NQ, CQ,
因为点M, N分别为BC, PA的中点, 所以NQ∥AD∥CM, , 四边形CQNM为平行四边形, 则MN∥CQ.
又MN平面PCD, CQ⊂平面PCD.
所以MN∥平面PCD.
(2) 连结PM.因为AB=AC=1, 点M分别为BC的中点, 则AM⊥BC.
又PA⊥平面ABCD, 则PM⊥BC.所以∠PMA即为二面角P-BC-A的平面角, 设为θ.以AB, AC, AP所在的直线分别为x轴、y轴、z轴, 建立的空间直角坐标系, 则A (0, 0, 0) , B (1, 0, 0) , C (0, 1, 0) , .
设平面PBC的一个法向量为n= (x, y, z) ,
因为0<α<π/6,
十二、直线与圆、曲线与方程
1.C.
【变式】已知直线l1:ax+y=1和直线l2:x+ay=2, 则“a+1=0”是“l1∥l2”的 () .
(A) 充分不必要条件
(B) 必要不充分条件
(C) 充要条件
(D) 既不充分又不必要条件
(答案:A.)
2.B.
【变式】在下列直线中, 与非零向量n= (A, B) 垂直的直线是 () .
(A) Ax+By=0 (B) Ax-By=0
(C) Bx+Ay=0 (D) Bx-Ay=0
(答案:A.)
3.A.方法一 (几何法) :由直线与圆相交, 得, 则-2<b<6.
|b|<2成立-2<b<6成立, -2<b<6成立/|b|<2成立.
由直线与圆相交, 得Δ=12× (b-2) 2-4×4 (b2-4b) >0, 解得-2<b<6.|b|<2是-2<b<6的充分不必要条件.
【点拨】研究直线与圆的位置关系问题时, 一般而言, 用几何法运算量较低, 且直观, 更为方便.
【变式】若直线与曲线有两个不同的交点, 则b的取值范围是 () .
(答案:B.提示:由, 得x2+ (y-2) 2=4, y≤2, 表示半圆.当直线与相切时, 由, 得b=-2或b=6 (舍去) .当直线过点 (2, 2) 时, .)
4.D.
【变式】若经过点P (-2, 0) 的直线与圆x2+y2=2相切, 则此直线在y轴上的截距是 () .
(A) -2 (B) 2
(C) -2或2 (D) 4
(答案:C.)
5.B.方法一:以O (0, 0) , A (2, 3) 为直径端点的圆的方程为x (x-2) +y (y-3) =0, 即x2+y2-2x-3y=0, 与圆C:x2+y2=4相减, 得2x+3y-4=0.
所以直线PQ的方程为2x+3y-4=0.
方法二:设切点P (x1, y1) , Q (x2, y2) , 则, 则切线方程为, 即x1x+y1y=x21+y21=4, 其经过点A (2, 3) , 有2x1+3y1=4.同理2x2+3y2=4.
所以直线2x+3y=4过A, B两点, 即直线AB的方程为2x+3y-4=0.
【点拨】 (1) 方法一用到了下面的结论:①已知A (x1, y1) , B (x2, y2) , 则以AB为直径的圆的方程为 (x-x1) (x-x2) + (y-y1) (y-y2) =0 (在圆上任取一点P (x, y) , ) ;
②圆O1:x2+y2+D1x+E1y+F1=0与圆O2:x2+y2+D2x+E2y+F2=0相交于点A (x1, y1) , B (x2, y2) , 则直线AB的方程为 (D1-D2) x+ (E1-E2) y+ (F1-F2) =0.
(2) 以上两种方法在运算量方面相差不远, 但方法二对椭圆、双曲线、抛物线也适用.
6.A.
7.C.
【变式】已知点A是直线l:上的动点, 过点A作圆C: (x-2) 2+y2=1的切线, 切点为P, 则|AP|的最小值为 () .
(答案:B.)
8.C.设B (x1, y1) .由, 得A是MB的中点, 则,
所以圆O:x2+y2=1与圆O′: (x+t) 2+ (y+2) 2=4有公共点.
方法二 (几何法) :直线的倾斜角为30°, 于是在△AOB中, ∠A=∠B=30°, 从而∠AOB=120°, 则.
【变式】过点P (-1, -1) 的直线与圆O:x2+y2=1相交于A, B两点, 则.
(C) -1 (D) 1
(答案:D.提示:过点P作圆O的切线, 设切点为Q, 有|PQ|=1.由切割线定理, 得.)
10.D.
【变式】已知在圆M:x2+y2-4x+2y=0内, 过点E (1, 0) 的两条弦AC, BD互相垂直, 则四边形ABCD面积的最小值为 () .
(A) 4 (B) 8
(答案:B.提示:设圆心M (2, -1) 到弦AC, BD的距离分别为m, n, 则, 仅当m=n=1时取等号.)
11. (理) B.
(文) D.设圆M与圆C1内切于点A, 圆M与圆C2内切于点B, 圆M的半径为r, 则|C1M|=|AM|-|C1A|=r-1, |C2M|=|C2B|-|MB|=5-r, 有|C1M|+|C2M|=4, 所以点M的轨迹是以C1 (-1, 0) , C2 (1, 0) 为焦点的椭圆.设其方程为 (a>b>0) , 且2a=4, c=1, 有a=2, b2=a2-c2=3, 即.
(文) C.由圆M与圆C总有公共点, 得3-2≤|CM|≤3+2, 即1≤|CM|≤5.由于点M在圆C内, |CM|≤5显然成立, 故|CM|≥1.点M在直线l:kx-y+3=0上, 且直线l过定点 (0, 3) , 只需使直线l与圆 (x-1) 2+ (y-1) 2=1相切或相离, 所以.
13. (x-3) 2+ (y-3) 2=18.
【变式】已知圆C的圆心在直线x-y=0上, 且圆C与直线x+y=0相切, 直线x+y-12=0被圆C截得的弦长为, 则圆C的标准方程是____.
(答案: (x-4) 2+ (y-4) 2=32.)
15. (-∞, -1]∪[1, +∞) .设过点P的直线与圆相切于A, B两点, 则四边形PAOB是边长为1的正方形, 有, 于是直线y=kx+2与圆x2+y2=2有公共点, 所以, 得k2≥1, 即k≤-1或k≥1.
17. (1) 圆C的方程为 (x+4) 2+y2=16.
(2) 直线FG被圆C截得的弦长为7.
18. (1) 由得圆心C为 (3, 2) .
因为圆C的半径为1,
所以圆C的方程为 (x-3) 2+ (y-2) 2=1.
显然切线的斜率一定存在, 设所求圆C的切线方程为y=kx+3, 即kx-y+3=0.
所以所求圆C的切线方程为y=3或, 即y=3或3x+4y-12=0.
(2) 因为圆C的圆心在直线l:y=2x-4上, 所以设圆心C为 (a, 2a-4) ,
则圆C的方程为 (x-a) 2+[y- (2a-4) ]2=1.
设圆D:x2+ (y+1) 2=4, 所以点M应该既在圆C上又在圆D上, 即圆C和圆D有交点.
由5a2-12a+8≥0, 得a∈R;由5a2-12a≤0, 得.
所以a的取值范围为.
19. (1) 如图1, 设AB的中点为M, 切点为N, 连结OM, MN, 则|OM|+|MN|=|ON|=2, 取A关于y轴的对称点A′, 连结A′B, 故|AB|+|A′B|=2 (|OM|+|MN|) =4.
所以点B的轨迹是以A, A′为焦点, 长轴长为4的椭圆.其中, a=2, , b=1, 则曲线Γ的方程为.
(2) 如图2, 因为B为CD的中点, 所以OB⊥CD, 则.
又因为AC=4, 所以OC=1.所以.
所以直线CD的方程为, 即x+7y-5=0.
(2) 设C (-3m, 4m) (0<m≤1) , 则OC=5m, 则AC=OA-OC=5-5m.
因为AC=BD, 所以OD=OB-BD=5m+4.所以点D的坐标为 (5m+4, 0) .
又设△OCD的外接圆的方程为x2+y2+Dx+Ey+F=0,
解得D=- (5m+4) , F=0, E=-10m-3.
所以△OCD的外接圆的方程为x2+y2- (5m+4) x- (10m+3) y=0.
整理, 得x2+y2-4x-3y-5m (x+2y) =0.
所以△OCD的外接圆恒过定点 (2, -1) .
21. (1) 由x2+y2-6x+5=0, 得 (x-3) 2+y2=4.所以圆C1的圆心坐标为 (3, 0) .
(2) 设M (x, y) .因为点M为弦AB的中点, 即C1M⊥AB,
所以kC1M·kAB=-1, 即.
所以线段AB的中点M的轨迹的方程为.
(3) 由 (2) 知点M的轨迹是以为圆心, 为半径的部分圆弧EF (图3所示, 不包括两端点) , 且.
又直线L:y=k (x-4) 过定点D (4, 0) ,
当直线L与圆C相切时,
十三、圆锥曲线
1.D.
【变式】已知椭圆C: (a>b>0) 的焦点为F1, F2, 若椭圆C上存在一点P, 使得∠F1PF2=90°, 则椭圆C离心率的取值范围是 () .
(答案:B.)
2.C.
【变式】若方程表示椭圆, 则实数k的取值范围是 () .
(A) (-∞, -2)
(B) (2, 5/2)
(C) (5/2, 3)
(答案:D.)
3.A.
【变式】已知点A (1, 1) , F是椭圆的左焦点, 若点P在椭圆上运动, 则|PA|+|PF|的最小值为 () .
(答案:C.)
4.D.
5.B.
【变式】设双曲线 (a>0, b>0) 的左、右焦点分别为F1, F2, 直线l经过F1且与双曲线交于两点A, B, 若△AF2B为正三角形, 则双曲线的离心率为 () .
(答案:C.)
7.C.由题意, 得, 则a2+b2<3, 即点P (a, b) 在圆x2+y2=3的内部.又圆x2+y2=3在椭圆的内部, 于是点P在椭圆的内部, 故过点P的一条直线与椭圆有2个公共点.
9.D.由, 得c2=2a2=a2+b2, 即a=b, 因此双曲线的一条渐近线为l:y=x.
由得P (4, 4) .而抛物线的准线为x=-1, 于是|PF|=4- (-1) =5.
10.D.
【变式】已知直线y=kx-k与双曲线x2-y2=4在右支有两个不同的交点, 则实数k的取值范围是 () .
(答案:D.)
15.①②④.16.- (3/8) .
17. (1) 椭圆C的方程是.
(2) kOM·kPB=-1不成立, 理由略.
(2) (i) 由题意可知, 直线l的斜率为0时, 不合题意.
(ii) 不妨设直线l的方程为x=ky+m.
因为以AB为直径的圆过点M (2, 0) , 所以.
将x1=ky1+m, x2=ky2+m代入上式,
综上, 直线l经过定点 (6/5, 0) .
故椭圆C的标准方程为.
两式作差, 得.因为直线PA, PB的斜率都存在, 所以x20-x21≠0.
所以当PA, PB的斜率都存在时, kPA·kPB=- (1/2) .
(ii) k=0时, P (x0, y0) , A (-2, 0) , B (2, 0) , 设PA的斜率为n, 则PB的斜率为.
直线PA:y=n (x+2) , M (3, 5n) , 直线PB:,
20. (1) 由题意可设抛物线C的方程为x2=2py (p>0) , 则p/2=1, 所以抛物线C的方程为x2=4y.
(2) 由题意知, 直线AB的斜率存在.设A (x1, y1) , B (x2, y2) , 直线AB的方程为y=kx+1.
同理点N的横坐标.
令4k-3=t, t≠0, 则.
综上所述, 当, 即时, |MN|的最小值是.
21. (理) (1) 点M (1, 0) 是椭圆C的“1分点”, 理由如下:
(2) 假设点M (1, 0) 为椭圆C的“2分点”, 则存在过点M的直线l与椭圆C交于A, B两点, 使得S△AOB=2S△AOD, 显然直线l不与y轴垂直.设l:x=my+1, A (x1, y1) , B (x2, y2) .
因为S△AOB=2S△AOD,
将④代入⑤中得, 无解.
所以点M (1, 0) 不是椭圆C的“2分点”.
(3) x0的取值范围为 (-2, -1) ∪ (1, 2) .
(文) (1) 椭圆C的离心率.
设点E, F的坐标分别为 (x1, y1) , (x2, y2) , EF的中点M的坐标为 (xM, yM) ,
因为△BEF是以EF为底边, B为顶点的等腰三角形, 所以BM⊥EF.
因此BM的斜率.
又点B的坐标为 (0, -2) ,
所以EF的方程为.
又圆的圆心O (0, 0) 到直线EF的距离为,
九年级数学下册综合测试题 篇8
A. B. C. 1 D.
2.若关于x的一元二次方程2x2-2x+3m-1=0有两个实数根x1、x2且x1·x2>x1+x2-4,则实数m的取值范围是( ).
A.m>- B.m≤
C.m<- D.- 3.如图1,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD∶OE∶OF=( ). A. a∶b∶c B. ∶ ∶ C. cosA∶cosB∶cosC D. sinA∶sinB∶sinC 4.已知△ABC的三边长分别为 、 、2, △A′B′C′的两边长分别是1和 ,如果△ABC∽△A′B′C′,那么△A′B′C′的第三边长应该是( ). A. B. C. D. 5.如图2,小明将一张矩形纸片ABCD沿CE折叠,B点恰好落在AD边上,设此点为F,若AB∶BC=4∶5,则cos∠DCF的值为___. 图2 图3 6.如图3,AB∥CD,AC、BD交于O,BO=7,DO=3,AC=25,则AO的长为__________. 7.抛物线y=x2-4与x轴的两个交点和抛物线的顶点构成的三角形的面积为 . 8.已知关于x的方程x2+(3-m)x+ =0有两个不相等的实数根,那么m的最大整数值是___________. 9. 如图4,△ABC中,∠C=90°,AC=8cm,BC=4cm,一动点P从C出发沿着CB方向以1cm/S的速度运动,另一动点Q从A出发沿 着AC方向以2cm/S的速度运动,P、Q两点同时出发,运动时间为t(s). (1)当为几秒时,△PCQ的面积是△ABC面积的 ? (2)△PCQ的面积能否为△ABC面积的一半?若能,求出t的值;若不能,说明理由. 图4 图5 10.如图5所示,在平面直角坐标系中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A和点B且12a+5c=0. (1)求抛物线的解析式; (2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动. ①移动开始后第t(s)时,设S=PQ2(cm)2,试写出S与t之间的函数关系式,并写出t的取值范围; 【初二数学测试题】推荐阅读: 测试题初二数学10-01 初二数学分式测试题07-27 初二数学分单元测试07-13 初二数学平行四边形测试题06-12 初二数学下册期末试题的总结06-09 初二数学期中调研性测试试卷分析07-17 初二数学教案08-30 初二数学书上册07-07 初二数学下册试卷11-05 初二数学下册专项习题08-25