初二数学分式测试题(通用10篇)
初二数学分式测试题 篇1
第二节:分式的运算
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。完整版☞☞☞八年级数学上册分式的运算知识点讲解~
第三节:分式方程
分式方程的解法:
①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号};完整版☞☞☞初二年级数学上册分式方程知识点~
初二数学分式基本性质说课稿 篇2
1、教材的地位和作用
本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、掌握分式有意义,值为0的条件。因为它是在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,为今后继续学习分式、函数、方程等知识作好铺垫,特别是对“分式有无意义的讨论”为以后学习反比例函数作了铺垫。因此它起着承上启下的作用。
2、教学目标
一节课的教学目标准确与否,直接关系到这节课的整体设计,关系到学生发展的水平和教学效果的好坏,因此预设教学目标时,我力求准确。依据新课程的要求,我将本节课的教学目标确定为以下3个方面:
(1)知识与技能目标:让学生经历用分式表示现实情境中数量关系的过程,从而了解分式概念,学会判别分式何时有意义,进一步培养学生代数表达能力和分析问题、解决问题的能力、以及创新能力。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,使学生获得成功的经验,体验数学活动充满探索和创造,体会分式的模型思想,培养学生的辩证唯物主义观点。
3、教学重难点及关键:
分式概念是《分式》这一章学习的起点和基础,因此我把理解分式的概念确定为本节课的教学重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分式有意义、分式的值为0时的条件,自然就成了本节课的教学难点。而部分学生容易忽视分式的.分母值不能为0这个条件,因此我认为突破这个难点的关键是通过类比分数的意义,加强对分式分母值不能为0的理解。
一、教法学法分析
1、学情分析
由于我校八年级学生,基础比较扎实,学习能力较强。通过小学分数的学习,学生头脑中已经形成了分数的相关知识。学生可能会用学习分数的思维去认识、理解分式。但是分式的分母不再是具体的数,而是抽象的含字母的整式,会随着字母的取值的变化而变化。为了帮助学生确实掌握所学内容,我在教学过程中特别设置了巩固性练习,对于教材中的例题和习题将作适当的延伸和拓展及变式处理。
2、教学方法:
针对本班学生情况,为了适合学生已有的认识水平和认知规律,更好地突出重点、化解难点,在教学过程中,我采用“引导――发现式教学法”,引导学生运用类比的思维方法进行自主探究。在实施教学的过程中注意学生分析问题、解决问题等能力的培养。让学生全面地掌握分式的意义,体会到数学不是一门枯燥的学科,对学习数学充满信心。为了提高课堂效果,适当的辅以多媒体技术,激发学生的学习兴趣,同时也增大教学容量,提高教学效率。
3、学法指导
观察、概括、总结、归纳、类比、联想是学法指导的重点。
在课堂教学中,不是老师单纯的传授知识,而是在老师指引下让学生自己学。要把教法融于学法中,在学法中体现教法。在活动过程中,我将引导学生体会用类比的方法,扩展知识的过程,培养他们学习的主动性和积极性。让学生通过对问题的讨论归纳,在与老师的交流中学习知识,从而达到“学会”和“会学”的目的。
二、教学过程(多媒体教学)
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”在教学过程中,我充分考虑到如何更多地向学生提供从事数学活动的机会,坚持以知识为载体,思维为主线,能力为目标的设计原则,所以我将本节课的教学过程设为以下六个环节:
第一环节是“创设情景、提出问题”:为了引导学生从自己熟悉的生活背景中发现、掌握和运用数学,在现实情境中进一步理解用字母表示数的意义,在这一环节里我设计一道有关四川汶川特大地震捐款的事例,并设置了6个问题。从学生熟悉的整式及其运算入手,引导学生从旧知中去发现分式,找到新知的“生长点”和学生思维的“最近发展区”,从而更好地进行分式概念的建构活动。落实教学目标。
针对学生的发现,在第二个环节“类比联想形成概念”
我将采用“议一议”的方式引导学生继续观察新式子的特征,类比分数,合理联想。从而使学生水到渠成地概括出分式的概念及一般表示形式。
第三环节“指导运用巩固概念”
通过小组内互举例子,互说判定过程,鼓励学生积极参与活动,在活动过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析与的本质区别和不是分式的问题,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。同时还让学生明白:分数线具有(1)表示括号;(2)表示除号双重意义。
到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,也是探究学习的好素材。课本中分式有意义的条件是直接给出的,而我在以往的教学中发现学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,我在第四环节“循序渐进再探新知”创设了以下活动供学生自主探究分式有意义的条件:
首先是组织学生独立填写表格:
表格的设计,是为了让学生通过对分式中的字母赋值,将“代数化”了的分式还原为他们熟悉的分数。通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服和推广,他们最终会达成共识:分式的值与字母取值有关,分式并不都有意义。继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,建立完整的分式概念,同时渗透从特殊到一般的数学思想。
我抓住这一契机,给出:
(2)、概括分式在什么条件下有意义(对一般表达式里的分母B作出取值限定:B不能等于零)为了能让学生对刚获得的新知识进行最基本的应用,在这一环节我安排了例题1是一个有关分式求值及判别分式何时有意义的问题,比较简单,可以由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。
我又顺水推舟,再给出以下分式,让学生讨论,(实践练习1):当x取什么值时,下列分式有意义?你知道吗?(采用组内合作然后组间抢答的形式。)(1)、(2)、(3)、接下来,我又乘胜追击,问学生:(变式练习):那么以上各分式,当取什么值时,分式无意义?
初二数学期中测试题 篇3
一.选择题(3分12=36分)
1.下列各数中,无理数的个数有( )
﹣0.101001, , , , ,0, .
A.1个 B.2个C.3个D.4个
2.下列说法正确的是
A.﹣4是﹣16的平方根B.4是(﹣4)2的平方根
C.(﹣6)2的平方根是﹣6D. 的平方根是4
3.设 的小数部分为b,那么(4+b)b的值是()
A.1B.是一个有理数C.3D.无法确定
4.下列各式表示正确的是()
A. B. C. D.
5.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()
A.5B.25C.7D.15
6. 若mn,则下列不等式中成立的是()
A.m+a
7.不等式组 的解集在数轴上表示为()
A. B. C. D.
8.如果不等式组 无解,那么m的取值范围是()
A.mB.mC.mD.m8
9. 如图,数轴上表示1、 的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()
A. B. C. D.
10.有一个数值转换器,原理如下:当输入的x为64时,输出的y是()
A.8B. C. D.
11.如图 所示为一种羊头形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,,依此类推,若正方形①的`面积为64,则正方形⑤的面积为()
A.2B.4C.8D.16
12.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C. 则矩形的一边AB的长度为()
A.1B. C. D.2
二.选择题(4分6=24分)
13.﹣27的立方根与 的平方根之和为
14.某商品进价200元,标价300元,商场规定可以打折销售,但其利润不能低于5%,该商品最多可以折.
15.已知a5,不等式(5﹣a)xa﹣5解集为.
16.如图所示,折 叠长方形的一边AD,使点D落在边BC的点F处,已知AB =8cm,BC=10cm,则EC 的长为cm.
17.若关于x的不等式组 有解, 则实数a的取值范围是.
18.若不等式组 的解集为x3 ,则a的取值范围是.
三.解答题(8+8+12+12=40分)
19.分析探索题:细心观察如图,认真分析各式,然后解答问题.
OA22=( )2+1=2
OA32=( )2+1=3
OA42=( )2+1=4 S3=
(1)请用含有n(n为正整数)的等式Sn=;
(2)推算出OA10=.
(3)求出 S12+S22+S32++S102的值.
20.解不等式组,把它的解集在数轴上表示出来,并求该不等式组所有整数解的和. .
21.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
A型B型
价格(万元/台)1210
月污水处理能力(吨/月)60
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.
(1)该企业有几种购买方案?
(2)哪种方案更省钱 ,说明理由.
22.在△ABC中,AB、BC、AC三边的长分别为 、 、 ,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上
(2)画△DEF,DE、EF、DF三边的长分别为 、 、
①判断三角形的形状,说明理由.
初二数学定义与命题测试题 篇4
一、目标导航
1.了解定义、命题的含义.
2.初步体验数学定义的严密性
二、基础过关
1.写出下列命题的题设和结论.
(1)对顶角相等.
(2)如果a2=b2,那么a=b.
(3)同角或等角的补角相等.
(4)同旁内角互补,两直线平行.
(5)过两点有且只有一条直线.
2.下列语句不是命题的是( )
A.鲸鱼是哺乳动物 B.植物都需要水 C.你必须完成作业 D.实数不包括零
3.下列说法中,正确的是( )
A.经过证明为正确的真命题叫公理
B.假命题不是命题
C.要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可
D.要证明一个命题是真命题,只要举一个例子,说明它正确即可.
4.下列选项中,真命题是( ).
A.ab,ac,则b=c
B.相等的角为对顶角
C.过直线l外一点,有且只有一条直线与直线l平行
D.三角形中至少有一个钝角
5.下列命题中,是假命题的是( )
A.互补的.两个角不能都是锐角 B.如果两个角相等,那么这两个角是对顶角
C.乘积为1的两个数互为倒数 D.全等三角形的对应角相等,对应边相等.
6.下列命题中,真命题是( )
A.任何数的绝对值都是正数 B.任何数的零次幂都等于1
C.互为倒数的两个数的和为零 D.在数轴上表示的两个数,右边的数比左边的数大
7.把下列命题改写成如果,那么的形式.
(1)在同一平面内,垂直于同一条直线的两条直线平行.
(2)等边对等角.
(3)绝对值相等的两个数一定相等.
(4)每一个有理数都对应数轴上的一个点.
(5)直角三角形的两锐角互余.
8.举反例说明下面命题是假命题
(1)互补的两个角一定是一个锐角,一个钝角.
(2)两个负数的差一定是负数.
(3)两直线被第三条直线所截,同位角相等.
(4)一正一负两个数的和为0.
三、能力提升
9.下列语句中,是命题的是( )
A.两点确定一条直线吗? B.在线段AB上任取一点
C.作A的平分线AM D.两个锐角的和大于直角
10.下列命题中,属于定义的是( )
A.两点确定一条直线 B.同角或等角的余角相等
C.两直线平行,内错角相等 D.点到直线的距离是该点到这条直线的垂线段的长度
11.下列命题中,是真命题的是( )
A.内错角相等 B.同位角相等,两直线平行
C.互补的两角必有一条公共边 D.一个角的补角大于这个角
12.下列命题中,假命题是( )
A.垂直于同一条直线的两直线平行 B.已知直线a、b、c,若ab,a∥c,则bc
C.互补的角是邻补角 D.邻补角是互补的角
13.命题对顶角相等是( )
A.角的定义 B.假命题 C.公理 D.定理
14.指出下列命题的题设和结论:
(1)若a∥b,b∥c,则a∥c;(2)如果两个角相等,那么这两个角是对顶角;(3)同一个角的补角相等.
15.判断下列命题是真命题,还是假命题;如果是假命题,举一个反例.
(1)若a2b2,则ab.
(2)同位角相等,两直线平行.
(3)一个角的余角小于这个角.
16.用语言叙述这个命题:如图AB∥CD,EF交AB于点G,交CD于点H,GM平分BGH,HM平分GHD,则GMHM.
17. 如图,下面四个条件:(1) ,(2) ,(3) ,(4) ,请你写出满足两个作为已知条件,第三个为结论的命题,并判断其真假?
四、聚沙成塔
一个老大爷要过河,随身携带的有一只羊、一篮子青草和一只狼.他发现系在河边的小船一次只能载他和一样物体过河,他不能让狼和羊留在一起,因为狼会吃掉羊;他也不能把羊和青草留在一起,因为羊会吃掉青草,怎么办呢?请你帮助老大爷过河.
6.2 定义与命题
1.(1)题设:两个角是对顶角;结论:这两个角相等
(2)题设: ;结论:
(3)题设:如果两个角是同角或等角的补角;结论:这两个角相等
(4)题设:同旁内角互补;结论:两直线平行
(5)题设:经过两点作直线;结论:有且只有一条直线.
2.C 3.C 4.C 5.B 6.D 7.(1)如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行.(2)如果一个三角形有两条边相等,那么这两条边所对的角相等.(3)如果两个数的绝对值相等,那么这两个数相等.(4)如果一个数是有理数,那么在数轴上就有一个点与之相对应.(5)如果一个三角形是直角三角形,那么这个三角形的两个锐角互余.
8.略9.D 10.D 11.B 12.C 13.D 14略 15.(1)假命题(2)真命题(3)假命题
16. 两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.17.解;例如已知 求证: 是真命题.(只要答案合理即可)
初二数学下册试题 篇5
初二数学下册其实并不容易,我们可以通过一下试题来测试一下自己的掌握程度。
一、选择题(每题3分,共30分)
1. 5的相反数是( )
A.5 B.-5 C.±5 D.25
2.如图,将边长为2个单位的等边三角形△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为( )
A.6 B.8 C.10 D.12
3.一次函数 (a≠0)的大致图像是( )
A B C D
4.在平面直角坐标系中,点P(-1,2)的位置在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.在一组数据3、4、4、6、8中,下列说法正确的是( )
A.平均数小于中位数 B.平均数等于中位数
C.平均数大于中位数 D.平均数等于众数
6.估计 的运算结果应在( )
A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间
7.下列函数中,y随x增大而减小的是( )
A.y=x-1 B.y=-2x+3 C.y=2x-1 D.y=
8.下列各组数中是勾股数的为( )
A.1、2、3 B.4、5、6 C.3、4、5 D.7、8、9
9.我国在近几年奥运会上所获金牌数(单位:枚)统计如下:
届 数 23届 24届 25届 26届 27届 28届
金牌数 15 5 16 16 28 32
则这组数据的众数与中位数分别是( )
A.32、32 B.32、16 C.16、16 D.16、32
10.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q(升)与行驶时间(t小时)之间的函数关系图象是( )
A. B. C. D.
二、填空题(每题3分,共30分)
11.要使 在实数范围内有意义,x应满足条件是
12.随着海拔高度的升高,空气中的含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系,当x=36(kPa)时,y=108(g/m3),请写出y与x的函数关系式
13.如图,点A、B在数轴上对应的数分别为m、n,则A、B间的距离是
(用含m、n的式子表示)
14.写出满足14
15.如图,有一圆柱体,它的高为20cm,底面半径为7cm。在圆柱的下底面A处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是 cm。(结果用带根号和π的式子表示)
16.已知 是二元一次方程2x-y=14的解,则k的值是
17.若 ,则y-x=
18.化简: , = =
19.已知O(0,0),A(-3,0),B(-1,-2)则△AOB的面积为
20.直线y=kx+b,经过点A(-2,0)和y轴正半轴上的一点B,如果△ABO(O为坐标原点)的面积为2,则 b的值为
三、解答题(每题10分,共60分)
21.(1)计算
(2)解方程组
22.某水果种植场今年收获“妃子笑”和“无核1号”两种荔枝共3200千克,全部售出后卖了30400元,已知“妃子笑”荔枝每千克售价8元,“无核1号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?
23.已知函数y=kx+b的图象经过点A(-3,-2)及点B(1,6)
(1)求此一次函数解析式;
(2)求此函数图象与坐标轴围成的三角形的面积。
24.列方程组解应用题:
据统计,某市第一季度期间,地面公交日常客运量与轨道交通解决日常客运量总和为1690万人次,地面公交日常客运量比轨道交通日常客运量的4倍少60万人次,在此期间,地面公交和轨道交通日常客运量各为多少万人次?
25.某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了30户家庭的.月用水量,结果如下表所示:
月用水量(吨) 3 4 5 7 8 9 10
户 数 4 3 5 11 4 2 1
(1)求这30户家庭月用水量的平均数,众数和中位数;
(2)根据上述数据,试估计该社区的月用水量;
(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m吨部分加倍收费,你认为上述问题中的平均数、众数、中位数中哪一个量作为月基本用水量比较合理?简述理由。
26.康乐公司在A、B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台,从A、B两地运往甲、乙两地费用如下表:
甲地(元/台) 乙地(元/台)
A地 600 500
B地 400 800
(1)如果从A地运往甲地x台,求完成以上调运所需总费用y(元)与x(台)之间的函数关系式?
(2)请你为康乐公司设计一种最佳调运方案,使总费用最小,并说明理由。
初二下学期数学试题答案
一、选择题
1 2 3 4 5 6 7 8 9 10
B B A B C C B C C B
二、填空题
11 12 13 14 15 16 17 18 19 20
X≥2 Y=3x n-m 不唯一,符合条件即可
2 8 2,5,
3 2
三、解答题
21.(1)12 (2)
22.解:设种植“妃子笑”荔枝收获x千克,“无核1号”荔枝收获y千克
根据题意得: 解得:
23.解:(1)把A(-3,-2)、B(1,6)代入 中,得:
解得: ,所以:
(2)∵OM=4,ON=|-2|=2
∴S= OMON= ×4×2=4
24.解:设地面公交日常客运量x人,轨道交通日常客运量y人,根据题意得:
,解得
25.解:(1) 众数是7,中位数是
(2)1500 6.2=9300(吨)
(3)以中位数或众数作为月基本用水量较为合理,因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水。
26.(1)y=600x+500(17-x)+400(18-x)+800(x-3)=500x+13300
(2) ∵ ∴3≤x≤17
∵k=500
∴y随x增大而增大
∴当x=3时,y最小=500×3+13300=14800(元)
初二数学下册第七章自我测试题 篇6
1、图中三角形的个数是()
(A)8(B)9(C)10(D)112、下列四个图形中,线段BE是△ABC的高的图是()
(A)图(1)(B)图(2)(C)图(3)(D)图(4)
3、以下列各组线段为边,能组成三角形的是()
(A)1 cm,2 cm,4 cm。(B)8 cm,6 cm,4 cm。
(C)12 cm,5 cm,6 cm。(D)2 cm,3 cm,6 cm。
4、三角形一个外角小于与它相邻的内角,这个三角形()
(A)是直角三角形(B)是锐角三角形
(C)是钝角三角形(D)属于哪一类不能确定。
5、如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()
(A)5(B)
4(C)3(D)
26、下面各角能成为某多边形的内角的和的是()
(A)430(B)43
43(C)4320(D)4360
二、填空题(每小题4分,共计24分):
7、在△ABC中,AD是中线,则△ABD的面积 △ACD的面积
(填“>”“<”“=”)。
8、如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF= 度。
9、一个四边形的四个内角中最多有 个钝角,最多有 个锐角。
10、一个多边形每个外角都是30°,这个多边形的边数是,它的内角和是。
三、解答题(本题共52分):
11、(7分)有人说,自己步子大,一步能走三米多,你相信吗?写出理由。
12、(10分)小颖要制作一个三角形木架,现有两根长度为8 m和5 m的木棒。如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?
13、(10分)小华从点A出发向前走10 m,向右转36°然后继续向前走10 m,再向右转
36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走多少米?若不能,写出理由。
14、(15分)△ABC中,∠ABC,∠ACB的平分线相交于点O。
(1)若∠ABC=40°,∠ACB=50°,则∠BOC=。
(2)若∠ABC+∠ACB=116°,则∠BOC=。
(3)若∠A=76°,则∠BOC=。[
(4)∠BOC=120°,则∠A=。
(5)你能找出∠A与∠BOC之间的数量关系吗?
初二下册期中数学试题 篇7
1。下列各式 , , , , , , 中,分式有( ).
A。 2个 B. 3个 C. 4个 D. 5个
2、分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;
④9,40,41;⑤3 ,4 ,5 .其中能构成直角三角形的有( )组
A.2 B.3 C.4 D.5
3、分式 的值为0,则a的值为( )
A。3 B。-3 C。±3 D。a≠-2
4、有一块直角三角形纸片,两直角边分别为:AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )
A。2cm B。3cm C。4cm D。5cm
二、填空题
1、把0.00000000120用科学计数法表示为_______ 。
2、一个函数具有下列性质:
①它的`图象经过点(-1,1); ②它的图象在第二、四象限内;
③在每个象限内,函数值y随自变量x的增大而增大。则这个函数的解析式可以为____________。
3、关于x的方程 无解,则m的值是
4、 计算: =_____________
5、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米. 当正方形DEFH运动到什么位置,即当AE= 米时,有DC =AE +BC .
三、解答题
1、(6分)计算:2 °。
2、(8分)先化筒 , 然后从介于-4和4之间的整数中,选取一个你认为合适的x的值代入求值。
3、解方程:(6分×2=12分)
(1) +1= ; (2) = -2。
4、(8分)在某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元。若该工程计划在70天内完成,在不超过计划天数 的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
5、(8分)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒。已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示。根据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;
初二年级数学上册期中检测试题 篇8
一、选择题(每小题3分,共30分)
1.下列四个实数中,绝对值最小的数是
A.-5B.- C.1 D.4
2.下列各式中计算正确的是()
A. B. C. D.
3.若 (k是整数),则k=( )
A. 6B. 7C.8D. 9
4. 下列计算正确的是()
A.ab?ab=2ab
C.3 - =3(a≥0) D. ? = (a≥0,b≥0)
5.满足下列条件的三角形中,不是直角三角形的 是()
A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3
C.三边长之比为3∶4∶5 D.三内角之比为3∶4∶5
6.已知直角三角形两边的长分别为3和4,则此三角形的周长为()
A.12 B.7+ C.12或7+ D.以上都不对
7.将一根24 cm的筷子置于底面直径为15 cm,高为8 cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的取值范围是()
A.h≤17 B.h≥8
C.15≤h≤16 D.7≤h≤16
8.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()
A.(4, -3) B.(-4, 3)
C.(0, -3) D.(0, 3)
9.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(4,5),B(1,2),C(4,2),
将△ABC向左平移5个单位长度后,A的对应点A1的坐标是()
A.(0,5)B.(-1,5)C.(9,5)D.(-1,0)
10.平面直角坐标系中,过点(-2,3)的直线 经过第一、二、三象限,若点(0, ),(-1, ),( ,-1)都在直线 上,则下列判断正确的是()
A. B.C. D.
二、填空题(每小题3分,共24分)
11.函数y= 的自变量x的取值范围是________.
12.点 P(a,a-3)在第四象限,则a的取值范围是 .
13.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为__________.
14.某水库的`水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为__________.
15.在△ABC中,a,b,c为其三边长, , , ,则△ABC是_________.
16.在等腰△ABC中,AB=AC=10 cm,BC=12 cm,则BC边上的高是_________cm.
17.若 在第二、四象限的角平分线上, 与 的关系是_________.
18.已知:m、n为两个连续的整数,且m<
三、解答题(共66分)
19.(8分)如图,已知等腰△ 的周长是 ,底边 上的高 的长是 ,
求这个三角形各边的长.
20.(8分)计算:
(1);(2) ;(3) ;
(4) ;(5) ;(6) .
21.(8分)在平面直角坐标系中,顺次连接 (-2,1), (-2,-1), (2,-2), (2,3)各点,你会得到一个什么图形?试求出该图形的面积.
22.(8分)已知 和︱8b-3︱互为相反数,求 -27 的值.
23.(8分)设一次函数y=kx+b(k≠0)的图象经过A(1,3),
B(0,-2)两点,试求k,b的值.
24.(8分)一架云梯长25 m,如图所示斜靠在一面墙上,梯子底端C离墙7 m.
(1)这个梯子的顶端A距地面有多高?
(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也是滑动了4 m吗?
25.(8分)甲、乙两人匀速从同一地点到1 500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距 (米),甲行走的时间为 (分), 关于 的函数图象的一部分如图所示.
(1)求甲行走的速度;
(2)在坐标系中,补画s关于t的函数图象的其余部分;
(3)问甲、乙两人何时相距360米?
26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3 000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)
(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?
(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型
服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为
W元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?
参考答案
一、选择题
1.C解析:|-5|=5;|- |= ,|1|=1,|4|=4,所以绝对值最小的数是1,故选C.
2.C解析:选项A中 ,选项B中 ,选项D中 ,所以只
有选项C中 正确.
3.D解析:∵ 81<90<100,∴ ,即9 10,∴ k=9.
4.D解析:因为 ,所以A项错误;因为 ,所以B项错误;因为 ,所以C项错误;因为 ,所以D项正确.
5.D解析:判断一个三角形是不是直角三角形有以下方法:
①有一个角是直角或两锐角互余;
②两边的平方和等于第三边的平方;
③一边的中线等于这条边的一半.由A得有一个角是直角.
B、C满足勾股定理的逆定理,故选D.
6.C解析:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或 ,所以直角三角形的周长为3+4+5=12或3+4+ =7+ ,故选C.
7.D解析:筷子在杯中的最大长度为 =17(cm),最短长度为8 cm,则筷子露在杯子外面的长度h的取值范围是24-17≤h≤24-8,即7≤h≤16,故选D.
8.C解析:关于原点对称的点的坐标的特点是横、纵坐标均互为相反数,所以点(-2,3)关于原点的对称点为(2,-3).根据平移的性质,结合直角坐标系,(2,-3)点向左平移2个单位长度,即横坐标减2,纵坐标不变.故选C.
9.B解析:∵ △ABC向左平移5个单位长度,A(4,5),4-5=-1,
∴ 点A1的坐标为(-1,5),故选B.
10.D解析:设直线 的表达式为 , 直线 经过第一、二、三象限,
,函数值 随 的增大而增大.,,故A项错误; ,,故B项错误;,,故C项错误;,,故D项正确.
二、填空题
11.x≥2解析:因为使二次根式有意义的条件是被开方数≥0,所以x-2≥0,所以x≥2.
∵ 点P(a,a-3)在第四象限,∴ a0,a-30,解得0
13.25解析:本题考查了关于y轴对称的点的坐标特点,关于y轴对称的点的横坐标互为相反数,纵坐标相同,可得a+b=-3,1-b=-1,解得b=2,a=-5,∴ ab=25.
14.y=0.3x+6解析:因为水库的初始水位高度是6米,每小时上升0.3米,所以y与x的函数关系式为y=0.3x+6(0≤x≤5).
15.直角三角形解析:因为 所以△ 是直角三
角形.
16.8解析:如图,AD是BC边上的高线.
∵ AB=AC=10 cm,BC=12 cm,
∴ BD=CD=6 cm,
∴ 在Rt△ABD中,由勾股定理,得 AD= = =8(cm).
17.互为相反数解析:第二、四象限的角平分线上的点的横、纵坐标的绝对值相等,符号
相反.
18.7解析:∵ 9<11<16,∴ 3< <4.
又∵ m、n为两个连续的整数,∴ m=3,n=4,∴ m+n=3+4=7.
三、解答题
19. 解:设 ,由等腰三角形的性质,知 .
由勾股定理,得 ,即 ,解得 ,
所以 , .
20.解:(1) .
(2) .
(3)
(4)
(5)
(6) .
21.解:梯形.因为AB∥CD, 的长为2, 的长为5, 与 之间的距离为4,
所以 梯形ABCD= =14.
22.解: 因为 ≥0,︱8b-3︱≥0,且 和︱8b-3︱互为相反数,
所以 ︱8b-3︱
所以 所以 -27=64-27=37.
23.分析:直接把A点和B点的坐标分别代入y=kx+b,得到关于k和b的方程组,然后解方程组即可.
解:把(1,3)、(0,-2)分别代入y=kx+b,得
解得 即k,b的值分别为5,-2.
24.分析:(1)可设这个梯子的顶端A距地面有x m高,因为云梯长、梯子底端离墙距离、梯子的顶端距地面高度是直角三角形的三边长,所以x2+72=252,解出x即可.
(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向不一定滑动了4 m,应计算才能确定.
解:( 1)设这个梯子的顶端A距地面有x m高,
根据题意,得AB2+BC2=AC2,即x2+72=252,解得x=24,
即这个梯子的顶端A距地面有24 m高.
(2)不是.理由如下:
如果梯子的顶端下滑了4 m,即AD=4 m,BD=20 m.
设梯子底端E离墙距离为y m,
根据题意,得BD2+BE2=DE2,即202+y2=252,解得y=15.
此时CE=15-7=8(m).
所以梯子的底部在水平方向滑动了8 m.
25.解:(1)甲行走的速度: (米/分).
(2)补画的图象如图所示(横轴上对应的时间为50).
(3)由函数图象可知,当t=12.5时,s=0;
当12.5≤t≤35时,s=20t-250;
当35t≤50时,s=-30t+1 500.
当甲、乙两人相距360米时,即s=360,
360=20t-250,解得 ,
360 =-30t+1 500. 解得
当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.
26.解:(1)设一名熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,由题意,得 ?解得
答:一名熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.
(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8-2a)件.
∴ W=16a+12(25×8-2a)+800,∴ W=-8a+3 200.
又a≥ (200-2a),解得a≥50.
∵ -80,∴ W随着a的增大而减小.
∴ 当a=50时,W有最大值2 800.
初二数学下册期末考试试题分析 篇9
八年级数学期末试卷设计题型新颖,渗透过程与方法,探究学习、数形结合、函数建模等数学思想和数学方法。试卷知识点覆盖面广,注重考查学生对知识和技能的理解和应用能力。达到了考查创新意识,应用意识、综合能力的目的,有利于激发学生的创造性思维;有利于发挥试卷对教学的正确指导作用。本试卷设置了适量的操作性、阅读理解性、图形信息性,探究学习性试题。加强与学生经验,社会生活的联系,增强问题的趣味性、真实性、情境性。注重考查学生在真实情境中提出、研究、解决实际问题的能力,体现重视培养学生的理解能力、创新能力和实践能力的导向。关注基本的数学素养、关注生活、关注理解创新是本试卷的亮点。
二、试题的结构、特点的分析
1.试题结构的分析
本套试题满分100分,由选择题、填空题、解答题三大块26个小题组成。其中客观性题目约占50分,主观性题目占50分。代数占71分,几何占29分。具体为第十一章《全等三角形》,第十二章《轴对称》共占29分,第十三章《实数》5分,第十四章《一次函数》40分,第十五章《整式乘除》26分。体现函数的重要性。
整套试卷难度系数较大。
2.具体试题的特点
(1) 仍然注重双基的考查
试卷中选择题的1-8小题,填空中的11-16题,解答题中的19-21题,22题的第一问,23题的第一问考察的都是基本知识点的理解运用能力、计算能力和基本作图能力。
(2)强调能力,注重对数学思维过程、方法的考查
试卷中不仅考查学生对八年级数学基础知识的掌握情况,而且也考查了学生以这些知识为载体,在综合运用这些知识的过程中所反映出来的基本的数学能力,初中阶段数学能力主要是指运算能力、思维能力和空间想象能力,以及运用所学知识分析、解决问题的能力等。
(3)注重灵活运用知识和探求能力的考查
试卷积极创设探索思维,重视探索性试题的设计,如第9题、24题、25题,考查学生灵活运用知识与方法的能力;
(4)重视阅读理解、获取信息能力的考查
从文字、图象中获取信息和处理信息的能力是新课程特别强调的。如第9题、18题、24题、25题等,较好地实现了对这方面能力的考查,强调了培养学生在现代社会中获取和处理信息能力的要求。如25题先是感受理解,学生百分百得全分,然后是自主学习通过学阅读给出解决问题的方法,最后是学以致用,考察学生用即学知识解决新问题的能力。
(5)重视联系实际生活,突出数学应用能力的考查
试卷多处设置了实际应用问题,如第10、18、 24、26题、考查学生从实际问题中抽象函数模型的能力,体验运用数学知识解决实际问题的情感,试题取自学生熟悉的生活实际,具有时代气息与教育价值,如26题,让学生感到现实生活中充满了数学,并要求活学活用数学知识解决实际问题的能力,有效地考查了学生应用数学知识解决实际问题的能力,培养用数学,做数学的意识。
三、试题做答情况分析
试题在设计上注意了保持一定的梯度,不是在最后一题难度加大,而是注意了难度分散的命题思想,使每个学生在每道题中都能感到张弛有度。向选择题的9、10 ,填空题的17、18,22题的(3)(4)小问,23题的(2)问,24题25题的(2)问,26(2)问难度都很大。
本次测八一班的平均分是60.3分,及格率是57.7%,优秀率是8.1%,最高分是94分,最低分是12分。
从这些试卷中可以看出答得较好的有第一题、第二题、第三题的19、20、21题,答得较差的是第三题的23、24、25题。
初二数学分式测试题 篇10
3.一群学生前往某滩涂电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有 趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.则这群学生的人数为()A.7;B.8;C.9;D.10;4.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A. 米 B. 米 C.(+1)米 D.3米 5.下列说法中,正确的个数有()
①不带根号的数都是有理数; ②无限小数都是无理数; ③任何实数都可以进行开方运算; ④ ; A.0个 B.1个 C.2个 D.3个
6.连接矩形的四边中点所组成的四边形一定是()A.矩形 B.菱形 C.正方形 D.梯形;
7.连结A(1,2)、B(-2,-1)、C(1,-1)三点所成的三角形是()A.锐角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形; 8.一次函数 的图象不经过第二象限,则 的取值范围是()A.>0 B.<0 C.> D.0< < 9.若,则 的值为()A.-8 B.C.9 D.10.某班在一次数学测试后,成绩统计如右表, 该班这次数学测试的平均成绩是()A.82 B.75 C.65 D.62
二、题(本大题10小题,每小题3分,共30分)
11.若直角三角形的两边之长分别 为3和4,则第三条边的长为 12.的算术平方根为
13.如果点M()在第二象限,则点N 在第 象限
14.在□ABCD中,AC平分∠DAB,AB=3,则□ABCD的周长为
15.(09.山东济宁)请你下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的鸦为 只、树为 棵. 16.在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为:6,3,6,5,5,6,9.这组数据的中位数和众数分别是 A.5,5 B.6,5 C.6,6 D.5,6 17.(09.湖北恩施)红旗出租车公司收费标准如图2所示,如果小华只有19元钱,那么他乘此出租车最远能到达
公里处.
18.某工地派24人去挖土和运土,若每人每天挖土5方或运土3方,那么安排 人挖土, 人运土,才能使挖出的土及时运走。
19.小明在一次以“八荣八耻”为主题的演讲比赛中,“演讲内容”、“语言表达”、“演讲技巧”、“形象礼仪”的各项得分依次为9.8、9.4、9.2、9.3,若其“综合得分”按“演讲内容”50%,“语言表达”20%,“演讲技巧”20%,“形象礼仪”10%的比例进行计算,则他的“综合得分”是
20.(09.山东德州)如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度, 得到△M1N1P1.则其旋转中心一定是 .
三、解答题(本大题8道题,共60分)21.(6分)已知,求 的值
22.(6分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个△ABC和一点O,△ABC的顶点和点O均与小正方形的顶点重合.
(1)在方格纸中,将△ABC向下平移5个单位长度得到△A1B1C1,请画出△A1B1C1(2)在方格纸中,将△ABC绕点O旋转180°得到△A2B2C2,请画 出△A2B2C2。
23.(7分)小明在八年级第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分,期中考试得82分,期末考试得90分,如果按照平时、期中、期末的权重分别为10%,30%,60%计算,那么小明该学期的数学书面测验的总平成绩应为多少分?
24.(7分)如图,已知 的三个顶点的坐标分别为、、.(1)请直接写出点 关于 轴对称的点的坐标;(2)将 绕坐标原点 逆时针旋转90°.画出图形,直接写 出点 的对应点的坐标;
(3)请直接写出:以 为顶点的平行四边形的第四个顶点的坐标.
25.(8分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.26.(8分)为了加快社会主义新农村建设,让农民享受改革开放30年取得的成果,党中央、务院决定:凡农民购买家电和摩托车享受政府13%的补贴(凭购物发票到乡镇财政所按13%领取补贴).星星村李伯伯家今年购买了一台彩电和一辆摩托车共花去6000元,且该辆摩托车的单价比所买彩电的单价的2倍还多600元.��(1)李伯伯可以到乡财政所领到的补贴是多少元?��(2)求李伯伯家所买的摩托车与彩电的单价各是多少元?��
27.(9分)如图,长方体的长为15,宽为10,高为2 0,点B 离点C的距离为5,一只蚂蚁 如果要沿着长方体的表面从点A爬到点B,试求需要爬行的最短距离.28.(9分)如图,在梯形 中,两点在边 上,且四边形 是平行四边形.(1)与 有何等量关系?请说明理由;(2)当 时,求证:四边形AEFD是矩形.
备用题:
1.在下列四组线段中,不能组成直角三角形的是()A.3,4, ;B.8,15,17;C.,2, ;D., , ; 2.下面四个数中与 最接近的数是()A.2 B.3 C.4 D.5 3.已知一次函数 和 的图象都经过点C(4,0),且与 轴交于A、B两点,那么△ABC的面积是()
A.8 B.10 C.12 D.14 4.已知 是二元一次方程组 的解,则2m-n的算术平方根为()A.2 B.4 C.2 D. ±2 5.如图,将放置于平面直角坐标系中的三角板AOB绕O点顺时针旋转90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,则B′点的坐标为
6.在△ABC中,AB=25,AC=30,BC边上的高AD为24,试求第三边BC的长.7.如图,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形AB、BC、CD、DA的中点分别为P、Q、M、N,试判断四边形PQMN为怎样的四边形,并证明你的结论.
8.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B/处,点A落在点A/处;(1)试说明B/E=BF;(2)设AE= ,AB= ,BF= ,试猜想 之间的一种关系,并说明理由.参考答案:
4.C.提示:树杆垂直于地面,于是树杆的两部分和地面的一部分构成了一个直角三角形,运用勾股定理可以计算出AB= = ,故树高为(+1)米 5.B.提示:可举反例进行排除, 不带根号,但它不是有理数;0.6666666…是无限小数,但它是一个无限循环小数,它不是无理数;负数不能进行开平方运算,因此①②③都不正确,④形式上看象是分数,但它是无理数,而分数是有理数,所以只有④正确.6.B.提示:如图,点E、F、G、H分别是矩形ABCD各边中点, 根据中位 线定理可得 , ,而矩形的对角线相等, 即AC=BD,所以EF=FG=GH=HE.二、11.5或;提示:分类讨论.若第三条边为斜边,则为5;若第三条边为直角边,则为.12.2;提示: =4 , 而4的算术平方根为2.13.三;提示:由点M()在第二象限,则a+b<0,ab>0,可知a<0,b<0.从而点N 在第三象限.16.6,6;提示:将这组数据按从小到大顺序排列,可以 看出,处于最中间位置的数是6;出现次数最多的数 据也是6.17.11;提示:设一次函数解析式为y=kx+b,将点的坐标代入,可得方程组
解得 解析式为y=1.8x-0.8,将y=19代入,得到x=11 18.9,15;提示:设安排x人挖土,y人运土,根据题意,可得方程组 解得 19.9.55;提示按加权平均数求解.25.(1)y=kx+b,当x=0时,y=45,当x=150时,y=30.得到 解得 ∴
(2)当x=400时,y= ×400+45=5>3. ∴他们能在汽车报警前回到家. 26.解(1)6000×13%=780 答:李伯伯可以从政府领到补贴780元(2)设买摩托车的单价为x元/辆,彩电单价为y元/台,根据题意,得
解这个方程组得
答:彩电与摩托车的单价分别为1800元/台、4200元/辆.27.由于蚂蚁是沿着长方体的表面爬行,解决问题时需将长 方体的表面展开,把立体图形问题转化为平面图形问题.因为两点 之间线段最短,所以爬行的最短路程应该就是线段AB的长.由于 长方体盒的长、宽、高均不相等,根据长方体的对称性,它又应有 三种不同的展开方式.(1)将下底面展开与正面在同一平面(图1),根据 勾股定理,这时 =;(2)将上底面展开与侧面在同一平面(图2),根据勾股定理,这时 =;(3)将侧面展开与正面在同一平面(图3),根据勾股定理,这时 =25;通过比较可知,蚂蚁按照图3的路线行走,爬行的距离最短为25..28.(1)解: . 理由如下:,∴四边形 和四边形 都是平行四边形.∴AD=BE,AD=FC . 又 四边形 是平行四边形,∴AD=EF. .∴AD=BE=EF=FC ∴
(2)证明: 四边形 和四边形 都是平行四边 形,.∴DE=AB,AF=DC .∵AB=DC∴DE=AF 又 四边形 是平行四边形,∴四边形 是矩形.
备用题: 1.C;2.B;3.D;4.A;5.;6.符合题设条件的三角形既可能是锐角三角形,也可能是钝角三角形,故应运用分类讨论思想求解.(1)当△ABC为锐角三角形,如图(1),这时高AD在△ABC的内部,在Rt△ABD中,由勾股定理得 在Rt△ACD中,由勾股定理得 这时BC=BD+CD=7+18=25(2)当△ABC为钝角三角形,如图(2),这时高AD在△ABC的外部,同样求得BD=7,CD=18,这时BC=CD-BD=18-7=11 所以第三边BC的长为25或11.7.证明:如图,连结AC、BD.∵ PQ为△ABC的中位线,∴ PQ AC.同理 MN AC.∴ MN PQ,∴ 四边形PQMN为平行四边形.
在△AEC和△DEB中,AE=DE,EC=EB,∠AED=60°=∠CEB,即 ∠AEC=∠DEB.∴ △AEC≌△DEB.∴ AC=BD. ∴ PQ= AC= BD=PN ∴ □PQMN为菱形.
【初二数学分式测试题】推荐阅读:
人教版初二数学分式11-28
初二数学测试题08-25
测试题初二数学10-01
初二数学分单元测试07-13
初二数学竞赛试题11-23
初二数学平行四边形测试题06-12
初二数学下册测试题 含答案01-30
初二数学下册期末试题的总结06-09
初二数学期中调研性测试试卷分析07-17
初二分式应用题11-19