线面垂直习题精选精讲

2024-05-27

线面垂直习题精选精讲(共5篇)

线面垂直习题精选精讲 篇1

线面垂直的证明中的找线技巧

 通过计算,运用勾股定理寻求线线垂直

M为CC1 的中点,AC交BD于点O,求证:AO1如图1,在正方体ABCDA平面MBD. 1BC11D1中,1证明:连结MO,A1M,∵DB⊥A1A,DB⊥AC,A1AACA,∴DB⊥平面A平面A1ACC1 ∴DB⊥AO1ACC1,而AO1.1

2设正方体棱长为a,则A1O2AM在Rt△AC中,M111323a,MO2a2. 2492222a.∵AO,∴AOOM. ∵MOAM111

4OM∩DB=O,∴ AO1⊥平面MBD.

评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.

利用面面垂直寻求线面垂直

2如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求

证:BC⊥平面PAC.

证明:在平面PAC内作AD⊥PC交PC于D.

因为平面PAC⊥平面PBC,且两平面交于PC,AD平面PAC,且AD⊥PC,由面面垂直的性质,得AD⊥平面PBC.又∵BC

平面PBC,∴AD⊥BC.

∵PA⊥平面ABC,BC平面ABC,∴PA⊥BC.

∵AD∩PA=A,∴BC⊥平面PAC.

评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一

条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图

形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直线

面垂直线线垂直.

判定

性质判定性质线面垂直面一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直

面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.

3如图1所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB,SC,SD于E,F,G.求证:AESB,AGSD.

证明:∵SA平面ABCD,∴SABC.∵ABBC,∴BC平面SAB.又∵AE平面SAB,∴BCAE.∵SC平面AEFG,∴SCAE.∴AE平面SBC.∴AESB.同理可证AGSD.

评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.

证明:取AB的中点F,连结CF,DF.

∵ACBC,∴CFAB.

∵ADBD,∴DFAB.

又CFDFF,∴AB平面CDF.

∵CD平面CDF,∴CDAB.

又CDBE,BEABB,∴CD平面ABE,CDAH.

∵AHCD,AHBE,CDBEE,∴ AH平面BCD.

评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.

5如图3,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.

证明:∵AB是圆O的直径,∴ACBC.

∵PA平面ABC,BC平面ABC,∴PABC.∴BC平面APC.

∵BC平面PBC,∴平面APC⊥平面PBC.

∵AE⊥PC,平面APC∩平面PBC=PC,∴AE⊥平面PBC.

∵AE平面AEF,∴平面AEF⊥平面PBC.

评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.

10如图, 在空间四边形SABC中, SA平面ABC, ABC = 90, ANSB于N, AMSC于M。求证: ①ANBC;②SC平面ANM 分析:

①要证ANBC, 转证, BC平面SAB。

②要证SC平面ANM, 转证, SC垂直于平面ANM内的两条相交直线, 即证SCAM, SCAN。要证SCAN, 转证AN平面SBC, 就可以了。

证明:

①∵SA平面ABC

∴SABC

又∵BCAB, 且ABSA = A

∴BC平面SAB

∵AN平面SAB

∴ANBC

②∵ANBC, ANSB, 且SBBC = B

∴AN平面SBC

∵SCC平面SBC

∴ANSC

又∵AMSC, 且AMAN = A

∴SC平面ANM

[例2]如图9—40,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.

图9—40

(1)求证:AB⊥BC;

(1)【证明】作AH⊥SB于H,∵平面SAB⊥平面SBC.平面SAB∩平面SBC=SB,∴AH⊥平面SBC,又SA⊥平面ABC,∴SA⊥BC,而SA在平面SBC上的射影为SB,∴BC⊥SB,又SA∩SB=S,∴BC⊥平面SAB.∴BC⊥AB.

[例3]如图9—41,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD=a,M、N分别是AB、PC的中点.

(1)求平面PCD与平面ABCD所成的二面角的大小;(2)求证:平面MND⊥平面PCD

(1)【解】PA⊥平面ABCD,CD⊥AD,∴PD⊥CD,故∠PDA为平面ABCD与平面PCD所成二面角的平面角,在Rt△PAD中,PA=AD,∴∠PDA=45°

(2)【证明】取PD中点E,连结EN,EA,则

EN AM,∴四边形ENMA是平行四边形,∴EA∥MN.

∵AE⊥PD,AE⊥CD,∴AE⊥平面PCD,从而MN⊥平面PCD,∵MN平面MND,∴平面MND⊥平面PCD.

【注】 证明面面垂直通常是先证明线面垂直,本题中要证MN⊥平面PCD较困难,转化为证明AE⊥平面PCD就较简单了.另外,在本题中,当AB的长度变化时,可求异面直线PC与AD所成角的范围.

[例4]如图9—42,正方体ABCD—A1B1C1D1中,E、F、M、N分别是A1B1、BC、C1D1、B1C1的中点.

2CD 图9—

42(1)求证:平面MNF⊥平面ENF.(2)求二面角M—EF—N的平面角的正切值.

(1)【证明】∵M、N、E是中点,∴EB1B1NNC1C1M∴ENB1MNC145

∴MNE90即MN⊥EN,又NF⊥平面A1C1,MN平面A1C1∴MN⊥NF,从而MN⊥平面ENF.∵MN 平面MNF,∴平面MNF⊥平面ENF.

(2)【解】过N作NH⊥EF于H,连结MH.∵MN⊥平面ENF,NH为MH在平面ENF内的射影,2

3∴由三垂线定理得MH⊥EF,∴∠MHN是二面角M—EF—N的平面角.在Rt△MNH中,求得MN=2a,NH=3a,MN662,即二面角M—EF—N的平面角的正切值为2. ∴tan∠MHN=NH

4.如图9—45,四棱锥P—ABCD的底面是边长为a的正方形,PA⊥底面ABCD,E为AB的中点,且PA=AB.

图9—4

5(1)求证:平面PCE⊥平面PCD;(2)求点A到平面PCE的距离.

(1)【证明】PA⊥平面ABCD,AD是PD在底面上的射影,又∵四边形ABCD为矩形,∴CD⊥AD,∴CD⊥PD,∵AD∩PD=D∴CD⊥面PAD,∴∠PDA为二面角P—CD—B的平面角,∵PA=PB=AD,PA⊥AD∴∠PDA=45°,取Rt△PAD斜边PD的中点F,则AF⊥PD,∵AF 面PAD∴CD⊥AF,又PD∩CD=D∴AF⊥平面PCD,取PC的中点G,连GF、AG、EG,则

GF 12CD又

AE 12CD,∴

GF AE∴四边形AGEF为平行四边形∴AF∥EG,∴EG⊥平面PDC又EG 平面PEC,∴平面PEC⊥平面PCD.

(2)【解】由(1)知AF∥平面PEC,平面PCD⊥平面PEC,过F作FH⊥PC于H,则FH⊥平面PEC

∴FH为F到平面PEC的距离,即为A到平面PEC的距离.在△PFH与 △PCD中,∠P为公共角,FHPFPC,设AD=2,∴PF=2,而∠FHP=∠CDP=90°,∴△PFH∽△PCD.∴CD

PC=PDCD423,2

226623∴A到平面PEC的距离为3. ∴FH=2

【拓展练习】

一、备选题

1.如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.

(1)求证:平面PAC⊥平面PBC;

(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.

(1)【证明】∵C是AB为直径的圆O的圆周上一点,AB是圆O的直径

∴BC⊥AC;

又PA⊥平面ABC,BC平面ABC,∴BC⊥PA,从而BC⊥平面PAC.

∵BC 平面PBC,∴平面PAC⊥平面PBC.

(2)【解】平面PAC⊥平面ABCD;平面PAC⊥平面PBC;平面PAD⊥平面PBD;平面PAB⊥平面ABCD;平面PAD⊥平面ABCD.

2.ABC—A′B′C′是正三棱柱,底面边长为a,D,E分别是BB′,CC′上的一点,BD=2a,EC=a.

(1)求证:平面ADE⊥平面ACC′A′;

(2)求截面△ADE的面积.

(1)【证明】分别取A′C′、AC的中点M、N,连结MN,则MN∥A′A∥B′B,∴B′、M、N、B共面,∵M为A′C′中点,B′C′=B′A′,∴B′M⊥A′C′,又B′M⊥AA′且AA′∩A′C′=A′

∴B′M⊥平面A′ACC′.

设MN交AE于P,a

∵CE=AC,∴PN=NA=2.

又DB=2a,∴PN=BD.

∵PN∥BD,∴PNBD是矩形,于是PD∥BN,BN∥B′M,∴PD∥B′M.

∵B′M⊥平面ACC′A′,∴PD⊥平面ACC′A′,而PD平面ADE,∴平面ADE⊥平面ACC′A′.

(2)【解】∵PD⊥平面ACC′A′,∴PD⊥AE,而PD=B′M=2a,AE=2a.

∴S△ADE=2×AE×PD 13622aaa24=2×.

专题线面垂直 篇2

题型一:共面垂直(实际上是平面内的两条直线的垂直)例1:如图在正方体ABCDA1BC11D1中,O为底面ABCD的中心,E为CC1中点,求证:AOOE

1题型二:线面垂直证明(利用线面垂直的判断定理)

例2:在正方体ABCDAO为底面ABCD的中心,E为CC1,1BC11D1中,平面BDE 求证:AO1

题型三:异面垂直(利用线面垂直的性质来证明,高考中的意图)例3.在正四面体ABCD中,求证ACBD

P N D C A M B 练:如图,PA平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点,求证:MNAB

题型四:面面垂直的证明(本质上是证明线面垂直)

例4.已知PA垂直于正方形ABCD所在平面,连接PB、PC、PD、AC、BD,则下列垂直关系中正确的序号

是.①平面PAB平面PBC ②平面PAB平面PAD ③平面PAB平面PCD

线面垂直方法的总结 篇3

辽宁省大连市长海县高级中学程聿剑

Tel:*** QQ:66284693E-mail:dyslzcyj@163.com邮编:116500

(人教大纲A版 高二年级 第29期 第x版 x栏目)

我们学习了平面与直线垂直的定义、判定定理和性质定理,大家可以体会线线垂直在证明线面垂直时的重要性,将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法.在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”,同学们下面欣赏常见的线面垂直证明方法.一、应用勾股定理

P同学们知道如果一个三角形的边长满足

a2b2c2,则这个三角形是直角三角形,可以

得到线线垂直的关系.例1:如图1所示,点P是梯形ABCD所在平

面外一点,PD平面ABCD,AB∥CD,已知MC

BD2AD8,AB4.设M是PC上的一

点,求证:BD平面PAD.证明:∵PD平面ABCD,BD平面ABCD

∴BDPD.又∵BD8,AD4,AB45, A图1∴ADBDCD,∴∠ADB90,∴BDAD

又∵PD平面PAD,ADPAD,PDADD.∴BD平面PAD.二、应用等腰(等边)三角形三线合一性质

所谓三线合一的性质是等腰三角形底边的中线同时是高和角分线,可以很轻松的得到线线垂直,从而为证明线面垂直做了很好的准备工作.P例2:如图2所示,已知PA垂直于O所在平面,AB是O的直径,且PAAC,点E是线段PC的C是O的圆周上异于A、B的任意一点,中点.求证:AE平面PBC.证明:∵PAO所在平面,BC是O的弦,∴BCPA.又∵AB是O的直径,ACB是直径所对的圆周角,∴BCAC.∵PAACA,PA平面PAC,AC平面PAC.∴BC平面PAC,AE平面PAC,∴AEBC.∵PAAC,点E是线段PC的中点.∴AEPC.∵PCBCC,PC平面PBC,BC平面PBC.222AO图2B

共2页,第1页

∴AE平面PBC.此题利用AE三线合一是解题的关键,在遇到线段的中点时,同学们要注意向三角形的三线合一转化.同时应用了圆的直径所对的圆周角是直角这个重要的结论,这点体现了平面几何对于立体几何的重要性.三、应用两条平行线的性质

大家知道两条平行线中如果有一条与一个面中的直线垂直,则两条平行线都与平面中的直线垂直.在三角形中位线与底边平行,可以得到线线平行的关系,平行四边形对边平行也可以得到线线平行,这样的结论很多,我们可以欣赏体会这样的方法.例3:如图3所示,P为△ABC所在平面外一点, BC平面PAB,G为PB的中点,M为PC的中点,N在AB上,AN3NB,求证:AB平面MNG.证明:取AB的中点H,连结PH.M ∵G为PB的中点,M为PC的中点,∴GM为△PBC的中位线,∴GM∥BC.G ∵BC平面PAB,AB平面PAB,A ∴BCAB,∴ABGM.H 又∵PAPB,H为线段AB的中点,∴AB⊥PH.N图3 ∵G为PB的中点, N为HB的中点,∴PH∥GN.∴AB⊥GN.∵GMGNG,GM平面MNG,GN平面MNG,∴AB平面MNG.本题GM和GN分别是所在三角形的中位线, 对于证明方法有很大的帮助,同学们在后的解题中要注意根据已知条件找到平行关系是解题的关键.四、应用平面图形的几何性质

我们都发现在立体几何问题的解决中,平面图形的性质产生了很重要的地位,在学习立体几何的过程中,平面几何的诸多知识点不能推广到三维空间,但同学们要注意平面图形的性质在解决立体几何的时候会发挥很重要的作用.P

例4:如图4所示,四边形ABCD是边长为1的菱形,点P

是菱形ABCD所在平面外一点,∠BCD60,E是CD的中点,PA平面ABCD,求证:BE⊥平面PAB.证明:∵PA平面ABCD,BE平面ABCD, D

∴BEPA,如图5所示,∵底面ABCD是的菱形,∠BCD60, A∴∠ABD60.C ∵E是CD的中点,∴∠DBE30,∴∠ABEBCDDBE603090, 图4 B ∴BEAB.C

∵PAABA,PA平面PAB,AB平面PAB,∴BE⊥平面PAB.本题菱形ABCD的性质对于解决立体几何的线面垂直有着很重要的作用,类似这样的方法很多,所以同学们要重视平面几何定义、定理、性质的应用.以上解题方法体现了立体几何证明的一个重要的思想方法:

立体几何平面化,即转三维问题为二维,可以合理的解决立体几何问题.E B 

图5

线面、面面垂直性质测试题 篇4

一、选择题

1在空间,如果一个角的两边分别与另一个角的两边垂直,那么这两个角的关系是()

A.相等B.互补C.相等或互补D.无法确定

2下列命题正确的是…………………………………………()

A、若两条直线和同一个平面所成的角相等,则这两条直线平行

B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行

C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

D、若两个平面都垂直于第三个平面,则这两个平面平行

3.知下列命题:

(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;

(2)平面内与这个平面的一条斜线垂直的直线互相平行;

(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;

(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().

A.(1)、(2)B.(2)、(3)C.(3)、(4)D.(2)、(4)

4.列图形中,满足唯一性的是().

A.过直线外一点作与该直线垂直的直线B.过直线外一点与该直线平行的平面

C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线

5.平面α、β与另一平面所成的角相等,则()

A.α∥βB.α与β相交C.α∥β或α与β相交D.以上都不对

6.个平面,,,之间有,,则与()(B)平行(C)相交(D)以上三种可能都有(A)垂直

7.,是两个平面,直线l,l,设(1)l,(2)l//,(3),若

以其中两个作为条件,另一个作为结论,则正确命题的个数是()(A)0(B)1(C)2(D)

38.一点的三条直线两两垂直,则它们确定的平面互相垂直的对数有(D).A.0B.1C.2D.3

9.线m、n与平面α、β,给出下列三个命题:

①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题的个数是()

A.0B.1C.2D.310.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论不成立的是……………………………………()

A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC

11.四个命题:①若直线a//平面,则内任何直线都与a平行;

②若直线a平面,则内任何直线都与a垂直;

③若平面//平面,则内任何直线都与平行;

④若平面平面,则内任何直线都与垂直.其中正确的两个命题是()A.①与②B.②与③C.③与④D.②与④

12.如图、—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是…()

A.AC⊥SBB.AB∥平面SCD

C.SA与平面SBD所成的角等于SC与平面SBD所成的角

D.AB与SC所成的角等于DC与SA所成的角

二、解答题

13.已知平面α⊥平面β,交线为BC,P∈α,A∈β,且AC⊥BC,AC=6cm, BC=8cm,PA=PB=7cm.求点P到平面β的距离.14.如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=

a,F、G分别为EB和AB的中点。

(1)求证:FD∥平面ABC;(2)求证:AF⊥BD;

15.如图,(1)求证:(2)求证:(3)若

矩形

平面,求证:

平面

所在平面,分别是

和的中点.17.在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD

18.如图,AB是圆O的直径, PA垂直于圆O所在的平面, C是圆周上不同于

A, B的任意一点,(1)求证:平面PAC⊥平面PBC

(2)若A在PB、PC上的射影分别为E、F,求证:EF⊥PB

19.如图,PA⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点(1)MN//平面PAD(2)PA=AD时,MN⊥平面PCD

AB,PD的中点,又二面角PCDB的大小为45,21.已知△

BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?

22.如图,平行四边形ABCD中,DAB60,AB2,AD4将 沿BD折起到EBD的位置,使平面EDB平面ABD

求证:ABDE

CBD

线面垂直习题精选精讲 篇5

一、线线垂直与线面垂直:

1、条件的正确填写:

(1)由线线垂直证明线面垂直的训练:

①如左图:由5个条件:可证:AB⊥平面PDC

②如左图:由5个条件:可证:AP⊥平面PBC

③如左图:由5个条件:可证:BC⊥平面PAC

(2)由线线垂直证明线面垂直的训练:2个条件

①如左图:∵PA⊥平面ABC,∴PA⊥BC

②如左图:∵,PC平面PAC ∴BC⊥PC

③如左图:∵PE⊥平面,∴PE⊥AF

④如左图:∵⊥平面PAB,∴EF⊥AB

⑤如左图:∵⊥平面,∴AF⊥BC2、简单的证明题:

(1)已知:如图,PA⊥AB,PA⊥AC,(2)已知:如图,PA⊥AB,BC⊥平面PAC,求证:PA⊥BC。求证:PA⊥平面ABC。、中等的证明题:

(1)如图,在三棱锥VABC中,VAVC,ABBC,求证:(2方体中,)正O为底面ABCD中心,.VBAC求证:BD平面AEGC

(3)AB是圆O的直径,PA⊥AC, PA⊥AB,(4)AD⊥BD, AD⊥DC,AD=BD=CD,∠BAC=60°

上一篇:我眼中的林冲作文下一篇:中秋放假告家长通知书