余弦定理证明(精选15篇)
余弦定理证明 篇1
在△ABC中,角A、B、C所对的边分别为a、b、c,则有
a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆的半径)
正弦定理(Sine theorem)
(1)已知三角形的两角与一边,解三角形
(2)已知三角形的两边和其中一边所对的角,解三角形
(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。
证明
步骤1
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点HCH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,b/sinB=c/sinC
步骤2.证明a/sinA=b/sinB=c/sinC=2R:
如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠ACB.所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
余弦定理的证明:
在任意△ABC中
做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=(c^2+a^2-b^2)/2ac
余弦定理证明 篇2
下面就人教版高中数学模块5余弦定理证明的情景创设采取一题多解进行探究分析. 证明余弦定理的方法很多,为了激发学生学习兴趣,引出证明余弦定理教学内容,做好情景创设显得尤为重要,本文采取数学常规问题导入新课,即在△ABC中,已知AB = 8,AC = 5,A = 60°,求BC的长度.题目简洁,已知条件清楚,两边一夹角,求解的是第三边的长度.
一、慢悟在新旧数学知识衔接处
引导同学问: 求一线段的长度可否有平几法、解几法、向量法呢?
学生甲: 利用在平面几何中,已知两直角边的长,求斜边的长,采用勾股定理知识计算.
老师答: 这是一种很好的思路,现在在此图形中如何找到直角三角形呢? 请同学们动手画出,并加以计算. 巡查发现有的同学计算速度较快,有的计算速度较慢,原因在于做垂线构造直角三角形时,有的牵涉到分数,自然计算量就大了. 其中一种解题过程如下: 过点B作BD垂直于AC,点D为垂足,易求得CD = 1,BD = 4槡3,在Rt△CDB中,BC = 7.
二、慢悟在不同数学模块知识不同解法处
学生乙: 利用平面解析几何知识,已知两点坐标,通过两点距离公式求得这两点间 的距离. 老师: 此法关键之处在于建系设点,请同学们认真书写,如图所示,以线段AB所在的直线为x轴,点A为原点,建立平面直角坐标系,易得点B( 8,0) ,点C则
三、慢悟在易错易混知识点处
老师问: 除了以上两种方法外,还有其他方法能求线段的长度吗?
学生丙回答: 可利用向量与本身的数量积等于此向量模( 长度) 的平方.
老师答: 很好,向量是学习其他知识的工具,大家动手画画图形,并写写看. 巡视发现同学画图能力有待提高,向量加法或减法等三角形法则遗忘很多. 此种解法关键之处找准两向量的夹角.
解如右图所示,
由向量减法原理得
即
四、慢悟在课堂生成数学思想中
学生丁问: 刚学了解三角形的正弦定理,是否可用正弦定理知识求之?
老师: 试试看吧. 老师把前后桌变成一学习小组,主要培养小组互助,自主探究能力. 同学们都拿起笔在课堂笔记本上写着,但我们发现大部分同学思路受挫. 其实这是一道化归思想与方程思想等应用的题目,确实思路有点特殊,老师只好在黑板上写着: 在△ABC中,由正弦定理得
将( 1) 代入( 2) 得BCcos C = 1. ( 3)
由( 1) ( 3) 平方和得BC2= 49. ∴BC = 7.
余弦定理证明初探 篇3
关键词: 数形结合 双基 创新意识 创新精神
如何发挥高考题的教学功能,把握高三复习备考方向,提高解题教学的功效,是我们一线教师努力的目标。余弦定理的证明曾在以前高考考题中出现过,去年陕西卷再次出现,说明余弦定理的证明不但能考察学生对“双基”知识的掌握能力,更能激发学生对数学中“数形结合”思想方法的重视和挖掘,从而对老师和学生起到抛砖引玉的功效。下面就余弦定理给出不同证明方法。
方法一(向量法)如图,设 ,则 即 ,
方法七(面积法) 如图,以 的三边为边长向外作三个正方形, 三条
高的延长线将三个正方形分成6个矩形。
教学的根本目的在于提高学生探索和解决问题的能力,以不同的知识为切入点,对同一题目从不同角度审视,探求出不同的解决方案,可以开拓思路,沟通知识,权衡优劣,提高学生的解题效率,更能提高学生分析、解决问题的能力,培养创新意识和创新精神,这正是新课改所追求的目的。
参考教材:
(1)北师大版高中数学,《必修4》。
(2)罗增儒,《数学解题学引论》。
余弦定理的证明方法 篇4
则c^2=a^2+b^2-2ab*cosC
a^2=b^2+c^2-2bc*cosA
b^2=a^2+c^2-2ac*cosB
下面在锐角△中证明第一个等式,在钝角△中证明以此类推。
过A作AD⊥BC于D,则BD+CD=a
由勾股定理得:
c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^
2所以c^2=(AD)^2-(CD)^2+b^2
=(a-CD)^2-(CD)^2+b^2
=a^2-2a*CD+(CD)^2-(CD)^2+b^2
=a^2+b^2-2a*CD
因为cosC=CD/b
所以CD=b*cosC
所以c^2=a^2+b^2-2ab*cosC
在任意△ABC中,作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a-->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC²=AD²+DC²
b²=(sinB*c)²+(a-cosB*c)²
b²=sin²B*c²+a²+cos²B*c²-2ac*cosB
b²=(sin²B+cos²B)*c²-2ac*cosB+a²
b²=c²+a²-2ac*cosB
所以,cosB=(c²+a²-b²)/2ac
2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理证明完毕。3△ABC的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
余弦定理的三种证明 篇5
c2=a2+b2-2abcosC,b2=a2+c2-2accosB,a2=b2+c2-2bccosA
证明:按照三角形的分类,分三种情形证明之.(1)在RtABC中,如图1-1 根据勾股定理: c=a+b
因为cosC=0,所以c=a+b-2abcosC
A
a222,所以b=a+c-2accosB cb222
因为cosA=,所以a=b+c-2bccosA
c
因为cosB=
(2)在锐角△ABC中,如图1-2 作CDAB于点D,有
b
c
C a
B C
CD=asinB,BD=acosB,AD=AB-BD=c-acosB
b
b2=CD2+AD2=(asinB)2+(c-acosB)2=a2+c2-2accosB
同理可证:
A
c
B
D
c2=a2+b2-2abcosC, a2=b2+c2-2bccosA
(3)在钝角△ABC中,如图1-3
作CDAB,交AB的延长线于点D,则
CD=asinCBD=asinB,BD=acosCBD=-acosB,AD=AB+BD=c-acosB
b2=CD2+AD2=(asinB)2+(c-acosB)2=a2+c2-2accosB
按照(2)的方法可以证明:
b
a
c2=a2+b2-2abcosC, a2=b2+c2-2bccosA
综上所述,在任意的三角形中,余弦定理总是成立.A
B D
证明:在△ABC中,令AB=c,AC=b,BC=a
aBCBAACbc
22222|a|(bc)b2bcc|b|2|b||c|cosA|c|2
即a=b+c-2bccosA
同理可证:c=a+b-2abcosC,b=a+c-2accosB
证明:对于任意一个ABC,建立直角坐标系如图所示,那么A(bcosC,bsinC),B(a,0)
因为余弦定理中涉及到c,我们自然想到计算AB的长度。根据两点间的距离公式,我们有: 2222222222A c
B a b C
c2|AB|2(bcosCa)2(bsinC)2a2b22abcosC,即cab2abcosC
《正弦定理和余弦定理》测试卷 篇6
基础达标:
1.在△ABC中,a=18,b=24,∠A=45°,此三角形解的情况为()
A.一个解B.二个解C.无解D.无法确定
2.在△ABC
中,若a2,bcA的度数是()
A.30°B.45°C.60°D.75°
2223.ΔABC中,若a=b+c+bc,则∠A=()
A.60B.45C.120D.30
4.边长为5、7、8的三角形的最大角与最小角之和为()
A.90°B.120°C.135°D.150°
5.在△ABC中,已知a3,b2,B=45.求A、C及c.06.在ABC中,若B
45,c
bA.7.在ABC中,已知a134.6cm,b87.8cm,c161.7cm,解三角形.8.在ABC中,若a2b2c2bc,求A.能力提升:
AB的取值范围是()AC
A.(0,2)B.(2,2)C.(2,)D.(,2)9.锐角ΔABC中,若C=2B,则
10.已知在△ABC中,sinA:sinB:sinC=3:2:4,那么cosC的值为()A.
14B.1
422ABC.D.锐角ΔABC中,若C=2B,则的取值范围是 33AC
11.等腰三角形底边长为6,一条腰长12,则它的外接圆半径为()
12.在ABC中,已知三边a、b、c满足abcabc3ab,则C=()
A.15B.30C.45D.60
13.钝角ABC的三边长为连续自然数,则这三边长为()。
A、1、2、3B、2、3、4C、3、4、5D、4、5、6
sinC2(61),则∠A=_______.sinB
5abc_____.15.在△ABC中,∠A=60°,b=1,c=4,则sinAsinBsinC14.在ΔABC中,BC=3,AB=2,16.在△ABC中,∠B=120°,sinA:sinC=3:5,b=14,则a,c长为_____.综合探究:
17.已知钝角ABC的三边为:ak,bk2,ck4,求实数k的取值范围.a2b2sin(AB)18.在ABC中,角A、B、C的对边分别为a、b、c,证明:.2sinCc
参考答案:
基础达标:
1.B2.A3.C4.B
5.解析:
asinB3sin45解法1:由正弦定理得:sinA b22
∴∠A=60或120
bsinC2sin7562当∠A=60时,∠C=75,c; sinB2sin45
bsinC2sin1562当∠A=120时,∠C=15,c.sinB2sin45
解法2:设c=x,由余弦定理bac2accosB 将已知条件代入,整理:xx10 解之:x222262 2
22222)3bca132 当c时,cosA2bc2622(1)22222(从而∠A=60,∠C=75; 2时,同理可求得:∠A=120,∠C=15.2
bc6.∵,sinBsinC当c
csinBsin45∴sinC,b∵0C180,∴C60或C120
∴当C60时,A75;
当C120时,A15,;
所以A75或A15.
7.由余弦定理的推论得:
b2c2a287.82161.72134.62
0.5543,cosAA56020;
c2a2b2134.62161.7287.82
cosBB32053;
C1800(AB)1800(5602032053)
8.∵bcb2c2a2,0.8398,b2c2a21∴由余弦定理的推论得:cosA ∵0A180,∴A60.能力提升:
9.C10.A11.C
12.D.由abcabc3ab,得ab2abc3ab 222
a2b2c21,∴由余弦定理的推论得:cosC2ab2
∵0C180,∴C60.13.B;只需要判定最大角的余弦值的符号即可。
选项A不能构成三角形;
22324210,故该三角形为钝角三角形; 选项B中最大角的余弦值为2234
324252
0,故该三角形为直角三角形; 选项C中最大角的余弦值为:243
42526210,故该三角形为锐角三角形.选项D中最大角的余弦值为2458
14.120
1516.4综合探究:
17.∵ABC中边ak,bk2,ck4,∴ak0,且边c最长,∵ABC为钝角三角形
∴当C为钝角时 a2b2c2
0,∴cosC2ab
∴abc0, 即abc
∴k2(k2)2(k4)2, 解得2k6,又由三角形两边之和大于第三边:k(k2)k4,得到k2,故实数k的取值范围:2k6.18.证法一:由正弦定理得: 222222
a2b2sin2Asin2Bcos2Bcos2A c2sin2C2sin2C
=2sin(BA)sin(BA)sinCsin(AB)sin(AB)==.222sinCsinCsinC
222证法二:由余弦定理得a=b+c-2bccosA,a2b2c22bccosA2b1cosA,则22ccc
又由正弦定理得bsinB,csinC
a2b22sinBsinC2sinBcosA1cosA∴ 2csinCsinC
sin(AB)2sinBcosA sinC
sinAcosBsinBcosAsin(AB).sinCsinC
sin(AB)sinAcosBsinBcosA证法三:.sinCsinC
sinAasinBb,,由正弦定理得sinCcsinCc
sin(AB)acosBbcosA∴,sinCc
又由余弦定理得
a2c2b2b2c2a2absin(AB)sinCc
(a2c2b2)(b2c2a2) 22c
a2b2
余弦定理证明 篇7
例:在△ABC中, 已知, b=6, A=30°, 求C。
解析:学习正弦定理后, 引导学生通过正弦定理解决, 注意三角形中大边对大角。
解:根据正弦定理:, 又∵a
(1) 当B=60°时, C=90°, 再利用正弦定理
(2) B=120°时, C=30°, 再利用正弦定理
针对“已知边a、b以及角A, 判断三角形解的个数”这类题, 我们可以引导学生总结出解题思路:
第一步:利用正弦定理
第二步: (1) 若sinB>1, B不存在, 所以该三角形无解; (2) 若sinB=1, B=90°, 所以该三角形有唯一解; (3) 若sinB<1, B可能有一个或两个值, 所以该三角形可能有一解惑两解。
需要说明的是:本解法对绝大多数题目来说都是很容易解决的, 而且学生比较容易理解和记忆。对 (3) 来说具体是一解还是两解可通过大边对大角来判定。
学生学习余弦定理后还会遇到同样的题目, 于是有了新的做法。根据余弦定理a2=b2+c2-2bccosA, 即:12=36+c2-2×6×c·cos30°。整理得, c的值有两个, 进而说明三角形有两个解。
我们会发现用余弦定理求c不需要讨论, 直接计算就可以了, 这种方法是否可以推广到任意一般情况?那么, 结合上题再来看如下方法:
在△ABC中, 已知a、b和A, 由余弦定理a2=b2+c2-2bc·cos A整理得:c2- (2bcosA) ·c+b2-a2=0。 (*)
上式是一个关于c的一元二次方程, 很明显实数c代表的是三角形的一条边, 那么必须c>0。分析如下:
(1) 驻>0时, 方程 (*) 有两个不相等的实数根c1, c2, 且: (1) c1>0, c2>0时此三角形有两解; (2) c1>0, c2≤0时, 此三角形有一解; (3) c1≤0, c2≤0时此三角形无解。
(2) 驻=0时, 方程 (*) 有两个相等的实数根c1=c2, 且: (1) c1=c2>0时此三角形有一解; (2) c1=c2≤0时此三角形无解; (3) 驻<0时, 方程 (*) 无实数根, 则此三角形无解。
经过上面的分析, 可以发现:方程 (*) 有几个正实数根, 三角形就有几个解。因此, 遇到“两边及一边对角”问题, 最好的办法就是利用余弦定理, 转化为方程 (*) 正实数根的个数问题, 然后利用判别式和韦达定理判断一元二次方程根的个数和正负问题, 此法比用正弦定理讨论起来更简捷、更实用, 学生也比较容易掌握, 而且方法具有公式化和一般性。以下几个例子仅供参考和练习, 以加强学生的理解和掌握。
(1) a=4, b=5, A=30°。
余弦定理证明 篇8
[关键词] 正弦定理;余弦定理;解三角形;教学规律
普通高中课程标准实验教科书《数学5·必修·A版》(人民教育出版社,2007年第3版)(以下简称《必修5》)第2~4页讲述了“正弦定理”,接着在第5~10页讲述了“余弦定理”.
《必修5》是这样引入和讲授正弦定理的:
在△ABC中,设BC=a,CA=b,AB=c.
先由直角△ABC中,可不妨设C=90°,由边角关系可得==①.
在锐角△ABC中,如图1所示,可得AB边上的高CD=asinB=bsinA,所以=.
进而可得①式在锐角△ABC中也是成立的.
在钝角△ABC中,可不妨设C>90°,如图2所示,设AC边上的高为BD. 可得BD=asin(π-∠BCA)=asin∠BCA,BD=csinA,所以=.
进而可得①式在钝角△ABC中也是成立的.
所以在任意的△ABC中,均有①式成立.①式就是正弦定理.
用正弦定理解三角形,可以解决“角角边”“角边角”“边边角”这三类问题,其中困难的问题是“边边角”问题(已知三角形的两边和其中一边的对角解三角形),这类问题也是所有解三角形中最困难的问题,因为它面临多解的判断.
《必修5》第4页的例2就是“边边角”问题,解法是用计算器近似求解的. 如果不用计算器求解(而考试时都不能使用计算器),确实难度很大.
例:在△ABC中,a=8,b=7,B=60°,求c.
解:由正弦定理==,可得==. 可得sinA=.
(1)當A是锐角时,满足A+B<180°,即此时满足题意.
可得cosA=,sin(A+60°)=·+·=,再得c=5.
(2)当A是钝角时,可得sinA>sin120°
即>
,所以钝角A<120°,满足A+B<180°,即此时也满足题意.
可得cosA=-,sin(A+60°)=·-·=,再得c=3.
所以c=3或5.
《必修5》是这样引入和讲授余弦定理的:
在△ABC中,若a,b,C确定,则由三角形全等的判定公理“边角边”可知,△ABC的大小和形状都是确定的,所以c的大小也是确定的.那么,如何确定c的大小呢?
接下来,用向量方法可以简洁证得余弦定理:将向量等式=-两边平方即可得余弦定理a2=b2+c2-2bccosA.
接下来,易得其推论cosA=.
分别直接用余弦定理及其推论,可以解决“边角边”“边边边”这两类解三角形问题.
实际上,用余弦定理解“边边角”问题也很简洁:
例的另解:由余弦定理b2=c2+a2-2accosB,可得49=c2+64-8c,得c=3或5.
比较以上例题的两种解法可知,用余弦定理的解法比用正弦定理的解法简洁得多.
教师在讲授正弦定理时,总是要讲述下面的两个伴随结论:
(1)S△ABC=absinC(见《必修5》第16页例7上方的论述);
(2)===2R(R是△ABC的外接圆半径)(见《必修5》第10页B组第1题).
所以教师在讲授及学生学习正弦定理时,一定比余弦定理的难度大很多. 我们在学习知识时,应遵循“从简单到复杂”的基本规律,所以建议先讲授余弦定理再讲授正弦定理. 教材编排时也应注意这一点,不能说普通高中课程标准实验教科书《数学4·必修·A版》(人民教育出版社,2007年第2版)(以下简称《必修4》)第12页先介绍正弦后介绍余弦,我们在解三角形时就先学习正弦定理后学习余弦定理.
另外,由《必修4》第12页的叙述可知,正弦、余弦、正切都是三角函数. 由此可知,“三角函数”与“三角函数值”是有区别的(前者是“函数”,而后者是“函数值”),所以“正弦”与“正弦值”,“余弦”与“余弦值”,“正切”与“正切值”也都是有区别的. 比如,我们应当说“30°的正弦值”,不能说“30°的正弦”;可以说“任意角的三角函数”,也可以说“任意角的三角函数值”,但两者的意义不一样:任意角的正弦的值域是[-1,1],任意角的正弦值在闭区间[-1,1]上.
“正弦函数”“余弦函数”“正切函数”应分别改为“正弦”“余弦”“正切”,因为“正弦”“余弦”“正切”本身就是函数,所以“正弦函数”“余弦函数”“正切函数”均是重复的说法,也是错误的!
所以正弦定理、余弦定理的说法都是错误的,应分别改为正弦值定理、余弦值定理.
余弦定理学案 篇9
探究案
Ⅰ.质疑探究——质疑解惑、合作探究
探究一:课本中余弦定理是用()法证明的,也就是说,在△ABC中,已知BC=a,AC=b及边BC,AC的夹角C,则=(),所以BA2=()=(),即c=()
探究二:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角
形中三边平方之间的关系,如何看这两个定理之间的关系?
【归纳总结】
1.熟悉余弦定理的(),注意(),(),()等。
2.余弦定理是()的推广,()是余弦定理的特例.3.变形:(),(),()。
3.余弦定理及其推论的基本作用为:
(1)
(2)
例1. 在△ABC中,已知a2,c62,B45,求b及A。
【规律方法总结】
1.当已知三角形的两边及其夹角三角形时,可选用()求解。
2.在解三角形时,如果()与()均可选用时,那么 求边时(),求角是最好()原因是()
例2.(1)在△ABC中,已知a42,b4,c2(62),解三角形。
(2)在△ABC中,已知a:b:c2::31,求△ABC的各角。
【拓展提升】 在△ABC中,已知sinA:sinB:sinC3:2:4,判断△ABC 的形状。
2例3.在ABC中,a、b、c分别是A,B,C的对边长。已知bac,且2
a2c2acbc,求A的大小及bsinB的值。c
课后作业
基础巩固-----------把简单的事情做好就叫不简单!
1.在△ABC中,已知a2,b2,c31,则A等于()
A.30B.135C.45D.120
2.在△ABC中,已知abcbc,则A为()
A.22222B.C.D.或 3336
33.若三条线段的长分别为5、6、7,则用这三条线段()
A.能组成直角三角形B.能组成锐角三角形C.能组成钝角三角形
D.不能组成三角形
4.已知△ABC中,a=6 ,b=3 ,C=2,c=
35.(2012,福建理)已知△ABC的三边长分别是2x,2x,22x(x>0),则其最大角的余弦值
6.(2012,北京理)在△ABC中,若a2,bc7,cosB
综合应用--------------挑战高手,我能行!
7.在不等边三角形ABC中,a是最大边,若acb,则A的取值范()
A.90A180B.45A90C.60A90 B.0A90
8.在△ABC中,已知a+b+c=2c(a+b),则角C=
9.若△ABC的内角A、B、C所对的边a、b、c满足(ab)c4且C=
值为
拓展探究题------------战胜自我,成就自我10.在△ABC中,已知a=2,b=2,(a+b+c)(b+c-a)=(22)bc,解三角形。
11.在△ABC中,角A,B,C的对边分别为a,b,c,tanC
(1)求cosC; 224442221,则b=4222,则ab的35CA,且ab9,求c.(2)若CB
2课后检测案
1.△ABC中,若AB5,AC3,BC7,则A 的大小为()
A.150 B.120C.60D.30
22.在△ABC中,若c
A.60°a2b2ab,则∠C=()C.150°D.120°B.90°
3.在△ABC中,若a=7,b=8,cosC=13/14,则最大角的余弦为()1111B.C.D. 5678
4.边长为5,7,8的三角形的最大角的余弦是().A.A.11111B.C.D.714147
ab,cosBcosA5.在ABC中,角A、B、C的对边分别为a、b、c,若
则ABC的形状一定是()
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等腰直角三角形
6.已知ABC的内角A,B,C所对的边分别为a,b,c,且a2,b3,cosB则sinA 的值为. 4,512,13cosA7.已知△ABC的面积是30,内角A、B、C所对边分别为a、b、c,若cb1,则a的值是.8.在△ABC中,若(a+c-b)tanB = 3ac,则角B的值为。2229.在ABC中,若cosBb cosC2ac
(1)求角B的大小
(2)若bac4,求ABC的面积
10.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC3acosBccosB.(1)求cosB的值;
余弦定理数学史 篇10
雷格蒙塔努斯的主要著作是 1464 年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共 5 卷,前 2 卷论述平面三角学,后 3 卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表.
雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对 16 世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响.
三角学一词的英文是trigonometry,来自拉丁文tuigonometuia.最先使用该词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561 ~ 1613),他在 1595 年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的.16 世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucu s,1514 ~ 1574).他 1536 年毕业于滕贝格(Wittenbery)大学,留校讲授算术和几何. 1539 年赴波兰跟随著名天文学家哥白尼学习天文学,1542 年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部 6 种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表.世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用.三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的阿拉伯人中已有研究.
文艺复兴后期,法国数学家韦达(F.Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出 6 种三角函数表,有些以分和度为间隔.给出精确到 5 位和 10 位小数的三角函数值,还附有与三角值有关的乘法表、商表等.第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础.对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591 年韦达又得到多倍角关系式,1593 年又用三角方法推导出余弦定理.
1722 年英国数学家棣莫弗(A.De Meiver)得到以他的名字命名的三角学定理
(cosθ±isinθ)n=cosnθ+isinnθ,并证明了n是正有理数时公式成立; 1748 年欧拉(L.Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 eiθ=cosθ+isinθ,对三角学的发展起到了重要的推动作用.
第17讲 正、余弦定理及其应用 篇11
正余弦定理及其应用的重点内容为正弦、余弦定理及三角形面积公式,是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.本讲内容主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,也可能会涉及立体几何的空间角以及解析几何中的有关角等问题.对考生的运算能力,逻辑推理能力,对数形结合,函数与方程的思想,分类与整合的思想,转化与化归等重要数学思想进行了重点考查.选择题、填空题考查1~2题(分值5~10),位置应该比较靠前,以考查用正、余弦定理解三角形为主,题型基础,难度不大,容易得分;解答题1题(分值10~12),在16~17题位置,主要考查与函数结合,实现角边互化,或利用以解决实际问题(测量距离问题,测量高度问题,测量角度问题,计算面积问题等),难度中等.
命题特点
1.基础题型一般是考查直接用正余弦定理解斜三角形.正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解或无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其它两角;(2)已知三边,求各角.这类型题题型稳定,得分较易.
2.中档题型一般是考查正余弦定理与三角函数的综合应用,这类题重点是正余弦定理,侧重点还是三角函数的转化,最后落脚点是三角函数的相关知识,如:三角函数的周期性、对称性、单调性、最值等.题型较活,要求学生活中求稳,利用扎实的基本功解决问题.
3.中难档题多数是与代数、三角、立体几何、解析几何中的知识点进行结合命题,具有较强的灵活性,对学生的运算能力,逻辑推理能力,数形结合的思想,函数与方程的思想,分类与整合的思想要求较高,该题型既新又活,能很好的区分学生的能力层次.
备考指南
1.利用正余弦定理解三角形是重点题型,解题时有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷.在解题时,还要根据所给的条件,利用正弦定理或余弦定理合理地实施边和角的相互转化.所以需要学生熟记正余弦定理的形式及其各种变式,并熟练转化.
2. 与代数、三角、立体几何、解析几何中的知识点进行结合命题,具有较强的灵活性,备受命题者的青睐.这种题型灵活性强,涉及知识面广,正余弦定理是解决整个题目的基本工具,备考时多注意与相关知识的衔接.
限时训练
1.在锐角中[△ABC],角[A,B]所对的边长分别为[a,b].若[2asinB=b3],则角[A]等于 ( )
A.[π12] B.[π6]
C.[π4] D.[π3]
2.在[△ABC]中,若[sinCsinA=3,b2-a2=52ac],则[cosB]的值为 ( )
A.[13] B.[12]
C.[15] D.[14]
3.在[△ABC]中,[a=3,b=5],[sinA=13],则[sinB=] ( )
A.[15] B.[59]
C.[53] D.[1]
4.在[△ABC]中,[A,B,C]的对边分别为[a,b,c],若[acosC,bcosB,ccosA]成等差数列,则[B]= ( )
A. [π6] B. [π4]
C. [π3] D. [2π3]
5.在[△ABC]中,[a2=b2+c2+bc],则[A]等于 ( )
A.60° B.120°
C.30° D.150°
6.在[△ABC]中,内角[A,B,C]的对边分别为[a,b,]c,且[2c2=2a2+2b2+ab],则[△ABC]是 ( )
A. 钝角三角形 B. 直角三角形
C. 锐角三角形 D. 等边三角形
7.在[△ABC]中,[a,b,c]分别为角[A,B,C]所对的边,[a,b,c]成等差数列,且[a=2c],[S△ABC=3154],则[b]的值为 ( )
A. 1 B. 2
C. 3 D. 4
8.在等腰直角三角形[ABC]中,[AB=AC=4],点[P]是边[AB]上异于[A,B]的一点,光线从点[P]出发,经[BC],[CA]发射后又回到原点[P](如图).若光线[QR]经过[△ABC]的重心,则[AP]等于 ( )
A.2 B.1
C. [83] D. [43]
9.对于下列命题,其中正确命题的个数是 ( )
①在[△ABC]中,若[cos2A=cos2B],则[△ABC]为等腰三角形;
②在[△ABC]中,角[A,B,C]的对边分别为[a,b,c],若[a=2,b=5,A=π6],则[△ABC]有两组解;
③设[a=sin2014π3,b=cos2014π3,c=tan2014π3],则[a
④将函数[y=2sin(3x+π6)]的图象向左平移[π6]个单位,得到函数[y=2cos(3x+π6)]的图象.
A. 0 B. 1
C. 2 D. 3
10.如图,半径为2的半圆有一内接梯形[ABCD],它的下底[AB]是[⊙O]的直径,上底[CD]的端点在圆周上.若双曲线以[A,B]为焦点,且过[C,D]两点,则当梯形[ABCD]的周长最大时,双曲线的实轴长为 ( )
A. [3+1] B. 2[3+2]
C. [3-1] D. 2[3-2]
nlc202309032007
11. 在塔底的水平面上某点测得塔顶的仰角为[30°],由此点向塔沿直线行走[20]米,测得塔顶的仰角为[45°],则塔高是__________米.
12. 已知[P]为三角形[ABC]内部任一点(不包括边界),且满足[PB-PA?PB+PA-2PC=0],则[△ABC]的形状一定为___________.
13. 已知正方体[ABCD-A1B1C1D1]棱长为1,点[M]是[BC1]的中点,[P]是[BB1]一动点,则[(AP+MP)2]的最小值为___________.
14.设函数[f(x)=ax+bx-cx]其中[c>a>0,c>b>0].若[a,b,c]是[△ABC]的三条边长,则下列结论正确的是_________.(写出所有正确结论的序号)
①[?x∈(-∞,1),f(x)>0];
②[?x∈R],使[ax,bx,cx]不能构成一个三角形的三条边长;
③若[△ABC]为钝角三角形,则[?x∈(1,2)],使[f(x)=0].
15.在[△ABC]中,角[A,B,C]所对的边分别是[a,b,c],已知[csinA=3acosC].
(1)求[C];
(2)若[c=7],且[sinC+sin(B-A)=3sin2A],求[△ABC]的面积.
16.已知向量[a=(12,12sinx+32cosx)],[b=(1,y)],[a∥b],且有函数[y=f(x)].
(1)求函数[y=f(x)]的周期;
(2)已知锐角[△ABC]的三个内角分别为[A,B,C],若有[f(A-π3)=3],边[BC=7],[sinB=217],求[AC]的长及[△ABC]的面积.
17.已知[a,b,c]分别为[△ABC]三个内角[A,B,C]的对边,[A]为[B,C]的等差中项.
(1)求[A];
(2)若[a=2],[△ABC]的面积为[3],求[b,c]的值.
18.如图,海上有[A,B]两个小岛相距10km,船[O]将保持观望[A]岛和[B]岛所成的视角为60°,现从船[O]上派下一只小艇沿[BO]方向驶至[C]处进行作业,且[OC=BO].设[AC=xkm].
(1)用[x]分别表示[OA2+OB2]和[OA?OB],并求出[x]的取值范围;
(2)晚上小艇在[C]处发出一道强烈的光线照射[A]岛,[B]岛至光线[CA]的距离为[BD],求[BD]的最大值.
正弦定理证明的探究 篇12
新课程改革改变了教师的课程资源理念, “课本”已然成为教学的平台和知识的载体, 如何充分利用与开发课程资源, 实现知识的有效融合, 提高课堂教学的有效性成了教师必须直面的一个问题.本文以人教A教材高二上必修5《解三角形》正弦定理的证明为例, 谈点教学体会.
正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 即
证法1 考察结论是否适合用于锐角三角形时, 可以发现csin B和bsin C实际上是锐角三角形AB边上的高.这样, 利用高的两个不同表示, 即寻找到证明定理的思路.
若C为锐角 (图1) , 过点A作AD⊥BC于D, 此时有
, 即
若C为钝角 (图2) , 过点A作AD⊥BC, 交BC的延长线于D, 此时也有
同样可得
综上可知, 结论成立.
证法2 利用三角形的面积转换.由证法1的图像我们发现, 三角形的高可以转换为边和角的正弦值的积.
先作出三边上的高AD, BE, CF,
每项同除以
证法3 充分挖掘三角形中的等量关系, 可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具, 因此能否从向量的角度来证明这个结论呢?
在△ABC中, 有
其中, 当∠C为锐角或直角时, α=90°-C;
当∠C为钝角时, α=C-90°.
故可得csinB-bsinC=0, 即
同理可得
另证 过点A作
由向量的加法, 可得
∴csin A=asin C, 即
同理, 过点C作
从而
类似可推出, 当△ABC是钝角三角形时, 以上关系式仍然成立.
总之, 随着新课标课程改革的日渐深入, 作为教学的组织者, 教师应该在日常教学中, 努力挖掘和开发知识的内在联系, 善于引导学生拓展引申, 使已有的课程资源得到充分的开发与利用.培养学生观察问题、发现问题、探究问题、解决问题的能力, 获取更好的教学效果, 提高课堂教学的有效性.
余弦定理的教案 篇13
人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。
二、学生学习情况分析
本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。
三、设计思想
新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,作出判断;同时要求教师从知识的传授者向课堂的设计者、组织者、引导者、合作者转化,从课堂的执行者向实施者、探究开发者转化。本课尽力追求新课程要求,利用师生的互动合作,提高学生的数学思维能力,发展学生的数学应用意识和创新意识,深刻地体会数学思想方法及数学的应用,激发学生探究数学、应用数学知识的潜能。
四、教学目标
继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会向量方法推导余弦定理的思想;通过实践演算运用余弦定理解决“边、角、边”及“边、边、边”问题;深化与细化方程思想,理解余弦定理的本质。通过相关教学知识的联系性,理解事物间的普遍联系性。
五、教学重点与难点
教学重点是余弦定理的发现过程及定理的应用;教学难点是用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。
六、教学过程:
七、教学反思
正、余弦定理练习1 篇14
10.在ABC中,已知A45,AB
6,BC2,解此三角形.
1.在ABC中,b10,c15,C30,则此三角形解的情况是()
A.一解B.两解C.无解D.无法确定
2.在ABC中,a10,B60,C45,则c=()A.10+3B.103-10C.3+1D.103 3.在ABC中,已知角B=45,c22,b
433,则角A=()
A.15B.75C.105D.15或75
4.在ABC中,角A、B、C的对边分别为a、b、c,则acosB+bcosA等于()A.
ab2
B.bC.cD.a
5.在ABC中,若b2asinB,则这个三角形中角A的值是()A.30或60B.45或60C.60或120D.30或1506.设m、m+
1、m+2是钝角三角形的三边长,则实数m的取值范围是()A.0<m<3B.1<m<3C.3<m<4D.4<m<6
7.在ABC中,a5,B105,C15,则此三角形的最大边的长为__________.8.在ABC中,ab12,A60,B45,则a_________,b________. 9.在ABC中,下列命题中,所有正确命题的序号是___________________ ① 若sinA12,则A30②a80,b100,A45的三角形有一解 ③ 若cosA12,则A60④ a18,b20,A150的三角形一定存在11.在ΔABC中,角A,B,C所对的边分别为a,b,c,已知(1)求sin C的值;
(2)当a=2,2sin A=sin C时,求b及c的长.
cos 2C=-1
费马大定理非常美妙的证明 篇15
1、费马大定理是说,当n≥3时,an+bn≠cn,其中a、b、c、n都是自然数(即正整数),且a<b<c。
2、本文设an=Kn,bn=(K+L)n,cn=(K+L+m)n。其中K、L、m、n都是正整数。显然这里的K<K+L<K+L+m;由于K、L、m是任取的正整数,满足了Kn=an,(K+L)n=bn,(K+L+m)n=cn。就是说保证了费马定理可以写成Kn+(K+L)n≠(K+L+m)n这种表达形式;其中K=1,2,3,……,K;L=1,2,3,……,L;m=1,2,3,……,m;
3、根据上述规则和规定,将正整数n次方的幂序列排列如下,其中的n≥3;
1n,2n,3n,……,Kn (序列1)
1n,2n,3n,……,Kn,(K+1)n,(K+2)n,……,(K+L)n,(序列2)
1n,2n,3n,……,Kn,(K+1)n,(K+2)n,……,(K+L)n,(K+L+1)n,(K+L+2)n,(K+L+3)n,……,(K+L+m)n,(序列3)
从上述列出的三个序列得出,用Kn+(K+L)n≠(K+L+m)n是符合费马定理an+bn≠cn原意的。
4、本文用记号k-1▽k表示Kn-(K-1)n的差值,即k-1▽k=Kn-(K-1)n;例如,1▽2=2n-1n,
2▽3=3n-2n,3▽4=4n-3n,……,k-1▽k=Kn-(K-1)n;更进一步表示成1▽k=Kn-1n,
2▽k=Kn-2n,3▽k=Kn-3n,……,k-1▽k=Kn-(K-1)n;这种表示法的优越之处在于,任何一个正整数K的n次幂,即Kn都可用它之前的第一个正整数的n次幂加上之后顺序的正整数n次幂之间的差值之和表示出来,即是
……以此类推,可得出下式等式
还可以得出下列等式
……以此类推,可得出下式等式
5、从上边的(1)式→(8)式,可以得出任何一段顺序的正整数n次方幂的差值之和都不能等于任意一个正整数的n次方幂,而只能等于这一段顺序的正整数n次方幂的末端的n次方幂与开端n次方幂之差。
以(5)式为例,(5)式中
(9)式中,正整数轴上的从1n→Kn之间只有2n,3n,4n,5n,……(K-1)n这K-2个正整数n次方幂的点,且这些点是唯一的,再不能有任何另一个正整数x的n次方幂的点,否则就会得出xn+x▽k=Kn;即是1n→Kn之间除2n,3n,……(K-1)n这K-2个正整数n次方幂的点之外,还有另一个xn的点存在,这显然是不可能的。换句话说,除2n,3n,……(K-1)n这K-2个正整数n次方幂的点之外,还有另一个xn的点存在,成为K-1个正整数n次方幂的点,这显然与事实不符。再进一步说,就是Kn-1n≠xn,当然x是任意正整数。同样可得出2▽k=Kn-2n≠xn,3▽k=Kn-3n≠xn……k-1▽k=Kn-(K-1)n≠xn:
6、以n=3,K=10为例说明如下
先列表13、23、33、43、53、63、73、83、93、103,
具体计算13=1,23=8,33=27,43=64,53=125,63=216,73=343,83=512,93=729,103=1000,
先计算1▽2=23-13=7,2▽3=33-23=19,3▽4=43-33=37,4 V 5=53-43=61,5 V 6=63-53=91,6▽7=73-63=127,7 V 8=83-73=169,8 V 9=93-83=217,9▽10=103-93=271,
我们取1▽2+2▽3+3▽4+4▽5+5▽6+6▽7+7▽8+8▽9+9▽10=1▽10=7+19+37+61+91+127+169+217+271=999=1000-1≠x3……(10)
取2▽3+3V4+4▽5+5▽6+6▽7+7V8+8V9+9▽10
=2 V 10=19+37+61+91+127+169+217+271=992=1000-8≠x3……(11)
取3▽4+4V5+5▽6+6▽7+7▽8+8▽9+9▽10
=3▽10=3 7+61+91+127+169+21 7+271=973=1000-27≠x3……(12)
从(10)式→(18)式完全验证了5中的结论:任何一段顺序的正整数n次方幂的差值之和都不能等于任意一个正整数的n次方幂,而只能等于这一段顺序的正整数n次方幂的末端的n次方幂与开端n次方幂之差。
7、基于上述同样道理可以得出下列式子
二、证明过程
按照(一)1中的论述,只要证明了Kn+(K+L)n≠(K+L+m)n这一不等式,就等价于证明了an+bn≠cn这一费马定理。
我们已经知道
那么费马定理就是要证明下述不等式成立,即
用反证法证明不等式(24)成立
假设(24)式相等,即
整理(25)式可得
(26)式可写成为Kn=(K+L+m)n-(K+L)n……(27)
根据(一)7中的(20)式可知(K+L+m)n-(K+L)n≠xn,当然可知(K+L+m)n-(K+L)n≠Kn……(28)
这与(25)式矛盾,所以(24)式成立,也保证了an+bn≠cn成立,到此,费马定理得到证明。
三、讨论
1、用符号k-1▽k表示Kn-(K-1)n,就是表示任意两个相邻正整数n次方幂的差值。显然它们之间差值不能等于任意一个正整数的n次方幂。即
k-1▽k=Kn-(K-1)n≠xn,x为任一正整数。这是显而易见的,因为(K-1)n与Kn之间不存在另一正整数的n次方幂。
2、因为1n+1▽k=Kn、2n+2▽k=Kn、3n+3▽k=Kn、……(K-1)n+k-1▽k=Kn表明1n→Kn之间,只有2n,3n,4n,……(K-1)n这K-2个正整数n次方幂的点,且是唯一的。进而表明(K+L)n→(K+L+m)n之间,只有(K+L+1)n、(K+L+2)n、(K+L+3)n、……(K+L+m-1)n这m-1个正整数n次方幂的点,除此之外不可能再有另一个正整数n次方幂xn的点存在。
3、我们只讨论n≥3的情形,至于n=2,已有很多研究,这里不做讨论。本文只用几页纸就证明了an+bn≠cn,这显然符合费马提出的“美妙证明”的说法。
参考文献
【余弦定理证明】推荐阅读:
用余弦定理证明06-16
球面正弦,余弦定理证明06-11
正余弦定理教案07-05
正、余弦定理练习05-19
解斜三角形之余弦定理 教案07-10
基础定理证明07-11
正弦定理证明六法07-06
四色定理的证明05-12
弦切角定理的证明07-06
一个定理的猜想和证明07-23