弦切角定理的证明

2024-07-06

弦切角定理的证明(共12篇)

弦切角定理的证明 篇1

弦切角定理的证明

弦切角定理的证明

弦切角定理:定义弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. (弦切角就是切线与弦所夹的角)弦切角定理证明

证明:设圆心为O,连接OC,OB,OA。过点A作TP的平行线交BC于D,

则∠TCB=∠CDA

∵∠TCB=90-∠OCD

∵∠BOC=180-2∠OCD

∴,∠BOC=2∠TCB

证明:分三种情况:

(1)圆心O在∠BAC的一边AC上

∵AC为直径,AB切⊙O于A,

∴弧CmA=弧CA

∵为半圆,

(2)圆心O在∠BAC的内部.

过A作直径AD交⊙O于D,

那么

.

(3)圆心O在∠BAC的外部,

过A作直径AD交⊙O于D

那么

2

连接并延长TO交圆O于点D,连接BD因为TD为切线,所以TD垂直TC,所以角BTC+角DTB=90因为TD为直径,所以角BDT+角DTB=90所以角BTC=角BDT=角A

3

编辑本段弦切角定义顶点在圆上,一边和圆相交,另 图示一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角) 如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠PCA,∠PCB都为弦切角。 编辑本段弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.弦切角定理证明: 证明一:设圆心为O,连接OC,OB,。 ∵∠TCB=90-∠OCB ∵∠BOC=180-2∠OCB ∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的`一半) ∵∠BOC=2∠CAB(圆心角等于圆周角的两倍) ∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角) 证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧. 求证:(弦切角定理) 证明:分三种情况: (1)圆心O在∠BAC的一边AC上 ∵AC为直径,AB切⊙O于A, ∴弧CmA=弧CA ∵为半圆, ∴∠CAB=90=弦CA所对的圆周角 B点应在A点左侧(2)圆心O在∠BAC的内部. 过A作直径AD交⊙O于D, 若在优弧m所对的劣弧上有一点E 那么,连接EC、ED、EA 则有:∠CED=∠CAD、∠DEA=∠DAB ∴ ∠CEA=∠CAB ∴ (弦切角定理) (3)圆心O在∠BAC的外部, 过A作直径AD交⊙O于D 那么 ∠CDA+∠CAD=∠CAB+∠CAD=90 ∴∠CDA=∠CAB ∴(弦切角定理) 编辑本段弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等 应用举例 例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60° , AB=a 求BC长. 解:连结OA,OB. ∵在Rt△ABC中, ∠C=90 ∴∠BAC=30° ∴BC=1/2a(RT△中30°角所对边等于斜边的一半) 例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求证:EF∥BC. 证明:连DF. AD是∠BAC的平分线∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC ⊙O切BC于D ∠FDC=∠DAC ∠EFD=∠FDC EF∥BC 例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C, 求证:AC平分∠MCD,BC平分∠NCD. 证明:∵AB是⊙O直径 ∴∠ACB=90 ∵CD⊥AB ∴∠ACD=∠B, ∵MN切⊙O于C ∴∠MCA=∠B, ∴∠MCA=∠ACD, 即AC平分∠MCD, 同理:BC平分∠NCD.

弦切角定理的证明 篇2

新课程改革改变了教师的课程资源理念, “课本”已然成为教学的平台和知识的载体, 如何充分利用与开发课程资源, 实现知识的有效融合, 提高课堂教学的有效性成了教师必须直面的一个问题.本文以人教A教材高二上必修5《解三角形》正弦定理的证明为例, 谈点教学体会.

正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 即asinA=bsinB=csinC.

证法1 考察结论是否适合用于锐角三角形时, 可以发现csin B和bsin C实际上是锐角三角形AB边上的高.这样, 利用高的两个不同表示, 即寻找到证明定理的思路.

若C为锐角 (图1) , 过点A作AD⊥BC于D, 此时有

sinB=ADcsinC=ADbcsinB=bsinC

, 即bsinB=csinC.

asinA=csinC.asinA=bsinB=csinC.

若C为钝角 (图2) , 过点A作AD⊥BC, 交BC的延长线于D, 此时也有sinB=ADc, 且sinC=sin (180°-C) =ADb.

同样可得asinA=bsinB=csinC.

综上可知, 结论成立.

证法2 利用三角形的面积转换.由证法1的图像我们发现, 三角形的高可以转换为边和角的正弦值的积.

先作出三边上的高AD, BE, CF,

AD=csinBBE=asinCCF=bsinASABC=12absinC=12acsinB=12bcsinA.

每项同除以12abc, 即得asinA=bsinB=csinC.

证法3 充分挖掘三角形中的等量关系, 可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具, 因此能否从向量的角度来证明这个结论呢?

在△ABC中, 有BC=BA+AC.设C为最大角, 过点A作AD⊥BC于D (图3) , 于是BCAD=BAAD+ACAD.设ACAD的夹角为α, 则

0=|BA||AD|cos (90°+B) +|AC||AD|cosα

其中, 当∠C为锐角或直角时, α=90°-C;

当∠C为钝角时, α=C-90°.

故可得csinB-bsinC=0, 即bsinB=csinC.

同理可得asinA=csinC.因此得证.

另证 过点A作jAC,

由向量的加法, 可得AB=AC+CB.

jAB=j (AC+CB) jAB=jAC+jCB|j||AB|cos (90°-A) =0+|j||CB|cos (90°-C)

csin A=asin C, 即asinA=csinC.

同理, 过点CjBC, 可得bsinB=csinC.

从而asinA=bsinB=csinC.

类似可推出, 当△ABC是钝角三角形时, 以上关系式仍然成立.

总之, 随着新课标课程改革的日渐深入, 作为教学的组织者, 教师应该在日常教学中, 努力挖掘和开发知识的内在联系, 善于引导学生拓展引申, 使已有的课程资源得到充分的开发与利用.培养学生观察问题、发现问题、探究问题、解决问题的能力, 获取更好的教学效果, 提高课堂教学的有效性.

几何定理的机器证明 篇3

几千年来,人们解几何题的招数,层出不穷,争奇斗艳,概括起来,不外这4类:检验、搜索、归约和转换,50多年来,数学家和计算机科学家费尽心思,循循善诱,把个中奥秘向计算机传授,使得计算机解几何题的能力日新月异,大放光彩,除了灵机一动加辅助线,或千变万化的问题转换之外,前3种方法计算机都学得十分出色了,用机器帮助,以至在某种程度上代替学者研究几何,帮助乃至代替老师指导学生学习几何,已经从古老的梦想变为现实。

在几何定理机器证明中,采用代数方法,引进坐标,将几何定理的叙述用代数方程的形式重新表达,证明问题就转化成判定是否能从假设的代数方程推出结论的代数方程的问题,这样把几何问题代数化,自笛卡尔以来已是老生常谈,并无实质困难,然而代数化的过程,坐标点的选取和方程引进的次序都可能影响到后续证明的难度,甚至由于技术条件的限制,影响到证明是否可能完成,也就是说,几何问题化成纯代数问题之后,也并不见得一定容易,更不能说就能实现机械化了,这不仅是因为解决这些代数问题的计算量往往过大,令人望而却步,还因代表几何关系而出现的那些代数等式或不等式常常杂乱无章,使人手足无措,从这些杂乱无章的代数关系式中要找出一条途径,以达到所要证的结论,往往要用到高度的技巧,换句话说,即使你不怕计算,会用计算机来算,也不知道从何算起。

解几何题是思维的体操,是十分有吸引力的智力活动之一,图形的直观简明,推理的曲折严谨,思路的新颖巧妙,常给人以美的享受,许多青少年数学爱好者,往往首先是对几何有了浓厚的兴趣,用计算机证明几何问题,如果仅限于用平凡而繁琐的数值计算代替巧妙而难于入手的综合推理,则未免大煞风景,通过计算机的大量计算判断命题为真,确实是证明了定理,这是有严谨理论基础的,但这样的证明写出来只是一大堆令人眼花缭乱的算式、数字或符号,既没有直观的几何意义,又难于理解和检验,这跟几何教科书上十行八行就说得明明白白的传统风格的证明大相径庭,如果计算机给出的这一堆难于理解和检验的数据也算是几何问题的解答,这种解答只能叫做不可读的解答。

圆切线长定理及弦切角练习题 篇4

(一)填空

1.已知:如图7-143,直线BC切⊙O于B点,AB=AC,AD=BD,那么∠A=____.

2.已知:如图7-144,直线DC与⊙O相切于点C,AB为⊙O直径,AD⊥DC于D,∠DAC=28°侧∠CAB=____ .

3.已知:直线AB与圆O切于B点,割线ACD与⊙O交于C和D

4.已知:如图7-145,PA切⊙O于点A,割线PBC交⊙O于B和C两点,∠P=15°,∠ABC=47°,则∠C= ____.

5.已知:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F三点,∠DFE=56°,那么∠B=____.

6.已知:如图 7-147,△ABC内接于⊙O,DC切⊙O于C点,∠1=∠2,则△ABC为____ 三角形.

7.已知:如图7-148,圆O为△ABC外接圆,AB为直径,DC切⊙O于C点,∠A=36°,那么∠ACD=____.

(二)选择

8.已知:△ABC内接于⊙O,∠ABC=25°,∠ACB= 75°,过A点作⊙O的切线交BC的延长线于P,则∠APB等于

[ ] A.62.5°;B.55°;C.50°;D.40°.

9.已知:如图 7-149,PA,PB切⊙O于A,B两点,AC为直径,则图中与∠PAB相等的角的个数为

[ ]

A.1 个;B.2个;C.4个;D.5个.

10.已知如图7-150,四边形ABCD为圆内接四边形,AB是直径,MN切⊙O于C点,∠BCM=38°,那么∠ABC的度数是

[ ]

A.38°;B.52°;C.68°;D.42°.

11.已知如图7-151,PA切⊙O于点A,PCB交⊙O于C,B两点,且 PCB过点 O,AE⊥BP交⊙O于E,则图中与∠CAP相等的角的个数是

[ ]

A.1个;B.2个;C.3个;D.4个.

(三)计算

12.已知:如图7-152,PT与⊙O切于C,AB为直径,∠BAC=60°,AD为⊙O一弦.求∠ADC与∠PCA的度数.

13.已知:如图7-153,PA切⊙O于A,PO交⊙O于B,C,PD平分∠APC.求∠ADP的度数.

14.已知:如图7-154,⊙O的半径OA⊥OB,过A点的直线交OB于P,交⊙O于Q,过Q引⊙O的切线交OB延长线于C,且PQ=QC.求∠A的度数.

15.已知:如图7-155,⊙O内接四边形ABCD,MN切⊙O于C,∠BCM=38°,AB为⊙O直径.求∠ADC的度数.

16.已知:如图7-156,PA,PC切⊙O于A,C两点,B点

17.已知:如图 7-157,AC为⊙O的弦,PA切⊙O于点A,PC过O点与⊙O交于B,∠C=33°.求∠P的度数.

18.已知:如图7-158,四边形ABCD内接于⊙O,EF切⊙O

19.已知 BA是⊙O的弦,TA切⊙O于点A,∠BAT= 100°,点M在圆周上但与A,B不重合,求∠AMB的度数.

20.已知:如图7-159,PA切圆于A,BC为圆直径,∠BAD=∠P,PA=15cm,PB=5cm.求 BD的长.

21.已知:如图7-160,AC是⊙O直径,PA⊥AC于A,PB切⊙O于B,BE⊥AC于E.若AE=6cm,EC=2cm,求BD的长.

22.已知:如图7-161所示,P为⊙O外一点,PA切⊙O于A,从PA中点M引⊙O割线MNB,∠PNA=138°.求∠PBA的度数.

23.已知:如图7-162,DC切⊙O于C,DA交⊙O于P和B两点,AC交⊙O于Q,PQ为⊙O直径交BC于E,∠BAC=17°,∠D=45°.求∠PQC与∠PEC的度数.

24.已知:如图 7-163,QA切⊙O于点A,QB交⊙O于B

25.已知:如图7-164,QA切⊙O于A,QB交⊙O于B和C

26.已知:在图7-165中,PA切⊙O于A,AD平分∠BAC,PE平分∠APB,AD=4cm,PA=6cm.求EP的长.

27.已知;如图7-166,PA为△ABC外接圆的切线,A 为切点,DE∥AC,PE=PD.AB=7cm,AD=2cm.求DE的长.

28.已知:如图 7-167,BC是⊙O的直径,DA切⊙O于A,DA=DE.求∠BAE的度数.

29.已知:如图 7-168,AB为⊙O直径,CD切⊙O于CAE∠CD于E,交BC于F,AF=BF.求∠A的度数.

30.已知:如图7-169,PA,PB分别切⊙O于A,B,PCD为割线交⊙O于C,D.若 AC=3cm,AD=5cm,BC= 2cm,求DB的长.

31.已知:如图7-170,ABCD的顶点A,D,C在圆O上,AB的延长线与⊙O交于M,CB的延长线与⊙O交于点N,PD切⊙O于D,∠ADP=35°,∠ADC=108°.求∠M的度数.

32.已知:如图7-171,PQ为⊙O直径,DC切⊙O于C,DP交⊙O于B,交CQ延长线于A,∠D=45°,∠PEC=39°.求∠A的度数.

33.已知:如图 7-172,△ABC内接于⊙O,EA切⊙O于A,过B作BD∥AE交AC延长线于D.若AC=4cm,CD= 3cm,求AB的长.

34.已知:如图7-173,△ABC内接于圆,FB切圆于B,CF⊥BF于F交圆于 E,∠1=∠2.求∠1的度数.

35.已知:如图7-174,PC为⊙O直径,MN切⊙O于A,PB⊥MN于B.若PC=5cm,PA=2cm.求PB的长.

36.已知:如图7-175,AD为⊙O直径,CBE,CD分别切⊙

37.已知:如图7-176,圆内接四边形ABCD的AB边经过圆心,AD,BC的延长线相交于E,过C点的切线CF⊥AE于F.求证:

(1)△ABE为等腰三角形;

(2)若 BC=1cm,AB=3cm,求EF的长.

38.已知:如图7-177,AB,AC切⊙O于B,C,OA交⊙O于F,E,交BC于D.

(1)求证:E为△ABC内心;

(2)若∠BAC=60°,AB=a,求OB与OD的长.

(四)证明

39.已知:在△ABC中,∠C=90°,以C为圆心作圆切AB边于F点,AD,BC分别与⊙C切于D,E两点.求证:AD∥BE.

40.已知:PA,PB与⊙O分别切于A,B两点,延长OB到C,41.已知:⊙O与∠A的两边分别相切于D,E.在线段AD,AE(或在它们的延长线)上各取一点B,C,使DB=EC.求证:OA⊥BC.

⊥EC于H,AO交BC于D.求证:

BC·AH=AD·CE.

*43.已知:如图7-178,MN切⊙O于A,弦BC交OA于E,过C点引BC的垂线交MN于D.求:AB∥DE.

44.已知:如图7-179,OA是⊙O半径,B是OA延长线上一点,BC切⊙O于C,CD⊥OA于D.求证:CA平分∠BCD.

45.已知:如图7-180,BC是⊙O直径,EF切⊙O于A点,AD⊥BC于D.求证:AB平分∠DAE,AC平分∠DAF.

46.已知:如图7-181,在△ABC中,AB=AC,∠C= 2∠A,以 AB为弦的圆 O与 BC切干点 B,与 AC交于 D点.求证:AD=DB=BC.

47.已知:如图7-182,过△ADG的顶点A作直线与DG的延长线相交于C,过G作△ADG的外接圆的切线二等分线段AC于E.求证:AG=DG·CG.

48.已知:如图7-183,PA,PB分别切⊙O于A,B两点,PCD为割线.求证:AC·BD=BC·AD.

BC=BA,连结AC交圆于点E.求证:四边形ABDE是平行四边形.

50.已知:如图7-185,∠1=∠2,⊙O过A,D两点且交AB,AC于E,F,BC切⊙O于D.求证:EF∥BC.

51.已知:如图7-186,AB是半圆直径,EC切半圆于点C,BE⊥CE交AC于F.求证:AB=BF.

52.已知:如图7-187,AB为半圆直径,PA⊥AB,PC切半圆于C点,CD⊥AB于D交PB于M.求证:CM=MD.

(五)作图

53.求作以已知线段AB为弦,所含圆周角为已知锐角∠α(见图7-188)的弧(不写作法,写出已知、求作,答出所求).

54.求作一个以α为一边,所对角为∠α,此边上高为h的三角形.

55.求作一个以a为一边,m为此边上中线,所对角为∠α的三角形(不写作法,答出所求).

切线长定理及弦切角练习题(答案)

(一)填空

1.36° 2.28° 3.50° 4.32° 5.22° 6.等腰 7.54°

(二)选择

8.C 9.D 10.B 11.C

(三)计算 12.30°,30°.

13.45°.提示:连接AB交PD于E.只需证明∠ADE=∠AED,证明时利用三角形外角定理及弦切角定理.

14.30°.提示:因为PQ=QC,所以∠QCP=∠QPC.连接OQ,则知∠POQ与∠QCP互余.又∠OAQ=∠OQA与∠QPC互余,所以∠POQ=∠OAQ=∠OQA.而它们的和为90°(因为∠AOC=90°).所以∠OAQ=30°

16.67.5°.提示:解法一 连接AC,则∠PAC=∠PCA.又∠P=45°,所以∠PAC=∠PCA=67.5°.从而∠B=∠PAC=67.5°.

解法二 连接OA,OC,则∠AOC=180°-∠P=135°,所以

17.24°.提示:连接OA,则∠POA=66°.

18.60°.提示:连接BD,则∠ADB=40°,∠DBC=20°.设∠ABD=∠BDC(因为AB//CD)=x°,则因∠B+∠D=180°,所以2x°+60°=180°,x°=60°,从而∠ADE=∠ABD=60°.

19.100°或80°.提示: M可在弦AB对的两弧的每一个上.

从而

22.42°.提示:∠ABM=∠NAM.于是显然△ABM∽△NAM,NMP,所以△PMB∽△NMP,从而∠PBM=∠NPM.再由∠ABM=∠NAM,就有 ∠PBA=∠PBM+∠NAM=∠NPM+∠NAM =180°-∠PNA=42°.

23.28°,39°.提示:连接PC.

24.41°.提示:求出∠QAC和∠ACB的度数. 25.100°.

以DB=9.因为2DP=2×9,由此得DP=9.又DP>0,所以DP=3,从而,DE=2×3=6(cm). 2

228.45°.提示:连接AC.由于DA=DE,所以∠ABE+∠BAE=∠AED=∠EAD=∠CAD+∠CAE,但∠ABE=∠CAD,所以∠BAE=∠CAE.由于∠BAE+∠CAE=90°,所以∠BAE=45°.

29.60°.提示:解法一 连接AC,则AC⊥BC.又AF⊥CE,所以∠ACE=∠F.又DC切⊙O于C,所以∠ACE=∠B.所以∠F=∠B.因为AF=BF,所以∠BAF=∠B=∠F.所以∠BAF=60°.

31.37°.提示:连接AC,则∠M=∠ACN=∠CAD. 32.17°.提示:连接PC,则∠QPC+∠PBC=90°. 45°=∠D=(∠BPQ+∠QPC)∠DCP =(∠BPQ+∠QPC)-∠PBC =[∠BPQ+(90°-∠PBC)]-∠PBC. 所以

2∠PBC-∠BPQ=45°.

∠PBC+∠BPQ=39°,从而∠PBC=28°,∠BPQ=11°.于是∠A=∠PBC-∠BPQ=17°.

1)

2)

((34.30°.提示:连接BE,由∠1=∠2,可推出∠EBF=∠ECB=∠EBC,而这三个角的和为90°,所以每个角为30°.

36.60°.提示:连接OB,则OB⊥CE,从而∠C=∠BOE= 60°.

37.(1)提示:连接OC,则∠E=∠OCB=∠OBC=∠CDE,所以△ABE为等腰三角形.

38.(1)提示:连接BE.只需证明∠ABE=∠DBE.

(四)证明

39.提示:AC,BC各平分∠A,∠B.设法证出∠A+∠B=180°. 40.提示:连接OP,设法证出∠BPC=∠BPO.

42.提示:在△BCE和△DAH中,∠BCE=∠DAH(它们都与∠DCH互补).又A,D,C,H共圆,所以∠CEB=∠ACB=∠AHD,从而△BCE∽△DAH.这就得所要证明的比例式.

43.提示:连接AC.先证明A,E,C,D四点共圆.由此得∠ADE=(∠ACE=)∠MAB,所以AB//DE.

44.提示:证法一 延长AO交⊙O于点E,连接EC,则∠BCA=∠E,且∠ACD=∠E.所以∠BCA=∠ACD.

证法二 连接OA,则∠BCA与∠OCA互余;又∠ACD与∠OAC互余,而∠OCA=∠OAC,所以∠BCA=∠ACD.

46.提示:由已知得∠A=36°,∠B=∠C=72°,∠DBC=∠A=36°,所以∠ABD=36°,从而AD=BD.又∠C=∠CDB=72°,所以BD=BC.

47.提示:过A作CD的平行线交BC于H,则AH=CG.然后证

AG=DG·AH=DG·CG.

49.提示:因为BC=BA,所以∠A=(∠C=)∠D;又∠CED=∠DBF(BF是AB的延长线),所以它们的补角∠DEA=∠ABD.从而四边形ABDE是平行四边形.

50.提示:连接DE,则∠BDE=∠1=∠2=∠FED.所以EF//BC.

51.提示:连接BC,则∠ACB=90°=∠FCB.因为CE⊥BE,所以∠F=∠ECB.因为EC切半圆于C,所以∠ECB=∠A,所以∠A=∠F,因此AB=BF.

52.提示:连接AC,BC并延长BC交AP延长线于点N.首先

圆的定理及其证明 篇5

内容:圆周角的度数等于它所对弧上的圆心角度数的一半。证明:

情况1:

如图1,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:

图1

∵OA、OC是半径 解:∴OA=OC ∴∠BAC=∠ACO(等腰三角形底角相等)∵∠BOC是△AOC的外角

∴∠BOC=∠BAC+∠ACO=2∠BAC 情况2:

如图2,,当圆心O在∠BAC的内部时: 连接AO,并延长AO交⊙O于D

图2

∵OA、OB、OC是半径 解:∴OA=OB=OC ∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角)∵∠BOD、∠COD分别是△AOB、△AOC的外角

∴∠BOD=∠BAD+∠ABO=2∠BAD(三角形的外角等于两个不相邻两个内角的和)∠COD=∠CAD+∠ACO=2∠CAD(三角形的外角等于两个不相邻两个内角的和)∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC 情况3:

如图3,当圆心O在∠BAC的外部时:

图3

连接AO,并延长AO交⊙O于D连接OC,OB。解:∵OA、OB、OC、是半径 ∴OA=OB=OC ∴∠BAD=∠ABO(等腰三角形底角相等),∠CAD=∠ACO(OA=OC)∵∠DOB、∠DOC分别是△AOB、△AOC的外角

∴∠DOB=∠BAD+∠ABO=2∠BAD(三角形的外角等于两个不相邻两个内角的和)∠DOC=∠CAD+∠ACO=2∠CAD(三角形的外角等于两个不相邻两个内角的和)∴∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC 圆心角等于180度的情况呢?

看情况1的图,圆心角∠AOB=180度,圆周角是∠ACB,显然因为∠OCA=∠OAC=∠BOC/2 ∠OCB=∠OBC=∠AOC/2 所以∠OCA+∠OCB=(∠BOC+∠AOC)/2=90度 所以2∠ACB=∠AOC 圆心角大于180度的情况呢?

看情况3的图,圆心角是(360度-∠AOB),圆周角是∠ACB,只要延长CO交园于点D,由圆心角等于180度的情况可知∠ACD=∠ABD=90度 根据情况3同理可证:∠BOC=2∠BAC=2∠BDC 根据情况1和情况3同理可证:∠AOC=2∠ADC=2∠ABC 所以∠ACB+∠ADB=∠ACB+∠ADC+∠BDC=∠ACB+∠ABC+∠BAC=180度 即∠ACB=180度-∠ADB 由情况2可知:∠AOB=2∠ADB 所以360度-∠AOB=2(180度-∠ADB)=2∠ACB

切线长定理

内容:切线长定理,是初等平面几何的一个定理。在圆中,在经过圆外一点的切线,这一点和切点之间的线段叫做这点到圆的切线长。它指出,从圆外一点引圆的两条切线,它们的切线长相等。证明:

欲证AC = AB,只需证△ABO≌ △ACO。

如图,OC、OB为圆的两条半径,又∠ABO = ∠ACO=90° 在Rt△ABO和Rt△ACO中

∴Rt△ABO ≌ Rt△ACO(H.L)

∴AB=AC,且∠AOB=∠AOC,且∠OAB=∠OAC。[3]

弦切角定理

内容:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数。证明:

分三种情况

(1)圆心O在∠BAC的一边AC上 ∵AC为直径 ∴弧CmA=弧CA ∵弧CA为半圆, ∴弧CmA的度数为180° ∵AB为圆的切线 ∴∠CAB=90°

∴弦切角∠BAC的度数等于它所夹的弧的度数的一半(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,在优弧m所对的劣弧上取一点

E,连接EC、ED、EA。则 ∵弧CD=弧CD ∴∠CED=∠CAD ∵AD是圆O的直径 ∴∠DEA=90° ∵AB为圆的切线 ∴∠BAD=90° ∴∠DEA=∠BAD ∴ ∠CEA=∠CED+∠DEA=∠CAD+∠BAD=∠BAC 又∠CEA的度数等于弧CmA的度数的一半

∴弦切角∠BAC的度数等于它所夹的弧的度数的一半

(3)圆心O在∠BAC的外部 过A作直径AD交⊙O于D,连接CD ∵AD是圆的直径 ∴∠ACD=90° ∴∠CDA+∠CAD=90° ∵AB是圆O的切线 ∴∠DAB=90° ∴∠BAC+∠CAD=90° ∴∠BAC=∠CDA ∵∠CDA的度数等于弧CmA的度数的一半。

∴弦切角∠BAC的度数等于它所夹的弧的度数的一半。

切割线定理

内容:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。与圆相交的直线是圆的割线。切割线定理揭示了从圆外一点引圆的切线和割线时,切线与割线之间的关系。这是一个重要的定理,在解题中经常用到。

推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。证明:

设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB。

图1

证明:连接AT,BT。

∵ ∠PTB=∠PAT(弦切角定理);∠APT=∠TPB(公共角); ∴ △PBT∽△PTA(两角对应相等,两三角形相似); ∴PB:PT=PT:AP; 即:PT²=PB·PA。

垂径定理

内容:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。证明:

如图,在⊙O中,DC为直径,AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD 连接OA、OB分别交⊙O于点A、点B ∵OA、OB是⊙O的半径 ∴OA=OB ∴△OAB是等腰三角形 ∵AB⊥DC ∴AE=BE,∠AOE=∠BOE(等腰三角形三线合一)

罗尔中值定理的证明及应用 篇6

微分中值定理是微分学的基本定理, 在数学分析中占有重要地位, 是研究函数在某个区间内的整体性质的有力工具。从费马定理开始, 经历了从特殊到一般, 从直观到抽象, 从强条件到弱条件的发展阶段.人们正是在这一发展的过程中, 逐渐认识到微分中值定理的普遍性.

罗尔中值定理是其他微分中值定理的基础, 而且该定理对判别根的存在性特别有效. 它是由法国数学家罗尔 (Rolle, 1652~1719) 在1691年首先提出的, 直到1846年经法国的另一位数学家完善成今天的形式.

以下就介绍罗尔中值定理的知识:

一、罗尔中值定理的证明

我们首先来观察一个图形, 见图1.

设图1中曲线弧AB是函数y=f (x) (x∈[a, b]) 的图形.这是一条连续的曲线弧, 除端点外处处具有不垂直于x轴的切线, 即 f (x) 在 (a, b) 内处处可导.且两端点处的纵坐标相等, 即 f (a) = (fb) .可以发现在曲线弧AB的最高点或最低点处, 曲线都有水平的切线. 如果记曲线弧AB的最高点C的横坐标为ξ, 则f' (ξ) =0.若我们用分析的语言把这一几何现象描述出来, 就得到了下面的罗尔 (Rolle) 定理.

罗尔定理若函数y=f (x) 满足:

(1) 在闭区间[a, b]上连续;

(2) 在开区间 (a, b) 内可导;

(3) 在区间端点处的函数值相等, 即 f (a) =f (b) ,

则在 (a, b) 内至少存在一点ξ, 使得f' (ξ) =0.

罗尔定理的几何意义是说:在每一点都可导的一段连续曲线上, 如果曲线的两端点高度相等, 则至少存在一条水平切线 (图 1) .

为了给出罗尔定理的严格证明, 我们首先需要学习下面的引理, 它称为费马 (Fermat) 定理.

费马定理设函数 (fx) 在点x0 的某邻域U (x0 ) 内有定义, 并且在x0 处可导, 如果对任意的x∈U (x0 ) , 有 (fx) ≤ (fx0 ) , 则f ('x0 ) =0.

分析为了利用函数值的大小关系得出导数的结论, 显然应该考虑使用导数的定义.

费马定理告诉我们, 若函数在x0 点可导, 且函数在x0 点处取得了局部的最大值或最小值, 则函数在点x0 处的导数一定为零, 即f' (x0 ) =0.

由图1知, 函数 f (x) 在ξ处取得了局部的最大值.因此, 根据费马定理不难证明罗尔定理.

罗尔定理的证明由于 f (x) 在[a, b]上连续, 所以 f (x) 在[a, b]上必定取得它的最大值M和最小值m.这样, 只有两种可能的情形:

(1) M=m.

此时对于任意的x∈[a, b], 必有f (x) =M.故对任意的x∈ (a, b) , 有f' (x) =0.因此, (a, b) 内任一点皆可作为我们找的ξ.

(2) M>m.

因为 f (a) =f (b) , 所以M和m中至少有一个不等于f (a) .不妨设M≠f (a) , 则在 (a, b) 内必有一点ξ, 使得f (ξ) =M.又因为对于任意的x∈[a, b], 有 f (x) ≤f (ξ) , 且f' (ξ) 存在.故由费马定理知, f' (ξ) =0.类似可证m≠f (a) 的情形.罗尔定理成立.

二、罗尔定理的应用

1.函数零 (值) 点问题.

例1设 (a, b) 为有限或无穷区间, f (x) 在 (a, b) 内可微, 且 (有限或±∞) , 试证:存在ξ∈ (a, b) , 使得f' (ξ) =0 (.推广了的罗尔定理)

证若f (x) 不恒等于A (有限数) , 则存在f' (x) =0, 问题自明.

若 (fx) =A, 则x0∈ (a, b) , 使得f (x0) ≠A, 下设 (fx0 ) >A (对 (fx0 )

若A=+∞ (或 -∞) , 则 (a, b) 内任取一点作x0 , 上面的推理保持有效.

例2证明方程x3+x-1=0在区间 (0, 1) 内只有一个实根.

证明存在性:令f (x) =x3+x-1, 函数 (fx) 在闭区间[0, 1]上连续, 且f (0) =-1<0, f (1) =1>0.由闭区间上连续函数的零值定理可知, 至少存在一点ξ∈ (0, 1) , 使得f (ξ) =0.

唯一性:假设函数f (x) 在开区间 (0, 1) 内有两个不同的实根, 设为x1 , x2 , 且x1

f' (x) =3x2+1, f (x1 ) =f (x2) =0.

于是, 函数f (x) 在[x1 , x2 ]上满足罗尔定理的条件, 故存在ξ∈ (x1 , x2 ) , 使得f' (ξ) =0.但是f' (ξ) =3ξ2+1>0, 矛盾.于是方程x3+x-1=0在区间 (0, 1) 内只有一个实根.

2.证明中值公式.

例3设 (fx) , g (x) , h (x) 在[a, b]上连续, 在 (a, b) 内可导, 试证存在ξ∈ (a, b) , 使得 (.2) 证记, 则F (x) 在[a, b]上连续, 在 (a, b) 内可导, F (a) =F (b) =0.应用罗尔定理可知, 存在ξ∈ (a, b) , 使得F' (ξ) =0.根据行列式性质, F' (ξ) =0即是式 (2) .

例4设f (x) 在[0, +∞) 上可导, 且0≤f (x) ≤x/ (1+x2) .试证:存在ξ>0, 使f' (ξ) = (1-ξ2) / (1+ξ2) 2.

张角定理在证明线段相等中的应用 篇7

本文现将张角定理及其在线段相等证明中的应用介绍如下,供参考.

一、张角定理

如图1,设直线AB上有一点C,在直线AB外有一点P,且视点P对于线段AC,CB的张角分别为α,β,若α+β<180°,则=+.

证:△PAB=△PAC+△PCB,

∴PA·PB·sin(α+β)

=PA·PC·sinα+PC·PB·sinβ两边同除以

PA·PB·PC,即得所证.

二、应用举例

例1在线段AC上任取一点B,分别以AB,BC为边,在AC的同侧,作等边△ABD,△BCE;连AE,交DB于M;连DC,交EB于N.

求证:BM=BN.

证:如图2,以B为视点,分别对A,M,E及D,N,C用张角定理,得=+,=+,而BA=BD,BE=BC,∴BM=BN.

例2 已知四边形MCND两组对边延长所得交点的连线AB与四边形的一条对角线CD平行,又MN的延长线交AB于F.

求证:AF=FB.

证:如图3,设∠MAC=α,∠CAB=β,以A为视点,分别对B,N,D;B,C,M及F,N,M用张角定理,得

=+, (1)

=+, (2)

=+,(3)

在△ACD中,= . (4)

∴(1)+(2)-(3)-(4),得=,

∴AB=2AF,故AF=FB,.

例3 如图4,以⊙O的直径AB为一边作等边△ABC,同时将另一侧的半圆三等分,其分点为M,N,连结CM,CN交AB于D,E.

求证:AD=DE=EB.

证:连结AM,OM,则以A为视点,对C,D,M用张角定理,得

=+,

∴AD=.

设⊙O的半径为R,则

AD==R.

由图形的对称性知:BE=R.

∴DE=2R-R-R==AD=EB.

例4 已知M是⊙O的弦AB的中点,过M任作两弦CD,EF,连结CF,DE分别交AB于G,H. 求证:MH=MG(蝴蝶定理).

证:如图5,设∠GMF=α,∠HMD=β,

以M为视点,对E,H,D及F,G,C分别用张角定理,得

=+, (1)

=+.(2)

∴(1)-(2),得

sin(α+β)(-),

=(MF-ME)-(MD-MC). (3)

设P,Q分别是CD,EF的中点,则

MD-MC=2MP=2MOsinβ,

MF-ME=2MQ=2MOsinα,(4)

∵ME·MF=MC·MD,

∴将(4)代入(3),得

sin(α+β)(-)=0,

∵α+β≠180°,∴sin(α+β)≠0,

∴MH=MG.

例5 在“筝形”ABCD中,AB=AD,BC=CD,过AC,BD的交点O任作两条直线,分别交AD于E,BC于F,AB于G,CD于H. GF,EH分别交BD于I,J.

求证: OI=OJ.

证:如图6,易知AC⊥BD,设∠EOD=α,∠DOH=β. 以O为视点,分别对G,I,F;E,J,H;A,G,B;A,E,D;C,H,D和B,F,C用张角定理,得

=+, (1)

=+, (2)

=+, (3)

=+, (4)

=+, (5)

=+, (6)

将(3)和(6)中OG与OF的表达式同时代入(1),得

=(OA·OBsinβsinα+OA·OC

sinβcosα+OB·OCsinαsinβ+OA·OCsinαcosβ),(7)

将(4)和(5)中OE与OH的表达式同时代入(2),得

=(OC·ODsinβsinα+OA·OC

sinβcosα+OA·ODsinαsinβ+OA·OCsinαcosβ),(8)

因为OB=OD,所以由(7)和(8)即得OI=OJ.

综上所述可知,应用张角定理证明线段相等时,关键在于根据题设,寻找与结论有关的线段所在的三角形,找准视点,利用张角定理写出关系式,再结合三角知识,通过变形化简,消去无用的参变数即可.

验证勾股定理的证明 篇8

几何学里有一个非常重要的定理,在我国叫 “勾股定理”或“商高定理”,在国外叫“毕达哥拉斯定理”。相传毕达哥拉斯发现这个定理后欣喜若狂,宰了100头牛大肆庆贺了许多天,因此这个定理也叫“百牛定理”。勾股定理不仅是最古老的数学定理之一,也是数学中证法最多的一个定理。但是,在现实中,有什么方法,可以证明勾股定理呢?看着三角形的边边角角让我想到七巧板,拼图。

于是我动手做了几个五巧板,如下图:

b 然后,利用这些五巧板我做了以下实验:

1)用两副五巧板,将其中的一副拼成一个以c为边长的正方形;将另一副拼成两个边长分别为a、b的正方形。

523 b 4 5a

S1、S2、S3、S4、S5组成;

S1、S3组成;

S2、S4、S5

2)用上面的两副五巧板,还可以拼出如下所示的图形:5 353

a

余弦定理的三种证明 篇9

c2=a2+b2-2abcosC,b2=a2+c2-2accosB,a2=b2+c2-2bccosA

证明:按照三角形的分类,分三种情形证明之.(1)在RtABC中,如图1-1 根据勾股定理: c=a+b

因为cosC=0,所以c=a+b-2abcosC

A

a222,所以b=a+c-2accosB cb222

因为cosA=,所以a=b+c-2bccosA

c

因为cosB=

(2)在锐角△ABC中,如图1-2 作CDAB于点D,有

b

c

C a

B C

CD=asinB,BD=acosB,AD=AB-BD=c-acosB

b

b2=CD2+AD2=(asinB)2+(c-acosB)2=a2+c2-2accosB

同理可证:

A

c

B

D

c2=a2+b2-2abcosC, a2=b2+c2-2bccosA

(3)在钝角△ABC中,如图1-3

作CDAB,交AB的延长线于点D,则

CD=asinCBD=asinB,BD=acosCBD=-acosB,AD=AB+BD=c-acosB

b2=CD2+AD2=(asinB)2+(c-acosB)2=a2+c2-2accosB

按照(2)的方法可以证明:

b

a

c2=a2+b2-2abcosC, a2=b2+c2-2bccosA

综上所述,在任意的三角形中,余弦定理总是成立.A

B D

证明:在△ABC中,令AB=c,AC=b,BC=a

aBCBAACbc

22222|a|(bc)b2bcc|b|2|b||c|cosA|c|2

即a=b+c-2bccosA

同理可证:c=a+b-2abcosC,b=a+c-2accosB

证明:对于任意一个ABC,建立直角坐标系如图所示,那么A(bcosC,bsinC),B(a,0)

因为余弦定理中涉及到c,我们自然想到计算AB的长度。根据两点间的距离公式,我们有: 2222222222A c

B a b C

c2|AB|2(bcosCa)2(bsinC)2a2b22abcosC,即cab2abcosC

弦切角定理的证明 篇10

定理:若且n>1,A1,A2,…An是有限集合,则:| A1∪A2∪…∪An |= +…

+(-1)n-1| A1∩A2∩…∩An |①

为下面分析与证明方便,我们将①式变形为:| A1∪A2∪…∪An |=(-1)1-1

(-1)(n-1)-1

这里①式变为②式只是形式上的变化,定理的意义是没有改变的。

设M={A1,A2,…,An},②中的每一个∑都表示从M中任取相应个数的不同元素,依次分别有A1,A2,…,An种,再求出每一种的所有元素交集的基数,然后求和。以下仿此。可见,我们可以用组合的方法来分析研究②式。

下面我们用数学归纳法来证明②式:

1. 当n=2时

(1)若A1与A2不相交,则A1∩A2=Φ,而且| A1∩A2 |=0,这时显然成立

| A1∪A2 |=| A1 |+| A2 |。

(2)若A1与A2相交,则A1∩A2≠Φ,但有

| A1 |=| A1∩-A2 |+| A1∩A2 |

| A2 |=| -A1∩A2 |+| A1∩A2 |

此外| A1∪A2 |=| A1∩-A2 |+| -A1∩A2 |+| A1∩A2 |

所以,| A1∪A2 |=| A1 |+| A2 |-| A1∩A2 |

在这里,-A定义为:-A=E-A={x|},其中E为全集。

2. 假设n=k-1时命题成立

若干基本定理的新角度证明 篇11

关键词:矩阵的秩定理,有限开覆盖定理,欧拉定理,可数集,隐函数组定理

然而在教学中不是一件容易的事, 在本科教学中有好多学生对一些基本定理的理解显然不足, 没有自己的看法和思路, 甚至勉强承认书本中的逻辑式的证明, 对定理的本质没有一点“感觉”, 很难转化为自己的东西. 为此在比较了中西方许多教科书之后, 针对其中的一些基本定理, 摈弃一些传统的固定模式的证明, 从新角度给予阐释, 目的在于把命题的本质“自然”“看得见的”呈现在读者面前, 弄清楚是什么, 是怎么回事, 一旦明白了本质, 证明只是一件简单严格叙述的事情罢了, 从而帮助本科生更好地理解学习.

1. 矩阵的秩定理

矩阵的行秩和列秩相等.

这是高等代数里非常基本的性质定理之一, 大部分教材是通过客观的证明行秩小于等于列秩, 列秩小于等于行秩来证明行秩与列秩相等. 我们通过矩阵本身最基本的初等变换, 给出一种自然的看法.

让我们先看看最简单的一般形式的梯形矩阵吧.

这显然行秩等于列秩, 实际上就是1的个数. 那让我们再看看普通的矩阵:

和梯形矩阵 ( 1) 的关系.

很显然, 任何一个矩阵 ( 2) 都可以通过有限次初等变换变成 ( 1) .

那反过来呢? 因为初等变换的过程是可逆的, 所以由相对应的 ( 1) 反过来可以经过有限次初等变换成原来的 ( 2) .

因为梯形矩阵 ( 1) 的行秩与列秩是相等的, 故我们只需验证初等变换不改变行秩与列秩就可以了. 下面给出简单的证明.

2. 有限开覆盖定理

若为闭区间上的一个开覆盖, 则存在有限开覆盖.

这是数学分析教材里最基本的定理之一, 也是实数完备性定理之一. 实数的完备性可以说是数学中基础的基础.正确地理解实数的完备性无疑是本科生的重点和难点. 但是一般的教材里的证明都让学生感觉很生涩, 如果理解不到位还会让学生感觉只是逻辑的堆砌, 完全看不出生活中实数的自然性, 也不理解这样做的原因. 大部分教材如《数学分析》 ( 华东师范大学出版社) 里的证明一般都是用分割的方法, 我们考虑另一种形象的看法, 然后给出一个自然的证明.

实际上我们搞清楚定理在说什么就可以了. 什么是一个开覆盖? 条件说存在一个开覆盖, 承认存在开覆盖的同时实际上也承认了什么?

既然闭区间存在开覆盖, 那当然区间里任一点都存在相应的开区间覆盖它, 从而这个点和覆盖它的开区间的右边端点有个距离, 比如, 从点a开始, 任取一个覆盖它的开区间, 有个距离. 我们取所有这些距离里最大的, 也就上确界, 记为, 如果点仍落在闭区间内, 可以接着进行下去取最长的距离, 依次类推. 这时候只需注意到条件说存在开覆盖, 也就意味着这些不断取到的点总可以超过点b ( 想想为什么? 如果永远都到达不了点b, 又怎么会有开覆盖呢? 因为这已经是按照最大方式接近点b了) , 从而当然一定有限! 也就是说实际上这些暗含的信息是等价的, 搞清楚这些剩下的就是严格叙述的事了.

3. 可数个可数集的并是可数集

设一组集合, 若每个为可数集, 则为可数集.

这个命题是实变函数教材里最基本的命题之一, 关乎学生以后对分析的理解和运用. 虽然很简单, 但是事实是仍然有好多学生对集合论感觉很玄乎, 比如选择公理之类的, 以至于对这个命题也感觉可对可错. 这种想法实际上是不对的. 此命题是严格正确的, 证明方法有很多, 比如Rudin的数分析原理里的证明就是用下标标号法, 实际上还可以更直接的去看待这个问题, 可以“看得见的”去证明.

可数集的概念我们是用自然数集N来定义的, 那就直接考虑是否和N对等就行了. 下面有个很自然的看法.

4. 欧拉定理

V + F - E = X ( P) , V是多面体P的顶点个数, F是多面体P的面数, E是多面体P的棱的条数, X ( P) 是多面体P的欧拉示性数. 如果P可以同胚于一个球面 ( 可以通俗地理解为能吹胀成一个球面) , 那么X ( P) = 2. 特别的, P为凸多面体时, X ( P) = 2.

一般的教材中有很多证明, 比如《整体微分几何初步》 ( 沈一兵) , 用到微积分、微分形式等. 针对凸多面体, 下面给出一种自然的初等的看法.

参考文献

[1]常庚哲, 史济怀.数学分析教程.第三版.高等教育出版社.

[2]王萼芳, 石生明.高等代数.第三版.高等代数出版社.

[3]华东师范大学数学组.数学分析.第三版.华东师范大学出版社.

[4]Walter Rudin.The Principles Of Mathematics.Third Edition.机械工业出版社.

[5]沈一兵.整体微分几何初步.第一版.高等教育出版社.

[6]Artin.algebra.

[7]Vladimir A.Zorich.Mathematical Analysis I.Springer, 2010 (3) .

[8]Zberhard Zeidler.Applied Functional Analysis:Applications to Mathematical Physics.Spriner Third Edition.

弦切角定理的证明 篇12

一、余弦定理

余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在ABC中,已知ABc,BCa,CAb,则有

a2b2c22bccosA, b2c2a22cacosB, c2a2b22abcosC.二、定理证明

为了叙述的方便与统一,我们证明以下问题即可: 在ABC中,已知ABc,ACb,及角A,求证:a2b2c22bccosA.证法一:如图1,在ABC中,由CBABAC可得:

CCBCB(ABAC)(ABAC)

ABAC2ABAC

b2c22bccosA

AB图122即,a2b2c22bccosA.证法二:本方法要注意对A进行讨论.(1)当A是直角时,由b2c22bccosAb2c22bccos90b2c2a2知结论成立.(2)当A是锐角时,如图2-1,过点C作CDAB,交AB于点D,则

在RtACD中,ADbcosA,CDbsinA.从而,BDABADcbcosA.在RtBCD中,由勾股定理可得: BC2BD2CD2

(cbcosA)2(bsinA)2

c22cbcosAb2

AD图2-1BC即,a2b2c22bccosA.说明:图2-1中只对B是锐角时符合,而B还可以是直角或钝角.若B是直角,图中的 点D就与点B重合;若B是钝角,图中的点D就在AB的延长线上.(3)当A是钝角时,如图2-2,过点C作CDAB,交BA延长线于点D,则 在RtACD中,ADbcos(A)bcosA,CDbsin(A)bsinA.从而,BDABADcbcosA.在RtBCD中,由勾股定理可得:

C BCBDCD

(cbcosA)2(bsinA)2

c22cbcosAb2

DA图2-2B222即,abc2bccosA.综上(1),(2),(3)可知,均有a2b2c22bccosA成立.证法三:过点A作ADBC,交BC于点D,则

BDAD在RtABD中,sin,cos.ccCDAD在RtACD中,sin,cos.bbCD222βαA图3B由cosAcos()coscossinsin可得: ADADBDCDADBDCDcosA

cbcbbc2AD22BDCDc2BD2b2CD22BDCD

2bc2bcb2c2(BDCD)2b2c2a2

2bc2bc2整理可得a2b2c22bccosA.证法四:在ABC中,由正弦定理可得

abcc.sinAsinBsinCsin(AB)从而有bsinAasinB,………………………………………………………………①

csinAasin(AB)asinAcosBacosAsinB.…………………………②

将①带入②,整理可得acosBcbcosA.…………………………………………③ 将①,③平方相加可得a2(cbcosA)2(bsinA)2b2c22bccosA.即,a2b2c22bccosA.证法五:建立平面直角坐标系(如图4),则由题意可得点A(0,0),B(c,0),C(bcosA,bsinA),再由两点间距离公式可得a2(cbcosA)2(bsinA)2c22cbcosAb2.即,a2b2c22bccosA.A(O)图4BxyC证法六:在ABC中,由正弦定理可得a2RsinA,b2RsinB,c2RsinC.于是,a24R2sin2A4R2sin2(BC)

4R2(sin2Bcos2Ccos2Bsin2C2sinBsinCcosBcosC)4R2(sin2Bsin2C2sin2Bsin2C2sinBsinCcosBcosC)4R2(sin2Bsin2C2sinBsinCcos(BC))4R2(sin2Bsin2C2sinBsinCcosA)

(2RsinB)2(2RsinC)22(2RsinB)(2RsinB)cosA

b2c22bccosA

即,结论成立.证法七:在ABC中,由正弦定理可得a2RsinA,b2RsinB,c2RsinC.于是,a2b2c22bccosA

4R2sin2A4R2sin2B4R2sin2C8R2sinBsinCcosA

2sin2A2sin2B2sin2C4sinBsinCcosA

2sin2A2cos2Bcos2C4sinBsinCcosA

22cos2A22cos(BC)cos(BC)4sinBsinCcosA 由于cos(BC)cos(A)cosA,因此

cos2Acos(BC)cos(BC)2sinBsinCcosA

cosAcos(BC)2sinBsinC

cosAcosBcosCsinBsinCcos(BC).这,显然成立.即,结论成立.证法八:如图5,以点C为圆心,以CAb为半径作C,直线BC与C交于点D,E,延长AB交C于F,延长AC交C于G.F2bcosA-cEBaGbbCbb-acA则由作图过程知AF2bcosA, 故BF2bcosAc.由相交弦定理可得:BABFBDBE, 即,c(2bcosAc)(ba)(ba), 整理可得:abc2bccosA.222D图5证法九:如图6,过C作CD∥AB,交ABC的外接圆于D,则ADBCa,BDACb.分别过C,D作AB的垂线,垂足分别为E,F,则AEBFbcosA,故CDc2bcosA.由托勒密定理可得ADBCABCDACBD, 即,aac(c2bcosA)bb.bCD整理可得:abc2bccosA.证法十:由图7-1和图7-2可得a2(cbcosA)2(bsinA)2, 整理可得:a2b2c22bccosA.AE222aac图6FBCEAbsinAaBCbsinADc-bcosAc-bcosAaBbcosAD

上一篇:胸怀祖国、热爱家乡”征文和演讲比赛活动实施方案下一篇:王琦上海中层领导培训心得