直流网架结构

2024-05-11

直流网架结构(精选9篇)

直流网架结构 篇1

0 引言

随着现代化城市建设的日趋成熟,城市用电负荷不断增长,用户对电能质量的要求也不断提高,现有的交流供电系统越来越难以满足发展的需求。近年来,随着大功率电力电子器件、高压换流技术的高速发展,高压直流输电技术也得到了不断的完善,中国、美国、瑞典等国家已经在建造多端直流输电工程[1,2,3]。

直流配电网是一个具有先进的能源管理系统的智能、稳定的交直流混合广域网络[4]。与交流配电网相比,直流配电网有着一些明显的优点:在绝缘水平相同的情况下,直流配电网的传输功率约为交流配电网的1.5倍;直流配电网能够方便各种分布式电源和电动汽车充电站的接入;不同于交流配电网,直流配电网并不存在涡流损耗以及线路的无功损耗,直流配电网的损耗仅为交流网络的15 % ~ 50 %;理论上直流系统没有频率偏差、三相电压不平衡和无功补偿等问题,因此能够有效避免电压波动与闪变、频率偏移、谐波污染等问题,能够有效地改善电能质量,提高电网可靠性[5,6,7,8,9,10]。

目前,国内外对直流配电网的研究尚处于初级阶段,未来的直流配电网技术仍存在许多挑战。本文首先提出了直流配电网的基本概念,对直流配电网链式结构典型支路的功率方程等进行了推导与求解,并对环状拓扑结构及两端拓扑结构的可行性进行了探讨;然后对分布式电源和储能装置接入直流配电网进行了研究,同时采用混合式直流断路器并且提出了一种直流配电网的控制方式;最后通过直流配电网的建模仿真,获得了一些有益的结论,对直流配电网的进一步研究具有一定的参考价值。

1 直流配电网拓扑结构

多端直流系统是从交流系统引出多个换流站,通过多组点对点直流连接不同的交流系统,没有网格、冗余,当拓扑中任何一个换流站或线路上发生故障时,整条线路及其相连的换流站要退出运行,可靠性较低。直流配电网中,各条直流线路可以自由连接,可以互相作为冗余使用,而不是仅仅作为异步交流电网的连接设备[4]。直流配电网的拓扑结构可以根据用途来决定,常见的直流配电网拓扑结构可以分为:链式拓扑结构、两端拓扑结构和环状拓扑结构。

1.1 链式拓扑结构

常见的直流配电网的链式结构如图1所示。在直流配电网的链式结构中,随着负荷的增加,直流电压将会随着潮流流动的方向下降。

图2为直流配电网的典型支路。其中,Ui、Uj为始、末两端的端直流母线电压;Ib为支路电流;Ri j为线路阻抗;Pj为末端负荷的有功功率。

由图2可得:

由式(1)、式(2),得:

求解式(3),可得:

若式(4)有实数解,则:

考虑式(5)等于0的临界情况,则:

在实际的直流配电网中,由于线路上的阻抗相对较小,正常情况下线路两端的电压相差不大,不会出现如式(6)所示的末端电压只有始端电压一半的情况,即式(3)始终有解。可见直流配电网不存在类似交流配电网的静态电压稳定性问题。

1.2 环状拓扑结构的可行性

环状直流配电网的拓扑结构如图3所示。交流配电网的环状结构,通常采用环状设计、解环运行,从而避免了双电源时电压幅值差、相角差引起的无功环流。由于直流配电网中并不需要考虑无功功率,因此也不需要考虑无功环流问题。在研究直流配电网环状拓扑结构时主要考虑出现短路情况的保护问题。

由于直流配电网系统中线路阻抗较小,当线路上发生短路故障时,短路电流上升速度快、幅值高。如果缺乏实用的直流断路器,通常只能将直流变压器或换流器闭锁,以隔离故障。当采用链式系统时,若末端线路发生故障,将上级直流变压器或换流器闭锁,余下线路仍可以正常运行;当采用环状结构时,只能将全部线路停运,极大地降低了系统的可靠性。因此,制约环状直流配电网可行性的关键技术即为直流断路器的研发。

1.3 两端直流配电网拓扑结构的可行性

为了保障直流配电网的可靠性,在两端直流配电网中通常会有一端的交流接口采用定电压控制,其余交流接口采用定功率控制。直流配电网正常运行时,由于不需考虑无功功率因素,并且整个直流配电系统的电压完全由定电压控制端和负荷决定,从而避免了直流电压差引起的功率环流,常见的两端直流配电网拓扑结构如图4所示。

2 分布式电源与储能接入直流配电网

近年来,分布式电源越来越受到学术界的关注,研究表明:分布式电源具有负荷变动灵活、供电可靠、输电损失小的特点。常见的分布式电源主要有光伏电池、燃料电池、风力发电机等,而这些电源产生的电能均为直流电。因此相较于并入现有的交流电网,直接将其并入直流配电网能够有效减少换流站的投资,同时能够减小换流过程的损耗,均有很大的经济效益[11,12]。

2.1 光伏电池

2.1.1 光伏电池模型

光伏发电存在的主要问题是光伏电池受外界环境影响大,温度和光照辐射强度的变化都可以导致输出特性发生较大的变化。因此,为了使光伏电池在不同的光照强度下都能够获得最大的输出功率,通常采用最大功率点跟踪的控制策略[13]。

本文建立光伏发电的模型等效电路如图5所示。图中,IPH为给定光强下的短路电流;I0为二极管饱和电流;RS和RSH为等效电阻;I为电池组件输出电流;U为电池组件终端电压。

考虑到光照强度S和光伏电池温度T的变化,光伏电池输出如下:

其中,K1、K2为常数;ΔT、ΔI、ΔU分别为光伏电池温度、电流、电压的增量;P为输出功率;UM和IM分别为最大电压、电流;UOC为开路电压;ISC为短路电流;Sref和Tref分别为参考光照强度和参考光伏电池温度,通常分别取1 k W / m2 和25℃;参数α和β 分别为参考光照强度下的电流和电压温度系数。

2.1.2 光伏电池并入直流配电网

光伏电池发出的是电压随机波动的直流电,且光伏电池的出口电压相对较低,若想并入交流配电网中首先需要经过DC / DC变压器,再经过DC / AC换流器,同时还需要增设滤波装置,才能有效地并入电网,光伏电池并入交流配电网如图6所示。

若是将光伏电池直接并入直流配电网中,则不需要DC / AC换流器和滤波装置,能够有效地节省设备投入,具有较大的经济意义,光伏电池并入直流配电网如图7所示。直流配电网DCDC光伏阵列

DC直流DC配电网图7光伏接入直流配电网Fig.7 Grid-connection of photovoltaic generation to DC distribution network

2.2 储能装置

2.2.1 储能装置模型

超级电容是一种新型储能元件,是具有超强储电能力、可提供强大脉动功率的物理二次电源。相比于常规的电容,它的容量可达近万法。由于超级电容的充放电过程属于纯物理过程,因此它具有循环次数高、充电过程快、适用于接入直流电网的特点。超级电容具有良好的充放电性能,在额定电压范围内,可以以极快的速度充电至任一电压值,放电时则可以放出所储存的全部电能,而且不存在蓄电池快速充电和放电的损坏问题,并且在瞬间高压和短路大电流情况下有缓冲功能,能量系统较为稳定[14]。

本文所采 用的储能 模型为超 级电容与 双向DC / DC变换器相连接,如图8所示。

2.2.2 储能装置并入直流配电网

如上文所述,含有超级电容的储能装置输出的是直流电,若要并入交流配电网,需要经过DC / AC换流器,同时还需要增设滤波装置,才能有效地并入电网,储能装置并入交流配电网如图9所示。

若是将储能装置直接并入直流配电网中,则不需要DC / AC换流器和滤波装置,能够有效地节省设备投入,具有较大的经济意义,储能装置并入直流配电网如图10所示。

3直流断路器模型与直流配电网控制策略

3.1 混合式高压直流断路器

与传统的交流输电相比,直流输电由于没有电流过零点,因此相较于交流电弧,直流电弧更难以熄灭。现有的高压直流断路器能够在几十毫秒内断开电路,但对于高压直流输电系统,远远不能达到要求。基于半导体的高压直流断路器能够克服动作速度上的问题,但是需要大量电力电子开关器件串并联[15,16,17,18]。本文采用了新型的混合式直流断路器,其拓扑结构如图11所示,能够有效地克服上述缺点。

机械开关S采用高速斥力开关,该装置动作时间短,可以显著缩短直流断路器的开断时间;电力电子复合开关由IGBT阀组T1与晶闸管阀组T2串联构成,由于晶闸管的容量较大,静态电阻也较大,其均压(均流)技术亦较为成熟,因此该复合开关可以有效降低电力电子器件的串(并)联数量及均压(均流)难度;限流电路由限流电感L、晶闸管VDL、V′DL及能量释放电阻RL构成,故障发生时,L用于限制短路电流上升率,故障切除后,L中储存的能量经VDL、V′DL及RL释放,并限制L的感应过电压;续流二极管VD用于释放电源出口与短路点间的线路阻抗中储存的能量,故障切除后,线路阻抗经续流二极管与短路点续流,其感应过电压不会对其他设备产生影响。

3.2 直流配电网的控制策略

直流配电网的控制策略可以分为2层:第一层为配电网上层控制,即系统控制,主要对换流站进行控制,控制直流配电网与交流配电网的功率传输和整个直流配电网的电压;第二层为配电网下层控制,即单元控制,主要对分布式电源的发电、储能元件、直流负荷进行协调控制。

当系统级发生故障时,即交流系统和直流系统连接处或换流站发生故障时,如果与发生故障的线路连接的换流站为一般换流站,只需切除故障线路,将故障的线路与整个直流系统隔离即可;如果与发生故障的线路相连接的换流站为控制直流配电网电压等级的换流站,则应迅速切除故障线路,同时将备用换流站由定功率控制转为定电压控制,来维持直流配电系统电压稳定。

当直流配电网下层发生故障时,如分布式电源发生故障,首先将故障线路切除,为了避免整个直流配电网系统出现短时功率跌落,控制储能单元向直流系统传输功率,维持系统的功率平衡,减小直流系统的电压波动,增加系统的稳定性。

4建模仿真

4.1 光伏电池与直流断路器模型

4.1.1 光伏电池建模

按照2.1.1节所述的光伏电池模型,采用最大功率点跟踪控制,利用PSCAD / EMTDC对光伏模型进行建模仿真,仿真时间为13 s,仿真步长为50μs,仿真系统的环境参数变化和光伏电池向系统输出的功率如图12所示,从图中可以看到随着环境因素的不断变化,光伏电池的输出功率也在不断变化。

4.1.2 断路器建模

利用PSCAD仿真软件对提出的限流式直流断路器进行建模仿真。仿真参数如下:直流电源40 k V;机械开关S为高速开关,电弧模型采用Cassie电弧模型;固态开关开通时间10μs,关断时间400μs(即晶闸管阀组T2的导通时间和零电流下正向阻断能力恢复时间);限流电路L =20 m H、RL= 2Ω;负载电阻R =20Ω,忽略线路阻抗。假设在t=0.5s时发生短路故障,仿真结果如图13所示。

如上所述,0.5s时线路负载发生接地短路故障,由于采用故障预处理控制策略,提前对固态开关阀组施加触发脉冲,故障判断时间几乎可以忽略;机械开关S经过0.3 ms基本完成换流,即电力电子复合开关于0.5003s导通;0.503s时,机械开关S完成零电压下的分闸过程,此时向电力电子复合开关发出关断信号;IGBT阀组迅速断开,约400μs后晶闸管阀组T2亦恢复正向阻断能力,电力电子复合开关完全关断,短路故障被切除。

4.2 系统建模仿真

如1.3节所述,制约环状直流配电网拓扑结构发展的主要技术瓶颈是传统的直流断路器不能够满足开断的要求,如果加入了实用的高压直流断路器,环状直流配电网拓扑结构就能够提供较为稳定的系统。本文在环状直流配电网的拓扑结构中加入上文的混合式高压直流断路器,构建的仿真模型见图14。

图中,交流系统1、2、3的电压等级均为10 k V;直流配电网的电压等级为15 k V;低压直流配电网的电压等级为1 k V;换流站1采用定电压控制,控制整个直流配电系统的电压;换流站2、3采用定电流控制;DCT表示直流变压器。

4.2.1 系统正常情况下仿真

设置中压配电网负荷需求功率为1.2 MW,低压直流配电网需求功率为100 k W,系统环境因素和光伏电池的输出功率的变化如4.1.1节所述,整个直流配电网的电气变化量如图15所示。仿真结果表明:正常情况下,中压直流配电网和低压直流配电网的电压和功率传输都能够稳定在设定的值,不会随着外界环境的不同而产生较大波动。

4.2.2 系统故障情况下仿真

为了验证直流断路器、控制策略的有效性和直流配电系统的可行性,考虑系统发生两相短路故障的情况,设置故障发生在10.5 s,直流断路器检测到故障后自动动作。以光伏系统为例,当光伏系统发生故障时,如果不采用3.2节的控制策略,仅仅是将故障线路切除,则整个直流配电网的电气变化量如图16所示。

当光伏系统发生故障时,如果采用3.2节的控制策略,将故障线路切除,同时储能系统向直流配电系统输出功率,则整个直流配电网的电气变化量如图17所示。

对比图16、17可知,采用3.2节所述的控制策略时,能够在系统发生故障时有效地限制整个直流配电系统的电压和功率的波动幅度,同时能极大地缩短波动时间。图18为15k V配电系统电压波动的过渡过程对比图。

对比图16、17、18可知,光伏电池在10.5 s时发生短路故障,断路器检测到故障后切断故障线路。以15 k V电压为例,如果不采用3.2节所述的控制策略,在发生故障后的过渡过程中系统电压会降至11.5k V,且需要0.3 s系统才能恢复到正常的电压;当采用3.2节所述的控制策略时,在发生故障后的过渡过程中系统的电压仅下降至14 k V,而且仅需要0.01s系统便能恢复到正常的电压。上述仿真结果证明:当系统发生短路故障时,直流断路器能够快速断开故障线路,保障非故障线路正常运行;同时采用本文提出的直流配电网的控制策略,能够有效限制短路故障对系统造成危害,缩短短路时间,使整个直流配电网更加有效稳定地运行。

5结语

本文对直流配电网链式拓扑结构的典型支路的功率方程等进行了推导与求解,并对环状拓扑结构及两端拓扑结构的可行性进行了探讨,接着对分布式能源和储能装置接入直流配电网进行了研究,最后采用了混合式直流断路器模型同时提出了一种新的直流配电网控制策略。仿真结果证明:在正常工况下,中压直流配电系统和低压直流配电系统的电压和功率都可以保持稳定;在故障情况下,直流断路器能够迅速地切断故障线路,同时采用本文提出的控制策略,能够更好地维持系统电压和功率传输的稳定,缩短故障时间,使整个直流配电系统能够更加有效稳定地运行。

摘要:对直流配电网的环状拓扑结构和两端拓扑结构的可行性进行了探讨,对直流配电网链式结构典型支路的功率方程等进行了推导与求解。对分布式能源和储能装置并入交流配电网和直流电网进行了对比研究,研究结果表明相较于接入交流配电网而言,接入直流配电网能够有效节省DC/AC变换器和滤波装置。采用了混合式直流断路器同时提出了一种直流配电网的协调控制模型。利用PSCAD/EMTDC对环状直流配电网结构的正常工况和故障情况进行仿真,仿真结果表明通过有效的控制和分布式能源的合理调度,能够有效限制短路故障对系统造成危害,缩短短路时间,使整个直流配电网更加有效稳定地运行。

关键词:直流配电网,拓扑,混合式直流断路器,分布式电源,控制,模型,仿真

直流网架结构 篇2

关氏的一对K211M上,都有一个转换钮,在交流或直流状态下工作;

老关说过,开机时,最好一对K211M都在交流或直流同一状态下,而且开机后,如要把交流转换成直流,则最好关掉K211M后,再拨到直流后才开机最保险;

因为邱兄也入了一对K211M,近期与我讨论交流与直流的区别等问题,我和邱兄沟通后,总结如下:

我一般不关隔离电源,长期处于开机状态,这样,长时间下电压也相对稳定,先开CD机,再开MA-1,由于MA-1的整流管有延时亮的情况,一般12AX7和2A3B先亮,过几十秒,5U4才亮,等我的5U4整流管亮后,才开K211M;

如K211M处于交流情况下,开机时,对应的音箱会有“喔”的.一声,用耳朵贴在音箱前,噪声较直流状态下大很多,长时间工作后,211管座上的不锈钢面板不发烫,交流下,适合重播大动态的音乐,如交响、协奏曲等大部头作品,有气势,也相对直流猛点;

如K211M处于直流工作下,开机时,音箱没有反映,用耳朵贴在音箱前,噪声不大,长时间开机后,211管座上的不锈钢面板很烫手,直流工作状态下,比较适合重播小型的室内乐,出来的音乐比较内敛;

邱兄的K211M的交流和直流转换钮,与我的刚好相反,我左右拨动的钮,拨到靠接输出端时,处于交流下,邱兄的则是处于直流,是老关接线时,没有一定规律,只能靠自己分辩。

关氏的作品,向来没有说明书,我为了记住,常在笔记本上画图记录下;

MA-1接上一对K211M,由于有交流和直流转换,可以出二种不同的声音表现,多了一种玩法。

最近,深圳常有雨,天气较潮,于时拿出3/5A煲一下,箱子长时间不用,一会受潮,二对生病,就如人不常运动一样。

三分体完全能驾驭我的三对箱,我还是小音量听最多,如家里只有我一人时,会偶尔拿出一部大型爆棚的交响曲来听听,用KSP爆一下,听听HIFI,震撼一下。

在深圳,我亲眼看到某兄,抱关氏300B去摩电容等,我没跟他说话;还有一位在一店里,听他吹,说把关氏的四分体摩的只剩下变压器了,他认为老关的变压器还可以,其他的元件都不符合他的想法,最后声音还是不符合他的要求,又二手出掉机器了,我只是应和他,没有发表我的意见,因为听音乐的风格不同,只要他自己喜欢就行,我认为好的东西,别人不一定认可,所以还是不要随便劝别人。

不可否认,摩机自有他们的乐趣在,但他们花了很多钱在购补品上,如是我,还不如用此钱,多买些碟来听,如DG111的二个套装,是很好的古典入门套装。

直流网架结构 篇3

两端直流输电系统或者多端直流输电系统中,换流站之间的电能传输,可采用架空线路、电缆线路和架空—电缆混合线路这3种线路类型。国内基于晶闸管的相控换流器高压直流输电(LCC-HVDC)多用于大容量、长距离、点对点输电,两端换流站均远离城市中心,电压等级均在500kV及以上,两端都采用架空线路连接,没有用直流电缆。基于电压源换流器的高压直流输电(VSC-HVDC),国内也称为柔性直流(简称柔直),非常适用于向海岛供电、城市负荷中心增容、风电并网等,多采用直流电缆线路连接两端或者多端换流站。特别是城市直流配电系统的发展,柔直电缆线路是必不可少的设备,也有在跨海输电工程中采用电缆—架空混合线路连接,不失为一种经济的选择。

直流电缆及其连接件(终端和接头)的电压范围分类,按照绝缘厚度、参照交流挤出绝缘电缆的IEC标准[1,2,3],可以分为低压(30 kV及以下)、中压(30kV以上到150 kV)、高压(150 kV以上到250kV)、超高压(250kV以上到500kV)和特高压(500kV以上)。

从直流电缆制造工艺来分类,主要有绕包绝缘电缆和挤包绝缘电缆2类。绕包绝缘电缆是采用专门的电缆纸带绕包在导体及其屏蔽外面,再使用绝缘油浸渍纸绝缘,消除纸带之间的空气隙。这种电缆又分黏性浸渍纸绝缘和充油纸绝缘2种类型电缆。黏性浸渍纸绝缘电缆可以制造中压、高压直流电缆,超高压、特高压要采用充油电缆的结构形式。挤包绝缘电缆是采用塑料或橡皮,使用橡塑挤出机,将高分子材料挤包在导体及其屏蔽外面。塑料采用最多的是交联聚乙烯(XLPE),可以用来制造低压、中压、高压、超高压电缆;橡皮主要是采用乙丙橡胶,制造低压直流电缆,用于轨道交通机车内等弯曲半径较小的地方。

绕包纸绝缘电缆结构非常适合用于直流输电,其电场分布按电阻率呈正比分布,正好纸部分电阻大而承受的电压高,油隙部分电阻小而承受的电压低,物尽其用,且空间电荷积累不明显。但电缆纸需采用上好的木材制造,消耗森林资源,绝缘油容易污染环境,因此,这种电缆不益于环保,国内几乎没有电缆厂家生产了。

在当今世界范围内,中压、高压和超高压柔直挤包绝缘电缆均采用高聚物XLPE作为绝缘材料。LCC-HVDC的潮流变换需要改变极性,因此,相控换流器(LCC)电缆需要在绝缘上增加极性反转试验;而VSC-HVDC改变潮流不需要变换极性,故不需要进行极性反转试验。所以,柔直挤包绝缘电缆是发展方向。最近十几年发展起来的柔直输电中几乎都是采用挤包绝缘电缆。这种柔直电缆最先由ABB公司所属的电缆厂在几乎看不到市场前景的情况下研发出来,它们已在20多个工程中运用,有相当的运行业绩。世界上知名的电缆公司以及日本、韩国的企业都在研发这种技术和产品。最近半年,因为大连和厦门±320kV两端柔直工程、舟山±200kV五端柔直工程和南澳±160kV三端柔直工程的驱动,已经有五家国内电缆公司正在研发电缆。全球只有一家公司供应柔直电缆绝缘料,而且工作温度只有70℃。与运行温度为90℃的绝缘料相比,使用此柔直电流绝缘料制造的电缆,其输送容量较低。国内五家电缆公司均采用这种70℃绝缘料试制±200kV柔直电缆并套用到±160kV上去。由于国内工程的工期急需,电缆还没有全部完成型式试验和1年的预鉴定试验,就已被招标采购,选用到工程上。

国内尚无厂家供应柔直电缆绝缘料,世界上高载流量的90℃绝缘料也无商品供货;电缆结构尺寸的设计理论缺乏,消除绝缘中空间电荷积累的制造工艺技术还需要研究;电缆连接件的材料和设计理论都急待解决;电缆系统的试验验证技术,比如试验终端等迫切需要解决。

本文拟从柔直挤包绝缘电缆的绝缘料及电缆产品结构等方面出发,探讨柔直电缆结构设计。

1 柔直电缆绝缘料

在直流高压电场作用下,电缆面临的主要问题是绝缘介质中或者界面上会积累一定的空间电荷。如果空间电荷密度足够高,局部电场甚至可能超过绝缘介质的击穿场强,导致介质破坏[4]。因此,绝缘材料的空间电荷问题成为制约直流电缆系统向高压及超高压发展的主要障碍之一。

1.1 直流XLPE电缆绝缘料开发

早在2004年,日本开始研制500 kV直流XLPE电缆[5]。在XLPE电缆绝缘料中引入极性基团消除空间电荷。90℃温度下,在模型直流电缆上施加场强30 kV/mm,加压时间分别为0,5,2 160h,使用电声脉冲法测量了绝缘中的空间电荷分布,根据电荷分布求出了其场强分布,如图1(a)所示。为便于对比,在同样的条件下同时测量了模型交流XLPE电缆绝缘中的场强分布,如图1(b)所示。

由图1可见,在较长时间的直流高压作用下,直流XLPE电缆绝缘料中的电场分布均匀,接近于拉普拉斯电场分布。在图1(b)中,交流XLPE电缆绝缘料中的电场分布随着时间的变化而逐渐变得不均匀,在靠近内半导屏蔽层处出现场强畸变,最大场强超过平均场强的2倍。极性基团作为陷阱点,具有吸引和捕获载流子源(交联分解物等)的能力,其捕获载流子后,载流子不能在绝缘中迁移,使空间电荷密度在绝缘中分布均匀,从而使得场强也均匀分布。

需要说明的是,日本研发的用于500kV直流XLPE电缆的绝缘料并未商品化。绝缘材料中的空间电荷问题是直流电缆面临的最主要的问题之一,如何有效地抑制空间电荷成为科研工作者最为关心的问题,国内外的相关研究人员开始广泛研究抑制空间电荷的方法和寻找添加剂。

1.2 空间电荷测量技术

在绝缘试样的厚度方向上分布的空间电荷会影响其上的电场分布。在平行板结构中,无空间电荷时电场分布是均匀的;而在有空间电荷存在的情况下,电场分布将随厚度的变化而变化。若不计正负号,电场的积分总是等于外加电压。空间电荷使局部电场增加而高于外加电场,因而导致击穿。注入的同号电荷引起了电极附近的电场下降,而相应的,试样中部的电场就上升。反之,在电极附近的载流子积累若形成异号电荷,则引起此界面上电场增加。然而,更多的情况是异号电荷与同号电荷同时存在,这就更需要加以控制。空间电荷的测量具有双重的意义,一方面,在实际的应用上有助于控制因空间电荷而增强的局部电场;在另一方面,从空间电荷的发展演化中可以有助于理解电荷的传输机理[6]。在过去的20年中,对电介质内空间电荷分布的研究和认识已取得了明显的进展。这归功于能获得空间及极化电荷分布详细信息的几种重要测量方法的建立、发展和完善。特别是以分辨率为1μm数量级的声和热方法的应用,已大大地加深了对聚合物薄膜中电荷的建立、积累、储存和运输现象的认识和理解。目前,在直流XLPE电缆中的空间电荷的研究中,压力波(pressure wave propagation,PWP)法和电声脉冲(pulsed electro-acoustic,PEA)法是最有效、常用的2种测量方法。

PWP法的基本原理是[7]:弹性波在介质中以声速传播时,破坏了介质内部原先弹性力和电荷产生电场力的平衡,引起介质中的电荷发生微小位移,电荷的微小位移又导致介质电极上感应电荷量的变化,因此在外电路上可观测到电流或电压信号的变化,从而获得介质中空间电荷分布的有关信息。

PEA法的基本原理是[7]:在介质电极上加上一个窄高压脉冲,则介质中的空间电荷和电极界面都受到这一脉冲电场力的作用而相应地产生声脉冲。声脉冲的压力剖面与空间电荷的分布有关。用声传感器接收与测量这些声脉冲,就可以得到空间电荷的分布信息。

目前,空间电荷测量的试样大多数是平板试样,厚度为0.1~2 mm。而针对电缆的圆柱状且较厚的绝缘试样的空间电荷测量报道很少,这主要是由于国内外较少有单位能自主研发电缆绝缘空间电荷测量装置;另外,作为一种专利技术,已成功开发此装置的单位对此严格保密。总体来说,电缆绝缘空间电荷测量装置研制需注意两点:(1)由于电缆绝缘厚度较大,为了保证设备有足够的灵敏度和分辨率,脉冲发生器的功率必须足够大,建议研制50kV毫微秒脉冲发生器以用于激励空间电荷声波;(2)研制一套半弧形电极,与圆柱形电缆绝缘界面捏合。同时,区别于平板试样,圆柱状试样的空间电荷信号的数学处理必须在极坐标下进行。

1.3 空间电荷的陷阱能级

介质中的空间电荷行为主要取决于它的空间分布与陷阱能级分布。前者的研究基本上用测量空间电荷分布的技术,如前面提到的PEA法与PWP法,后者基本上以热刺激放电(thermally stimulated discharge,TSD)法、等温放电法、光刺激放电(photo-stimulated discharge,PSD)法等进行研究[8,9]。一般说来,聚合物的电击穿是由于介质微观结构的不完整性以及介质中引入的外来杂质所引起的,它们构成了引起介质老化的电荷积累的中心[10],即电荷的物理陷阱和化学陷阱。在目前广泛应用的聚合物材料中,由于材料中存在着链折叠和弯曲、分子链同分异构体转换构成的缺陷等分子间的空隙属于物理陷阱(约为0.1~0.5eV)。聚合物材料中还存在着分子结构的缺陷,分子结构型的无序,分子链上的各种支链、侧链、端基、断链、晶区与无定型区的界面,还有近年来被广泛关注的聚合物/纳米粒子复合电介质中的聚合物与纳米粒子的界面,以及各种极性基团、添加剂、抗氧化剂、交联剂和杂质等,这些因素都会在电介质材料中引入局域态,构成电荷的化学陷阱(深度可大于1eV)[11]。因此,认识聚合物介质的陷阱能量分布对于更好地研究和改善聚合物的绝缘性能具有重要的意义。

TSD法是研究电介质宏观规律及微观性质的基本方法之一。其测量系统简单、操作方便,被广泛地应用于电介质的电荷陷阱研究。分析TSD电流谱就能获得空间电荷的陷阱参数(电荷密度、活化能、平均渡越时间、电荷捕获的平均深度、尝试逃逸频率等)的详细信息。TSD法被认为是假设陷阱深度、捕获截面等陷阱参数与温度无关的前提下建立的理论。然而,加热过程不仅使陷阱中的电荷受到热激发,同时对陷阱本身也有热侵蚀作用[12],会引起陷阱及中心环境的改变,这必将导致陷阱参数的变化。

PSD法是Brodribb等人在20世纪70年代为获取有机晶体陷阱深度的信息提出来的[13]。PSD法是用能量可调的单能光子辐照试样使相应能量的陷阱电荷脱阱,并通过测量脱阱电荷迁移所形成的外电路电流来研究试样中空间电荷的陷阱能量分布。由于实验设备的昂贵性、电介质内陷阱电荷的光致排空并不彻底等问题,在随后的一些年里使用该技术研究介质中电荷陷阱的相关报道较少。然而与TSD法相比,它有如下特点:(1)在PSD实验过程中,试样可始终保持在任意设定的一个低温值,这样可以在保持材料结构或陷阱构造原貌特征的前提下,准确地获取试样的陷阱信息;(2)对于熔点较低的材料,由于陷阱结构的提前破坏,TSD法通常无法得到试样的深陷阱信息;而PSD法能够准确地探测深度高达6eV的深陷阱[14]。近年来,PSD法逐渐被接受并用于实验研究中,一些有意义的结果被不断报道。

文献[15-17]通过PSD法研究了聚乙烯的陷阱能量分布。他们在常规的连续扫描法的基础上,进一步提出了分步扫描法,即通过等能量光照使得陷阱电荷逐步地从浅到深依次释放,然后对记录的光电流积分即可得到各陷阱能量区间的空间电荷数量。图2显示了聚乙烯各陷阱能带中的捕获电荷量占总捕获电荷量的百分比[15],这些陷阱能带的中心陷阱能级分别为4.29,4.60,4.97,5.40,5.92eV,对应的波长分别为290,270,250,230,210nm。中心深度为4.97eV的陷阱能带(4.78~5.18eV)中捕获的电荷量约占总电荷量的57.4%,仅很少量的电荷(约为总电荷量的5%)被捕获在中心深度分别为5.92eV和4.29eV的深陷阱能带(5.65~6.22eV)和浅陷阱能带(4.14~4.44eV)。

1.4 绝缘料空间电荷抑制技术

为改善直流电缆XLPE绝缘中的空间电荷积聚问题,各国科研工作者对空间电荷抑制技术进行了大量的探索,总体来说,可以分为接枝和添加纳米填料两大类。这些工作都取得了一定的进展。如国外化工企业通过在聚乙烯链上接枝一种极性共聚单体,有效地抑制了空间电荷,开发了直流电缆用XLPE绝缘料并全球供应,但其使用温度只有70℃。日本选择在XLPE绝缘料中添加纳米填料,早在1998年首次研制了2根250kV直流电缆[18]。在国内,也有许多科研工作者进行了这方面的研究,其中有代表性的如下。

1)接枝。国内有高分子材料厂用马来酸酐接枝,成功地抑制了XLPE中的空间电荷,并批量生产高压直流电缆的XLPE料,工作温度为70℃。

2)添加纳米填料。文献[19]以质量百分比为0.1wt%,0.2wt%,0.5wt%,1wt%的二氧化钛(TiO2)、二氧化硅(SiO2)、钛酸钡(BaTiO3)、三氧化铝(Al2O3)和氧化镁(MgO)等5种纳米粒子在150℃下的混炼机上混入低密度聚乙烯(LDPE)中,热压成1mm厚度的薄板试样,试样外贴半导体电极,在40℃下外施DC电场40kV/mm至电荷分布稳定,用PWP法测量了试样中空间电荷分布。研究发现,当质量百分比不小于0.2wt%时,Al2O3和MgO纳米粒子具有显著的抑制空间电荷的作用。另外,文献[20]以纳米MgO为填料,研究了不同含量下聚乙烯试样中空间电荷分布和电导与电场強度、温度的关系,最后确定当MgO含量为1%时,试样不再存在空间电荷。

在电力行业中,交流电缆中的XLPE工作温度为90℃。但在直流电缆中,通过接枝方法改性的XLPE的工作温度均只有70℃,这就较大地降低了电缆的载流能力。通过添加纳米填料的方法可能使得直流电缆在抑制空间电荷的同时,保证90℃的工作温度。上述研究表明,某些纳米填料能较好地抑制XLPE中的空间电荷,但在添加纳米填料的同时,如何使得纳米填料在XLPE中分散均匀是一个技术难点。这是因为聚乙烯属于非极性分子,而纳米填料属于极性分子,这2种材料的相容性较差,这样在XLPE中添加纳米填料的过程中很难保证纳米填料的分散均匀性。

对纳米粒子表面改性,可提高粒子与XLPE的相容性,并最终提高纳米填料在XLPE中的分散均匀性。改性手段可以分为两类。

1)物理表面修饰。通过吸附、涂敷、包覆等物理作用对微粒进行表面改性,利用紫外线、等离子射线等对粒子进行表面改性也属于物理修饰。文献[21]通过Ca2+,Ba2+无机阳离子等活化,使SiO2等纳米粒子表面由负电荷转变为正电荷,再吸附硬脂酸钠、十二烷基磺酸钠或十二烷基苯磺酸钠等阴离子表面活性剂,制得了相应的有机化改性样品。

2)化学表面修饰。通过纳米微粒表面与处理剂之间进行化学反应,改变纳米微粒表面结构和状态,达到表面改性的目的称为纳米微粒的表面化学修饰。文献[22]把SiO2加入辛醇中,在甲苯磺酸的催化下,把反应物置于微波炉中照射加热,反应4h,即可得到改性SiO2样品。

最后应当指出,通过这2种改性手段获得的纳米粒子是否均匀地分散于XLPE中必须借助于实验仪器的观察,如扫描电子显微镜、透射电子显微镜等。另外,在改性过程中引入的一些杂质可能会对空间电荷、电导率造成一定的影响,这都有待于实验验证。

2 柔直电缆设计

2.1 电场分布

电缆绝缘层中的电场分布,交流电缆与直流电缆有很大的不同。交流电缆中电场分布是与介电常数ε呈反比分布,ε与温度无关。直流电缆中电场分布是与体积电阻率呈正比分布,电阻率与温度和电场有关。交流电缆中几乎没有空间电荷累积效应,而直流电缆中有明显的空间电荷累积的影响。运行中的直流电缆,受到雷电冲击电压、操作冲击电压时、电场分布受ε影响。这样,直流电缆绝缘层中电场分布比交流电缆复杂得多。

假定电缆绝缘发热已经稳定,绝缘中损耗忽略不计,不考虑空间电荷的影响,那么,距离电缆导体轴线r处的电场强度E为:

式中:U为绝缘层承受的电压;rc为导体屏蔽层外表面的半径;R为绝缘层外表面的半径;α为绝缘电阻温度系数,聚乙烯和XLPE的α=0.15℃-1;θc为导体屏蔽外表面温度;θs为绝缘外表面温度。

式(1)只考虑了温度对电阻率的影响,实际上,绝缘电阻率也受电场强度E的影响,两者同时作用时,有

式中:γ为系数,当E=5.25~21.0kV/mm时,γ为2.1~2.4。

式(1)与式(3)的形式完全一致,式(1)中的β相当于式(3)中的δ。从式(3)可以看出,直流电缆绝缘层中电场分布与电缆绝缘结构尺寸、承受电压大小和导体负载电流大小有关。

当直流电缆导体电流为零,即空载时,最大电场强度在导体屏蔽外表面上。当负载电流增加时,导体屏蔽表面场强减小,绝缘层外表面电场强度将增大,它会超过导体屏蔽上场强。

单纯的暂态电压(包括雷电冲击电压、操作冲击电压、极性转换瞬态电压)作用在直流电缆绝缘上,其电场分布与交流电缆一样,按ε呈反比分布。

运行中的直流电缆系统本身一直承载直流工作电压,暂态电压来袭时,会叠加在直流电压上,直流电压叠加冲击电压,其绝缘中电场分布既不同于交流电缆,又不同于直流电缆,而是两者的综合。

直流电压叠加同极性冲击电压时,叠加瞬间的电场Es为:

式中:Ed为直流工作电压的稳态电场,按电阻分布;Etr为叠加的冲击电压的暂态电场,按电容分布;Vd为直流电缆运行电压;Vs为叠加同极性冲击电压后电缆绝缘上的电压。

同样原理,直流电压上叠加反极性冲击电压时,叠加时的电场Er为:

式中:Vr为叠加反极性冲击电压后电缆绝缘上升高的电压。

运行中直流电缆绝缘上,经受雷击过电压或操作过电压时,叠加反极性冲击电压比同极性冲击电压时的绝缘介质对外表现出击穿强度下降。这是因为在直流电场作用下,靠近电极处存在着与电极极性相同的空间电荷。在施加反极性的冲击电压的极短时间内,被电缆绝缘材料捕获的空间电荷几乎保持不变,且其极性与电极极性相反。这样,在空间电荷与电极间存在着较高的电场,引起绝缘局部场强的畸变。故叠加冲击电压绝缘水平已成为影响电缆绝缘厚度的主要因素,特别是超高压直流电缆绝缘厚度更是决定因素。最近国内直流电缆的试验中,出现的击穿情况,也是在直流电压叠加冲击电压试验中,出现问题较多。

2.2 国内外柔直电缆

ABB公司将电压源换流器(VSC)换流站与聚合物电缆相结合形成柔直输电的概念,较传统的LCC直流输电,成本大大下降。为了提高输电线路可靠性,在柔直输电中通常采用电缆系统作为输电线路。ABB公司研制的直流电缆结构为:中间导体一般为铝材,导体屏蔽层、绝缘层、绝缘屏蔽层三层同时挤出均匀包裹在导体外面,形成绝缘结构,采用铜丝绕包在绝缘屏蔽外形成金属屏蔽,最外面由铝箔和聚乙烯形成外护套保护电缆。这种新型的三层聚合材料挤压的单极性电缆,较传统的油纸绝缘结构电缆,具有高强度、绿色环保等特点,适合用于深海等恶劣环境。这种直流电缆重量轻、成本低、传输功率大。例如:一对95mm2铝导体电缆,在直流工作电压为±100kV时,能够传输30MW的功率,其重量为1kg/m,绝缘厚度为5.5 mm,可以非常方便地埋在地下。

国产柔直电缆结构相似于交流电缆结构,就陆地柔直电缆而言,国内五家电缆公司试制的电缆参见图3,其为±200kV陆地柔直电缆,导体截面为1 000mm2。

海底柔直电缆与陆地柔直电缆在7之前结构一致。从7开始,将皱纹铝套改为平滑铅套,外护套改为内护套,增加1层或者2层钢丝铠装,钢丝外热涂沥青防腐,再覆盖聚丙烯绳作为外被层。

关键的材料以及导体屏蔽、直流交联料和绝缘屏蔽料,各厂均进口同一家电缆料公司的同一牌号产品,而且绝缘料的最高工作温度为70℃,比现在的交流交联料工作温度90℃低了许多,这就导致电缆的载流能力偏小,经济性能下降。

国产柔直电缆现状是几乎均采用铜导体,这就造成造价高、重量重、铝套容易电化腐蚀,故外面涂沥青防腐层,外护套外面涂石墨导电层,以便进行外护套直流耐压,但沥青和石墨在电缆制造和使用中均易污染环境。海底电缆的金属套多采用铅套,铅是重金属,也会污染环境。

2.3 新型柔直电缆设计

针对现有柔直电缆弊端,对柔直电缆重新进行设计。成本低、绿色环保的±320kV和±200kV新型柔直陆地和海底电缆分别见图4和图5。

±320kV和±200kV柔直陆地电缆和海底电缆,工作温度为90℃绝缘中的电场分布分别见图6和图7。

图6和图7中,β曲线只考虑了温度对电场分布的影响,δ曲线同时考虑了电场和温度对绝缘中电场分布的影响。可以看出,绝缘中电场和温度同时作用时,对电场分布有均匀作用。

3 柔直电缆发展趋势

国外ABB公司1997年开始试验投运±10kV柔直电缆系统,多采用铝导体和XLPE,外护层采用铝塑综合防水层。逐步淘汰了油纸电缆绝缘结构。2013年5月,ABB公司在德国北部投运了±320kV轻型直流系统,将北海800MW的海上风电接入欧洲输电系统。瑞典国家电网运营商Svenska Kraftnt公司投资1.6亿美元,建设连接瑞典南部和西部的地下输电线路,线路全长200km,电压等级为300kV,输送容量2×660 MW。采用柔直地下电缆系统,电缆为铝导体,挤包绝缘。ABB公司将负责包括终端、接头和其他配件在内的整套电缆系统的设计、生产、供货和安装工作,整个项目将于2014年完工。这套地下电缆解决方案主要是为了提高瑞典国家电网南部的输电能力和抵抗自然灾害能力,有助于提升瑞典与挪威两国间的电力交换容量。未来,该线路还将支持大量风电顺利并入瑞典电网。

欧洲超级电网是一种未来电力系统,主要基于直流输电,将偏远地区的大规模可再生电力传输到消费中心,输电线路大量采用直流交联电缆系统。

在中国,柔直电缆系统采用进口绝缘料的研究尚处于起步阶段,其电缆结构将交流电缆的结构套用过来,几乎都是铜导体铝护套或者铅护套。国内±200kV五端柔直工程和±160kV三端柔直工程的所需要的直流电缆系统正在试验验证之中。±160kV柔直陆地和海底电缆已经定标两家国内电缆公司生产。

国内外的商用柔直电缆导体工作温度都是70℃,而且均是单芯电缆。未来铜价约高于铝价4倍及以上时,国内就会发展铝导体或铝合金导体、铜护套,工作温度要达到90℃。绿色环保高载流量的柔直电缆、双芯电缆是发展方向。

向遥远的海岛供电及海上风电进网时,柔直海底电缆会大量采用。现在都采用2根极线分2次敷设,分开距离一般为2倍水深。这不仅使敷设费用增加,而且电缆线路占用海域面积较大,导致以后每年要交海域使用费用较多,增加了电缆线路运行成本。

未来的发展方向是将2根极线放在一起,一次性敷设完成,甚至还可以将光缆也与2根极线放在一起同时完成敷设。

对于电压低或者导体截面小的海缆,可以在工厂绞合在一起,然后装船敷设。对于电压高或者导体截面大的海缆,可以在敷设时将2根极线平行放在一起,也可加上光缆,采用坚固的带子绕包绑扎后,再敷设到海底。

4 结论

1)应大力开发用于电缆绝缘的空间电荷测量装置。在研究过程中,应重视功率足够大的脉冲发生器及与圆柱形电缆绝缘界面捏合的半弧形电极的研制。空间电荷陷阱电荷能量测量方法主要为TSD法和PSD法,PSD法测量聚乙烯陷阱能量分布的结果显示,电荷主要被捕获在中心深度为4.97 eV的陷阱能带中。

2)通过添加纳米填料抑制电缆XLPE绝缘中空间电荷时,必须解决纳米粒子与XLPE的相容性问题,通常可以通过表面物理修饰和表面化学修饰等改性手段完成,但改性的有效性必须通过实验的进一步验证。

3)柔直XLPE电缆绝缘中电场分布与体积电阻率呈正比分布,而电阻率与导体负载和绝缘中电场有关,运行中柔直电缆经受的反极性冲击电压是电缆绝缘的关键影响因素。

4)现有开发的柔直电缆工作温度较低,部分结构材料不环保,文中提出高载流90℃工作温度绝缘料,并研究设计出绿色环保高压、超高压陆地和海底电缆结构。

直流电路基础试题 篇4

一、填空题

1、由_______________、_______________、_______________和_______________组成的闭合回路叫做电路。

2、电荷的_______________移动就形成了电流。若1分钟内通过某一导线截面的电量是6C,则通过该导线的电流是_______________A,合_______________mA,合_______________μA。

3、当一只“220V 40W”的灯泡,它的灯丝电阻是_______________。当它接在110V的电路上,它的实际功率是_______________。(假定灯丝电阻不随温度而变化)

4、把5Ω的电阻R1和10Ω的电阻R2串联接在15V的电路上,则R1消耗的功率是_______________。若把R1、R2并连接在另一电路上,若R1消耗的功率10W,则R2消耗的电功率是_______________。

5、表头是万用表进行各种不同测量的公用部分,将表头_______________一个分压电阻,即构成一个伏特表;而将表头_______________一个分流电阻,即构成一个安培表。

6、有一包括电源和外电路电阻组成的简单闭合电路,当外电阻加倍时,通过的电流减为原来的2/3,那么外电阻与电源内阻之比为_______________。

7、如果给负载加上100V电压,则在该负载上就产生2A的电流;如果给该负载加上75V电压,则负载上流过的电流是_______________;如果给该负载加上250V电压,则负载上的电流是_______________。

8、混联电路如图1所示。(a)电路的等效电阻RAB=________,图1(a)(b)

(b)电路的等效电阻RCD=____________。

9、在应用叠加定理分析电路时,对电源的处理方法是(1)_________;(2)______________。

10、电感两端的电压在某一时刻t0出现跳变时,____________并不跳变。

二、是非题

1、基尔霍夫电流定律是指沿任意回路绕行一周,各段电压的代数和一定等于零。()

2、任意的闭合电路都是回路。()

3、理想电压源和理想的电流源是可以进行等效变换的。()

4、电压源和电流源等效变换前后电源内部是不等效的。()

5、电压源和电流源等效变换前后电源外部是不等效的。()

6、在支路电流法中,用基尔霍夫电流定律列节点电流方程时,若电路有m个 节点,那么一定要列出m个方程来。()

7、回路电流和支路电流是同一电流。()

8、在电路中任意一个节点上,流入节点的电流之和,一定等于流出该节点的电 流之和。()

9、在计算有源二端网络的等效电阻时,网络内电源的电动势可去掉,电源的内 阻也可不考虑。()

10、由若干个电阻组成的无源二端网络,一定可以把它等效成一个电阻。()

11、任意一个有源二端网络都可以用一个电压源来等效替代。()

12、用支路电流法求解各支路电流时,若电路有n条支路,则需要列出n-1个 方程式来联立求解。()

13、电路中的电压、电流和功率的计算都可以应用叠加定理。()

14、如果网络具有两个引出端与外电路相连,不管其内部结构如何,这样的网络 就叫做二端网络。()

15、在任一电路的任一节点上,电流的代数和永远等于零。()

三、计算题

直流网架结构 篇5

目前我国已运行的直流线路最高电压等级为±500 kV,其杆塔设计、荷载组合已有较为丰富的工程设计经验。而±800 k V级特高压直流输电线路是迄今为止世界上最高电压等级的直流输电线路,这是一个全新的领域,缺乏相关资料。据估计,±800 kV直流线路杆塔和基础的投资约占总投资的30%(其中杆塔投资约占30%,基础投资占20%)。影响杆塔和基础指标的主要因素在于杆塔荷载的大小,因此有必要对特高压直流输电线路杆塔结构的动力特性、荷载及组合方案进行详细研究,确定的杆塔荷载及组合原则,对±800 k V直流输电线路的杆塔设计起到指导意义,对控制特高压直流输电线路的工程投资以及线路的长期安全运行具有重要意义。

1 输电线路杆塔结构的第一自振周期计算方法

1.1 建筑结构荷载《规范》计算方法

按《架空送电线路杆塔结构设计技术规定》(DL/T5154-2002)的要求,对杆塔全高超过60 m时,应按《建筑结构荷载规范》(GB50009-2001)计算杆塔风荷载调整系数,要计算杆塔风荷载调整系数,首先得确定结构的第一自振周期,而且第一周期计算的精确性直接影响杆塔结构的风荷载。《建筑结构荷载规范》提供的塔式结构第一自振周期的估算公式为[1,2]:

1.2 我国电力部门所建议的计算方法

根据我国电力部门所做的输电塔实测研究,得到的输电塔结构自振周期近似计算公式为:

1.3 电力系统的修正公式

以电力系统输电塔实测得到的结构自振周期近似公式为思路,以实际输电铁塔的空间模型计算为依据,对其自振周期近似公式进行修正[3]。

(1)修正后干字型塔的计算公式

(2)修正后酒杯型塔的计算公式

式中:H为全塔高度;b为塔头宽度;B为根开宽度。

1.4 Rayleigh近似法

本工程为直流输电线路,杆塔型式均采用干字型和千字型,可采用上述公式近似杆塔结构的第一自振周期,也可采用Rayleigh法(即近似法)较精确计算杆塔结构的第一自振周期。

式中:T1为杆塔的基本自振周期,s;yh为在单位力1 N作用下塔顶m1质点处的位移,m/N;yi为在单位力1 N作用下塔上mi质点处的位移,m/N;mi(i=1,…,n)为每个节点处的杆塔自重质量及附加于该节点上的质量之和,mi=Wi/g,g为重力加速度,取9.8 m/s2。

2±800 kV特高压直流输电线路杆塔

±800 k V输电线路杆塔结构(直线塔和耐张塔)与传统的干字型塔相比,为了满足挂线要求,横担宽度更宽,质量更大,其刚度及质量分布与传统的干字型塔存在一定的区别,为了探讨±800 kV输电线路杆塔结构的第一周期计算方法及其精确性,采用SAP 2000进行直线塔和耐张塔整体结构建模,分析其动力特性。

2.1 直线塔

直线塔塔高H=71.5 m,跟开B=13.68 m,塔顶b=2.725 m,横担长度为38.6 m,主材的规格如表1所示,直线塔的分析模型如图1所示,自振周期如图2所示。

2.2 耐张塔

耐张塔塔高H=69.0 m,跟开B=17.2 m,塔顶b=1.88 m,上横担长度为29.4 m,下横担长度为38.8m,主材的规格如表1所示,直线塔分析模型如图3所示,自振周期如图4所示。

3 第一自振周期的计算分析

通过对本工程典型高度的直线塔和耐张塔的第一自振周期的计算,探讨本工程杆塔结构自振周期的合理计算方法。近似计算公式和有限元分析得到第一自振周期的的分析比较如表2所示,根据《建筑结构荷载规范》(即式(1))计算得到的第一自振周期的变化范围较大,最大值与最小值之比相差近1倍;根据我国电力部门实测研究得到的公式计算得到的直线塔和耐张塔的第一自振周期均与有限元分析得到的结果符合较好;根据修正后的推荐公式(3)~(6)计算得到的第一自振频率与有限元分析结果也比较接近,但是其误差比式(2)计算得到的自振周期大。考虑到本工程±800 k V输电线路杆塔的可靠性和重要性均较±500 k V高,风荷载相对也较大,所以杆塔的第一自振周期较±500 kV杆塔有所降低,本工程将采用式(2)计算杆塔的第一自振周期。

4 结论与建议

(1)±800 kV输电线路杆塔结构(直线塔和耐张塔)与传统的干字型塔、猫头塔相比,代表结构主要动力特性的第一自振周期存在一定的差别,按传统输电塔结构的计算方法进行自振周期计算存在一定的误差。

(2)由于设计过程中的荷载概况不尽相同,直线塔和耐张塔的自振中起存在一定的差别,典型直线塔的T1=0.6 s,耐张塔的T1=0.515 s,即耐张塔的第一自振周期较直线塔小、刚度大。

(3)±800 kV输电线路杆塔结构的第一自振周期按照电力部门所建议的式(2)进行计算误差较小。

参考文献

[1]GB50135—2006.建筑结构荷载规范[S].2006.

[2]DL/T5154—2002.架空送电线路杆塔结构设计技术规定[S].2002.

直流网架结构 篇6

无刷直流电动机 (Brushless DC motors, BLDCM) 因众多优良性能而普遍应用于各种领域之中[1,2]。在BLDCM的电流滞环控制系统中, PI调节器的输出为参考电流, 而参考电流受逆变器容量、定子绕组以及磁路饱和等因素的限制, 通常在PI调节器的输出端加上限幅器来限制参考电流, 这样必然会引起积分饱和现象 (windup现象) , 从而降低控制系统的性能[3,4]。

为解决这一问题, 相关文献提出了多种不同的抗积分饱和方法, 其中多数方法是基于条件积分思想和反计算思想而提出。条件积分思想是指当控制系统的输入受限时, 就通过积分开关来关闭或削弱积分作用, 其主要优点是控制器的结果简单, 设计方便, 但其对控制对象及其参数的摄动都缺乏通用性, 甚至可能会导致控制系统的失控[5,6]。反计算思想将限幅器的输入、输出之差反馈到输入端来削弱windup现象, 其具有设计思路简单, 易实现的特点, 但其具有鲁棒性差的缺陷[7]。针对上述方法的缺陷, 文献[8]提出了一种抗饱和变结构PID控制方法来抑制系统的积分饱和现象, 该控制器结合了条件积分思想和反计算思想的优点, 既具有开关来控制积分环节, 同时又引入了反馈作用, 因而具有抗干扰性好, 结构简单的优点。

综上分析, 本文采用抗饱和变结构PI控制算法应用到BLD-CM的电流滞环控制系统中, 用于抑制控制系统的积分饱和现象。最后通过MATLAB/Simulink仿真对本文采用控制方法对于BLDCM电流滞环控制系统性能的改善进行验证。

1 BLDCM控制系统的结构原理

BLDCM控制系统的原理如图1所示, 其为一个双环控制系统。其中, 转速环为外环, 电流环为内环。通过位置传感器对BLDCM的转子位置进行在线监测, 从而获得BLDCM的转子位置信号θ, 由θ经转速计算模块可得BLDCM的实际转速, 将其与参考转速进行比较, 经抗饱和变结构PI控制器得到三相参考相电流的幅值Is, 根据三相参考电流与转子位置之间的对应关系可得三相参考电流, 将其与实际三相电流比较获得逆变器开关管的触发信号, 从而驱动BLDCM正常运行。

2 BLDCM控制系统Anti-windup器设计

在BLDCM的电流滞环控制系统中, 受逆变器容量、BLDCM定子绕组以及磁路饱和等因素的限制, 通常要施加非线性饱和环节来限制。当PI控制器的输出大于非线性饱和环节的上限时, 控制量us就被限制在上限值us, max, 而被控制量r在不断上升, 受控制量的限制, 其增长要比没有受到限制时慢, 误差e (t) 将比正常情况下持续更长的时间保持在正值, 从而使得积分项有较大的累积值[9]。当被控制量r超出r*后, 开始出现负值。但由于积分项的累积值较大, 还要经过较长时间控制量才脱离饱和区, 引起windup现象, 从而降低控制系统的性能。

由于条件积分思想和反计算思想而设计抗饱和积分器存在自身的缺陷, 本文采用抗饱和变结构PI控制算法, 该算法综合前两种算法的优势, 其原理框图如图2所示。其抑制积分饱和现象的思路是:根据非线性饱和环节的输出是否达到饱和状态, 有条件地将非线性饱和环节的输出与输入之差反馈到积分器的输入端, 对积分状态进行调节。使控制器在进入饱和区后, 能够适时快速地退出饱和区, 从而减小控制系统超调量, 减少到达稳态时间。

用MATLAB语言编写程序流程如图3所示。

3 电流滞环控制的实现

转速偏差经抗积分变结构PI调节器得到三相参考相电流的幅值Is。根据BLDCM理想情况下转子位置与三相参考电流之间的对应关系图 (如图4) , 用MATLAB/Simulink中Lookup table模块可求得三相参考电流, 输出的三相参考电流直接输入电流滞环控制器与实际电流进行滞环比较, 当参考电流大于实际电流且两者之差大于滞环比较器的限宽时, 对应相的正向导通, 负向关断;反之, 对应相的负向导通, 正向关断。由此, 通过设定合适的滞环限宽, 即可使实际电流不断跟踪参考电流的波形, 实现电流闭环控制。

4 仿真与分析

为验证本文采用控制算法对于积分饱和现象抑制的效果, 本文在MATLAB/Simulink仿真平台下搭建BLDCM控制系统进行仿真。仿真的BLDCM参数如下:逆变器直流侧电压U=220 V;定子绕组自、互感差L-M=2.5 m H;定子电阻R=1Ω;额定转速n=500 r/min, 转动惯量J=0.005 kg·m2, 阻尼系数B=0.000 2 N·m·s/rad, 极对数P=1。

在仿真过程中, 将BLDCM空载启动, 此时的给定转速为500r/min, 当BLDCM达到稳定运行状态时, 在1 s时施加0.5 N·m的负载转矩, 并且将给定转速增加到700 r/min。通过仿真可得, 采用常规PI控制器的仿真结果如图5所示。采用抗饱和变结构PI控制器的仿真结果如图6所示。

根据上述的仿真结果, 可对两种控制方法的转速响应作比较如表1所示。

由以上分析可知, 传统的PI控制与本文采用的控制方法均能使得BLDCM的转速波形达到稳态。但是, 相对于传统的PI控制算法, 本文采用的抗饱和变结构PI控制算法能够使系统的积分饱和现象得到抑制, 速度响应的超调量更少, 到达稳态的时间更短, 同时还提高了系统对负载扰动的鲁棒性。

5 结束语

本文将抗饱和变结构PI控制算法应用到BLDCM的电流滞环控制系统中, 用于抑制控制系统的积分饱和现象。通过仿真表明:本文采用的抗饱和变结构PI控制算法能够使系统的积分饱和现象得到抑制, 速度响应的超调量更少, 到达稳态的时间更短, 同时还提高了系统对负载扰动的鲁棒性。

参考文献

[1]薛晓明, 楼桦. 最佳PWM调制方式控制的无刷直流电机转子位置检测[J]. 电气自动化, 2009, 31 (1) :43-45.

[2]刘鼎, 欧阳红林, 汪利峰. 权值自调整模糊PI在无刷直流电机中的应用[J]. 计算机仿真, 2010, 27 (4) :150-153.

[3]Peng Youbin, Vrancic D, Hanus R. Anti-windup bumpless and conditioned transfer techniques for PID controller[J]. IEEE Control Systems Magazine, 1996, 16 (4) :48-57.

[4]杨立永, 陈智刚, 李正熙. 新型抗饱和PI控制器及其在异步电动机调速系统中的应用[J]. 电气传动, 2009, 39 (5) :20-23.

[5]杨明, 徐殿国, 贵献国. 控制系统Anti-Windup设计综述[J]. 电机与控制学报, 2006, 10 (6) :622-626.

[6]杨明, 徐殿国, 贵献国. 永磁交流速度伺服系统抗饱和设计研究[J]. 中国电机工程学报, 2007, 27 (15) :28-32.

[7]于艳君, 柴凤, 高宏伟. 基于Anti-Windup控制器的永磁同步电机控制系统设计[J]. 电工技术学报, 2009, 24 (4) :66-70.

[8]A. Scottedward Hodel, Charles E. Hall Variable-Structure PID Control to Prevent Integrator Windup[J]. IEEE transactions on industry electronics, 2001, 48 (2) :442-451.

直流网架结构 篇7

引言

直流开关是一种采用振荡回路产生过零点进行关断的特殊开关,它主要用来关断高压直流,在江陵换流站共采用了四种不同的高压直流开关,分别为M R T B、GRTS、NBS和NBGS,虽然都是直流开关,但是由于关断时的电压和电流不相同,所以在结构上也有很多的不同点,见表1。

1 MRTB

全称为Mtallic Return Transfer Breaker(金属返回转换开关),用于通过一个停运且隔离的极的极导体将大地返回通道的直流电流换到金属返回通道。MRTB有三个并联分支:(1)SF6断路器分支,用来断开主回路,(2)电抗通过单相合闸开关与电容连接的分支,这是直流开关的振荡回路,可以产生一个人为的过零点。由于断开的时候开关两端电压很高,所以如果要关断必须提供一个150KV的反向转换电压,而转换回路达不到这么高的电压,因此需要一个特别的换相回路(有源辅助回路)对电容器充电,使电容器具有一个初始电压。另一个为非线性电阻分支,用来释放振荡回路的能量。

2 NBS和NBGS[2]

NBS和NBGS的全称分别为Ne ut r a l Bus Switch(中性线开关)和Neutral Bus g r o u n d i n g S w i t c h(中性线接地开关)。NBS用于从运行极停运并隔离换流器的中性线。在中性线绝缘故障引起的单极跳闸的情况下,跳掉的一极NBS将称为泄漏电流的直流电流转换到最大直流极电流;NBGS用于直流站内的直流中性线提供一个暂时的本地接地。本地接地的最重要的用途是用作清除某些直流故障并作为中性线的一个暂时接地点。这个本地接地也在例如接地极的维护工作中使用。由于关断这两种直流开关的时候,虽然只需要一个20KV以内的相对较低的电压,但是由于关断电流非常大(常常是整个回路的电流),所以也要采用和MRTB结构相同的有源振荡回路。图1给出了MRTB、NBS和NBGS三种直流开关共同的电路图。

3 GRTS

G R T S是用于通过接通一个停运且隔离的极的极导体,同时断开MRTB,将大地返回通道直流电流切换到金属返回通道。换相过程需要一个50KV以内的相对较低的换相电压,且换相电流也相对较低,因此只需要一个无源回路就足够了。无源回路由三个分支组成;一个为SF6断路器分支、一个为电抗与电容串联、另一个为非线性电阻分支。图2是GRTB接线图。

4 NBGS[3]

N B G S有一个特别的特征是其必须能快速合上以防止直流中性线的电压上升不可控制。因此NBGS由换相断路器和高速隔刀串联而成。正常情况下,高速隔刀是断开的,换相断路器是闭合的,故需合上NBGS时,只需合上高速隔刀即可,因为其合闸速度很快,因此这样就可以很快合上NBGS。但NBGS不能开断电流,故需换相断路器断开电流。断开NBGS时,线段换相断路器,再断高速隔刀,待高速隔刀断开后,再合上换相断路器。NBGS的串联结构见图3。

5 结语

虽然同样是直流开关,但是由于作用和工作电流和电压的不同,四种直流开关都有其特有的设计。由于直流开关工作的具体过程比较复杂,因此一旦直流开关发生故障,检查处理时需要注意的环节会很多,因此直流开关平时的运行维护很重要。文章对江陵换流站使用的四种直流开关的结构进行了比较和分析,希望对直流开关的运行维护有一定的帮助。

摘要:介绍了直流开关的工作原理和作用,对江陵换流站使用的四种直流开关的结构作了详细的比较,并阐述了每种开关采用不同结构的原因,供检修维护人员借鉴参考。

关键词:直流开关,中性线开关,中性线接地开关,金属返回转换开关,大地返回转换开关

参考文献

[1]陕西省电力公司.高压断路器检修[M].第一版.北京:中国电力出版社,2007,3~32

[2]林立生.直流断路器[J].华北电力技术,2007,3(2):38~39

直流网架结构 篇8

无刷直流电机由于具有没有换向火花、寿命长、运行可靠、维护简便、转速不受机械换向的限制等一系列优点, 目前已运用到航空航天、电子设备、采矿、化工等工业控制的各个领域[1]。传统的PID控制过于依赖系统自身的参数, 控制效果难以达到最优。一些先进的控制理念已经运用到对无刷直流电机的控制上来, 如模糊控制、神经网络控制、免疫反馈控制等[2,3,4], 这些研究对于无刷直流电机的控制都起到了一定的改善作用。

滑模变结构控制能够通过控制器本身结构的变化, 突破经典线性控制系统的限制, 用滑模变结构控制方法来研究时滞系统的鲁棒问题, 是近年来一个新的研究方向[5]。因此, 对于无刷直流电机系统, 采用改进的基于趋近率的离散滑模变结构控制方法设计无刷直流电机系统的控制器, 建立无刷直流电机的数学模型, 并利用MATLAB/Simulink对其进行建模及仿真。

1 无刷直流电机数学模型的建立[6]

无刷直流电机由电机本体、转子位置传感器和电子换相线路三大部分组成。定子上导磁的定子铁心及导电的电枢绕组设计时要求结构简单, 运行可靠, 并能产生足够的磁动势以得到足够的转矩;转子采用瓦形磁钢, 进行特殊的磁路设计, 可获得梯形波的气隙磁场;电子换相电路能按照位置传感器的信号进行正确换向和控制, 能够实现电机的正反转, 并且能满足不同环境条件和长期运行的要求。

以两相导通星形三相六状态为例, 分析BLDC的数学模型及电磁转矩等特性。为了便于分析, 假定电机定子三相完全对称, 空间上互差120°;三相绕组电阻、电感参数完全相同;转子永磁体产生的气隙磁场为方波, 三相绕组反电动势为梯形波;忽略定子绕组电枢反应的影响;电机气隙磁导均匀, 磁路不饱和, 不计涡流损耗;电枢绕组间互感忽略。可得到无刷直流电机的数学模型:

式中, ua, ub, uc, un分别为三相端电压和中点电压, V;ea, eb, ec为三相电子反电动势, V;ia, ib, ic为三相电子相电流, A;La, Lb, Lc为三相电子自感, H;Ra, Rb, Rc为三相电子绕组的相电阻, Ω。

由电机的结构决定, 在360°电角度内, 转子的磁阻不随转子位置的变化而变化, 假定三相绕组对称, 则La, Lb, Lc相等, Ra, Rb, Rc相等。

三相对称的电机中, ia+ib+ic=0, 以及Mib+Mic=-Mia, un=0, 则式 (1) 可改写为状态方程:

式中, P为微分算子。

在电机运行过程中, 电磁转矩的表达式为:

式中, ω为转子角速度, rad/s。

电机的机械运动方程为:

式中, f为阻尼系数, N·m·s/rad;J为电机转动惯量, kg·m2;TL为负载转矩, N·m。

反电动势系数ke的计算公式:

式中, W为电枢绕组每相串联的匝数;φ为每极磁通, Wb。

电机运行过程中瞬态功耗的公式为:

式中, Ω为电机角速度, P为功耗。

2 滑模变结构控制器的设计

2.1 滑动模态域的设计

滑模控制是设计控制系统的一个普遍方法, 适用于高阶段与低阶段、线性与非线性、连续与离散、确定性与不确定性的各种控制系统, 是一种综合设计方法。滑模控制系统的主要问题是确定切换函数S (x) , 使它所确定的滑动模态渐近稳定且具有良好的动态品质。设计滑动模态控制率u± (x) , 使条件得到满足, 从而在切换面上形成滑动模态区。

对于无刷直流电机控制系统, 如能用状态方程描述为, 此系统是单输入系统, 则可确定切换函数[7]:

系数c的选择满足Hurwitz稳定多项式, 可由极点配置法求得:

式中, F为反馈系数矩阵, T为非奇异线性变换矩阵。可得:

2.2 滑模变结构控制器的设计

滑模变结构控制系统的运动由两部分组成:系统在初始点进入切换面的运动阶段, 即到达段;系统在切换面上的运动阶段, 即滑模段。要求系统过渡过程有良好的品质, 就必须使这两段都具有良好的品质。滑模段的品质可由滑模方程来决定。但到达段的品质一直未受到足够重视, 滑模可达性条件仅实现了在状态空间任意点必然于有限时间内到达切换面, 至于如何运动, 未做任何规定。

式中, 可认定ω*为常数, 所以x2=dω/dt;KT为转矩系数;Req=2R, Leq=2 (L-M) 。

将式 (10) 代入式 (2) 可得切换函数s。

滑模变结构控制能获得较好的控制性能, 但抖振是变结构控制最突出的缺陷, 它是滑动光滑运动上叠加的一个小幅度、高频率的自振, 是由于滑模变结构控制本质上的不连续开关特性引起的。为了改善到达段的品质, 可设计各种趋近率, 这里采用改进的指数趋近律, 形式为:

可验证式 (11) 满足滑模系统可达到条件ss觶<0。

稳定性分析:

将式 (10) 和式 (7) 代入式 (11) , 可得趋近率控制输出方程ueq。

3 仿真

在MATLAB7.0/SIMULINK中搭建如图1所示的系统仿真模型。仿真中无刷直流电机的参数设置为:定子相绕组R=0.6Ω, 定子相绕组自感与互感之差L-M=1.68m H, 转动惯量J=0.00231kg·m3, 额定转速n=2000r/min, 反电动势系数Ke=0.054V·rad·s-1, Leq=1.257m H, 转矩系数KT=0.0683N·m/A, 极对数P=4, 逆变器的开关频率设为10k Hz, 直流无刷电机的通电方式为三相Y联接。

电机的目标转速为2000r/min, 将该控制器与文献[9]设计的PI控制进行对比, 在系统始终加入3N·m的负载, 两种控制的阶跃响应如图2所示。

图中实线为常规PI控制速度响应曲线的仿真波形, 虚线为采用滑模变结构控制调节器控制速度曲线的仿真波形。从仿真图形可以看出, 两种控制方法都能实现有效控制, 相对于采用PI控制算法电机转速反应较慢的缺点, 滑模变结构控制能够快速反应。常规PI控制速度响应曲线有近15%的超调, 且有3个周期的振荡;而采用滑模变结构速度调节器控制速度响应曲线仅为不足5%的超调, 并且更快达到稳定。采用滑模变结构速度调节器的控制品质可与其他智能控制系统相当, 但其交流调速系统结构简单得多。为了进一步检验系统抗干扰的能力, 同样在给定转速为n=2000r/min, 0.14s突加负载, 将负载转矩加到4N·m, 两种控制的转速响应曲线如图3所示。

从图3可以看出, 系统在0.14s突加负载时, 采用PI控制的速度曲线出现了明显的波动;而采用滑模变结构控制后, 系统能够快速跟踪响应, 消除扰动对转速的影响, 系统跟踪性能不受影响, 跟踪控制精度较高, 鲁棒性较强。

为进一步验证两种控制状态的稳定性, 对系统在给定输入信号下两种控制系统的电磁转矩进行分析。图4、图5分别为给定转速为n=2000r/min下PI控制和滑模变结构控制电机电磁转矩的波形图。

由图4、图5可知, PI调节由于磁链、转矩估算产生的误差及转速PI调节器的原因, 电磁转矩振动较大, 电磁转矩的波动较大, 变化的频率也较高;而滑模控制由于具有强鲁棒性, 输出转矩能够快速准确地跟随负载, 具有更快的转矩响应速度和更好的稳态性能。

4 结语

采用滑模变结构控制策略既能发挥滑模变结构控制鲁棒性强、动态响应好、上升时间快的特点, 又能大大减小系统的稳态误差, 该控制策略的控制效果响应快、稳态精度高, 与传统PI控制方法相比具有更好的稳定性和抗干扰能力。

参考文献

[1]强宁.基于TMS320F2812的航空发动机转速信号采集研究[J].电子测量技术, 2008, 31 (11) :76-79

[2]李晓明, 蔡忠春, 蒋宁.航空发动机转速信号的检测[J].长春工业大学学报 (自然科学版) , 2007, 28 (2) :220-223

[3]白思春, 禇全红, 孟长江, 等.发动机转速信号测量与精确相位确定[J].小型内燃机与摩托车, 2012, 41 (5) :81-83

直流网架结构 篇9

近年来,国内外针对太阳能电池运行失配及功率补偿问题开展了一系列研究,包括受阴影影响的太阳能模组伏安特性仿真方法[1,2,3,4,5,6,7,8,9]、利用超级电容补偿太阳能电池功率损失的方案[10,11]、解决阴影功率出现多峰现象时最大功率点跟踪(MPPT)方法等[12,13,14,15,16]。另一方面,为解决失配运行问题,太阳能模组直接与变流器组合的交流或直流配置运行方案也日渐得到重视。2004年,Geoffrey R.Walker等人就居民住宅太阳能系统提出直流模块(DC modular system)方案[17,18]。由于安装在屋顶或墙面的太阳能电池阵列有安装方位角和倾斜角的差异,一般会导致辐射水平不均,这种DC模块方案能使每个太阳能模组有效地工作在各自的最大功率点;此外,James等人提出交流模块(AC modular system)方案因为太过复杂且需额外增加交流保护的投资,在成本方面不占优势[19]。不过,E.Roman等人指出,太阳能DC模块方案中DC/DC模块由于效率的原因,在实际应用中通常受到限制[20]。因此,由于级联运行的各模组串联电流强制相等,可能会出现部分太阳能模组无法最大功率运行的情况。本文主要针对该问题,提出了一种功率裕度在线评估方案,使系统输出功率最大化。

1 光伏直流级联系统

近年来欧洲委员会在第六框架计划内资助的PV-MIPS(Photovoltaic Module with Integrated Power Conversio n and Interconnection System),旨在研究输出电压可达几百伏的薄膜太阳能电池模组。这项研究如果取得突破,将在很大程度上减少附加升压设备的投资。但是,当今大多数太阳能模组(如日本的Kyocera、英国的BP-Solar、德国的Q-Cells等)的开路电压均低于40 V,需要串联才能达到满足日常使用或接入电网的电压,因此有必要开展光伏直流(PV/DC)组合模块方面的研究。

图1是2种代表性的太阳能发电系统结构。其中,图1(a)是传统方案(记为方案1),带一个升压变流器,太阳能模组直接串联连接;图1(b)即是直流组合模块方案(记为方案2)。

方案2在以下几方面的性能要优于方案1:

a.可独立控制和优化;

b.更利于后续集成应用;

c.便于数据监测和采集;

d.同样适于其他新能源的级联接入。

方案2虽然每个模组有独立的功率控制,但它们级联运行,串联电流强制相等,因此实际控制相对比较复杂。总体上可以把控制过程分为2个阶段:第1阶段为功率控制;第2阶段为电压控制。详细控制过程如图2所示。一般情况下跟踪太阳能电池最大功率点(MPP)的方法是爬山法,因为MPPT可以独立进行控制,因此第1阶段可以把最先跟踪到的级联模组最小MPP电流作为此阶段的参考量,而其他模组可以在此参考量基础上在转换率允许范围内继续跟踪MPP电流。如果没有模组受限于最大转换率,那么第2控制阶段的主要任务是升高总串联电压。在第2控制阶段,电流调节要受模组最大MPP电流和最大转换率的约束,使得总串联电压升高而串联电流下降。

2 典型场景仿真

为比较图1(a)(b)2种结构的太阳能发电系统的性能差异,本文设计了3种有代表性的辐射场景,采用安装在日本爱知工业大学的SPG1786太阳能模组作为试验模型。标准试验条件下该模组的运行特性如图3所示。

文中采用3个串联运行的PV模组以简化问题的分析,实际中PV模组的数目对其无影响。每个升压变流器的转换率限定为3.0。

场景1:辐射强度S全部为1000 W/m2,温度为50℃。这种均匀辐射情况下,3个模组串联运行并不导致失配现象,因此传统结构和PV/DC模块结构的太阳能模组都能稳定工作在MPP。图4为均匀辐射条件下太阳能发电系统的特性曲线,每个太阳能模组的最大功率为160.03 W,总串联功率P鄱峰值为480.09 W,这是3个太阳能模组所能输出的最大功率。在这种情况下,没有必要为每个模组设置独立的变流器。与传统结构相比,PV/DC模块结构可以提升输出电压,具体数据如表1所示。为简化分析,假设变流器的效率为100%,以下分析也作同样假设。在输出功率相同的情况下,电压由63.60 V提升至190.14 V。

场景2:辐射强度S1、S2、S3分别为400、500、1 000 W/m2,温度为50℃。实际运行中,总会有失配情况出现。本场景主要分析轻微失配情况下串联连接的太阳能模组的运行特性。图5为传统控制结构太阳能模组的P-I曲线,由于辐射强度不均,出现了多峰现象,且总功率峰值为213.58 W,比场景1大幅减少。而在PV/DC模块结构情况下,最大功率可达到300.34 W,比传统结构提升了40.6%。最小辐射强度下的MPP电流,决定了第1控制阶段的串联电流。在建立功率平衡后,进入第2控制阶段,主要提升输出电压,数据如表2所示。

尽管存在失配情况,但每个太阳能模组单独配置的变流器使每个模组独立地工作在各自的MPP,并使系统总的输出功率最大。可以看出,独立DC/DC装置可以从输出功率和电压2个方面提升系统性能。

场景3:辐射强度S1、S2、S3分别为200、500、1000W/m2,温度为50℃。该场景主要反映模组严重失配时的运行情况。从图6可以看出,基于传统结构的系统最大功率值下降到169.44 W,仅比标准辐射下单个模组最大功率值稍大。另外,MPP并非出现在电流波形的第1个峰值点,这种情况会导致采用传统爬山法电流渐增式跟踪最大功率的方法失效。

表3是采用PV/DC模块结构的太阳能发电系统的运行数据。尽管系统最大功率比传统结构提高了30.8%,达到了221.57 W,但只有第1、2个模组运行在MPP,第3个模组因为转换率的限制而偏离了MPP。另外,因为变流器没有调节裕度,电压调节失去意义。而第3个模组能输出的最大功率仅为160.03W,损失了多达29.0%的功率(46.43W)。尽管第1个模组工作在MPP,但其输出功率仅为29.62 W,小于第3个模组的功率损失。严重失配情况下第1个模组的输出电流很小,在转换率限制下,串联电路的工作电流相对较小,而这导致了大的功率损失。因此,把第1个模组旁路掉要比让它运行在MPP更可取。

一般情况下,PV/DC模块可以在轻微失配情况下正常运行在各自的MPP;但是在严重失配情况下,需要一种方法来判别严重失配的太阳能模组是该被旁路掉还是继续运行。

3 具体评估方案

Toshihiko Noguchi等人在2002年指出PV模组短路电流Isc可以通过脉冲检测短路电流得到[21]。在各种辐射情况和温度下,最佳工作电流与短路电流Isc成比例关系,二者的比例系数一般约为0.92。基于这些前提,将太阳能模组实际工作电流与MPP电流间的功率偏差称为功率裕度,下文即提出一种功率裕度评估方法,用于判别当前工作电流是否合理,进而判别严重失配的模组是否应该被旁路。

这种评估方法的目标侧重于功率输出,因此可以采用简化的PV模型。如果忽略并联电阻,I-U曲线对应的关系如式(1)所示,对式(1)做变换可得到输出电压如式(2)所示。

其中,q是电子电量;k是波尔兹曼常数;A是二极管理想因子;Tc是工作温度;I0是二极管饱和电流;Rs是串联电阻。

因此,PV模块的输出功率为

由式(3)可得:

前文提到,PV最佳工作电流一般约为短路电流的92%,因此当电流步长δ取足够小时,可得:

将工作电流I~0.92 Isc的电流裕度区间分成N等份,电流步长为

因此工作点与MPP间的功率裕度Pres可用式(8)表示:

实际上,功率裕度即是P-I曲线上工作点电流与MPP电流之间的积分。可以发现,除了短路电流Isc外,评估中还有I0和Rs2个参数需要确定。Engin Karatepe等人在2007年提出了一种使用ANN法从实际运行数据中在线获得各种参数的方法[3],这种方法可应用于本评估方案,但实际应用中在线参数识别的速度能否保证是个问题。更合理的做法应该是通过历史运行数据样本建立离线参数策略表。只要电流步长取得足够小,I0和Rs在步长区间内可视为常数,可确保式(4)的成立。

4 性能验证

仍然采用SPG1786模组进行试验。其最大输出功率为178.60 W,短路电流为8.15 A。表4为在开路情况下计算所得的功率裕度(即为最大功率值)。随着迭代次数的增加,计算出的最大功率值越来越收敛于实际值,当然也需要耗费更多的计算时间。因此,实际中需要综合考虑计算时间和准确度2个方面,选取合适的迭代次数M。

这种评估方法的缺陷是在接近短路电流的区域,输出功率急剧波动,而电流几乎不下降,但是这种情况发生的可能性不大。

回到场景3遇到的问题,第3个模组的工作电流是4.53 A,而其MPP电流是7.55 A。通过在线功率评估得到第3个模组的功率裕度为47.87 W,比实际值(46.43 W)稍大,但明显大于第1个模组的最大功率(29.62 W)。因此可把第1个模组旁路运行。在功率重新平衡后,转换率的限制也得到缓解,有利于在第2控制阶段提升输出电压。表5是经调节后达到新平衡的输出情况,总输出功率达到236.10 W,比传统结构提高了39.3%,比原来的PV/DC模块结构提高了6.5%。但是,因为一个模组被旁路掉,总输出电压从145.54 V降至93.81 V,这就需要后续的DC/DC装置继续电压调节。

5 讨论

以上讨论均是建立在变流器受转换率限制的假设基础上,如果没有转换率限制,则每个太阳能模组都可以独立控制工作在相应的MPP。另外,诸如爬山法等传统的MPPT算法,仍然可以用于PV/DC模块结构。

实际中常要求总输出电压能维持在特定水平,图2中的两阶段控制不能满足要求。对不考虑变流器转换率限制的场景,可以采用下述控制方式。

a.尽管MPP电流随辐射强度变化明显,但MPP电压变化不大,因此每个太阳能模组的MPP功率与其短路电流成比例关系。而系统中太阳能模组级联运行,其输出电压也与短路电流成比例关系。

b.可以建立局部控制目标近似实现全局电压要求,但因为只是近似全局MPP控制,输出电压纹波相对较大。

例如,假设输出电压要求200 V,以上述系统为例,没有变流器转换率限制,每个PV模组都可工作在各自的MPP。如表6所示,系统总输出功率可提升至267.50 W,但电压控制有偏差。

6 结论

PV/DC模块化结构具有很多优点,例如可独立跟踪MPP,便于数据采集,便于与其他独立DC模块集成应用等。本文针对不同失配运行情况下太阳能模组受转换率限制的问题提出了一种功率裕度评估方法,仿真结果也证明了功率裕度评估的有效性。

摘要:光伏直流模块化结构能各自独立实现最大功率点跟踪(MPPT),减少由于模块之间运行失配而导致的功率损失。但级联运行的方式常由于DC变流器的变换比率限制导致并不是所有太阳能模组都能运行在最佳功率位置。考虑光伏模组最佳工作电流(MPP电流)与短路电流之间的近似比例匹配,在电流步长足够精确以及模组参数I0和Rs在线辨识或有离线策略依据的情况下,实际运行功率裕度可由工作电流与最佳MPP电流之间的功率积分计算得出。所提出的光伏实际运行裕度定量评估方法,可用以解决失配场景下的级联结构2级控制(功率控制和电压控制)运行点优化问题。重点考察了一些典型失配场景,仿真结果也证实了功率裕度评估方法及工况运行矫正的有效性。

上一篇:“说”新闻节目下一篇:GA-BP网络