《平面向量》单元教学设计范文

2024-06-28

《平面向量》单元教学设计范文(共11篇)

《平面向量》单元教学设计范文 篇1

《平面向量》单元教学设计

武都区两水中学 王斌

向量是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系。

向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

一、单元教学目标

本章主要包括平面向量的实际背景及基本概念、平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容。通过本章学习,应引导学生:

1.通过力和力的分析等实例,知道向量的实际背景,会运用平面向量和向量相等的含义,会向量的几何表示。

2.通过实例,会算向量加、减法的运算,并会求其几何意义。

3.通过实例,熟练运用向量数乘的运算,并解释其几何意义,以及两个向量共线的含义。

4.能说出向量的线性运算性质及其几何意义。5.知道平面向量的基本定理及其意义。6.掌握平面向量的正交分解及其坐标表示。7.会用坐标表示平面向量的加、减与数乘运算。8.解释用坐标表示的平面向量共线的条件。

9.通过物理中“功”等实例,说明平面向量数量积的含义及其物理意义。10.体会平面向量的数量积与向量投影的关系。

11.识记数量积的坐标表达式,会进行平面向量数量积的运算。

12.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。13.经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。

二、学习者特征分析

向量是近代数学中重要的和基本的概念之一,它是沟通代数几何与三角的一种工具。向量对学生来说是比较新的内容,学生对它的学习可以说是充满了探求的欲望,应当说能够使大部分学生在此章节的学习中体会到学习的成功乐趣。学生在学习本单元内容之前,已熟知了实数的运算体系,具备了物理知识.这都为学习向量准备好各方面条件.三、单元教材分析

本章共安排了5个小节及2个选学内容,大约需要12个课时,具体分配如下 2.1平面向量的实际背景及基本概念 2课时 2.2 向量的线性运算 2课时

2.3平面向量的基本定理及坐标表示 2课时 2.4平面向量的数量积 2课时 2.5平面向量应用举例 2课时

小结 2课时

本章知识结构如下:

1.第一节包括向量的物理背景与概念、向量的几何表示、相等向量与共线向量。教科书首先从位移、力等物理量出发,抽象出既有大小、又有方向的量——向量,并说明向量与数量的区别。然后介绍了向量的几何表示、有向线向量的长度(模)、零向量、单位向量、平行向量、相等向量、共线向量等基本概念。

2.第二节有向量加法运算及其几何意义、向量减法运算及其几何意义、向量数乘运算及其几何意义等内容。

教科书先讲了向量的加法、加法的几何意义、加法运算律;再用相反向量与向量的加法定义向量的减法,把向量的减法与加法统一起来,并给出向量减法的几何意义;然后通过向量的加法引入了实数与向量的积的定义,给出了实数与向量的积的运算律;最后介绍了两个向量共线的条件和向量线性运算的运算法则。

3.第三节包括平面向量基本定理、平面向量的正交分解及坐标表示、平面向量的坐标运算、平面向量共线的坐标表示。

平面向量基本定理是平面向量正交分解及坐标表示的基础。教科书首先通过一个具体的例子给出平面向量基本定理,同时介绍了基底、夹角、两个向量垂直的概念;然后在平面向量基本定理的基础上,给出了平面向量的正交分解及坐标表示,向量加、减、数乘的坐标运算和向量坐标的概念,最后给出平面向量共线的坐标表示。坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁。

4.第四节包括平面向量数量积的物理背景及其含义、平面向量数量积的坐标表示、模、夹角。

教科书从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示。向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题。

5.第五节包括平面几何中的向量方法、向量在物理中的应用举例。由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用。本节通过几个具体的例子说明了它的应用。

6.为了拓展学生的知识面,使学生了解向量及向量符号的由来,向量的运算(运算律)与几何图形形式的关系,本章安排了两个“阅读与思考”:向量几向量符号的由来,向量的运算(运算律)与图形性质。

四、教学中要注意的几个问题

1.突出向量的物理背景与几何背景

教科书特别注意从丰富的物理背景和几何背景中引入向量概念。在引言中通过日常生活中确定“位置”中的位移概念,说明学习向量知识的意义;在2.1节,通过物理学中的重力、浮力、弹力、速度、加速度等作为实际背景素材,说明它们都是既有大小又有方向的量,由此引出向量的概念;引出向量概念后,教科书又利用有向线段给出了向量的几何背景,并定义了向量的模、单位向量等概念。这样的安排,可以使学生认识到向量在刻画现实问题、物理问题以及数学问题中的作用,使学生建立起理解和运用向量概念的背景支持。

教科书借助几何直观,并通过与数的运算的类比引入向量运算,以加强向量的几何背景。

2.强调向量作为解决现实问题和数学问题的工具作用。

为了强调向量作为刻画力、速度、位移等现实中常见现象的有力的数学工具作用,本章特别注意联系实际。特别是在概念引入中加强与实际的联系。另外,向量也是解决数学问题的好工具,例如,和(差)角的三角函数公式、线段的定比分点公式、平面两点间距离公式、平移公式及正弦定理、余弦定理等都可以用向量为工具进行推导;向量作为沟通代数、几何与三角函数的桥梁,是一个很好的数形结合工具,教科书通过“平面几何中的向量方法”进行了介绍,并在第三章用向量方法来推导两角差的余弦公式。这些处理也都是为了体现向量作为基本的、重要的数学工具的地位。

3.强调向量法的基本思想,明确向量运算及运算律的核心地位。

向量具有明确的几何背景,向量的运算及运算律具有明显的几何意义,因此涉及长度、夹角的几何问题可以通过向量及其运算得到解决。另外,向量及其运算(运算律)与几何图形的性质紧密相联,向量的运算(包括运算律)可以用图形直观表示,图形的一些性质也可以用向量的运算(运算律)来表示。这样,建立了向量运算(包括运算律)与几何图形之间的关系后,可以使图形的研究推进到有效能算的水平,向量运算(运算律)把向量与几何、代数有机地联系在一起。

几何中的向量方法与解析几何的思想具有一致性,不同的只是用“向量和向量运算”来代替解析几何中的“数和数的运算”。这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果。如果把解析几何的方法简单地表述为

[形到数]——[数的运算]——[数到形],则向量方法可简单地表述为

[形到向量]——[向量的运算]——[向量和数到形]。

教科书特别强调了向量法的上述基本思想,并根据上述基本思想明确提出了用向量法解决几何问题的“三步曲”。为了使学生体会向量运算及运算律的重要性,教科书注意引导学生在解决具体问题时及时进行归纳,同时还明确使用了“因为有了运算,向量的力量无限;如果没有运算,向量只是示意方向的路标”的提示语。

4.通过与数及其运算的类比,向量法与坐标法的类比,建立相关知识的联系,突出思想性。

向量及其运算与数及其运算既有区别又有联系,在研究的思想方法上可以进行类比。这种类比可以打开学生讨论向量问题的思路,同时还能使向量的学习找到合适的思维固着点。为此,教科书在向量概念的引入,向量的线性运算,向量的数量积运算等内容的展开上,都注意与数及其运算(加、减、乘)进行类比。

5.引导学生用数学模型的观点看待向量内容

在向量概念的教学中,要利用学生的生活经验、其他学科的相关知识,创设丰富的情景,例如物理中的力、速度、加速度,力的合成与分解,物体受力做功等,通过这些实例是学生了解向量的物理背景、几何背景,引导学生认识向量作为描述现实问题的数学模型的作用。同时还要通过解决一些实际问题或几何问题,使学生学会用向量这一数学模型处理问题的基本方法。

6.加强向量与相关知识的联系性,使学生明确研究向量的基本思路

向量既是代数的对象,又是几何的对象。作为代数对象,向量可以运算,而且正是因为有了运算,向量的威力才得到充分的发挥;作为几何对象,向量可以刻画几何元素(点、线、面),利用向量的方向可以与三角函数发生联系,通过向量运算还可以描述几何元素之 4 间的关系(例如直线的垂直、平行等),另外,利用向量的长度可以刻画长度、面积、体积等几何度量问题。教学中,教师应当充分关注到向量的这些特点,引导学生在代数、几何和三角函数的联系中学习本章知识。

五、教学评价

对本单元的教学我主要通过以下几种方式进行:

1、通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定性的评价。

2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。

3、通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。

4、通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。

《平面向量》单元教学设计范文 篇2

1.已知a=B= (5, 2) , 则a·b, |b|, |A→B|的三个值分别为:

(D) 以上都不对

2.给出以下四式: (1) 0·a=0; (2) 0·a=0; (3) 0-; (4) |a·b|=|a|·|b|, 其中正确命题的个数为 ()

(A) 4个 (B) 3个

(C) 2个 (D) 1个

3.已知A、B、C三点共线, 且A、B、C三点的纵坐标分别为2, 5, 10, 则A分所成的比为

4.下列命题不正确的是 ()

(C) a与b共线

5.已知O为坐标原点, 点A、B的坐标分别为 (a, 0) , (0, a) .其中a>0, 若点P在线段AB上, 且 (0≤t≤1) , 则的最大值为 ()

(A) a (B) 2a

(C) 3a (D) a2

6.已知|a|=2, |b|=1, a与b的夹角为60°.又若c=ma+2b, d=2a-mb, 且c⊥d, 则m的值是 ()

(A) 0 (B) 1或6

(C) -1或6 (D) 6或-6

7.已知△ABC中, , 若a·b<0, 则△ABC是 ()

(A) 钝角三角形

(B) 直角三角形

(C) 锐角三角形

(D) 任意三角形

8.已知函数y=-3cos+4按向量a平移所得图象对应的函数是奇函数, 则a可以是 ()

9.梯形ABCD中, AD∥BC, O是对角线BD上一点, E、F分别是AB、CD的中点, 设, 则向量可表示为 ()

10.下列命题中正确的是 ()

(A) 若, 则ABCD是平行四边形

(B) a与b不共线对任何实数λ, 都有a=λb

(D) a在b上的投影等于b在a上的投影

11.已知O是△ABC内一点, 若存在一组正实数λ1, λ2, λ3, 使得, 则三个角∠AOB, ∠BOC, ∠COA中 ()

(A) 都是钝角

(B) 至多有两个钝角

(C) 恰有两个钝角

(D) 至少有两个钝角

12.设a, b是平面内任意的非零向量且不共线, 给出以下命题: (1) (a·b) c- (c·a) b=0; (2) |a|-|b|<|a-b|; (3) (c·b) a- (c·a) b不与c垂直; (4) (3a+2b) · (3a-2b) =9|a|2-4|b|2, 其中真命题是 ()

二、填空题

13.若b= (1, 1) 且a·b=2, (a-b) 2=3, 则|a|=____.

14.把一个函数的图象按a= (-, 3) 平移后得到y=cosx的图象, 则原来的函数解析式是.

15.有下列命题: (1)  (2) a· (b+c) =a·b+a·c; (3) 若G是△ABC的重心, 则; (4) 若a·b=b·c, 则a=c.其中正确命题的序号是:____ (注:把你认为正确命题的序号都填上) .

16.如果向量a与b的夹角为θ, 那么我们称a×b为向量a与b的“向量积”, a×b是一个向量, 它的长度|a×b|=|a|·|b|sinθ, 如果|a|=5, |b|=1, a·b=-3, 则|a×b|=____.

三、解答题

17.已知非零向量a+b与2a-b互相垂直, 且a-2b与2a+b也互相垂直, 求向量a, b的夹角θ.

18.已知a= (cosα, sinα) , b= (cosβ, sinβ) (0<α<β<π) . (1) 求证:a+b与ab互相垂直; (2) 若ka+b与a-kb大小相等, 求β-α (k为非零实数) .

19.已知.设X是直线OP上一点 (O是坐标原点) . (1) 求使取最小值时的; (2) 对 (1) 中求出的点X, 求∠AXB的余弦值.

20.设两非零向量e1和e2不共线.

(2) 试确定实数k, 使得ke1+e2和e1+ke2共线.

(3) 若|e1|=2, |e2|=3, e1, e2的夹角为60°, 试确定实数k, 使ke1+e2和e1+ke2垂直.

(22) 在Rt△ABC中, ∠C=90°, ∠A=30°, 斜边AB长为2, 求两直角边上的中线AM与BN所成的钝角的度数 (已知cos33°

参考答案

一、选择题

1. (C) 2. (D) 3. (C) 4. (C) 5. (D) 6. (C) 7. (A) 8. (B) 9. (C) 10. (C) 11. (D) 12. (D)

二、填空题

三、解答题

18.解: (1) 由已知, 有a+b= (cosα+cosβ, sinα+sinβ) , a-b= (cosα-cosβ, sinα-sinβ) .

因为 (a+b) · (a-b) =cos2α-cos2β+sin2α-sin2β=0, 所以, (a+b) ⊥ (a-b) .

由|ka+b|=|ka-b|, 有2kcos (β-α) =-2kcos (β-α) , 又k≠0, 所以cos (β-α) =0.

由0<α<β<π得:0<β-α<π, 故β-α=π2.

又因为它们有共同的起点A, 所以A、B、D三点共线.

(2) 因为ke1+e2和e1+ke2共线, 故存在实数λ, 使得:ke1+e2=λ (e1+ke2) , 即: (k-λ) e1+ (1-λk) e2=0.

因为e1和e2为非零不共线向量, 所以, k-λ=0且1-λk=0, 解得:k=±1.

22.解:在△ABC中, 设AB=2, ∠A=30°, 所以AC=, BC=1.

“平面向量”单元自测 篇3

(1) AB=DC;(2) AD+AB=AC;(3) AB-AD=BD;(4) AD+CB=0.

2. 已知m∈R,向量a=(1,m),|a|=3,则m=.

3. 与向量a=(3,4)平行的单位向量是.

4. 若三点A(0,-2),B(a,2),C(3,4)共线,则实数a=.

5. 已知a=(12,5),b是垂直于a的单位向量,则b的坐标是 .

6. 设i,j是平面直角坐标系中x轴,y轴正方向上的单位向量,若a=4i+2j,b=3i+4j,则a与b的夹角的余弦值是 .

7. 已知A(1,2),B(2,3),C(-2,5),则△ABC的形状是 .

8. 在Rt△ABC中,若AB=(-2,3),AC=(1,k),则实数k=.

9. 已知a与b均为单位向量,它们的夹角为60°,那么|a+3b|=.

10. 已知a=(λ,2),b=(2,-1),且a与b的夹角为钝角,则λ的取值范围是.

11. 若长度相等的三个向量a,b,c,满足a+b+c=0,则a,b的夹角为.

12. 下列命题中假命题是.

(1) a•b=0a=0或b=0;

(2) (a•b)c=(c•a)b;

(3) 当两个向量a,b不共线时,必有|a|-|b|<|a+b|;

(4) 若a•c=b•c,则a=b;

(5) 已知P是△ABC所在平面上的一点,若PA•PB=PB•PC=PC•PA,则P是△ABC的垂心.

13. 已知|a|=3,|b|=4,(a+b)•(a+2b)=23,求a与b的夹角.

14. 已知平面内三个向量a=(3,2),b=(-1,2),c=(4,1).

(1) 求满足a=mb+nc的实数m,n;

(2) 若(a+kc)∥(2b-a),求实数k.

15. 已知向量a=(sinθ,3),b=(1,cosθ),θ∈-π2,π2.

(1) 若a⊥b,求θ;

(2) 求|a+b|的最大值及此时θ的值.

B组(能力篇)

1. 在△ABC中,D是AB边上一点,若CD=13CA+λCB,则λ=.

2. 已知|a|=2,|b|=1,a与b的夹角为π3,则a+b在a上的投影长为.

3. 在正六棱锥OABCDEF中,OA=a,AB=b,BC=c,用a,b,c表示OE为 .

4. 已知|OA|=2,|OB|=23,OA•OB=0,点C在线段AB上且∠AOC=60°,则BA•OC= .

5. 在物理实验中,粒子P在平面上做匀速直线运动,速度向量v=(3,-4)(即P的运动方向与v相同,且每秒移动的距离为|v|个单位),设开始时点P的坐标为(-10,10),则5秒后点P的坐标为.

参 考 答 案

A组

1. (1)(2)(4)

2. ±22

3. 35,45或-35,-45

4. 2

5. 513,-1213或-513,1213

6. 255

7. 直角三角形

8. 23或5

9. 13

10. λ<1且λ≠-4

11. 120°

12. (1)(2)(4)

13. 120°.

14. (1) m=59,n=89;(2) k=-1613.

15. (1) θ=-π3;(2) θ=π6时,有最大值3.

B组

1. 23

2. 52

3. a+2c-b

4. -4

5. (5,-10)

平面向量教学反思 篇4

二、我的体会: 通过本节课的教学,我有以下几点体会:

(1)让学生经历数学知识的形成与应用过程 高中数学教学应体现知识的来龙去脉,创设问题情景,建立数学模型,让学生经历数学知识的形成与应用,可以更好的理解数学概念、结论的形成过程,体会蕴含在其中的思想方法,增强学好数学的愿望和信心。对于抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。

(2)鼓励学生自主探索、自主学习教师是学生学习的引导者、组织者,教师在教学中的作用必须以确定学生主体地位为前提,教学过程中要发扬民主,要鼓励学生质疑,提倡独立思考、动手实践、自主探索、阅读自学等学习方式。对于教学中问题情境的设计、教学过程的展开、练习的安排等,要尽可能地让所有学生都能主动参与,提出各自解决问题的方案,并引导学生在与他人的交流中选择合适的策略,使学生切实体会到自主探索数学的规律和问题解决是学好数学的有效途径。

(3)注重学生数学思维的培养 本节通过特殊到一般进行观察归纳、合情推理,探求定义、性质和几何意义。在整个探求过程中,充分利用“旧知识”及“旧知识形成过程”,并利用它探求新知识。这样的过程,既是学生获得新知识的过程,更是培养学生能力的过程。 我感觉不足的有: (1)教师应该如何准确的提出问题 在教学中,教师提出的问题要具体、准确,而不应该模棱两可。 (2)教师如何把握“收” 与“放”的问题 何时放手让学生思考,何时教师引导学生,何时教师讲授,这是个值得思考的问题。 (3)教师要点拨到位 在学生出现问题后,教师要及时点评加以总结,要重视思维的提升,提高学生的数学能力和素质。 (4)课堂语言还需要进一步提炼。 在教学中,提出的问题,分析引导的话应具体,明确,不能让学生不知道如何回答,当然有些问题我也考虑过该如何问,只是没有找到更合适的提问方法,这方面的能力有待加强。

《平面向量的坐标运算》教学设计 篇5

【教学目标】

1.理解平面向量的坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量;

2.掌握平面向量的坐标运算,能准确表述向量的加法、减法、实数与向量的积的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力;

3.会根据平面向量的坐标,判断向量是否共线;

4.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辩证思维能力.【重点难点分析】

本节的重点理解平面向量的坐标表示,平面向量的坐标运算,向量平行的充要条件的坐标表示.向量的坐标表示为用“数”的运算处理“形”的问题搭起了桥梁,向量的坐标表示实际是向量的代数表示,使向量的运算完全代数化,为几何问题的解决又提供了一种方法.

本节的难点是对平面向量坐标表示的理解.向量的坐标表示中,根据平面向量基本定理可选择特殊的基底将向量坐标化.学生理解向量与坐标间对应关系的理解有些困难,由于这里是自由向量,可以规定起点,从而使向量与坐标之间形成一一对应关系,使向量的坐标表示具有完备性.

【教学过程】

1、复习向量的加法和减法,然后把向量放入坐标系中研究。

2、然后给出两点坐标,让学生知道如何求向量的坐标

向量本身的坐标运算B(6.5)A(2,1)AB=终点-起点AB=?

3、让学生理解向量与坐标间对应关系,并分别指出:向量不同坐标之间有什么区别,向量坐标相同有有什么意义。

4、做对应的练习,使学生掌握如何求向量的坐标。

5、在知道如何求向量的坐标及它的意义后,开始讲解向量间坐标的运算

向量间的坐标运算已知:a(x1,y1),b(x2,y2),则ab(x1x2,y1y2).ab(x1x2,y1y2).a(x1,y1)

6、做对应的练习,使学生掌握向量坐标间的运算。

7、能力提高题。

8、小结。

《平面向量》单元教学设计范文 篇6

平面向量在教材中独立成章,它既反映了现实世界的数量关系,又体现了几何图形的位置关系,具有代数形式和几何形式的“双重身份”,它将数和形有机地结合起来,是中学数学知识网络的一个“交汇点”,成为联系众多知识内容的媒介。特别是在处理解析几何的有关度量、角度、平行、垂直、共线等问题时,运用向量知识,可以使几何问题直观化、符号化、数量化,从而把“定性”研究推向“定量”研究。

由于向量具有“双重性”,所以,向量成为了“在知识网络交汇处设计试题”的很好载体。而在知识交汇点处命题,既是当今高考的热点,又是重点。从近几年高考试卷来看,对向量的考查除了直接考查平面向量外,还将向量与解析几何、向量与三角等内容相结合,以平面向量的相关知识为载体,以数形转化思想为主线,在知识网络交汇点处设计创新力度大,综合性强的问题。因此,研究向量与其它内容的综合运用,对培养学生的综合能力(尤其是培养学生从学科整体的高度解决问题的综合能力)和数学素养,把握高考命题趋势,都有着重要的意义。,本节课复习目标是在回顾和梳理基础知识的基础上,突出平面向量的数量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高学生分析问题与综合运用知识解决问题的能力,使学生站在新的高度来认识和理解向量。在知识点4.平面向量数量积运算律的回顾中安排“思考讨论:abac,乙:bc,则 以及在双基训练3.甲:(ab)c与a(bc)是否相等?”甲是乙的什么条件的判断。目的是让学生通过通讨论和练习,深刻认识到向量数量积运算中“结合律”及“消去律”是不成立的。

1、是以平面向量的知识为平台,与三角函数的有关运算综合。第(1)小题目的是让学生理解并掌握体向量垂直问题的多种证明方法,常用的方法有三种,一是根据数量积的定义证明,二是利用数量积的坐标运算来证明,三是利用

向量运算的几何意义来证。第(2)小题目的是让学生掌握ab|a||b|,但反之不成立,并将向量相等问题转化为模相等问题,建立等量关系。

平面向量在数学教学中的作用1 篇7

高中数学教材中对平面向量作了较系统的介绍,而且把它作为学习数学的基础来要求。其实,在国外,数学教育改革在中学数学课本中也引入平面向量知识,用向量的方法去解决几何、三角等问题,做了许多有益目的,那么在中学数学里引进平面向量到底有作有呢?

中学教材在内容上呈现注重,注意展示知识的过程,使学生在获取知识和运用知识的过程中,发展思维能力,思维品质,所学知识的理解。数学教学改革的方向新的方法降低教学的难度,教学质量。教材中的平面向量就能达到目的,它用了数学上的通性解法,而且在高等数学、物理学、工程学中都可应用。平面向量章,就来源而言,向量的概念来自对物理学中的力、速度、加速度类失量的。向量大小和方向,使的学生对数及其运算较为熟悉,而在学了向量后,思维得以开阔,看到可像数那样运算并且运算性质的还有别的。

这无疑可使学生增长知识,对数及其运算的认识更进了一步,更重要的是向量的几何及代数的双重身份,使得它是中学数学的交汇点,多项内容的媒介。向量的引入对解决许多问题有着应用价值,它是为专业课、技能课服务的数学工具,是为学习三角、复数、几何等打基础的。

1、向量在三角中的应用

用圆来推导三角函数的几何意义时,表示三角函数平面向量。向量的知识可以导出诱导公式。用向量解决问题时常常是从三角形入手的,这使它在三角里解决三角形的问题起了作用,最重要的证据教材中所用的余弦定理的证明:只要在向量三角形得出的关系式的两边平方就可用向量的运算性质得出要证的结论,它比用综合法的证明要简方便得多。

例1.试证:cos()coscossinsin.

证明:设向量(cos,sin),(cos,sin),∴coscossinsin.

设向量AB与CD的夹角为,则coscos().

由coscoscossinsin,即得cos()coscossinsin.

2、向量在代数中的应用

复数的几何意义,在复平面上可以用向量来表示复数。复数的加减法,就可以看成是向量的加减,复数的乘除法可以用向量的旋转和数乘向量,学了向量,事实上已学习了复数的实质性内容。变选学内容也就不难理解了。向量所用的数形对应也可用来证明代数中的恒等式、不等式问题,只要有数模型,可以较灵活地给出证题方法。

例2.已知ab2ba21,求证:ab1. 2

2证明:设向量(a,a2),CD(b2,b),且设向量AB与CD的夹角为,∴||||cos1. 又∵||||1,∴cos1,即0. ∴ABCD,∴ab2,即ab1. 22

说明:本题中可把已知条件看作两向量的数量积的坐标表示,由此构造出向量(a,a2),(b2,b)是解决本题的关键,本题也可以利用恒等变形或三角代换等证法,但都不及引入向量,然后运用向量的数量积证明简便.

例3.求函数f(x)5x6x的最大值及相应的x的值.

解:设向量a5,1,bx,6x,

则f(x)a·b|a|·|b|16,当且仅当b=ka(k0)时取等号,∴

∴x5时,fx有最大值为6. x6x,13、向量在几何中的应用

在解决几何中的度量、角度、平行、垂直等问题时用向量解决也很方便。又平面向量可以推广到空间用来解决立体几何问题。例如在空间直线和平面这部分内容中,解决平行、相交、包含计算夹角、距离等问题用传统的方法往往较为

繁琐,但只要引入向量,向量的线性运算及向量的积以后,一切都归结为数字式符号运算。运算都有法则可循,比传统的方法要容易得多。

例4如图,三棱锥PABC中,底面ABC

为边长为

正三角形,平面PBC

为平面ABC,PBPC2,DAP上一点,AD2DP,O为底面三角形的中心。

(Ⅰ)求证:DO∥平面PBC;

求证:BDAC;

(Ⅲ)设M为PC的中点,求二面角MBDO的余弦值。

解(Ⅰ)略(Ⅱ)略

(Ⅲ)由(Ⅰ)(Ⅱ)知,EA,EB,EP两两互相垂直,且E为BC中点,分别以EA,EB,EP所在直线为x,y,z轴,建立如图空间直角坐标系,则21A(3,0,0),BP(0,0,1),D(1,0,),C(0,M(0,)……9分

3212∴BM(0,),DB(),223

2nDBxz03设平面BDM的法向量为n(x,y,z),则,nBMy1z022

令y

1,则n(.……………………10分

由(Ⅱ)知AC平面DBO,∴ACDBO为平面的法向量,又AC(30),nAC∴cosn,AC,31|n||AC|由图可知,二面角MBD

O的余弦值为 ……………12分 314、向量在平面解析几何中的应用

向量是有向线段,本身是有向直线上的一段,且向量的坐标可以用起点、终点的坐标来表示,使向量与平面解析几何联系起来。平面直角坐标系内两点间的距离公式,平面内的向量的长度公式;分一条线段成定比的分点坐标,可以用两

个向量的坐标直接求得;用直线的方向向量表示直线方向比直线的斜率更好,且斜率是方向向量在 a = 0时的特殊情形。向量的平移也可用来化简二次曲线,即移动图形的变换来化简二次曲线的目的,这与解析几何中移轴变换是同样的。

B两点,B例5.过抛物线y22px(p0)的焦点F的直线与抛物线相交于A、自A、D,求证:CFD90. 向准线作垂线,垂足分别为C、

p,0),同时设A、B两点的纵坐标分别为y1,y2,则y1y2p2. 2

pp∵C(,y1),D(,y2),∴FC(p,y1),FD(p,y2)22证明:显然F(∴· FDp2y1y2p2p20.∴.∴FCFD,即CFD90.

《平面向量》单元教学设计范文 篇8

【教学目标】

1.了解平面向量基本定理;

2.理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;

3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.【导入新课】 复习引入: 1. 实数与向量的积

实数λ与向量a的积是一个向量,记作:λa.(1)|λa|=|λ||a|;(2)λ>0时,λa与a方向相同;λ<0时,λa与a方向相反;λ=0时,λa=0.2.运算定律 aaaaaa结合律:λ(μ)=(λμ);分配律:(λ+μ)=λ+μ,λ(+b)=λa+λb.3.向量共线定理

向量b与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b=λa.新授课阶段

一、平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2.探究:

(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;

(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量.二、平面向量的坐标表示

如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为 1

基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得 axiyj…………○1○我们把(x,y)叫做向量a的(直角)坐标,记作 2 a(x,y)…………○2○

2其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,○2○式叫做向量的坐标表示.与.a相等的向量的坐标也为..........(x,y).特别地,i(1,0),j(0,1),0(0,0).如图,在直角坐标平面内,以原点O为起点作OAa,则点A的位置由a唯一确定.设OAxiyj,则向量OA的坐标(x,y)就是点A的坐标;反过来,点A的坐标(x,y)也就是向量OA的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.三、平面向量的坐标运算

(1)若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2).两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i、j,则ab(x1iy1j)(x2iy2j)(x1x2)i(y1y2)j,即ab(x1x2,y1y2),同理可得ab(x1x2,y1y2).(2)若A(x1,y1),B(x2,y2),则ABx2x1,y2y1.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB=OBOA=(x2,y2)-(x1,y1)=(x2 x1,y2 y1).(3)若a(x,y)和实数,则a(x,y).实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i、j,则a(xiyj)xiyj,即a(x,y).2

例1 已知A(x1,y1),B(x2,y2),求AB的坐标.例2 已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.例3 已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,由ABDC,得D1=(2,2).当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0).例4 已知三个力F1(3,4),F2(2,5),F3(x,y)的合力F1+F2+F3=0,求F3的坐标.解:由题设F1+F2+F3=0,得:(3,4)+(2,5)+(x,y)=(0,0),即:32x0,x5, ∴ ∴F3(5,1).45y0,y1.例5 已知a=(2,1), b=(-3,4),求a+b,a-b,3a+4b的坐标.解:a+b=(2,1)+(-3,4)=(-1,5),a-b=(2,1)-(-3,4)=(5,-3),3a+4b=3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:利用平面向量的坐标运算法则直接求解.例6 已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)(3,4),求顶点D的坐标.解:设点D的坐标为(x,y), AB(1,3)(2,1)(1,2),DC(3,4)(x,y)(3x,4y),且ABDC,(1,2)(3x,4 y).即 3-x=1,4-y=2.解得x=2,y=2.所以顶点D的坐标为(2,2).3

另解:由平行四边形法则可得

BDBABC

(2(1),13)(3(1),43)

(3,1), ODOBBD (1,3)(3,1)(2,2).例7 经过点M(2,3)的直线分别交x轴、y轴于点A,B,且|AB|3|AM|,求点A,B的坐标.解:由题设知,A,B,M三点共线,且|AB|3|AM|,设A(x,0),B(0,y),①点M在A,B之间,则有AB3AM,∴(x,y)3(2x,3).解之得:x3,y3,点A,B的坐标分别为(3,0),(0,3).②点M不在A,B之间,则有AB3AM,同理,可求得点A,B的坐标分别为(3,0),2(0,9).综上,点A,B的坐标分别为(3,0),(0,3)或(3,0),(0,9).2例8.已知三点A(2,3),B(5,4),C(7,10),若AMABAC,试求实数的取值范围,使M落在第四象限.解:设点M(x,y),由题设得(x2,y3)(3,)(5,7)(35,7),∴x33,y4,要使M落在第四象限,则x330,y40,解之得14.例8 已知向量a(8,2),b(3,3),c(6,12),p(6,4),问是否存在实数x,y,z同时满足两个条件:(1)pxaybzc;(2)xyz1?如果存在,求出x,y,z的值;如果不存在,请说明理由.4

1x,28x3y6z6,1解:假设满足条件的实数x,y,z存在,则有2x3y12z4,解之得:y,3xyz1.1z.6∴满足条件的实数x课堂小结

(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.作业 见同步练习拓展提升

1.设e1,e2是同一平面内两个不共线的向量,不能以下各组向量中作为基底的是()A.e1,e2 B.e1+e2,e2 C.e1,2e2 D.e1,e1+e2 2.设e1,e2是同一平面内所有向量的一组基底,则以下各组向量中,不能作为基底的是()

A.e1+e2和e1-e2 B.3e1-2e2和4e1-6e2 C.e1+2e2和2e1+e2 D.e1+e2和e2

111,y,z.2363.已知e1,e2不共线,a =1e1+e2,b=4 e1+2e2,并且a,b共线,则下列各式正确的是()

A.1=1,B.1=2,C.1=3,D.1=4 4.设AB=a+5b,BC=-2a+8b,CD=3a-3b,那么下列各组的点中三点一定共线的是()

A.A,B,C B.A,C,D C.A,B,D D.B,C,D 5.下列说法中,正确的是()

①一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底;

②一个平面内有无数多对不共线的向量可作为表示该平面内所有向量的基底;

③零向量不可作为基底中的向量.A.①②

B.①③

C.②③

D①②③

6.已知e1,e2是同一平面内两个不共线的向量,那么下列两个结论中正确的是()①1e1+2e2(1,2为实数)可以表示该平面内所有向量;

②若有实数1,2使1e1+2e2=0,则1=2=0.A.①

B.②

C.①②

D.以上都不对

7.已知AM=△ABC的BC边上的中线,若AB=a,AC=b,则AM=()11aaA.(- b)

B. -(- b)2211C.-(a+b)

D.(a+b)

228.已知ABCDEF是正六边形,AB=a,AE=b,则BC=()11A.(a- b)

B. -(a- b)

2211C.a+b

D.(a+b)

229.如果3e1+4e2=a,2e1+3e2=b,其中a,b为已知向量,则e1=,e2=

.10.已知e1,e2是同一平面内两个不共线的向量,且AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,如果A,B,D三点共线,则k的值为

.11.当k为何值时,向量a=4e1+2e2,b=ke1+e2共线,其中e1、e2是同一平面内两个不共线的向量.12.已知:e1、e2是不共线的向量,当k为何值时,向量a=ke1+e2与b=e1+ke2共线?  6

参考答案

1.C 2.B 3.B 4.C 5.C 6.C 7.D 8.D 9.-2a3b,11.②③⑤ 12.k=2

职高高二平面向量课件 篇9

【教学目标】

1.能准确表述向量的加法、减法、实数与向量的积的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力;

2.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辨证思维能力.【教学重难点】

教学重点:平面向量的坐标运算.教学难点: 对平面向量坐标运算的理解.【教学过程】

一、创设情境

以前,我们所讲的向量都是用有向线段表示,即几何的方法表示。向量是否可以用代数的方法,比如用坐标来表示呢?如果可能的话,向量的运算就可以通过坐标运算来完成,那么问题的解决肯定要方便的多。因此,我们有必要探究一下这个问题:平面向量的坐标运算。

二、新知探究

思考1:设i、j是与x轴、y轴同向的两个单位向量,若设 =(x1, y1)=(x2, y2)则 =x1i+y1j,=x2i+y2j,根据向量的线性运算性质,向量 λ(λ∈R)如何分别用基底i、j表示?

思考2:根据向量的坐标表示,向量 +,3 +4 的坐标.解: + =(2,1)+(-3,4)=(-1,5),-=(2,1)-(-3,4)=(5,-3),+4 =3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:利用平面向量的坐标运算法则直接求解。

2、已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)(3,4),求顶点D的坐标。

解:设点D的坐标为(x,y),即 3-x=1,4-y=

2解得 x=2,y=2

所以顶点D的坐标为(2,2).另解:由平行四边形法则可得

所以顶点D的坐标为(2,2)

点评:考查了向量的坐标与点的坐标之间的联系.变式训练2:已知平面上三点的坐标分别为A(-2, 1), B(-1, 3), C(3, 4),求点D的坐标使这四点构成平行四边形四个顶点。

四、课堂小结

本节课主要学习了平面向量的坐标运算法则:

(1)两向量和的坐标等于各向量对应坐标的和;

(2)两向量差的坐标等于各向量对应坐标的差;

(3)实数与向量积的坐标等于原向量的对应坐标乘以该实数;

五、反馈测评

1.下列说法正确的有()个

(1)向量的坐标即此向量终点的坐标

(2)位置不同的向量其坐标可能相同

(3)一个向量的坐标等于它的始点坐标减去它的终点坐标

(4)相等的向量坐标一定相同

A.1 B.2 C.3 D.42.已知A(-1,5)和向量 =(2,3),若 =3,则点B的坐标为__________。

A.(7,4)B.(5,4)C.(7,14)D.(5,14)

3.已知点,及,求点、、的坐标。

板书设计

平面向量的坐标运算 教案 篇10

一、教学目标

1、知识与技能:

掌握平面向量的坐标运算;

2、过程与方法:

通过对共线向量坐标关系的探究,提高分析问题、解决问题的能力。3情感态度与价值观:

学会用坐标进行向量的相关运算,理解数学内容之间的内在联系。

二、教学重点与难点

教学重点:平面向量的坐标运算。

教学难点:向量的坐标表示的理解及运算的准确.三、教学设想

(一)导入新课

思路1.向量具有代数特征,与平面直角坐标系紧密相联.那么我们在学习直线和圆的方程以及点、直线、平面之间的位置关系时,直线与直线的平行是一种重要的关系.关于x、y的二元一次方程Ax+By+C=0(A、B不同时为零)何时所体现的两条直线平行?向量的共线用代数运算如何体现?

思路2.对于平面内的任意向量a,过定点O作向量OA=a,则点A的位置被向量a的大小和方向所唯一确定.如果以定点O为原点建立平面直角坐标系,那么点A的位置可通过其坐标来反映,从而向量a也可以用坐标来表示,这样我就可以通过坐标来研究向量问题了.事实上,向量的坐标表示,实际是向量的代数表示.引入向量的坐标表示可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢?

(二)推进新课、新知探究、提出问题

①我们研究了平面向量的坐标表示,现在已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐标表示吗? ②如图1,已知A(x1,y1),B(x2,y2),怎样表示AB的坐标?你能在图中标出坐标为(x2-x1,y2-y1)的P点吗?标出点P后,你能总结出什么结论? 活动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:

图1 a+b=(x1i+y1j)+(x2i+y2j)=(x1+x2)i+(y1+y2)j, 即a+b=(x1+x2,y1+y2).同理a-b=(x1-x2,y1-y2).又λa=λ(x1i+y1j)=λx1i+λy1j.∴λa=(λx1,λy1).教师和学生一起总结,把上述结论用文字叙述分别为: 两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.教师再引导学生找出点与向量的关系:将向量AB平移,使得点A与坐标原点O重合,则平移后的B点位置就是P点.向量AB的坐标与以原点为始点,点P为终点的向量坐标是相同的,这样就建立了向量的坐标与点的坐标之间的联系.学生通过平移也可以发现:向量AB的模与向量OP的模是相等的.由此,我们可以得出平面内两点间的距离公式: |AB|=|OP|=(x1x2)2(y1y2)2.教师对总结完全的同学进行表扬,并鼓励学生,只要善于开动脑筋,勇于创新,展开思维的翅膀,就一定能获得意想不到的收获.讨论结果:①能.②AB=OB-OA=(x2,y2)-(x1,y1)=(x2-x1,y2-y1).结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.提出问题

①如何用坐标表示两个共线向量? ②若a=(x1,y1),b=(x2,y2),那么

y1y2是向量a、b共线的什么条件? x1x2活动:教师引导学生类比直线平行的特点来推导向量共线时的关系.此处教师要对探究困难的学生给以必要的点拨:设a=(x1,y1),b=(x2,y2),其中b≠0.我们知道,a、b共线,当且仅当存在实数λ,使a=λb.如果用坐标表示,可写为(x1,y1)=λ(x2,y2), xx2,即1消去λ后得x1y2-x2y1=0.y1y2.这就是说,当且仅当x1y2-x2y1=0时向量a、b(b≠0)共线.又我们知道x1y2-x2y1=0与x1y2=x2y1是等价的,但这与

y1y2是不等价的.因x1x2为当x1=x2=0时,x1y2-x2y1=0成立,但

y1yyy2均无意义.因此12是向量a、bx1x2x1x2共线的充分不必要条件.由此也看出向量的应用更具一般性,更简捷、实用,让学生仔细体会这点.讨论结果:①x1y2-x2y1=0时,向量a、b(b≠0)共线.②充分不必要条件.提出问题

a与非零向量b为共线向量的充要条件是有且只有一个实数λ使得a=λb, 那么这个充要条件如何用坐标来表示呢?

活动:教师引导推证:设a=(x1,y1),b=(x2,y2),其中b≠a,x1x2,由a=λb,(x1,y1)=λ(x2,y2)消去λ,得x1y2-x2y1=0.y1y2.讨论结果:a∥b(b≠0)的充要条件是x1y2-x2y1=0.教师应向学生特别提醒感悟: 1°消去λ时不能两式相除,∵y1、y2有可能为0,而b≠0,∴x2、y2中至少有一个不为0.2°充要条件不能写成y1y2(∵x1、x2有可能为0).x1x2ab3°从而向量共线的充要条件有两种形式:a∥b(b≠0)

x1y2x2y10.(三)应用示例

思路1 例1 已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.活动:本例是向量代数运算的简单应用,让学生根据向量的线性运算进行向量的和、差及数乘的坐标运算,再根据向量的线性运算律和向量的坐标概念得出的结论.若已知表示向量的有向线段的始点和终点坐标,那么终点的坐标减去始点的坐标就是此向量的坐标,从而使得向量的坐标与点的坐标可以相互转化.可由学生自己完成.解:a+b=(2,1)+(-3,4)=(-1,5);a-b=(2,1)-(-3,4)=(5,-3);3a+4b=3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:本例是平面向量坐标运算的常规题,目的是熟悉平面向量的坐标运算公式.变式训练

131.(2007海南高考,4)已知平面向量a=(1,1),b=(1,-1),则向量ab

22等于()A.(-2,-1)

B.(-2,1)

C.(-1,0)D.(-1,2)答案:D 2.(2007全国高考,3)已知向量a=(-5,6),b=(6,5),则a与b„()

A.垂直

B.不垂直也不平行

C.平行且同向 D.平行且反向

答案:A 3

图2 例2 如图2,已知ABCD的三个顶点A、B、C的坐标分别是(-2,1)、(-1,3)、(3,4),试求顶点D的坐标.活动:本例的目的仍然是让学生熟悉平面向量的坐标运算.这里给出了两种解法:解法一利用“两个向量相等,则它们的坐标相等”,解题过程中应用了方程思想;解法二利用向量加法的平行四边形法则求得向量OD的坐标,进而得到点D的坐标.解题过程中,关键是充分利用图形中各线段的位置关系(主要是平行关系),数形结合地思考,将顶点D的坐标表示为已知点的坐标.解:方法一:如图2,设顶点D的坐标为(x,y).∵AB=(-1-(-2),3-1)=(1,2),DC=(3-x,4-y).由AB=DC,得13x,(1,2)=(3-x,4-y).∴

24x.x2,∴ y2.∴顶点D的坐标为(2,2).方法二:如图2,由向量加法的平行四边形法则,可知

BDBAADBABC=(-2-(-1),1-3)+(3-(-1),4-3)=(3,-1), 而OD=OB+BD=(-1,3)+(3,-1)=(2,2), ∴顶点D的坐标为(2,2).点评:本例的目的仍然是让学生熟悉平面向量的坐标运算.变式训练

图3 如图3,已知平面上三点的坐标分别为A(-2,1),B(-1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,仿例二得:D1=(2,2);当平行四边形为ACDB时,仿例二得:D2=(4,6);当平行四边形为DACB时,仿上得:D3=(-6,0).例3 已知A(-1,-1),B(1,3),C(2,5),试判断A、B、C三点之间的位置关系.活动:教师引导学生利用向量的共线来判断.首先要探究三个点组合成两个向量,然后根据两个向量共线的充要条件来判断这两个向量是否共线从而来判断这三点是否共线.教师引导学生进一步理解并熟练地运用向量共线的坐标形式来判断向量之间的关系.让学生通过观察图象领悟先猜后证的思维方式.解:在平面直角坐标系中作出A、B、C三点,观察图形,我们猜想A、B、C三点共线.下面给出证明.∵AB=(1-(-1),3-(-1))=(2,4), AC=(2-(-1),5-(-1))=(3,6), 又2×6-3×4=0,∴AB∥AC,且直线AB、直线AC有公共点A, ∴A、B、C三点共线.点评:本例的解答给出了判断三点共线的一种常用方法,其实质是从同一点出发的两个向量共线,则这两个向量的三个顶点共线.这是从平面几何中判断三点共线的方法移植过来的.变式训练

已知a=(4,2),b=(6,y),且a∥b,求y. 解:∵a∥b,∴4y-2×6=0.∴y=3.思路2

例2 设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1)、(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.活动:教师充分让学生思考,并提出这一结论可以推广吗?即当

P1P=λPP2时,点P的坐标是什么?师生共同讨论,一起探究,可按照求中点坐标的解题思路类比推广,有学生可能提出如下推理方法: 由P1P=λPP2,知(x-x1,y-y1)=λ(x2-x,y2-y),x1x2x,xx1(x2x)1即 yy1(y2y)yy1y2.1这就是线段的定比分点公式,教师要给予充分肯定,鼓励学生的这种积极探索,这是学习数学的重要品质.时间允许的话,可以探索λ的取值符号对P点位置的影响,也可鼓励学生课后探索.图4 解:(1)如图4,由向量的线性运算可知

xx2y1y21,.).OP=(OP1+OP2)=(1222所以点P的坐标是(x1x2y1y2,.)22(2)如图5,当点P是线段P1P2的一个三等分点时,有两种情况,即

P1P1=或PP22P1P=2.PP2如果P1P1=,那么 PP22

图5 PP=OPOP=OP1+11+

1P1P2 31=OP+(OP12-OP1)312=OP+OP12 33=(2x1x22y1y2,).332x1x22y1y2,).33即点P的坐标是(同理,如果

x2x2y12y2P1P,.=2,那么点P的坐标是133PP2点评:本例实际上给出了线段的中点坐标公式和线段的三等分点坐标公式.变式训练

在△ABC中,已知点A(3,7)、B(-2,5).若线段AC、BC的中点都在坐标轴上,求点C的坐标.解:(1)若AC的中点在y轴上,则BC的中点在x轴上, 设点C的坐标为(x,y),由中点坐标公式,得

3xy50,0, 22∴x=-3,y=-5, 即C点坐标为(-3,-5).(2)若AC的中点在x轴上,则BC的中点在y轴上,则同理可得C点坐标为(2,-7).综合(1)(2),知C点坐标为(-3,-5)或(2,-7).例2 已知点A(1,2),B(4,5),O为坐标原点,OP=OA+tAB.若点P在第二象限,求实数t的取值范围.活动:教师引导学生利用向量的坐标运算以及向量的相等,把已知条件转化为含参数的方程(组)或不等式(组)再进行求解.教师以提问的方式来了解学生组织步骤的能力,或者让学生到黑板上去板书解题过程,并对思路清晰过程正确的同学进行表扬,同时也要对组织步骤不完全的同学给与提示和鼓励.教师要让学生明白“化归”思想的利用.不等式求变量取值范围的基本观点是,将已知条件转化为关于变量的不等式(组),那么变量的取值范围就是这个不等式(组)的解集.解:由已知AB=(4,5)-(1,2)=(3,3).∴OP=(1,2)+t(3,3)=(3t+1,3t+2).3t1021若点P在第二象限,则t

333t2021,).33点评:此题通过向量的坐标运算,将点P的坐标用t表示,由点P在第二象限可得到一个关于t的不等式组,这个不等式组的解集就是t的取值范围.变式训练 故t的取值范围是(已知OA=(cosθ,sinθ),OB=(1+sinθ,1+cosθ),其中0≤θ≤π,求|AB|的取值范围.解:∵AB=OB-OA=(1+sinθ,1+cosθ)-(cosθ,sinθ)=(1+sinθ-cosθ,1+cosθ-sinθ).∴|AB|=(1+sinθ-cosθ)+(1+cosθ-sinθ)=[1+(sinθ-cosθ)]2+[1-(sinθ-cosθ)]2 =2+2(sinθ-cosθ)2 =2+2(1-2sinθcosθ)=4-4sinθcosθ=4-2sin2θ.∵0≤θ≤π,∴0≤2θ≤2π.从而-1≤sin2θ≤1.∴4-2sin2θ∈[2,6].故|AB|的取值范围是[2,6].222 7

(四)课堂小结

5-平面向量与复数综合练习 篇11

11111.i为虚数单位,++=()iiiiA.0B.2iC.-2iD.4i

2.设i,j是不共线的单位向量,a=5i+3j,b=3i-5j,则a⊥b是i⊥j的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既非充分又非必要条件

3.若复数z=1+i,i为虚数单位,则(1+z)·z=()

A.1+3iB.3+3iC.3-iD.

3→→→→→4.若四边形ABCD满足AB+CD=0,(AB-AD)·AC=0,则该四边形一定是()

A.直角梯形B.菱形C.矩形D.正方形

5.平面向量a与b的夹角为60°,a=(2,0),|b|=1,则|a+2b|=()

A.3B.23C.4D.1

22+i6.数的共轭复数是()1-2i

33AB.C.-iD.i 5

57.已知向量a、b不共线,c=ka+b(k∈R),d=a-b.如果c∥d,那么()

A.k=1且c与d同向B.k=1且c与d反向

C.k=-1且c与d同向D.k=-1且c与d反向

8.a,b为平面向量,已知a=(4,3),2a+b=(3,18),则a,b夹角的余弦值等于()

881616A.B.-C.D.- 6565656

5→→→→9.已知两点M(-2,0),N(2,0),点P为坐标平面内的动点,满足|MN|·|MP|+MN·NP=0,则动点P(x,y)的轨迹方程为()

A.y2=8xB.y2=-8x

C.y2=4xD.y2=-4x 110.在△ABC中,AB=a,AC=b,且BD=DC,则AD=()

241211412A.a-bB.a+bC. a-bD.a+b 3333333

311.若向量a=(1,1),b=(2,5),c=(3,x)满足条件(8a-b)·c=30,则x=________.12.设复数z满足(1+i)z=2,其中i是虚数单位,则z=________.13.|a|=1,|b|=2,且a⊥(a-b),则向量a与向量b的夹角是________.

1→1→3→→→14.在四边形ABCD中,AB=DC=(1,1)BA+BC=BD,则四边形ABCD的面积为________. →→→|BA||BC||BD|

15.已知A(3,0),B(0,3),C(cos α,sin α).

π→→→→→→(1)若AC·BC=-1,求sin(α的值;(2)若|OA+OC|=13,且α∈(0,π),求OB与OC的夹角.

4→→→→16.已知向量OP=(2cos x+1,cos 2x-sin x+1),OQ=(cos x,-1),定义f(x)=OP·OQ.(1)求函数f(x)的最小正周期;

→→(2)若x∈(0,2π),当OP·OQ<-1时,求x的取值范围.

32→→17.设O为坐标原点,已知向量OZ1,OZ2分别对应复数z1,z2,且z1=+(10-a2)i,z2=(2a-a+51-a

→→5)i(其中a∈R),若z1+z2可以与任意实数比较大小,求OZ1·OZ2的值.

18.已知△ABC的角A、B、C所对的边分别是a、b、c,设向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2).

(1)若m∥n,求证:△ABC为等腰三角形;

π(2)若m⊥p,边长c=2,角C=,求△ABC的面积. 3

→→→→→→19.已知两点M(-1,0),N(1,0),且点P使NM·NP,PM·PN,MP·MN成公差为非负的等差数列.

→→(1)求点P的轨迹方程;(2)若θ为PM与PN的夹角,求θ的最大值及此时点P的坐标.

答案及解析

1.【解析】 原式=-i+i+(-i)+i=0.【答案】 A

2.【解析】 a·b=(5i+3j)·(3i-5j)

22=15|i|-16i·j-15|j|=-16i·j.∴a⊥b是i⊥j的充要条件.

【答案】 C

3.【解析】 ∵z=1+i,∴(1+z)·z=(2+i)(1+i)=1+3i.【答案】 A

→→→→4.【解析】 由AB+CD=0知,AB=DC,∴四边形ABCD是平行四边形.

→→→又(AB-AD)·AC=0,→→∴DB·AC=0,即AC⊥BD,因此四边形ABCD是菱形.

【答案】 B

5.【解析】 ∵|a|=2,且|b|=1,∴|a+2b|2=(a+2b)2=a2+4a·b+4b2

=4+4×2×1×cos 60°+4×12=12.∴|a+2b|=23.【答案】 B

2+i2+i1+2i2+i+4i-26.【解析】 ∵===i,51-2i1-2i1+2i2+i∴i.1-2i

【答案】 C

7.【解析】 ∵c∥d且a,b不共线,∴存在唯一实数λ,使c=λd.∴ka+b=λa-λb,k=λ,k=-1,∴∴ 1=-λ,λ=-1.

【答案】 D

8.【解析】 ∵a=(4,3),2a+b=(3,18),∴b=(3,18)-2(4,3)=(-5,12),5,1216a·b4,3·-∴cos〈a,b〉==|a|·|b|5×1365

【答案】 C

→→→9.【解析】 ∵MN=(4,0),MP=(x+2,y),NP=(x-2,y),→→→→∴|MN|·|MP|+MN·NP

=x+2+y+4(x-2)=0.x+2+y=2-x,化简得y2=-8x.【答案】 B

10.B

11.【解析】 由(8a-b)·c=30,得18+3x=30,x=4.【答案】 4

21-i212.【解析】 z==1-i.1+i1+i1-i

【答案】 1-i

13.【解析】 设向量a与b的夹角为θ,由a⊥(a-b),得

a·(a-b)=0,即|a|2-a·b=0,∴|a||b|cos θ=|a|2,|a|

2π∴cos θ=,故θ=.|b|24

π【答案】 4

14.3

→→15.【解】(1)∵AC=(cos α-3,sin α),BC=(cos α,sin α-3),→→∴AC·BC=(cos α-3)cos α+sin α(sin α-3)=-1,得cos2α+sin2α-3(cos α+sin α)=-1,2∴cos α+sin α 3

π2∴sin(α+)=.43

→→(2)∵|OA+OC|=13,1∴(3+cos α)2+sin2α=13,∴cos α 2

π313∵α∈(0,π),∴α=,sin α=C(),3222

→→33∴OB·OC=,2

→→设OB与OC的夹角为θ,且θ∈[0,π],3→→2OB·OC3π则cos θ=.故θ=为所求. →→326|OB|·|OC|

→→16.【解】(1)f(x)=OP·OQ

=2cos2x+cos x-cos 2x+sin x-1=sin x+cos x

π=2sin(x+),4

则f(x)的最小正周期为T=2π.π2→→(2)由OP·OQ<-1,得sin(x+<-42

又x∈(0,2π),5ππ7π3π则x+π<x<.4442

3π故x的取值范围是(π,. 2317.【解】 依题意z1+z2为实数,由z1-(10-a2)i,a+5

32∴z1+z2=[(a2-10)+(2a-5)]i的虚部为0,a+51-a

∴a2+2a-15=0,解得a=-5,或a=3.又分母不为零,∴a=3,3此时z1=i,z2=-1+i,8

3→→即OZ1=,1),OZ2=(-1,1),8

5→→3∴OZ1·OZ2=×(-1)+1×1=.88

18.【解】(1)证明 ∵m∥n,∴asin A=bsin B,由正弦定理,得a2=b2,∴a=b.∴△ABC为等腰三角形.

(2)由题意可知m·p=0,即a(b-2)+b(a-2)=0.∴a+b=ab.由余弦定理可知,4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,∴ab=4(舍去ab=-1),11π∴S=absin C=×4×sin3.22319.【解】(1)设点P的坐标为(x,y),又M(-1,0),N(1,0),→→→→→→则PM=-MP=(-1-x,-y),PN=-NP=(1-x,-y),MN=-NM=(2,0). →→∴NM·NP=2(1-x),→→→→PM·PN=x2+y2-1,MP·MN=2(1+x),依题意得

222x2+y2-1=21+x+21-x,x+y=3,⇔ x≥0.21+x-21-x≥0

∴点P的轨迹方程为x2+y2=3(x≥0).

→→(2)(2)∵PM·PN=(-1-x,-y)·(1-x,-y)

=x2+y2-1=2,→→|PM|·|PN|=-1-x+-y1-x+-y

=4-x.→→PM·PN1∴cos θ==.→→4-x|PM|·|PN|

∵0≤x≤3,1π∴≤cos θ≤1,∴0≤θ23

π∴θ的最大值为x=0,3

上一篇:崇高的母爱作文下一篇:计算社保基数是应发工资还是实发工资?