《圆柱的体积》教学设计及反思

2024-07-01

《圆柱的体积》教学设计及反思(共14篇)

《圆柱的体积》教学设计及反思 篇1

《圆柱的体积》教学设计及反思

教学目标

1、知识与技能:理解教材中形体转化的过程,掌握圆柱体积的计算公式,会用公式计算圆柱的体积,解决有关简单的实际问题。拓展教材内容,初步了解直柱体的相关知识。

2、过程与方法:利用教材空间,为学生搭建思维平台。让学生经历观察、想象、思考、交流等教学活动过程,理解圆柱体积计算公式的推导过程,提高学生思维能力,同时体验转化和极限的思想。

3、情感与态度:挖掘教材内涵,把图形的变换过程,转变为学生思维能力的培养、提高的过程,并进一步发展其空间观念,领悟学习数学的方法,激发学生学习兴趣,渗透事物是普遍联系的唯物辩证思想。

教学重点:理解圆柱体积计算公式的推导过程,运用圆柱体积计算公式准确解决实际问题。

教学难点:正确理解圆柱体积计算公式的推导过程。过程描述

一、情境导入:

老师手拿一个圆柱形橡皮泥(大小适宜)。

1、师:通过前面的学习,关于圆柱你已经知道什么?还想了解它的哪些知识?

生1:„„(已学知识)。

生2:圆柱是一种立体图形,那么它的体积怎么计算?

【学情分析:在学习圆柱的认识和表面积的基础上,学生能够顺利回忆已学的知识,而且质疑提出即将学习的知识,明确学习目标,为本节课的学习找到思维与认知源泉。】

2、师:联系已经掌握的有关立体图形的知识,你能想办法求出这个圆柱体的体积吗?

生1:圆柱体的体积计算没有学过,无法计算。

生2:将这个圆柱放入一个盛有水的长方体容器中,量出上升了的水的长、宽、高,就可以求出它的体积。

生3:圆柱体在水中必须完全浸没,而且水还不能溢出。

【学情分析:学生在五年级学习长方体、正方体有关知识的基础上,很容易想到运用“排水法”来解决问题,所以这一环节也充分给予学生展示自我的机会,培养思维中的自信心。】 教师在学生中找出小助手,帮助测量有关数据,全体同学计算水的体积,并作记载。

师:运用转化思想,联系已学知识,解决新生问题,同学们真了不起!

【设计意图:学生的学习活动要建立在已有的知识和认知基础上,通过水的变形把圆柱的体积转化为长方体的体积来计算,使学生初步感知数学转化思想在解决问题中的价值,同时提高学生解决问题能力和思维能力。】

4、师:如果要求压路机前轮的体积或是求楼房中柱子的体积,还能不能用这种方法计算吗?(不能)那么求圆柱的体积时是否也有一个简单、易算的体积计算公式呢?今天我们就一起来研究圆柱体积的计算方法。

【设计意图:学生的学习应该是出于自身需要的,是主动的、有效的,已有的知识已经不能解决新生问题时,学生产生强烈的求知欲望,为主动参与知识的形成过程,探究圆柱的体积计算公式奠定积极的情感基础。】

二、新旧过度:

教师引导学生观察圆柱形实物。

1、师:发挥你的想象,哪些平面图形可以演变为圆柱体? 生1:以长方形的一条长为轴,把长方形旋转一周,就形成一个圆柱体。

(教师演示:大小不同的长方形旋转形成圆柱体。)

生2:把一个圆形上下平移,移动过的轨迹就是圆柱体。(课件演示:大小不同的圆形上下垂直平移不同高度形成圆柱体。)

师:通过刚才的演示过程你觉得圆柱的体积大小与什么有关?(圆柱的底面积和高)

【设计意图:其一,让学生初步感知几何图形点---线---面---体的演变过程;其二,训练学生的空间思维能力,进而提升学生的数学思维含量;其三,为进一步探究圆柱的体积计算公式明确探究方向。】

2、师:圆柱的底面大小就是圆柱底面圆形的面积,叫做圆柱的底面积。谁还记得圆面积计算公式的推导过程?

学生口述,同时课件演示圆形转化为近似长方形的过程。【设计意图:回忆圆转化为近似长方形的过程,使学生重温化曲为直、化圆为方的数学思想,而且沟通新旧知识间的联系,同时为下一步对圆柱的转化(等份切割)顺利进行提供思维方法的帮助。】

3、教师小结:我们能把一个圆采用化曲为直,化圆为方的方法转化成近似的长方形,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形呢?

三、自主探究

1、学生手拿圆柱实物,仔细观察,独立思考。

2、组织学生小组讨论,把个人的想法在小组中交流,形成统一意见。

强调:在讨论过程中,教师参与其中,倾听学生想法,调整汇报次序,同时提醒学生观察手中圆柱实物。

3、汇报交流,统一意见。

生1:把一个圆剪拼成一个近似的长方形,然后把圆形和近似长方形同时向上平移相同的高度,这时他们的轨迹一个是圆柱体,一个是近似长方体,而且它们的体积相等。

(师:一个圆柱和一个长方体只要底面积和高分别相等,它们的体积就相等吗?一会儿我们来解决这个问题。)

生2:把圆柱的底面分成许多相等的扇形,再沿这些分割线把圆柱纵切开来,从而剪拼成一个近似的长方体。

(师:为什么是近似的长方体?———渗透数学极限思想)【设计意图:这个转化的过程是本节课的难点,在前面知识铺垫的基础上,发挥学生集体智慧的结晶,为学生提供广阔的思维和交流平台,真正使学生的思维与学习相辅相成,从而达到提高学生空间思维能力之目的。】

4、课件演示:

师:仔细观察下面这组课件,和你想象的是否一样?

演示两次,第一次把圆柱平均分成16份,再剪拼成一个近似的长方形;第二次把圆柱平均分成32份,再剪拼成一个近似的长方形。

师:如果再平均分成更多的份数,结果会怎样呢?(平均分成的份数越多,转化成的形体就越接近长方体——极限思想)【问题讨论:课件中把圆柱平均分割后,其中的一块又平均分成两份,其中的一份移接到另一端,拼成一个更接近的长方体,而教材上的意图并没有这样的过程,我认为教材的方法是很可取的,符合极限思想,并且可以给予学生充分的思考和想象空间,因为只要均分的份数无限多时,拼成的图形就是一个长方体。然而实际教学中只是把圆柱平均分成16份或32份,那么在实际教学中如何更准确的诠释实际与理论之间的这种矛盾,从而更好的服务于学生思维、服务于课堂教学呢?】

5、直观演示,寻找联系 师:为了强化刚才的转化过程,我们再借助实物教具演示一遍(教具一半为红色,一半为绿色)。仔细观察演示过程,你能发现什么?

生:长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱的底面积,而且它们的高相等。

因为: 长方体的体积=底面积 ×高

所以: 圆柱的体积 =底面积 ×高

V = S h 【学情分析:在小组讨论、课件演示的基础上,再有双色教具(一个红色教具,一个绿色教具,偶然发现双色混合更容易辅助学生找出联系)的实物演示,使得寻找圆柱体与长方体之间的联系变得异常容易,并且自然而然得到圆柱体体积计算公式,同时使学生感受获取知识的成功之喜悦、艰辛之感慨。】

四、实践应用:

1、从公式中可以看出,只要知道哪些条件就能计算圆柱的体积? 口算:一个圆柱的底面积是90平方分米,高20分米,它的体积时多少?

强调单位:90×20=1800(立方分米)

2、再次拿出圆柱体橡皮泥,问:如果要用圆柱体积计算公式计算它的体积,你需要测量哪些数据?(底面直径、高)

找学生实际测量,保留整厘米数,进行计算。将计算结果与用排水法求出的体积做一对比,可能存在误差。师:为什么会产生误差呢?

生1:可能测量有误差,并且还要保留。

生2:测量水的长、宽时,容器的厚度忽略不计,也能产生误差。教师说明:每一个科学结论都必须经过反复的实验、计算,才能得到正确的结论,我们在学习上就要有这种不怕吃苦、勇于探索的精神。

3、出示一个圆柱形玻璃杯,出示一袋液态奶(225ml),问:通过计算你能知道这个杯子能装下这袋奶吗?除水杯的厚度忽略不计外,你还需要知道哪些条件?

(教师直接给出玻璃杯的底面直径和高)

【设计意图:层次性练习设计,第一层:基本练习,使学生更好的掌握本课重点,夯实基础知识;第二层,变式练习,进一步加深学生对圆柱体积公式的理解和掌握,学会灵活运用公式,在提高学生动手操作能力的同时,培养学生的逻辑思维能力;第三层,密切联系生活,运用公式解决引入环节中的问题,使学生的思维处于积极的状态,达到培养学生思维的灵活性和创造性解决问题能力的目的。】

五、看书质疑: 看书P19—20,师:哪些知识是我们没有讲到的?(V=∏r2 h)结合本节课的探究过程,你有什么疑问吗?

若学生有困难就教师提出问题:长方体和圆柱体有什么相同的地方,为什么他们的体积都能用V=Sh来计算?

学生独立思考后,教师解释:我们现在所学的圆柱体是直圆柱,他与长方体都属于直柱体,只要是直柱体,体积都可以用V=Sh来计算。如 三棱镜的体积=底面三角形的面积×高

【设计意图:课本是最好的教学辅助工具,是学生学习最好的伙伴,让学生再次重温本节课的学习历程,养成一种良好的学习习惯和学习品质。】

【问题讨论:我个人认为,在每一节课每个知识点的教学过程中,都尽量站在“数学”的高度来教学,于是对教材内容进行了拓展。长方体与圆柱体的体积公式V=Sh正好说明直柱体体积=底面积×高,但因为长方体(平面围成)与圆柱体(曲面围成)之间的联系较难找出,无疑增加了学生的思维负担,但从数学学习的角度来说,它却为今后“几何”学习奠定基础,这一环节处理是否有利于六年级学生思维发展?】

六、全课小结:

师:通过本节课的学习,你有什么收获? 【设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用体温师小结,使学生畅谈收获,发现不足,既能训练学生语言表达能力,又能培养学生的归纳概括能力,同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。】

启发与思考

启发

一、充实教材,为提高学生思维能力搭建平台

课堂教学中让学生在教师的启发指导下,独立思考、积极主动的去探究知识是怎样形成的,才能真正使学生成为学习的主体。在教材中已经提供了图形转化的过程,那么在没有学具让学生进行动手操作、亲自感悟的情况下,怎样让学生的思维真正参与到知识的形成过程呢?作为教师,必须充实教材。课堂中让学生动手测量计算所必需的数据,自己感悟学习圆柱体积计算公式的必要性,合作探究圆柱体的转化方法和过程。所有这些环节的设计,都在潜移默化中引导学生主动思考,主动参与,在思考与参与中提高了学生的思维能力。

启发

二、借助教材,为提高学生思维能力寻找支点

数学知识具有一定的结构,知识间存在密切的联系,教学时要找出知识间的内在联系,帮助学生建立一个较完整的知识系统。教材中设计了引问“圆可以转化成长方形计算面积,圆柱可以转化成长方形计算体积吗?”但我认为“面体过渡”在几何领域中本身就是一个难点,而“面面互化”迁移到“体体互化”,就难上加难,所以设计中用较长时间沟通新旧知识间的联系:排水法的应用,平面图形演变为立体图形的过程,圆面积的推导过程。在复习当中,学生的综合运用能力得到提高,更重要的是为下一步学生的思维活动确立支点,进而提高学生的思维能力。

启发

三、理解教材,为提高学生思维能力提供保证 数学思想的教学才是数学课堂教学中最本质的教学。从教材的编排,还有各知识点的呈现中可以看出,有一条不变的主线贯穿始终,那就是转化思想中的化曲为直、化圆为方。那么,只要教师真正理解教材的这一编写意图,学生所收获到的就不仅是圆柱体积的计算方法,而是真正感悟到数学转化思想,学生必将运用这种思想影响今后的学习,为其思维能力得以持续发展提供保证。思考

一、演示、观察能否代替操作?

教材中提供了教具演示,但在本节教学前,始终没有找到学生使用的操作学具,而自己也尝试用土豆、橡皮泥等制作学具,都因为难度太大(粘接处)而告失败,在无奈之余,设计了“独立思考---小组探究---课件演示---教具操作”四个环节来突破本节难点。就学生理解、接受方面来说效果不错。但没有让学生亲自操作,总感觉影响学生思维发展。类似教学如:圆锥高的认识。

思考

二、研究中的失误会不会造成学生认知的“失误”?

课堂中为求真实,进行了两次实际测量(第一次测长方体中水的长宽高;第二次测圆柱形橡皮泥的底面直径和高)。两次计算结果的对比,使学生思维与课堂结构都体现完整性。但由于种种误差,计算结果很可能不会相等,这就可能会让学生对结论产生怀疑(尽管教师已经说明),那么是否有必要让学生经历一个“失误”的过程呢?类似教学如:圆周率的计算。

《圆柱的体积》教学设计及反思 篇2

一、案例

教学“圆柱的体积”后, 课本上有这样一道星号题:

如上图, 求空心钢管的体积。

笔者首先让同学们回顾了一下“体积”的含义, 既然物体所占空间的大小就叫物体的体积, 那么这根钢管中间的空心, 究竟占不占空间?整个物体所占的空间实际上是哪部分的体积呢?或者说, 怎样计算这根钢管的体积呢?

一位学生小声嘀咕了一句“就是圆柱的体积啦”。

一贯爱发言的唐万奇接茬了:“是的, 整个外形是圆柱体, 中间挖空的部分也是圆柱体, 所以钢管的体积其实就是大圆柱的体积减去空心小圆柱的体积。”

笔者继续追问:“这种思路你们会列式吗?”受“列式”的启发, 还没等算式列出来, 又有学生跃跃欲试了:“老师, 这根空心钢管内外两个圆柱的高是一样的, 因为圆柱的体积=底面积×高, 所以, 我觉得也可以先求出底面积, 也就是圆环的面积, 再乘高。”

教室里沉默了两秒钟后, 响起了应和声:“是的, 这样还简便些。”在自选方法解答时, 这两种思路都得到了大家的认可, 更多的人还选择了后者, 使计算更简便。

笔者看到了一份错例并把它抄在了黑板上: (10-8) 2л×80=?

并抛出一个问题:“这样对吗, 如果不对, 你们能把它改对吗?!”

同学们纷纷说着错因:“他是把直径当半径啦!况且 (10-8) 也不是半径呀!”

笔者顺势追问:“那10-8得到的2, 到底指哪一部分?谁能来指指?”上台的学生用粉笔指出了“2”所指的部分, 我强调着说:“圆环的面积应该用半径的平方差再乘л, 可这个2什么也不是, 你们能使它变得有道理吗?”

一生插嘴道:“如果这个2再除以2得到1cm嘛, 就有点意义了。”

“噢, 那指什么呢?”“就是钢管的厚度。”

……

这个问题讲到这里, 笔者很满意了:既明确了两种正确思路, 还出现了笔者想要的错例来提醒同学们注意, 再妙不过了!铃声知我心, 正好适时响起, 笔者宣布下课, 准备出教室。这时, 两个平时特爱钻牛角尖的同学拦住了笔者:“老师, 既然钢管的厚度是1cm, 我们知道圆柱的侧面沿高展开是一个长方形, 那我们把这个空心圆柱也沿高展开, 像擀面饼一样, 擀成一个长方体, 直接求这个长方体的体积, 行不行啊?”

“等 (体) 积变换, 有点意思!”笔者心里一阵窃喜, 这可能是老师都从未想到过的解法吧!便连忙把还未走出教室门的同学们重新召集到座位上, 听他俩摆弄着空心圆柱教具作解释, 刚听了两句, 就有几个同学嗤之以鼻了:“又不是求表面积咧!化曲为直有什么用?”我示意他们有点耐心, 给别人一个解释的机会:“擀成长方体后, 这个长方体的高, 还是原来圆柱的高, 空心圆柱的厚度就是长方体的宽, 侧面拉直后, 底面周长就成了长方体的长。”

笔者配合着在黑板上画了个草图 (如下) :

教室里炸开了锅, 热闹极了:每个同学都在积极思考着, 这种有条理的阐述赢得了大多数人的赞同, 笔者的心里洋溢着无以伦比的自豪感, 为学生的求异思维而惊叹!片刻后, 有学生持异议了:“不行!这样剪开后, ‘厚度’那里是斜着的, 不是一个标准的长方体!”

这两位同学也不甘示弱, 搬出了另一个教具, “就能拼成标准的长方体呢!”经过一番唇枪舌战, 大家终于达成了共识。

水到渠成后, 笔者也参与解释了:“剪开之后, 确实是斜面, 可把一边的斜面垂直剪下来, 拼到另一边, 是可以成为标准长方体的。他们的想法是可行的, 我真为他们俩感到骄傲!”

果真一锤定音, 同学们不再争论, 高高兴兴地去上体育课了。

可放学时, 同学们又争论起来了:“他们这种方法不行!老师, 我用常规方法做了这道题, 也用他们的‘面饼法’ (多有趣的命名哟) 做了这道题, 可算出来的结果不一样!”“怎么会不行呢?”刚肯定了这个做法, 这岂不是太扫老师的颜面了?!笔者怀疑是他算错了!

一边把他的两种解答过程板书到黑板上, 一边快速地思考着错因。哈哈!皇天不负细心人!还真让笔者给查出来了:“面饼”拉直的过程中, 新增的切面是斜的, 再次切拼, 成为标准的长方体后, 这由圆柱底面周长变成的“长”该算多少呢?!笔者卖关子似的慢条斯理地说出了两句话:“这个面饼在拉直的过程中, 外圆的底面周长和内圆的底面周长相同吗?你用谁做的新长方体的长呢?”

在笔者的点拨下, 同学们很快找到了解决办法, 用内圆底面周长或者是外圆底面周长来做“长”都不行, 应该用“内外两圆的周长之和÷2=新长方体的长”, 即 (10π+8л) ÷2=9π, 有如此聪明的学生, 当然衍生出了更简便的做法:“直径和÷2”做新的底面直径, 再乘π, 得底面周长, 即新长方体的长, 列式为 (10+8) ÷2×π=9л。

……

二、反思

数学学习是学生合作探究自主建构的过程, 是师生之间、生生之间交往互动与共同发展的过程。这个过程需要对话与交流。有效的数学交流, 可以促进学生间的众多信息相互碰撞交织, 使学生的思维由“表层”走向“深入”, 促进学生数学思维的发展。

1. 有效探究需要引领学生学会倾听与接纳。

在数学学习中, 教师自己不仅要具有倾听的意识和习惯, 而且要在平时的课堂上引领学生养成认真倾听同伴发言的好习惯。尤其当别人和自己有不同想法时, 能够学会倾听别人的想法, 哪怕他的想法是错误的。在上面的案例中, 当出现这种“化曲为直”的思想时, 受到圆柱侧面积公式的负迁移, 部分学生嗤之以鼻, 不屑于听他俩的解释。在这种情况下, 需要老师站出来及时引领学生给别人一个发言的机会, 不管他的想法是否正确, 都要耐心地认真倾听, 然后再加以评判。因此, 在后来的交流中, 学生认识到“化曲为直”不仅可以用来求圆柱的侧面积, 还可以求空心圆柱的体积, 同时还体会到在平时的学习中不能轻易地否定别人的想法。

2. 有效探究需要引领学生主动思考与质疑。

有效探究少不了数学交流。数学交流不等于热闹, 缺乏深入思考的数学交流只能是学生之间肤浅的“说话”。因此, 在参与交流前要给学生独立思考的时间, 交流中老师更要引领学生带着自己的思考倾听同伴的发言, 学会从别人的发言中捕捉闪光点或不足处, 学会合理地评价他人的观点和想法, 学会对别人的发言进行补充或质疑。上面案例中的这道题被演绎得如此饱满而丰盈, 富有张力, 就归功于有效的引领。当辨析错例 (10-8) 2л×80=时, 笔者及时追问:“10-8=2指什么?怎样使这个没意义的2变得有道理呢?”在教师的追问中引发学生继续思考、探究、辩论, 求出钢管厚度为1cm, 从而引出奇特的“面饼法”等积变形, 化曲为直求出空心圆柱的体积。最终在明确思路的基础上进一步求得计算过程的简便。这样, 学生在不断的交流碰撞中, 逐渐逼近问题的本质, 实现了共识、共享和共进。

总之, 这两位同学的“与众不同”让这节平淡无奇的课收获了未曾预约的精彩, 他们的所思所想, 不但显示了他们的求异思维, 而且教育了笔者。笔者庆幸自己在教学时没有越俎代庖, 妄下结论, 而是机智地抓住了这一契机, 并有效追问, 把“意外”转化成了一种积极的教学资源。同时也庆幸自己没有严加斥责、步步紧逼, 直至课堂只有一种声音。因为学生无奈的附和意味着服从, 意味着不需要有自己的思考、自己的独特见解, 同时也意味着他们必须遵从教师的意见、揣摩教师的用意、猜测教师的想法。在这样的课堂上, 学生很难超越自我, 获得成功的体验和自我价值观的实现。

独特的见解总是在主体充分自由的状态下萌生出来的, 当课堂中出现不同的声音时, 教师应营造一个充满关爱、平等自主、尊重孩子的学习氛围, 满腔热情地听取孩子们的不同意见, 要善待他们不正确或不完善的想法, 只有在这样的土壤中, 那些与众不同的奇思妙想才会盛开美丽的创新之花。

《圆柱的体积》教学反思 篇3

一、循序渐进,温故而知新

上课之初,我充分利用主题图,引导学生思考如何求圆柱形柱子的体积和圆柱形水杯的容积,开门见山地让学生明确本节课的学习任务,快速进入学习状态。接着把“知识绣球”抛给学生,让他们根据生活经验寻找解决问题的妙方。他们经过激烈的讨论,得出圆柱体积的算法可能与长方体体积的算法有关。于是,我顺水推舟,让他们回忆了长方体、正方体体积的计算方法以及圆的面积计算公式的推导过程,以便于学生猜想,从而激起学生的好奇心,萌生独立思考问题,探索问题的愿望。

二、动手操作,验证猜想,探索新知

在教学《圆柱的体积》时,虽然学校条件有限,没有现成的学具可供学生实践操作,但是我因地制宜、因材施教,利用课前准备的一个大萝卜和一把小刀作为学生道具。在推导时,我先选出两名同学轮流上前演示,把圆柱形教具的底面平分成16等份,然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;其他同学用提前准备好的圆柱形萝卜,完成切拼活动。接着,引导学生悟出这个长方体的长、宽、高相当于圆柱哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。

三、课件演示,巩固理解

为了让学生更直观、形象地理解圆柱体积计算公式的推导过程,让学生观看课件:圆转化成近似长方形的过程。引导学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”通过多媒体课件演示,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的过程和方法。

四、分层练习,拓展延伸

为了培养学生思维的创造性和解题的灵活性,我在设计练习时多花了些心思去考虑如何让学生在最短的时间完成不同类型的题目。于是采用了分层练习策略。

小结时,提醒学生要从多方面去考虑,做到面面俱到,逐层深入。同时一定要认真读题审题,注意单位统一。

在本课的教学过程中,不仅使学生获取的知识层次化、系统化,而且提高了他们主动建构知识的能力,同时也发展了他们灵活选择公式解决实际问题的能力。学生学得快乐,教师教得轻松。

圆柱体积的教学反思 篇4

《圆柱的体积》以前教学此内容时,由于没有相应的教具,往往直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=SH,让学生套公式练习;这学期我教本节课内容时,课前作了充分准备了教具,再加之网上收集整理出来相应的教学课件,课堂教学我让学生自己动手实践、自主探索与合作交流,让学生实践中体验,从而获得知识。总之让学生的手、脑、嘴、眼各种器官充分利用起来,让学生不仅学到知识,而且让学生体验学习的过程,真正理解圆柱体积的推导过程,让学生真正成为学习的主人。对此,我有以下的感想:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是我告诉的,而是学生在自己艰苦的学习中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。这样学生不但尝到了知识,更重要的是他们掌握了学习数学的方法,这样有利于孩子将来的发展。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。本节课我让学生联系圆的面积推导的基础上,让学生自主探究圆柱的体积的推导过程。充分体现了这一理念。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

圆锥的体积教学反思

教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

我让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的方法,有的组用到沙子的方法;有的组用计算的方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

圆锥的体积这节课的教学具有下面的特点,一是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验

在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

教材中圆锥体积的相对练习较少,但在考试里面实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或三分之四个圆柱的体积),而它们的体积相差2个圆锥的体积(或三分之二个圆柱的体积)„„。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘三分之二从而使计算简便。

教学的最后我与孩子们一起通过大量的练习,引导总结出了圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆柱的3倍,圆柱的底面积(或高)是圆锥的三分之一。

总而言之,圆柱圆锥的体积计算是教学的重点和难点,也是考试中学生容易丢分的危险高发内容,我在后面的教学中需要精讲和精炼,让学生熟能生巧、巧能生精,内化成自己的数学直觉方为最高层次!

       昨天访问: 1736 今天访问: 686 本月访问: 18590 上月访问: 56263 访问总数: 288918 会员总数: 99 文章总数: 4615  版权所有:[南京市江宁区湖熟中心小学] 学校地址:南京市江宁区湖熟街道灵顺南路150号

《圆柱的体积》教学设计及反思 篇5

本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。

下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。

一、在教学过程的设计方面

1、导入时,力求突破教材,有所创新

圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

2、新课时,要实现人人参与,主动学习

学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学

生经历先想-观察-动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

3、练习时,形式多样,层层递进

例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型:

a.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

b.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr²h。

c.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)²h。

d.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)²h。

e.已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)²h。

因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法.另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。

二、在教学策略方面

我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。

三、在教学技能方面

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然

而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景,四、存在的问题

不足之处是:由于这节课的设计是以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,所以在学生动手实践、交流讨论和思考的时间上教师应合理把握,不能时间较多,否则会导致练习的时间较少。

《圆柱体积》教学反思 篇6

1、挖掘训练空白,及时补白教材。

编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。

2、找出知识联系,大胆重组教材。

《圆柱的体积》教学设计及反思 篇7

一、等底等高的圆柱与圆锥的体积

第一, 给出圆柱与圆锥体积的“和”。

题目经常给出等底等高的圆柱圆锥的体积的和, 而让我们去求圆柱与圆锥的体积或求圆柱比圆锥多余的体积, 这时, 我们把圆锥的体积看成一份, 把圆柱的体积看成三份, 这样就把圆柱与圆锥的体积看成相等的四份, 如果给出体积之和, 就可以把这个和平均分成四份, 求出每一份的体积, 也就是圆锥的体积, 再乘3就得到圆柱的体积。这样还可求出圆柱比圆锥多余的体积。

例如:等底等高的圆柱与圆锥的体积之和为64立方厘米, 求圆柱比圆锥多多少立方厘米?

根据以上分析:圆柱的体积为3份, 圆锥的体积为1份, 并且这四份都是相等的, 也就是说把圆柱与圆锥的体积之和平均分成4份, 其中一份的体积则为圆锥体积, 三份体积则为圆柱体积, 圆柱体积比圆锥体积多两份, 如果算出一份的体积, 多余的体积就会迎刃而解。

64÷4=14 (立方厘米) 14×3=42 (立方厘米)

42-14=28 (立方厘米)

答:圆柱的体积比圆锥多28 (立方厘米)

第二, 给出圆柱与圆锥的体积之“差”。

我们在练习题目时, 经常碰到等底等高的圆柱与圆锥的体积之差, 而求出圆柱或圆锥的体积, 有时还要求出圆柱的体积是圆锥的几倍或圆锥的体积是圆柱的几分之几。

根据所学知识, 等底等高的圆柱的体积是圆锥的三倍, 圆锥的体积是圆柱的三分之一, 这样我们就会把圆柱体积和圆锥体积看成相等的四份, 这样看来, 圆柱体积就比圆锥体积多两份, 而多余的体积给出来, 把它平均分成两份, 就是每一份的体积, 圆柱占三份就乘3, 得到圆柱的体积, 圆锥占一份乘一, 就得到圆锥的体积。

例如:一个圆柱削成一个最大的圆锥, 体积减少了36立方分米, , 求圆柱与圆锥的体积分别是多少立方分米?削去部分的体积是圆锥的几倍?

根据以上分析:把圆柱削成最大的圆锥, 削出来的的圆锥与原来圆柱的关系是等底等高, 那么就存在这样的关系, 圆柱体积的三分之一是圆锥体积, 其实把三分之二削掉了。也就是说把圆柱体分成三份, 消掉了两份, 剩下一份为圆锥体。

36÷2=18 (立方分米) 18×3=54 (立方分米)

18×1=18 (立方分米) 36÷18=2 (倍)

答:圆柱体积是54圆锥体积是18, 削去部分的体积是圆锥的2倍。

第三, 给出圆柱或圆锥的体积, 求出另一个的体积。

我们在学习中经常碰见给出等地等高的圆柱和圆锥的其中一种的体积, 而要求出另外一种体积, 或者求出两个的体积之差。

等底等高的圆柱与圆锥的体积关系, 即圆柱的体积是圆锥的三倍, 圆锥的体积是圆柱的三分之一, 如果给出圆柱体积, 要求圆锥体积, 则圆柱体积撑三分之一就是圆锥体积。如果给出圆锥体积, 要求圆柱体积, 则圆锥体积乘三就是圆柱体积。

例一:一个圆柱的体积为102立方分米, 与它等底等高圆柱的体积是多少立方分米?

根据以上分析:圆锥的体积为圆柱体积的三分之一。

102×1/3=34 (立方分米)

答:圆锥的体积为34立方分米。

二、圆柱和圆锥的体积在相等或不相等的情况下, 它们的底和高的关系

第一, 圆柱与圆锥的体积相等, 找出它们的底面积和高的关系。

在体积相等的情况下, 底面积和高的关系有两种, 第一种是给出底面积的关系, 找出高的关系。第二种是给出高的关系, 找出底面积的关系。以下根据例题详细的分析:

例一:体积相等的圆柱与圆锥, 圆柱的底面积是圆锥的三倍, 则圆柱与圆锥的高的比是多少?

分析:圆柱与圆锥的体积相等, 则S柱H柱=1/3S锥H锥, 而圆柱的底面积是圆锥的3倍, 则S柱=3S锥, 把上述等式替换可得:3S锥H柱=1/3S锥H锥, 等式的两端同时除以相同的数, 等式不变, 这样可得到:3H柱=1/3H锥, 所以圆柱的高与圆锥的高的比是:H柱:H锥=1/3:3=1:9。

例二:体积相等的圆柱与圆锥, 圆柱的高是圆锥的1/4, 则圆柱的底面积是圆锥的 () 。

A、3/4 B、3倍C、4倍D、4/3倍

分析:它们的体积相等, 即:S柱H柱=1/3S锥H锥, 而圆柱的高是圆锥的1/4, 即H柱=1/4H锥, 把上述等式替换可得:S柱×1/4H锥=1/3S锥H锥, 等式的两端同时除以相同的数, 等式不变, 这样可得到:S柱×1/4=1/3S锥, 然后两端同时乘4, 可得:S柱=4/3S锥, 圆柱的体积是圆锥的4/3倍。可选D答案。

第二, 圆柱与圆锥的体积不相等, 找出它们的底面积和高的关系。下面有两个例题就能很好的说明它们的关系。

例一:一个圆柱的体积是一个圆锥的2倍, 它们的底面积相等, 求圆柱与圆锥高的比是多少?

分析:体积相等可得:V柱=2V锥, 可得:S柱H柱=2×1/3S锥H锥, 而它们的底面积相等, 则S柱=S锥, 等式的两端同时除以相同的数, 等式不变, 可得:H柱=2×1/3H锥, 即H柱=2/3H锥, 那么圆柱与圆锥高的比:H柱:H锥=2/3:1=2:3。

例二:一个圆柱的体积是一个圆锥的1/2, 圆柱的底面积是圆锥的3倍, 那么, 圆锥高是圆柱高的 () 。

A、1/6 B、3倍C、12倍D、18倍

分析:圆柱的体积是圆锥的1/2, 可知:V柱=1/2V锥, 即:S柱H柱=1/2×1/3S锥H锥, 圆柱的底面积是圆锥的3倍, 可知:S柱=3S锥, 把上述等式替换:3S锥H柱=1/2×1/3S锥H锥, 等式的两端同时除以相同的数, 等式不变, 可得:3H柱=1/6H锥, 两端同时乘6, 这样可得:18H柱=H锥, 所以圆锥的高是圆柱的18倍。

总之, 我们作为教师, 尽可能的深入研究教材, 把课堂设计成多种形式的教学情景, 让课堂充满探索性、竞争性、趣味性, 同时让学生参与进来快乐的获得知识。这样即增加了学生学习数学的兴趣, 还培养了学生的合作、探究、操作、创新的能力。

摘要:等底等高的圆柱的体积是圆锥的三倍, 圆锥的体积是圆柱的三分之一, 这样我们就会把圆柱体积和圆锥体积的和评价分成四份, 圆柱体积占三份, 圆锥占一份, 圆柱比圆锥多两份。

《圆柱的体积》教学设计及反思 篇8

【关键词】推导圆柱 体积公式

圆柱的体积是一节非常重要的课,是后面学习复杂形体知识的基础,其中圆柱体体积计算公式的推导过程是教学的重点,教学中教师引导学生通过圆柱的底面直径(半径)并沿着高将圆柱体等分为16份(32份)等,把这16等份拼起来后,拼成了一个近似的长方体。在转化后虽然形状变了(圆柱体→近似长方体),但在拼的过程中没有增加一块,也没有减少一块,所以体积不变,即近似长方体的体积等于圆柱体的体积,所以想办法求出近似长方体的体积就可以求出圆柱体的体积,从而推导出圆柱的体积计算公式。教学中教师让学生4人小组合作研究,找出近似长方体的体积与原来圆柱体的体积的关系,再找出近似长方体的底面积和高相当于原来圆柱体的哪些部分,便可推导出圆柱的体积计算公式。因近似长方体的摆放方式有3种,所以推导圆柱体积计算公式便有3种方法。

第一种方法:学生把等分成的16份拼成近似长方体后(图1),让学生4人小组合作研究,思考讨论一下3个问题:

①拼成的近似长方体的体积和圆柱的体积有什么关系?为什么?

②近似长方体的底面积和原来圆柱的底面积有什么关系?

③近似长方体的高和原来圆柱体的高有什么关系?

学生经过小组讨论后,再填写下面实验报告单:

得出这时近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高。因此,容易推导出圆柱体的体积公式:

长方体的体积=长方体的底面积×长方体的高

圆柱体的体积=圆柱体的底面积×圆柱的高

V=S×h

=πr2h

其中V表示圆柱的体积,r表示圆柱的底面积半径,h表示圆柱的高。

第二种方法:当学生推导出第一种方法后(书上的方法),教师问:“除了这种推导方法外,你还能不能用其它方法推出圆柱的体积计算公式?”这时教师引导学生把拼成的近似长方体“平躺”下来摆放(图2),同样让学生4人小组合作研究,讨论以下问题:

①近似长方体的底面积等于原来圆柱的什么?

②近似长方体的高等于原来圆柱的什么?

学生填写实验报告单(同第一个报告单)后,再让小组代表汇报交流:这时近似长方体的底面积等于圆柱侧面积的一半(?S侧),近似长方体的高等于圆柱的底面半径(r),而圆柱的侧面积等于底面周长乘圆柱的高(S侧=Ch),教师引导小野生进行推导如下:

长方体的体积=长方体的底面积×长方体的高

圆柱体的体积=圆柱侧面积的一半×圆柱的底面半径

V=1/2S侧×r

=1/2×Ch×r

=1/2πdh×r

=1/2×2πrh×r

=πrh×r=πr2h

第三种方法:教师引导学生把拼成的近似长方体“竖”起来摆放(图3),同样让学生讨论以下问题:

①这个近似长方体的底面是由圆柱的哪些部分围成的?这个底面积怎样计算?(圆柱的高×底面半径)

②这个近似长方体的高等于原来圆柱的什么?

学生填写实验报告单后(同第一个),再请小组代表汇报:这时近似长方体的底面积是由圆柱的底面半径(r)和圆柱的高(h)围成的,其底面积等于圆柱的底面半径(r)乘圆柱的高(h),近似长方体的高等于原来圆柱底面周长的一半(C),引导学生推導如下:

长方体的体积=长方体的底面积×长方体的高

圆柱体的体积=圆柱的高×底面半径×圆柱底面周长的一半

V=h×r×1/2C

=h×r×1/2×πd

=h×r×1/2×2πr

=h×r×πr

=πr2h

圆柱体积计算公式的推导教学反思 篇9

“圆柱体积计算公式的推导”是在学生已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为学生今后进一步学习其他形体知识做好充分准备的一堂课。

课始,教师创设问题情境,不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,并制造认知冲突,形成了“任务驱动”的探究氛围。

展开部分,教师为学生提供了动手操作、观察以及交流讨论的平台,让学生在体验和探索空间与图形的过程中不断积累几何知识,以帮助学生理解现实的三维世界,逐步发展其空间观念。

练习安排注重密切联系生活实际,让学生运用自己刚推导的`圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自己的身边,数学对于了解周围世界和解决实际问题是非常有作用的。

《圆柱的体积》教学设计及反思 篇10

一、导入时,要突破教材,要有所创新。

在进行圆柱的体积的导入时,课本上是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,那么再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜,猜想计算方法固然有好处,但要让学生马上做实验,理解圆柱体积计算公式的推导过程,这样教学引入,学生的思维跳跃得太快,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。

二、新课时,要实现人人参与,主动学习,效果才佳。

根据课标要求:学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围,教学“圆柱的体积”时,先让学生用自备的胡萝卜进行切割拼凑,学生的学习热情得到空前高涨,人人参与,主动学习,效果佳。然后教师用PPT动画示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份,还可以再多一些),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生记得牢,不易忘。

三、练习时,要形式多样,层层递进

《圆柱的体积》教学设计 篇11

教学目标:

1、使学生初步理解和掌握圆柱的体积计算公式。会用公式计算圆柱的体积,并能应用分式解答一些实际问题。

2、在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。

学习重点:圆柱体积的计算公式。学习难点:圆柱体积的计算公式的推导。学法指导:引导

探究

归纳总结。

一、以旧激新:复习准备

1、什么叫体积?(指名回答)生:物体所占空间的大小叫做体积。师:你学过哪些体积的计算公式?(指名回答)根据学生的回答,板书: 长方体体积=底面积×高

2、圆面积公式是怎样推导出来的?(课件演示)生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。)得到圆面积公式S=πr2。

二、新课教学:

设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

(一)学生动手操作探究

1、回顾旧知,帮助迁移

(1)、教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以……

(2)、请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

(通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫)

2、小组合作,探究推导圆柱的体积计算公式。

(1)、启发猜想:可见,大部分图形公式的推导都可以把所学的转化为学过的。那么你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积可以怎样计算呢?

老师激励同学们:大家同意他的猜想吗?但我们还是要小心地验证猜想的科学性。都说实践出真知,接下来同学们以小组为单位拿出学具,动手尝试着进行转化,并说一说转化的过程。

(二)教师课件演示

1、课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。①、切割后拼成了一个近似于什么的形体?

②、圆柱的体积与拼成后的长方体的体积有什么关系?

③、这个长方体的底面积等于圆柱的什么?

④、长方体的高与圆柱体的高有什么关系?

依次解决问题。

①、把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

②、拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。

(配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

2、组织讨论

(1)、圆柱体转化成一个长方体后,什么变了,什么没有变?你有什么发现? 学生讨论后交流。

指出:形状变了,体积没有变

强调:底面的形状变了,底面积没有变,高没有变,所以体积没有变(2)、根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积×高

圆柱的体积=底面积×高

(3)、你的猜想正确吗?学生齐读圆柱的体积计算公式。

追问:圆柱体的体积计算公式我们是怎样推导出来的?

3、小结:

要想求出一个圆柱的体积,需要知道什么条件?

4、学生自学第8页例4上面的一段话:用字母表示公式。学生反馈自学情况:v=sh(4)做第20页的“做一做”。

学生独立做在练习本上,做完后集体订正. 指名学生分别回答下面的问题:

①、这道题已知什么?求什么? ②、能不能根据公式直接计算?

③、计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

5、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

(三)、解决问题:

1、出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

2、学生尝试完成例6。

① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

3、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)

三、巩固练习

四、课堂总结

这节课,你学会了什么?还有什么问题 ?

圆柱的体积

长方体的体积=圆柱的体积

长方体的体积=长×宽×高

圆柱的体积= 底面积×高

《圆柱的体积》教学设计 篇12

一、情景引入

1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(学生互相讨论后汇报,教师设疑)

二、自主探究、

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

(4)学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

2、大胆猜想,感知体积公式,确定探究目标。

(1)再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

4、确定方法,探究实验,验证体积公式。

(1)首先要求学生利用实验工具,自主商讨确定研究方法。

(2)学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

(3)学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

(4)实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

(5)学生汇报:实验的结果与猜想的结果基本相同。

(6)教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(7)小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh

三、巩固发展

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

2、巩固反馈

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)

集体订正,说一说圆柱体的体积还可以怎样算?

4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?

5、拓展练习

(1) 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

(2) 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?

四、全课小结:

谈谈这节课你有哪些收获。

教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

教学目标:

1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式。

圆柱的体积教学设计1 篇13

刘玉花

教学目标:

1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

4.借助实物演示,培养学生抽象、概括的思维能力。

教 具:圆柱的体积公式演示教具。

教学过程:

一、情景引入

1、出示圆柱形水杯。

(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

(4)说一说长方体体积的计算公式。

2、创设问题情景。

如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢? 今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)

二、新课教学: 设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

1.探究推导圆柱的体积计算公式。

课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。C、依次解决上面三个问题。

①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积×高)用字母表示:。(板书:V=Sh)要用这个公式计算圆柱的体积必须知道什么条件? 填表:请同学看屏幕回答下面问题,底面积(㎡)高(m)圆柱体积(m3)三.巩固反馈

1.求下面圆柱体的体积。(单位:厘米)同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。

(练习:(回到想一想中)圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?

四.拓展练习

1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)

圆柱体积教学设计 篇14

1、同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?他们的体积体积的通用公式是什么?用字母怎么表示?

2、回忆一下圆面积的计算公式是如何推导出来的?

3、课件出示一个圆柱体

我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?

二、探索体验

1、学生猜想可以把圆柱转化成什么图形?

2、课件演示:把圆柱体转化成长方体(1)是怎样拼成的?

(2)观察是不是标准的长方体?

(3)演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。

3、借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。

4、交流展示

(1)小组讨论,交流汇报。(2)生汇报,师结合讲解板书。圆柱的体积=底面积x高

(3)用字母公式怎样表示呢?v、s、h各表示什么?

5、知道哪些条件可以求出圆柱的体积?

6、计算下面圆柱的体积:

(1)底面积24平方厘米,高12厘米(2)底面半径2厘米,高5厘米

三、课题检测

1、判断

(1)圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。(2)圆柱的底面积扩大3倍,体积也扩大3倍。(3)圆柱体的底面直径和高可以相等。

(4)两个圆柱体的底面积相等,体积也一定相等。

(5)一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。

2、联系生活实际解决实际问题。

(1)一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?

(2)一个塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆,大棚内的空间大约有多大?

上一篇:高中生物必修一知识细节汇总下一篇:创建文明旗动员大会