六年级下册数学圆柱的体积(教学设计)(共11篇)
六年级下册数学圆柱的体积(教学设计) 篇1
六年级数学下册《圆柱的体积》教学反思
六年级数学下册《圆柱的体积》教学反思
《圆柱的体积》一课是在学生已经学习了“圆的面积计算”和“长方体、正方体的体积”及圆柱的相关知识的基础上教学的。
教学时我注重引导学生经历“类比猜想 验证说明”的探索过程。由于圆柱和长方体都是直柱体,长方体的体积是底面积×高,因而我引导学生猜想圆柱的体积是否也可以用底面积×高来计算。接着引导学生想办法证明自己的猜想,也就是验证说明。重视学生已有的经验,是新课改教学的重要理念,因而我引导学生回忆以前学习的“把未知的问题转化为已知的问题”的方法,即“怎样把圆柱转化成已知的形体”的问题。大部分学生都能想到把“圆柱转化成长方体”,接着就“怎样将圆柱转化成长方体”这个问题,让他们观察、研究、讨论。学生受到以前“圆的面积”推导过程的启发,都知道应把圆柱平均分成若干份切开,拼成近似的长方体。由于学生没有学具,因此我用教具演示整个过程,然后引导学生思考:长方体底面的长相当于圆柱底面的什么?(周长的一半即π r)长方体底面的宽相当于圆柱底面的什么?(圆的半径r)再根据长方体的面积公式推导出圆柱体积公式V=π r2 × h或V=S×h。这样让学生亲身经历知识的形成过程,为学生的主动探索与发现提供了空间。
我觉得本课比较成功的一点是学生除了掌握本课的知识点外,还懂得了“类比猜想 验证说明”的数学思想方法,可以说是既授之于“鱼”,又授之于“渔”。
六年级下册数学圆柱的体积(教学设计) 篇2
片段一:复习铺垫, 引入新课
师: (课件出示长方体和正方体) 怎样计算长方体和正方体的体积?
生1:长方体的体积=长×宽×高。
生2:正方体的体积=棱长×棱长×棱长。
生3:它们都有一个通用的公式, V=sh。
师:请大家回顾一下, 圆的面积计算公式是怎样推导出来的?
师: (课件出示圆面积计算公式的推导过程) 想一想, 谁能说说这一组图片描述的是什么?
生:圆面积公式的推导过程。
师:谁来用语言描述一下?
师指名汇报。
生:把圆等分成若干偶数份, 再把它拼在一起, 拼成一个近似的长方形, 如果分的份数越多, 就越接近长方形。因为长方形的面积=长×宽, 而长方形的长相当于圆周长的一半, 长方形的宽等于圆的半径, 所以圆的面积=πr2。
师:由“谁”向“谁”转化?为什么要进行这样的转化?
生:由圆向长方形转化, 这样转化后就“化曲为直”, 可以更简单地计算圆的面积。
师:说得真不错, 把新问题转化成已经学过的旧知识来解决, 这种方法就是转化。
通过引导学生复习旧知, 沟通知识间的内在联系, 找准学生的知识起点, 为新知寻找到合适的生长点。学生在解决新问题时, 往往需要从自己的认知结构中去调动相关知识及经验储备, 来构建知识结构, 培养学生利用“旧知”解决“新知”的意识和能力。从而体验运用“转化”思想解决新问题的价值。
片段二:操作体验, 探究新知
师: (课件出示圆柱体) 我们学习一种新图形的面积时, 都要将它转化成已经学过的图形, 再根据两者之间的关系, 推导出新图形的面积计算公式。那么, 大家是否也可以把圆柱转化成一个已经学过的图形来推导出圆柱的体积计算公式呢?
师:请大家独立思考, 小组合作交流, 再动手剪一剪、拼一拼, 把圆柱转化成学过的图形, 并借助已学过的图形来推导圆柱的体积计算公式。同时思考以下问题: (1) 可以将圆柱转化成什么立体图形? (2) 拼成的长方体和圆柱比较, 什么变了?什么没变?你有什么发现? (3) 你能推导出圆柱的体积计算公式吗?
汇报结果:
组1:我们小组将圆柱转化为长方体, 先把圆柱 (学具) 沿底面等分成若干偶数份, 再把圆柱切开, 拼在一起, 就得到了一个近似的长方体, 长方体的底面积等于圆柱的底面积, 长方体的高等于圆柱的高, 因为长方体的体积=底面积×高, 所以圆柱的体积=底面积×高。
组2:我们小组还发现, 圆柱底面平均分的份数越多, 就越接近长方体。
……
师:大家真了不起!把圆柱转化成了近似的长方体。
师:请大家看大屏幕, 老师怎样把圆柱剪、拼, 然后转化成一个近似的长方体。 (课件演示) 想一想:如果把圆柱平均分的份数越多, 拼成的图形会怎样呢?
生:平均分的份数越多, 每一份就会越细, 拼成的图形就会越接近于长方体。
……
可见, 因为有了圆转化为长方形的基础, 学生通过动手操作体验和合作交流, 不知不觉地将“新知”转化为“旧知”。这样, 让学生经历知识的形成过程, 渗透转化、极限的数学思想。
片段三:理清思路, 验证推导
1.出示课件, 观察验证。 (1) 把圆柱拼成长方体后, 形状变了, 体积不变 (板书:长方体的体积=圆柱的体积) 。 (2) 拼成的长方体的底面积等于圆柱的底面积, 高就是圆柱的高。 (3) 圆柱的体积=底面积×高, 字母公式是V=Sh (板书公式) 。
2.分析解法, 积累公式。
师:要求圆柱的体积, 需要知道哪些信息?
生:要知道底面积和高。
师:如果提供以下信息, 你能求出圆柱的体积吗?
已知:h=10厘米。
(1) S=28.26平方厘米; (2) r=2厘米; (3) d=4厘米; (4) c=12.56厘米。
学生交流:
(1) 已知圆柱的底面积和高, 求圆柱的体积, 可用公式:V=Sh。
(2) 已知圆柱的底面半径和高, 求圆柱的体积, 可用公式:V=πr2h。
(3) 已知圆柱的底面直径和高, 求圆柱的体积, 可用公式:V=π (d÷2) 2×h。
(4) 已知圆柱的底面周长和高, 求圆柱的体积, 可用公式:V=π (c÷π÷2) 2×h。
上述教学中, 充分利用学生已有的知识经验, 借助圆的面积计算公式的推导方法 (将圆形转化成长方形的过程) , 指导学生自主探究圆柱的体积计算公式的推导方法。引导学生反思为什么要将圆柱转化成长方体?转化后的长方体的体积和原圆柱的体积是否相等? (因为长方体的体积学生已经会计算了, 所以, 通过转化将生疏的知识转化成已经学会的, 从而解决问题。) 这样, 不仅使学生明确圆柱体积的计算方法, 而且领悟到比体积计算公式更重要的就是数学思想与方法。
片段四:分层练习, 理解运用
1.一根圆柱形木料, 底面积为75平方厘米, 高90厘米, 它的体积是多少? (学生独立完成, 集体反馈)
2.下图的杯子能不能装下这袋牛奶? (数据是从杯子里面测量得到的)
3.一个圆柱的侧面积是26平方厘米, 底面半径20厘米, 体积是多少立方厘米?
上述教学中, 通过“基本题”“实践性练习”和“提升题”的练习, 使学生进一步巩固与深化圆柱的体积计算方法, 让学生“用活”所学知识, 同时促进学生不断进行数学思考, 生成新的感悟。从而培养学生思维的灵活性和创造性, 提高解决问题的能力。
数学六年级下册圆柱的体积教案 篇3
北师大版教学六年级《圆柱的体积》
教学目标:
1、结合具体的情境和实践活动,理解圆柱体体积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养学生初步的空间观念和思维能力;
教学重点:
理解和掌握圆柱的体积计算公式,会求圆柱的体积。
教学难点:
理解圆柱体积计算公式的推导过程。
教具准备:
圆柱体积演示教具。
教学过程:
一、旧知铺垫
1、谈话引入
最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)
2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)
这节课我们就来学习圆柱的体积。
二、自主探究,解决问题
(一)认识圆柱体积的意义。
圆柱的体积到底是指什么?谁能举例说呢?
(二)圆柱体积的计算公式的推导。
1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)
2、回忆圆面积的推导过程。
3、教具演示。
(1)取圆柱体模型。
(2)将圆柱体切成两半。
(3)分别将两半均分成若干小块。
(4)动手拼成一个近似的长方体。
(三)归纳公式。
(板书:圆柱的体积=底面积高)
用字母表示:(板书:V=Sh)
三、巩固新知
1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。
现在这个杯子装了2/3的水,装了多少水呢?
2、完成试一试
3、跳一跳:统一直柱体的体积的计算方法。
四、课堂总结、拓展延伸
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?这个公式适合哪些图形?他们有什么共同特点?
五、布置作业
六年级下册数学圆柱的体积(教学设计) 篇4
1、一个圆柱木桶,底面直径16厘米,高2分米,体积是多少立方厘米?
2、一段圆柱形的钢材。长60厘米。横截面直径10厘米。每立方厘米钢重7.8克,这段钢材重多少千克?(得数保留一位小数)
3、一个圆柱水桶,从里面量高是3分米,底面半径1.5分米,它大约可装水多少千克?(1升水重1千克)
4、有一个棱长为10厘米的正方形木块,把它削成一个最大的圆柱体,应削多少体积的木头?
5、一只圆柱形水桶,底面半径是0.2米,高0.5米,装了桶水,问桶中有水多少升?
六年级下册数学圆柱的体积(教学设计) 篇5
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
(二)
圆柱的体积一课,重点是体积公式的推导。公式导出后,如何进行计算应用。
教学中学生存在的问题是:
1、学生对推导过程理解有困难,不深入;
2、在计算的过程中,单位名称用错,体积单位用面积单位。
3、对于书中所给的立体图形,认识不到位,不能正确分辨直径、半径以及圆柱的高,做题出错。圆柱的高也可以叫做圆柱的长(个别学生不清楚)
突破难点的方法:
1、为了避免单位名称的错误,可在课前复习中设计单位换算的填空题,辨析题等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。
2、在学生利用学具理解公式的推导过程时,应放手让学动手动脑自己解决,但动手之前一定要把任务布置清楚,让孩子们自己发现圆柱与长方体各部分之间的关系,从而推导出圆柱的体积公式。
3、注意引导学生参与到探索知识的发生发展过程中,突破以往数学学习单
一、被动的学习方式,关注学生的实践活动和直接经验,“通过自己的活动”获得情感、能力、智力的全面发展。小学阶段,操作活动是数学活动的重要组成部分,也是学生学习活动的重要方式。
(三)让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。
就正如探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学习困难的学生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的知识。
让每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。同时对于学习困难的学生该学习方法也是降低了他们对知识的掌握的难度。
六年级下册数学圆柱的体积(教学设计) 篇6
(1)圆柱的体积等于长方体和正方体的体积。
(2)圆柱的体积也等于底面积乘高。
猜测是否准确呢?点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用教具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。我没有否定她的回答,接着又让学生动手实践操作,让学生发现长方体与圆柱之间的联系,利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。
在本节课的教学过程中还存在诸多的问题。
1、演示圆柱的体积的时候,因为学生手中没有学具,教师教具的局限性,演示时后面的学生看不清楚。
2、在圆柱体经过切割、拼接之后转化为近似长方体的时候,应多给后进生留有观察、讨论的时间,他们的思维反应能力比其他学生较慢,应给于他们一定的空间和时间,让后进生也积极参与到课堂的学习中,使全班同学共同进步。
六年级下册数学圆柱的体积(教学设计) 篇7
v“圆柱的体积”教学纪实
教学内容:义务教育六年制小学教科书数学第12册第2单元“圆柱的体积”。
教材简析:圆柱是一种含有曲面的几何体,给体积的认识和计算增加了难度。教材将本课学习安排在圆柱的认识和圆柱的表面积之后。让学生有序地经历了探究物体与图形的形状、大小、位置关系的变换过程,掌握圆柱体积的计算方法和公式的推导过程,建立初步的空间概念,培养形象思维,还可以为学习圓锥体积打下坚实的基础,提高学生的知识迁移能力。基于以上认识,我在设计中突出了以下几点:
1.加强几何的实践操作,尽量让学生自己动手,亲身经历圆柱的体积转化过程,让学生的多种感观参与学习活动。在理解知识的基础上,发展学生思维。
2.加强几何习题的设计,设计一些实践性、开放性强的习题,引导学生灵活运用知识,可以根据不同的条件求圆柱的体积。尽可能地满足不同思维水平学生的需要,并渗透优化解题策略。
3.加强空间观念的培养,提高学生形象思维及解决问题的能力。突出知识间的联系对比,在操作、推导、对比、运用中深化学生的空间观念。
学情分析:
高年级学生发现问题、解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已经掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察、比较、操作等方法。组织学生探索规律,归纳总结,体验知识的生成和形成。
教学目标:
1.结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学准点:掌握圆柱体积公式的推导过程。
教学设想:
1.课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。
2.教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。
3.动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。
4.用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。学生根据不同的公式进行计算,给4个圆柱学具排序。这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。
5.体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了
xiaoxue.xuekeedu.com
解,学生并不是真正理解圆柱的体积和容积。所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。从形象到抽象建立圆柱的体积概念,符合学生的认知规律。第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。
6.最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。
7.由于每个学生的知识经验、生活情景、思维方式的不同,对知识的学习也有独特的理解和感受。所以我让他们用今天的知识去解决生活中的问题,并写成数学日记,让他们用自己的方式去体验、探究学习过程。
教学过程:
一、问题导入,质疑问难
师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间?
师:这是一个制作学具的学具槽,想一想,它可以做出什么样的学具来?
生:圆柱学具。
师:是的。仔细观察,你有什么发现?
生:圆柱学具占据了学具槽的空间。
师:这就是圆柱学具的体积。你真善于发现!能用你的话说说,什么是圆柱的体积吗?
生:圆柱的体积就是圆柱所占空间的大小。
师:谁来试着给这4个圆柱学具按体积从大到小排排序?你来试试。
生:体积大小接近,不能确定。
师:老师听懂了,无法判断的原因是不知道圆柱体积的大小,现在我们就来研究圆柱的体积。(师板书。)
二、图形转化。猜想推理
师:想一想,你有办法得到这4个圆柱学具的体积吗?(圆柱课件再从槽中跳出。)
生:用公式计算。
生:用水或沙子转化计算。
师:你们是怎样转化的,具体说说。
生:用橡皮泥转化计算。
生:用圆形纸片叠加计算„„
师:嗯,这些方法都很好,就在今天的课堂你会选择哪种方法?
生:因为没有实验学具,所以只能用公式计算。
师:其他的方法可以在课后进行。
师:想用公式计算的同学,你想怎样推导圆柱的体积公式呢?结合你们以往学习几何图形的经验,举例说明。
生:大部分图形公式的推导都是把新学的转化为学过的。例如:圆形可以转化为长方形。
师:联系旧知识,采用转化法,确实不错。
师:那现在它是一个圆柱,你想怎么办?
生:像刚才一样进行平均分。
xiaoxue.xuekeedu.com
师:你能具体说说吗?
生:沿着圆柱的底面直径平均切分成16个小扇形。
师:都说实践出真知,接下来就请同学们拿出学具,动手尝试着进行转化,并说说转化后的结果。
生:将圆柱沿底面直径平均分成16个小扇形,切分之后,可以拼成一个近似的长方体。
师:(刚才我们将圆柱沿底面直径平均分成16个小扇形,拼成一个近似的长方体。)如果想让它更近似于长方体,你想分成多少份?(32)更近似一点。(64)你呢?(128)„„
师:这是同学们刚才的转化过程。
师:打开书,自由读,用直线标记,找出关键词,依照关键词自由读读转化的过程。
师:现在再请一名同学到前面来演示转化过程,其他同学注意观察,圆柱转化为长方体后什么变了,什么没变7(圆柱转化为长方体时形状变了,但是它们底面积、高和体积都没变。)
总结文字公式:长方体体积=底面积×高
圆柱体体积=底面积×高
师:恭喜大家,我们已经成功地推导出圆柱的体积公式。(掌声鼓励一下)老师这有一些字母:d、s、r、C、h、v、π。它们与圆柱体体积的计算公式息息相关,请你们用字母表示出圆柱的体积公式。
生:V=Sh V=(d/2)2π×hV=π2×h V=(c÷π/2)2π×h
师:对比这四个公式你又有什么新发现?(彩色粉笔画线。)
生:相同之处都是底面积乘以高,不同是底面积求法不同。
师:谢谢你精彩的发现,你叫什么名字,认识一下,老师会记住你的。
三、运用公式,解决问题
师:现在我们已经知道了圆柱的体积公式,快来解决刚才的实际问题吧!这是我们要由大到小排序的4个圆柱学具,请你们拿出题卡计算出它们的体积并排序。
1号底面积50平方厘米,高2.1分米:
2号直径是10厘米,高20厘米;
3号半径是4厘米,高22厘米;
4号底面周长31.4厘米,高18厘米。
师:汇报一下你的计算和排序结果,并说说你应用了哪个公式?
师:与他答案相同的同学举手示意一下,你是怎样做的?现在你清楚了吗?
师:看来,灵活运用公式,并选择合理的算法。会使我们的学习更高效。
四、巧用公式,多重探究
师:同学们到现在为止,你都学到了哪些关于圆柱的知识?
生:表面积、体积、容积。
师:老师这里有一组习题。请你们选择合适的问题。
师:读完之后,你认为求什么就可以大声地说出来。
(生:体积、容积、表面积。)
学具厂有一个制作学具的圆柱形铁皮桶。它的底面直径是22厘米,高是25厘米,_________?从里面量底面直径是20厘米,高是25厘米______________9底面积是
xiaoxue.xuekeedu.com
380平方厘米。侧面积是1727平方厘米_________________?
师:说说你选择问题的根据是什么?
生:体积是圆柱所占空间的大小。容积是圆柱能容纳物体的大小,表面积是圆柱所有面积的总和。
五、开放训练,拓展提升
六年级下册数学圆柱的体积(教学设计) 篇8
1、使学生理解圆柱体侧面积和表面积的含义。
2、通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
3、体验成功与失败的收获,体会合作的愉悦。【教学重点】动手操作展开圆柱的侧面积【教学难点】圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。【教具准备】圆柱表面展开电脑动画展示【学具准备】圆柱形茶叶罐、自制的圆柱体纸盒2个、剪子、尺子。【教学过程】
一、创设情境,引起兴趣。
1、同学们曾经自己研究出长方体和正方体表面积的计算方法,回忆一下,当时大家是怎样推导这些立体图形表面积的?(学生会想将图形表面展开)
2、拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?怎样求这个茶叶罐用多少铁皮?(体会就是求圆柱表面积。在学生跃跃欲试的时候进行下一步的操作活动)
二、自主探究,发现问题。研究圆柱侧面积拿出自制的圆柱体纸盒,1.猜想将它的侧面展开,会是一个什么样的图形。2.独立操作用自己喜欢的方式展开,验证刚才的猜想。“用自己喜欢的方式”展开可能会出现很多种可能,比如斜着剪、拐弯剪等,对各种可能情况的处理方式教师应该做到心中有数。3.观察对比观察这个图形各部分与圆柱体有什么关系?4.小组交流能用已有的知识计算它的面积吗?
5、小组汇报。(选出一个学生已经展开的图形贴到黑板上)重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)长方形的面积=圆柱的侧面积即长×宽=底面周长×高所以,圆柱的侧面积=底面周长×高S侧==C×h如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2πr×h师:如果圆柱展开是平行四边形,是否也适用呢?学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的第二个圆柱纸盒用此法展开)研究圆柱表面积
1、求茶叶罐用多少铁皮,就是求什么呢?如何求?试一试。学生测量,计算表面积。
2、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×
23、动画:圆柱体表面展开过程
三、实际应用
1、填空圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()
2、要求一个圆柱的表面积,一般需要知道哪些条件()
3、教材第六页试一试。
六年级下册数学圆柱的体积(教学设计) 篇9
③一个圆柱体的底面直径是5分米,高也是5分米,这个圆柱体的表面积是多少平方分米? ④把一根底面直径是4分米,高是10分米的圆柱形木材,沿着直径对半锯开,每块木材的表面积是多少?表面积增加了多少平方分米?
⑤一个圆柱体木料,如果把高减少2分米,表面积就减少9.42平方分米,求减少部分的体积是多少?
⑥一个圆柱形容器,底面半径是10厘米,将一个物体放入容器内,水面上升1.5厘米,求这个物体的体积?
⑦有铁皮30平方米,最多能做底面直径和高都是3分米的无盖水桶多少个?
⑧有一根长1米的圆柱形钢材,把它截成4段都是圆柱形钢材,表面积增加56.52平方分米,已知每立方分米钢重7.8千克,原来这根钢材重多少千克?
本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.=============
适用版本:
人教版,苏教版, 鲁教版,北京版,语文A版,语文S版,冀教版,沪教版,北大师大版,人教版新
版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版 适用学科:
语文,数学,英语,科学,物理,化学,生物,政治,历史,地理
适用年级:
一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初
适用领域及关键字:
100ceping,51ceping,52ceping,ceping,xuexi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷
=============
六年级下册圆锥圆柱数学知识点 篇10
1.圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图是长形。
2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇形。
圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。
圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
圆柱体积比等底等高圆锥体积多2倍。
圆锥体积比等底等高圆柱体积少。
(1)等底等高:V锥:V柱=1:3
(2)等底等体积:h锥:h柱=3:1
(3)等高等体积:S锥:S柱=3:1
题型总结:
高不变半径扩大缩小n倍,直径、底面周长、侧面积扩大缩小n倍,底面积、体积扩大缩小n2倍。
半径不变高扩大缩小n倍,侧面积、体积扩大缩小n倍
削成最大体积的问题:
正方体里削出最大的圆柱圆锥:圆柱圆锥的高和底面直径等于正方体棱长
长方体里削出最大的圆柱圆锥:圆柱圆锥底面直径等于宽(宽>高)圆柱圆锥高等于长方体高
浸水体积问题:水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度。
等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3 。
练习题
1一个圆柱和一个圆锥等底等高,圆柱的体积是48立方厘米,那么圆锥的体。积是( ),如果圆锥的体积是36立方厘米,圆柱的体积是( )。
2.把一个圆柱削成一个最大的圆锥,这个圆柱的体积是48.15立方分米,削成的圆锥的体积是( )立方分米,削去的体积是( )。
3. 把一个圆柱削成一个最大的圆锥,这个圆锥的体积是3.2立方分米,削去的体积是( )立方分米,原来圆柱的体积是( )。
4.一个圆柱的底面半径是3㎝,高是2㎝,与它等底等高的圆锥体的体积是( )。
5.一个圆柱与一个圆锥等底等高,圆锥的体积是19.2立方厘米,该圆柱的体积比圆锥的体积多( )立方厘米。
6.等底等高的圆柱和圆锥,已知它们的体积之差是24立方分米,则圆柱的体积是( )立方分米,圆锥的体积是( )。
数学最大的数和最小的数
最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。
目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。
没有最小的数字,但有最小的自然数,就是“0”。
小学数学条形统计图知识点
(1)用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。
(2)优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。
(3)取一个单位长度表示数量的多少要根据具体情况而确定
(4)复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。
(5)制作条形统计图的一般步骤:
a) 根据图纸的大小,画出两条互相垂直的射线。
b) 在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。
c) 在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
六年级下册数学圆柱的体积(教学设计) 篇11
姓名:
得分:
一、填空。
1.5080立方分米=()立方米()立方分米
3升50毫升=()升
2.8平方米=()平方厘米
27毫升=()立方分米
2.把一个圆柱体的侧面展开,得到个长31.4厘米、宽10厘米的长方形。这个圆柱体的侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米。
3.等底等高的圆柱和圆锥,它们的体积之差是6.28
dm³,体积之和是()dm³。
4.一个圆柱和一个圆惟,体积相等,高也相等,圆锥底面积为24平方厘米,圆柱的底面积为()平方厘米,如果它们的体积和底面积都相等,那么当圆柱高是3厘米时,圆锥的高应该是()厘来,5.把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体(如图),表面积比原来增加了200平方厘米,已知圆柱高20厘米,圆柱的体积是()立方厘米。
6.以一个边长是10厘米的正方形的一条边为轴旋转一周,它的体积是()立方厘米;以一个直角边是6厘米的等腰直角三角形的一条直角边为轴,旋转一周它的体积是()立方厘米。
7.在一个高24厘米的圆锥形量杯里装满了水,如果将这些水倒入与它等底的圆柱形量杯中,水面高()厘米。
8.把一个棱长是10
分米的正方体木块削成一个最大的圆柱,需要削去()立方分米的木块。
9.自来水管的内直径是2cm,水管内水的流速是每秒8cm,一位同学去洗手,走时忘记关掉水龙头,5分钟浪费()升水。
10.有一个圆柱形玻璃容器,内直径是20厘米,它里面盛有一些水,浸入一个圆锥形铁块(铁块完全被淹没)后水位上涨0.3厘米,这个铁块的体积是()立方厘米。
11.把一根长4米的圆柱形的钢材截成两根,表面积增加了0.28平方分米,如果每立方分米钢材重7.8千克,这根钢材重()千克。
12.一根圆柱形的木料长6米,把它锯成4段小圆柱,表面积增加了12平方分米,这根木料的体积是()立方分米,如果锯成4段用了12分钟,那么用同样的速度把它锯成8段要用()
分钟。
二、选择。
1个圆柱的侧面展开是一个正方形,这个圆柱的底面半径和高的比是()
A.1:πB.1:2πC.:1
D2π:1
2.把一段重9千克的圆柱形钢材截成一个和它等高等底的圆锥体零件,截去部分重()千克。
A.9
B.6
C.3
D.2
3.用丝带捆扎种圆柱形礼品盒,如右图。捆扎这种礼品盒用长为()的丝带比较合适。
A.13
dm
B.26
dm
C.27
dm
4.下面是两位同学把同样的圆柱平均分成两份的两种不同切法。甲切后表面积比原来增加(),乙
切后表面积比原来增加()
A.πr²
B.2rh
C.2πr²
D.2πrh
E.4rh
5.一个圆柱和一个圆锥底面直径相等,圆锥的高是圆柱高的3倍,圆锥的体积是15立方米,圆柱的体积是()立方米。
A.45
B.15
C.5
D.3
6.包装盒的长是32厘米,宽是4厘米,高是1厘米。圆柱形零件的底面直径是2厘米,高是1厘米。这个包装盒内最多能放()
个圆柱形零件。
A.32
B.25
C.16
D.8
7.一个圆柱和一
个圆锥的底面积相等,体积的比是3:
1,那么高的比是()。
A.3:
B.1:
C.1:3.D.1:2
8.一个圆柱,如果直径扩大到原来的2倍,高缩小到原来的,那么侧面积()。
A.和原来一样大B.扩大到原来的2倍C.扩大到原来的4倍D.无法确定
9.高是18厘米的圆锥形容器装满水,把这些水全部倒入与它等底等高的圆柱形容器中,这时水面离杯口()厘米。
A.6
B.12
C.9
D.18
10.一个圆锥的体积是2512立方厘米,底面积是12.56平方厘米,它的高是(A.2厘米
B.5厘米
C.6厘
11.圆锥和圆柱半径的比为3:2,体积的比为3:4,那么圆锥和圆柱高的比是()
A.9:8
B.9:16
C.4:3
D.1:1
12.一个圆锥的底面半径和高都扩大3倍,则它的侧面积扩大(),体积扩大()。
A.3倍B.6倍C.9倍D.27倍
三、按计算下面图形的体积。
四、解决问题。
1.一台压路机的前轮宽2米,高1.2米
(1)压路机前轮滚动一圈可以压路多少米?
(2)如果它每分钟向前滚动10圈,那么它5分钟可以压路多少平方米?
2.建一个圆柱形的游泳池,底面直径是16米,高是1.5米,要在它的四周和底面抹水泥,每平方米用水泥10千克。
(1)它的容积是多少?
(2)共需要多少千克水泥?
3.在一个直径是20
cm的圆柱形容器里,放入
一个底面半径是3
cm的圆锥形铁块,全部浸没在水中,这时水面上升0.3
cm。圆锥形铁块的高是多少厘米?
4.右下图是一块长方形的铁皮,利用图中阴影部分刚好能做成一个油桶。求这个油桶的容积。(接头处忽略不计)
5.瓶子里装着一些水(如图1),把瓶子倒放后(如图2)所示,瓶底的面积是0.6平方分米你能算出它的容积是多少升吗?
6.一个圆柱的高是5厘米,若高增加2厘米,圆柱体的表面积就增加25.12平方厘米,原来圆柱体的体积是多少立方厘米?
7.把一个底面半径为5分米、高为96分米的圆锥形钢材,改铸成底面直径为4分米的圆柱形零件,铸成的圆柱形零件的高是多少分米?
8.一根长2m,横截面直径是40cm的圆柱形木头浮在水面上淘淘发现它正好有一半露出水面。
(1)这根木头与水接触面的面积是多少平方厘米?
【六年级下册数学圆柱的体积(教学设计)】推荐阅读:
六年级数学下册《圆锥的体积》教学设计09-07
小学数学六年级下册《长方体和正方体的体积》教学设计11-25
六年级数学下册《圆锥体积》说课稿08-30
教学设计六年级下册圆锥的体积12-14
六年级下册数学圆柱和圆锥复习资料07-21
圆柱的表面积 教案教学设计(苏教国标版六年级下册)09-25
数学五年级下册体积与容积的课后练习题11-26
五年级数学下册《体积》同步检测题06-21
(沪教版)五年级数学下册教案 体积和容积05-29