正多边形和圆的教案(共7篇)
正多边形和圆的教案 篇1
多边形和圆的初步认识教学设计
教学目标:
1.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩。
2.在具体情境中认识多边形、正多边形、圆、扇形并能根据扇形和圆的关系求扇形的圆心角的度数。
4.在丰富的活动中发展学生有条理的思考和表达能力。
重难点:
重点:求扇形圆心角的度数并能根据扇形和圆的关系求扇形的面积
难点:探索分割平面图形的一些规律,感受图形世界的丰富图形,养成把数学应用于生活实际问题的习惯.教学过程
由于本节课分为多边形和圆的初步认识两部分内容,所以本节课也要经历两次知识的产生和解决的过程。为此,确立如下教学过程:
多边形部分
(一)创设情境,引出课题.出示幻灯片,让学生看一看这些图片中有哪些我们熟悉的平面图形。学生的答案会出现三角形、四边形、五边形、六边形等。教师对答案稍作点评,引出本节课的课题《多边形和圆的初步认识》。
【设计意图】通过漂亮的图片开头,马上就能吸引学生的注意力,调动学生的学习兴趣及动手动脑的欲望,激发学生思维,也充分的体现了数学源于生活,使学生感到数学就在我们身边。
(二)自学新知
1、出示幻灯片,让学生一起来认识三角形,四边形,五边形,六边形,引出多边形的概念。
2、继续出示图片,以五边形为例,认识多边形各部分的名称:多边形的顶点,多边形的边,多边形的内角以及多边形的对角线,边介绍边让同学们找出图中其他的各部分名称。
3、引导学生认识五边形有五条边,五个顶点及五个内角 教师注意学生的回答中出现的错误,特别是线段和角的表示方式,对出现错误的及时纠正。
【设计意图】让学生认识多边形及多边形的各部分名称,通过边学边练让他们能够很好的完成知识记忆的目标,感受知识产生的过程,提高了学生学习知识能力。
(三)合作探究
在学生记忆了概念的基础上出示了两个探究活动 探究活动一:
出示准备好的学具,让学生通过画图,讨论的方式很好的完成表格。
请小组代表回答,完成好表格,老师点评:n边形的每个顶点有(n-3)条对角线,将多边形分成了(n-2)个三角形。并引导学生发现找对角线时应该要除去与它相邻的两个点及它本身。探究活动二:
引导学生找到多边形所有对角线
以五边形为例,引导学生发现找多边形的对角线时会存在重复计算的问题。
【设计意图】这样的设计旨在探讨多边形从一个顶点出发的对角线及对角线将多边形分成了几个三角形,还有多边形共有多少条对角线,使学生通过观察、归纳、猜想获得对多边形的进一步认识,开发了学生的思维能力以及归纳推理能力。同时运用小组合作交流的方式,培养了学生的合作意识和能力。
(四)拓展延伸
出示一组图片引出正多边形的定义
各边相等,各角也相等的多边形叫做正多边形
共同得出各多边形的名称:正三角形(等边三角形)、正四边形(正方形)、正五边形、正六边形、正八边形
提出问题:菱形与长方形是不是正多边形?
让学生能明白正多边形的各边相等,各角也相等这两个条件缺一不可.【设计意图】培养学生敏锐的观察力及归纳总结的能力。圆的初步认识部分
(一)复习引入
课件出示图片,回顾以前学过的圆和扇形,你们还记得用哪些方法可以画一个圆吗?你能用一根细绳和笔画出一个圆吗? 通过flash动画演示圆的形成过程。帮助学生回忆旧知识。
1、平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆。
2、半径AO、BO
弧AB 写作:心角∠AOB 【设计意图】通过生活实例让学生直观感受圆和扇形的特征,通过画圆的过程抽象出圆的动态定义,加深学生对知识的理解。使学生感受数学来源于生活。
(三)拓展延伸
在学生记忆了概念的基础上出示例1 例1:
将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,求这三个扇形的圆心角的度数。
解:因为一个周角为360º,所以分成的三个扇形的圆心角分别是:
读作:圆弧AB或者弧AB 扇形AOB
圆1=600123 23600=1200123
30360=1800
123【设计意图】通过例题让学生了解这部分内容的解题思路和解题方式,加深知识的深度,3600提高学生能力。
(四)合作探究
小组交流合作,共同完成议一议。
1、如图4-25,将一个圆分成三个大小相同的扇形,你能算出它们的圆心角的度数吗?你知道每个扇形的面积和整个圆的面积的关系吗?与同伴进行交流
2、画一个半径是2cm的圆,并在其中画一个圆心为60º的扇形,你会计算这个扇形的面积吗?与同伴交流。教师对答案进行汇总,讲解本题解题思路:
1、因为一个圆被分成了大小相同的扇形,所以每个扇形的圆心角相同,又因为圆周角是360º,所以每个扇形的圆心角是360º÷3=120º,每个扇形的面积为整个圆的面积的三分之一。
2、先求出这个圆的面积S=πR²=4π,60÷360=1/6扇形面积=4π×1/6=2π/3 【设计意图】运用小组合作交流的方式,既培养了学生的合作意识和能力,又达到了互帮互助以弱带强的目的,使学习比较吃力的同学也能参与到学习中来,体现了学生是学习的主体。
小结:
今天这节课什么收获? 多边形: ①多边形的对角线
②过n边形的每个顶点有(n-3)条对角线,将多边形分成了(n-2)个三角形,n边形n(n3)2共有条对角线。
③正多边形的特点 圆的初步认识: ①圆弧的读法和写法 ②扇形和圆心角
作业:
课本习题4.5第1题、第2题。
《圆和圆的位置关系》教案 篇2
3. 探讨在两圆外切或内切时,圆心距d与R和r之间的关系.
Ⅴ.课后作业习题24.3
Ⅵ.活动与探究
已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径为R,求⊙O3的半径.
分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O 3的半径为r,则O1O3=O2O3=R+r,连接OO3就有OO3O1O2,所以OO2O3构成了直角三角形,利用勾股定理可求得⊙O3的半径r.
解:连接O2O3、OO3,
O2OO3=90,OO3=2R-r,
O2O3=R+r,OO2=R.
(R+r)2=(2R-r)2+R2.
r= R.
板书设计
24.3 圆和圆的位置关系
正多边形和圆的教案 篇3
一、教材分析、教材的地位和作用。
圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作铺垫的一节课,在今后的解题及几何证明中,将起到重要的作用.2、教学目标:
根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:
(1)知识目标:
a、知道直线和圆相交、相切、相离的定义。
b、根据定义来判断直线和圆的位置关系,会根据直线和圆相切的定义画出已知圆的切线。
c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。2)能力目标:
让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。3)情感目标:
在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。
3.教材的重点难点
直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。
4.在教学中如何突破这个重点和难点
解决重点的方法主要是:(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。
在说直线与圆的位置关系时,如何突破这个难点:(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。
(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公
共点,它与有一个公共点的含义不同)。
(4)突破直线和圆的位置关系的(如果圆O的半径为r,圆心到直线的距离为d,1,直线l与圆 O相交
<=> d 2,直线l与圆 O相切 <=> d=r 3,直线l与圆 O相离 <=> d>r(上述结论中的符号“<=> ”读作“等价于”) 式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。 二、学情分析 根据初三学生活泼好动好奇心和求知欲都非常强,并且在初一,初二基础上初三学生有一定的分析力,归纳力和根据他们的特点,联系生活实际中结合问题结合本节课适合学生的学习材料注重激发学生的求知欲让他们真正理解这节课是在学习了点和圆的位置关系的基础上,进行的为后面的圆与圆的位置关系作铺垫的一节课。通过直线与圆的相对运动,揭示直线与圆的位置关系,培养学生运动变化的辨证唯物主义观点;通过对研究过程的反思,进一步强化对分类和化归思想的认识。 三、教法设计 复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。 1,学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形在学生回答的基础上,教师通过多媒体演示圆与直线的三种位置关系。 2,进一步让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。 3,强调公共点的唯一性。给出定义时,尽可能地有学生来概括和叙述,有利于提高学生的语言表达能力。 4,有利于新旧知识的联系,培养学生的迁移能力,掌握用定量研究来解决问题的方法。在学生回答问题的基础上,教师打出直线和圆的位置关系以及它们的数量特征。 5,通过直线到圆的距离d和半径r这两个数量之间的关系来研究直线和圆的位置关系。这样很好的体现数形结合的思想,使较为复杂的问题能简单化。 6,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。 四、学法指导 复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。 学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。 五、教学程序 创设情境------导入新课------新授-------巩固练习-----学生质疑------学生小结------布置作业 [提问] 通过观察、演示,你知道直线和圆有几种位置关系? [讨论] 一轮红日从海平面升起的照片 [新授] 给出相交、相切、相离的定义。 [类比] 复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。 [巩固练习] 例1,出示例题 例1 在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆与AB有什么样的位置关系?为什么? (1)r=2cm; (2)r=2.4cm; (3)r=3cm 由学生填写下例表格。直线和圆的位置关系 公共点个数 圆心到直线距离d与半径r关系 公共点名称 直线名称 图形 补充练习的答案由师生一起归纳填写 教学小结 直线与圆的位置关系,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。然后老师在多媒体打出图表。 本节课主要采用了归纳、演绎、类比的思想方法,从现实生活中抽象出数学模型,体现了数学产生于生活的思想,并且将新旧知识进行了类比、转化,充分发挥了学生的主观能动性,体现了学生是学习的主体,真正成为学习的主人,转变了角色。 六,板书设计: 课题:直线和圆的位置关系 一,复习点与圆的位置关系 二,直线与圆的位置关系 1,相交、相切、相离的定义。2,直线与圆的位置关系的性质定理。3,直线与圆的位置关系的判定方法。 例1: (1)理解正多边形与圆的关系定理; (2)理解正多边形的对称性和边数相同的正多边形相似的性质; (3)理解正多边形的中心、半径、边心距、中心角等概念; (4)通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力; 教学重点: 理解正多边形的中心、半径、边心距、中心角的概念和性质定理. 教学难点 : 对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解. 教学活动设计: (一)提出问题 问题:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.反过来,是否每一个正多边形都有一个外接圆和内切圆呢? (二)实践与探究 组织学生自己完成以下活动. 实践:1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么? 2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么? 探究1:当三角形为正三角形时,它的外接圆和内切圆有什么关系? 探究2:(1)正方形有外接圆吗?若有外接圆的圆心在哪?(正方形对角线的交点.) (2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心? (3)正方形有内切圆吗?圆心在哪?半径是谁? (三)拓展、推理、归纳 (1)拓展、推理: 过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD. 同理,点E在⊙O上. 所以正五边形ABCDE有一个外接圆⊙O. 因为正五边形ABCDE的各边是⊙O中相等的弦,所以弦心距相等.因此,以点O为圆心,以弦心距(OH)为半径的圆与正五边形的各边都相切.可见正五边形ABCDE还有一个以O为圆心的内切圆. (2)归纳: 正五边形的任意三个顶点都不在同一条直线上 它的任意三个顶点确定一个圆,即确定了圆心和半径. 其他两个顶点到圆心的距离都等于半径. 正五边形的各顶点共圆. 正五边形有外接圆. 圆心到各边的.距离相等. 正五边形有内切圆,它的圆心是外接圆的圆心,半径是圆心到任意一边的距离. 照此法证明,正六边形、正七边形、…正n边形都有一个外接圆和内切圆. 定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于 . (3)巩固练习: 1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______. 2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______. 3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______. 4、正n边形的一个外角度数与它的______角的度数相等. (四)正多边形的性质 1、各边都相等. 2、各角都相等. 观察正三角形、正方形、正五边形、正六边形是不是轴对称图形?如果是,它们又各应有几条对称轴? 3、正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心. 4、边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方. 5、任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 以上性质,教师引导学生自主探究和归纳,可以以小组的形式研究,这样既培养学生的探究问题的能力、培养学生的研究意识,也培养学生的协作学习精神. (五)总结 知识:(1)正多边形的中心、半径、边心距、中心角等概念; (2)正多边形与圆的关系定理、正多边形的性质. 能力:探索、推理、归纳等能力. 方法:证明点共圆的方法. 我今天说课的内容是《圆和圆的位置关系》,我将从教材分析,教学目标,教法与学法教学过程设计四个方面来具体阐述对本节课的理解和教学设计。 一、教材分析: 1、地位和作用: 本节课是人教版《义务教育课程标准实验教科书》九年级上册第二十四章第二节第三部分内容――《圆和圆的位置关系》。是学生在已掌握了点与圆、直线和圆的位置关系等知识的基础上,来研究平面上两圆的不同位置关系,是学生对圆的知识应用的基础,也是今后到高中继续研究平面与球的位置关系,球与球的位置关系的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。 2、内容分析:《圆和圆的位置关系》内容是分两课时完成,本次课设计的是第一课时的教学。主要内容是学习圆和圆的五种位置关系,然后能够利用圆和圆的位置关系和数量关系解题。这节课既要复习上几节课学习的点和圆、直线和圆的几种位置关系,又要自然过渡到圆和圆的位置关系,探索两圆位置关系与两圆半径、圆心距之间的数量关系。为后面解决两圆相交的推理题、计算题打下基础。 3、教学重点:两圆位置关系的判定和性质。 4、教学难点:探索圆和圆的位置关系中两圆圆心距和两圆半径之间的数量关系。 二、教学目标: 依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以下三个方面为本课时的教学目标。 1、学习圆和圆的五种位置关系中两圆圆心距和两圆半径之间的数量关系,能够利用圆和圆的位置关系和数量关系解题。 2、通过本节课的学习培养学生自己动手实验,学会观察、比较、想象、概括的逻辑思维能力;运用类比的方法探求新知识的能力。 3、结合本节课的教学实验向学生渗透用运动的观点来探究两圆的位置关系中的数量关系,让学生体会事物由量变到质变的辨证唯物主义观点;利用直观教学来激发学生学习的兴趣,感受数学中的美感;通过鼓励式教学让他们爱学,想学从而会学。 三、教法与学法 1、学情分析 学生在日常生活中接触过一些反映圆和圆的位置关系的实例,同时在前两节已学过有关点和圆、直线和圆的几种位置关系的内容,有一定的基础,而且圆这一知识又充满趣味性和吸引力,所以学生乐于参与数学活动,敢于质疑。通过本节课的学习可以让学生对圆的知识得到进一步的了解和升华。 2、教法设想 根据教材的特点和学生的实际情况,在本节课中先复习点与圆、直线和圆的位置关系,再以学生感兴趣的图片开始,让学生轻松地进人新课学习,在“问题情境——自主探究——汇报结果——直观演示——归纳总结——应用拓展”的基本过程中引导学生在探索中获取新知识,提高能力。在教学中,具体用到以下教学方法:情景激智法,自主探究法,设疑求新法,以用促学法等 3、学法指导 由于学生在求知过程中喜欢动手实践,渴望与他人交流,合作探究。所以本节课主要采用学具让学生去摸、触、感受。让学生在实验、探究、交流、归纳、实际应用的过程中体会获取新知的喜悦和成功解决实际问题的成就感。 四、教学过程设计:(一)、创设情境,发现新知: 【问题与情境】 1、回顾上几节学习的点和圆,直线和圆有哪几种位置关系?在没有图形的帮助下是怎样判定其位置关系的? 2、我们来观看下列日常生活中的一些图片:自行车的两个轮子(两圆外离)、奥运会的五环标志(两圆相交)、堆放的木材(两圆外切)、轴承(两圆外切、内切、内含)等,你能根据图中的信息来猜想出圆和圆有哪几种位置关系吗? 【师生活动】 教师出示幻灯片,提出问题,学生思考后口答 1、点与圆有三种位置关系:点在圆外、点在圆上和点在圆内三种; 2、直线与圆有三种位置关系:相离、相切、相交。然后以学生感兴趣的图片开始导入新课——圆和圆的位置关系 【设计意图】 通过问题的提出,引导学生观察图片,联想现实生活中的例子,让学生自然过渡到圆和圆的位置关系的学习,培养学生运用类比和对比的方法来探求新知识的能力。(二)、自主探究,归纳方法: 【问题与情境】 1、拿出自己准备好的两张透明纸上画出的两个半径不同的⊙o1,⊙o2,按大屏幕上的问题情景动手操作,把两张纸叠合在一起,固定其中一张而移动另一张。你能摆出⊙o1和⊙o2有多少种不同的位置关系?每种位置关系中两圆有多少个公共点?两圆可不可能有三个公共点? 2、你能否根据两圆公共点的个数类比直线和圆的位置关系定义,给出两圆位置关系的定义吗? 3、你能否根据自己摆出的圆和圆的位置关系,猜想出两圆的圆心距(两圆圆心的距离)d与两圆半径R、r的数量关系?利用刻度尺或几何画板进行测量,验证你的猜想。并完成教材第100页思考题。 4、圆是轴对称图形,两个圆是否也组成轴对称图形呢?如果能组成轴对图形,那么对称轴是什么? 【师生活动】 1、教师出示幻灯片,引导学生带着问题分小组讨论,活动时间约十分钟,教师巡视并指导。 2、让每组选派一名代表汇报讨论结果,听完汇报后教师利用课件演示两圆位置关系有五种情况,用几何画板验证两圆位置关系中两圆圆心距与两圆半径之和或之差之间的数量关系。特别让学生直观看到两圆相交时情况,d、R、r构成一个三角形,利用三角形两边之和大于第三边两边之差小于第三边得到R-r<d<R+r,当只具备R-r<d时还可能外切或外离,当只具备d<R+r时两圆还可能内切或内含,这说明只有具备R-r<d<R+r时,才能判断两圆相交。还让学生注意两圆相交时有两圆圆心在公共弦同侧和异侧两种。 3、教师引导学生互动,类比直线和圆的定义归纳得出结论:如果两个圆没有公共点,那么就说这两个圆相离(外离和内含);如果两个圆有两个公共点,就说这两个圆相切(外切和内切)。 在同一平面内,任意两圆只存在以下五种关系: (1).两圆外离 《=》 d>R+r (2).两圆外切 《=》 d=R+r (3).两圆相交 《=》 R-r<d<R+r(r≤R) (4).两圆内切 《=》 d=R-r(R>r) (5).两圆内含 《=》 d<R-r(R>r) 同心圆 《=》 d=0(特例) 两个圆一定能组成一个轴对称图形,其对称轴是两圆连心线;当两圆相切时,切点一定在连心线上。【设计意图】 1、让学生亲自动手实验,参与数学活动,增强直观性,帮助学生发现数学规律.体会事物由量变到质变的辨证唯物主义观点。对学生在汇报结果的过程中出现的独特的结论给予鼓励性评价,激励学生学习兴趣,促进学生思维发展。 2、让学生从数和形两个方面去对它们加以认识,形成良好的科学研究习惯,培养学生思维的深刻性和严谨性。 3、通过对两圆组成的图形的轴对称性的学习,是为后面研究相交两圆公共弦的性质和相切两圆的切点位置的学习作铺垫。(三)、应用新知,深化拓展: 【问题与情境】 1、例:根据探究出的结论,完成幻灯片上的小练习。 (1)⊙o1和⊙o2的半径分别为3cm和4cm,如果圆O1O2满足下列条件,⊙o1和⊙o2各有什么位置关系? ①O1O2=8cm ② O1O2=7cm ③ O1O2=5cm ④ O1O2=1cm ⑤ O1O2=0.5cm ⑥ ⊙o1和⊙o2重合(2)已知⊙O1和⊙O2的半径分别为4和5,如果⊙O1与⊙O2 相切,那么 O1O2=。 (3)已知两圆半径分别为3和7,如果两圆相交,则圆心距d的取值范围是 ;如果两圆外离,则圆心距d的取值范围是。 (4)在图中有两圆的多种位置关系,请你找出还没有的位置关系是。 2、例:如图,⊙o的半径为5cm,点p是⊙o外一点,op=8cm求:(1)以点P为圆心作 ⊙P与⊙o 外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙o内切,大圆⊙P的半径是多少? 【师生活动】 教师出示幻灯片,让学生独立完成小练习,口答结果,引导学生分析例2,利用两圆外切和内切时,圆心距与两圆的半径和与差的关系来解题,教师巡视并指导。【设计意图】 通过对本例的解答,培养学生正确应用所学知识的能力,巩固所学的两圆位置关系的性质。同时渗透分类讨论的数学思想,使学习效果达到最佳。 (四)、归纳总结,形成能力: 1、教师要求学生从知识、方法、情感三个方面来谈一谈这节课的收获。要求每个学生在组内交流,派小组代表发言。 2、鼓励学生结合头脑中的图形记忆圆和圆的五种位置关系及对应的不同的数量关系。【设计意图】 通过这个环节,可以提高学生的概括能力、表达能力,有助于学生全面了解自己的学习过程,感受自己的成长和进步,增强自信,也为教师全面了解学生的学习状况,因材施教提供了重要依据。 (五)、布置作业,巩固提高: 必做题: 1、教材第101页练习2小题.(联系例题进行解答) 2、习题24.2第102页7题,选做题: 1、习题24.2第103页17题 2、根据已学知识请你设计一个含圆与圆位置的五种位置关系的图案。【设计意图】 通过练习巩固本节课所学知识,自我评价学习效果,感受数学之美。板书设计: 《圆和圆的位置关系》(第一课时)两圆位置关系的判定方法: 1.两圆外离 《=》 d>R+r; 2.两圆外切 《=》 d=R+r; 3.两圆相交 《=》 R-r<d<R+r(rR) 4.两圆内切 《=》 d=R-r(R>r) 5.两圆内含 《=》 d<R-r(R>r) 同心圆 《=》 d=0(特例) 【设计意图】 通过一个简洁明了的板书设计,让学生更准确的把握这堂课的重难点,达到提纲挈领的作用 讲课时我改变了原来讲后再练的方式,采用了讲评一个知识点后配基础练习题,巩固此知识点的方法。避免讲后再练,练习与知识的脱节,练习紧跟。精讲知识后,再配以比基础题(巩固基础知识点)层次高的两组练习,让学生先做,采用举手的方式调查学生自己运用知识解决问题的情况。讲前85%的同学都举手做完,还有个别同学做到运用灵活方法解决问题。中午三道作业学生掌握良好。其余学生在我的讲解下也掌握今天的内容,会运用两种方法判断直线和圆的位置关系。知道有切线可连圆心和切点得垂直关系这种基本辅助线。 本节课的教学总的来说很顺利,学生掌握良好,由于课程标准对于本节课要求不高,紧扣标准,走进中招。本节课若能再配合课后检测题,及时精确把握,学生掌握情况会更完美。 今天我说课的内容是人教版九年级上册第二十四章第二节《直线和圆的位置关系》(第一课时).下面我从教材分析、教学方法和手段、教学过程的设计、版面设计四个方面进行阐述: 一、教材分析: 1、教学内容:本节课主要学习(1)直线和圆相交、相切、相离的有关概念(2)直线和圆三种位置关系的判定与性质(3)相关应用。 2、教材的地位和作用:直线和圆的位置关系是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作了铺垫.起着承上启下的作用. 3、教学目标:根据课程标准的要求和本节教材的特点,结合九年级学生已有的认知的基础、空间观念和逻辑思维能力,我确定如下目标:(1)知识目标: a、理解直线和圆相交、相切、相离的有关概念 b、直线和圆三种位置关系的判定与性质 c、能运用以上知识解决相关问题 (2)能力目标:渗透类比、转化、数形结合的数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和看图能力。(3)德育目标:在用运动的观点揭示直线和圆位置关系的过程中向学生渗透世界上的一切事物都是变化着的辩证唯物主义观点。 4、重点和难点: 本节课的教学重点是:直线和圆的位置关系的判定和性质。本节课的难点是直线和圆的三种位置关系的性质与判定的应用。 二、教学方法和手段 本节课我采用了自主探究、合作交流相结合的教学方法,并适时利用多媒体电化教学手段. 三、教学过程的设计: 1、复习提问:(一分钟)点和圆的位置关系有几种?点到圆心的距离与半径的有怎样的大小关系? 2、创设情景,引出课题:(两分钟) 课件展示清晨一轮红日离开海平面喷薄而出的画面,引导学生通过观察抽象出数学图形并进行描述,揭示直线和圆存在着不同的位置关系导入新课。 3、实验观察,总结归纳:(五分钟)让学生在练习本上画一个圆,把直尺当作直线,移动直尺,观察直线和圆的位置,然后我用课件演示直线和圆的相对运动,并指导学生从直线和圆公共点的个数来区分,得出了直线和圆的三种位置关系。4、诱导思维、自主探究:(十分钟)类比点和圆的位置关系的性质和判定,引导学生探索由直线和圆的位置关系性质和判定.首让学生画出直线和圆的三种位置关系(画三个图形),分别画出半径,做出圆心到直线的垂线段,设这个距离为d,圆的半径为r,比较d与r的大小,然后进行小组交流,由学生代表总结性质和判定,最后我通过演示课件让学生体会到由位置关系可以确定数量关系,反过来,知道数量关系也可以确定位置关系,这样做既能拓展学生思维空间,又能调动学生思维的积极性。 5、及时反馈,巩固所学:(十五分钟)为了及时巩固直线和圆三种位置关系的判定和性质,首先我出示了两道填空、两道选择基础训练题,这也是以上基础知识的基础应用,通过练习,加深对所学知识的理解,从中体会由“形”归纳“数”,由“数”判断“形”,加强了数形转化能力的培养,渗透了数形结合的思想,同时也增强了学生对性质与判定的辨认。然后课件展示例1和例2,学生通过探究解答之后,师生共同规范解题过程,并进行解题反思:在解题过程中你为什么要添加辅助线?解决此题的关键是什么?从而加强本节课知识点应用的针对性,然后进行例题变式:给位置关系确定r的范围.这样不但巩固了学生对性质的应用,而且突出了重点,有效的突破了难点,同时也培养了学生的逆向思维能力。 6、反馈矫正、强化训练:(十分钟) 练习题的设计体现面向全体,分类推进的教学思想。在课堂上,我是这样安排的,让两名学生演板,其余的学生做在练习本上,教师巡视并适时的点拨和指导,等学生做完后,我针对学生出现的错误进行辩析纠错,最大限度的克服教与学的负积累。 7、课堂小结,布置作业(两分钟) 课堂小结主要由学生完成,教师适时进行重点强调:直线和圆的位置关系可由它们的公共点的个数来区分,也可用圆心到直线的距离与圆的半径的大小来区分,它们是一致的,在实际的应用中常采用第二种方法。 四、版面设计: 【正多边形和圆的教案】推荐阅读: 多边形面积的计算教案08-16 认识多边形的教案设计10-23 多边形公开课教案及反思09-13 第13课 画多边形 教案11-05 漂亮小海龟画正多边形及多角星教案08-18 圆的初步认识精品教案11-05 小学数学圆的认识教案07-04 圆的极坐标方程教案07-04 六年级圆的复习教案08-26 直线与圆的方程教案08-24《正多边形和圆》教学反思 篇4
圆和圆的位置关系说课稿 篇5
正多边形和圆的教案 篇6
正多边形和圆的教案 篇7