有理数的加减法重难点突破案例

2024-05-23

有理数的加减法重难点突破案例(精选11篇)

有理数的加减法重难点突破案例 篇1

有理数的加减混合运算的重难点

李场初中

肖皇聪

有理数的加减混合运算是有理数这一章学习的难点,是前面所有知识点的总和。也许是这个原因,很多学生都不能完全准确地解题,包括成绩比较好的同学都会犯这种错误,有的甚至是全军覆没,一个正确的题都没有,严重的挫伤了学生的学习积极性,所以我必须让他们走出误区,接受现实,改正错误。由于本节内容是在学生已基本掌握加、减、乘、除、乘方这几种运算的前提下,学习混合运算的,所以本节教学的重点是:如何按有理数的运算顺序、正确而合理地进行有理数混合运算;难点是:熟练掌握有理数的运算顺序。我认为运算时注意以下几点:(在刚开始教这节课时,我就已经强调的很仔细了)

1.先算乘方,再算乘除,最后算加减.如果有括号,就先算括号里面的.

2.通常把六种基本的代数运算分成三级,加减是第一级运算,乘与除是第二级运算,乘方(与开方)是第三级运算.运算顺序的规定详细地讲是:先算高级运算,再算低一级运算;同级运算按从左到右的顺序进行.如果有括号先算小括号内的,再算中括号,最后算大括号.

但还是有那么多的错误,我越来越怀疑自己了,不得不承认有理数的混合运算是有理数运算的一个难点.现就同学们在计算中的常见错误进行分析,让大家弄清产生错误的原因,掌握正确的解答方法.例1计算(-0.25)×(-4)-60÷(-15).错解:原式=1-4=-3

分析:得出此解的同学将60前面的“-”号既视为运算符号(减号),又视为性质符号(负号),以致出错.应当注意“-”号在运算中只能当作二者中的一种.正解:原式=1-(-4)=5.例 2计算-12 -3×(-8)÷(-2).错解:原式 =1-3×(-8)÷(-2)

=1-12=-11.分析:得出错解的同学误认为-12=(-1)2 =1,事实上-12与(-1)2 并不相等.-12表示1的平方的相反数,其结果为-1,(-1)2表示两个-1相乘,其结果为1.应该注意“平方的相反数”与“相反数的平方”之间的区别与联系.正解:原式=-1-3×(-8)÷(-2)

=-1-12=-13.这些错误发生的原因有很多,其中学生自从小学就在计算题的方面有很大的难度,其实计算题一部分考知识,一部分是靠细心,更的是好的学习习惯,只有这几种素养都具备,才能做到更好。

在这里我还想说的是,有理数的混合运算的关键是运算的顺序,运算法则和性质,为此,必须进一步对加,减,乘,除,乘方运算法则和性质的理解与强化,熟练掌握,在此基础上对其运算顺序也应熟知,只要这两个方面学的好,掌握牢在运算过程中,始终遵循四个方面:一是运算法则,二是运算律,三是运算顺序,四是近似计算,为了提高运算适度,要灵活运用运算律,还要能创造条件利用运算律,如拆数,移动小数点等,对于复杂的有理数运算,要善于观察,分析,类比与联想,从中找出规律,再运用运算律进行计算,至此,便可在有理数的混合运算中稳操胜卷。

有理数的加减法重难点突破案例 篇2

一、西师版小学数学教材内容实现了理论与实践的融合

西师版小学数学教材按照新一轮基础教育教学改革指导意见,在教材的编写上,将数学教学内容与学生的日常生活紧密结合起来.让小学生从经验的角度出发学习数学,从生活常识中提炼数学知识,不仅可以对数学知识以深入理解,而且还能够灵活地运用数学知识解决各种问题.

小学数学概念教学是小学数学知识教学中的基础部分.为了将小学生的数学学习兴趣激发起来,可以创造问题情境,让小学生针对数学概念从探索中学习,让枯燥的概念学习变得更为有趣.开展情境教学,就是引导小学生通过不断地观察而针对数学问题采用猜想的方式进行思考,然后让小学生亲自操作,自主验证概念理解的正确性.对于小学生所不理解的问题,可以鼓励小学生相互讨论,以合作的方式解决.当小学生在解决数学概念学习中所遇到的疑难问题的时候,如果获得了一定的成就,就会提升自信,加之小学生充满好奇心,且很喜欢探索问题,就会坚持下去,直到对数学概念充分理解为止.

二、充分认识小学数学概念教学中所存在的问题

数学课堂教学的时间是有限的,小学生的学习能力也非常有限.数学教师无论采取何种教学方式,都要以完成教学计划为主,而小学生学习的目的则是为了在考试中获得好成绩.因此,数学教师开展课堂教学,往往会从完成教学任务的角度出发,如果教学任务量大,就依然是以听课和做习题为主,并不会展开情境教学.特别是数学概念教学,如果教学计划并不符合教学实际,数学教师就会采用传统的教学模式.这就难以对学生的学习自觉性以培养,导致学生对数学教师产生心理依赖感[1].比如,在小学数学概念教学中,数学教师往往会用30分钟时间进行数学概念教学,留下10分钟时间让学生做与数学概念相关的数学题,以深化小学生对数学概念的理解.对于没有听懂数学课的小学生而言,要能顺利地进入练习阶段是很难的.当然,也因此导致小学数学概念教学失败.

三、采用案例分析法开展小学数学概念教学

在小学数学概念教学中引入案例分析法,就是要引导小学生按照自己的思维方式独立学习.这就意味着课堂教学中要以“学”为主导,“教”要围绕着学而展开.课堂教学以案例为主要参考内容而展开,其目的是让小学生对数学概念以充分理解.以西师版第七册小学数学教材中“角的度量”为例.为了让小学生对这一节中的数学概念问题以理解,可以教材内容为参考,设计问题情境,也可以根据教学需要开展数学教学活动.问题情境是让小学生针对教师所提出的问题展开思考,而思考的过程中就会根据自己的需要而查阅资料.由于是自主参与到数学学习中,因此而会从应用的角度理解数学知识,从而对数学概念以充分理解.

首先,数学教师可以给出学生自主学习的目标,即“角”的理解.针对教师所提出的问题,学生可以用自己的方式对相关概念以理解,之后,将自己的理解与教材中的概念解释相对比,查看所存在的不同.之后,教师让学生以讨论的方式解决不同之处.比如,对于“角”的理解,数学教师可以让小学生用量角器量一量教材中的一些图形,看看度量的结果是否与书中给出的答案一致.在西师版第七册小学数学教材中的65页中有度量60°角.但是,学生度量的结果就会有所不同,或者是60°,或者是120°.如果对“角”的概念没有准确理解,就会令小学生感到疑惑不解,为什么同样是一个角,而度量的结果会有所不同.此时,数学教师就可以引导学生在教材中关于“角”的概念方面寻找答案[2].这种教学方式使抽象的数学概念从解决问题的角度出发而获得理解,能够让抽象的数学概念让小学生从经验中获得,要比死记硬背获得数学概念知识的效果会更好.

总结

综上所述,小学生的形象思维能力比较强,而数学概念具有较强逻辑性,内容表达的抽象性很强.导致小学数学概念教学具有一定的难度.西师版小学数学教材在教学设计上是具有一定实用性的,但是,当设计内容落实到数学课堂教学中,就需要面对一些实质性的问题.在小学数学概念教学中,将案例分析的教学方法引入其中,可以有效地突破数学概念教学中的难点,获得良好的教学效果.

参考文献

[1]刘利利.基于建构主义视角研究——小学数学问题解决教学案例分析[J].读与写:教育教学刊,2015,12(10):206.

有理数的加减法教案 篇3

第一课时

授课人:张显刚

授课时间:2017年9月19日 授课地点:701班

三维目标

一、知识与技能

理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.

二、过程与方法

引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力.

三、情感态度与价值观

培养学生主动探索的良好学习习惯.

教学重、难点与关键

1.重点:掌握有理数加法法则,会进行有理数的加法运算. 2.难点:异号两数相加的法则.

3.关键:培养学生主动探索的良好学习习惯.

四、教学过程

一、复习提问,引入新课

1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值? 2.比较下列每对数的大小.

(1)-3和-2;(2)│-5│和│5│;(3)-2与│-1│;(4)-(-7)和-│-7│.

五、新授

在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内.然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?

要解决这个问题,先要分别求出它们的净胜球数.

红队的净胜球数为:4+(-2);

蓝队的净胜球数为:1+(-1).

这里用到正数与负数的加法.

怎样计算4+(-2)呢?

下面借助数轴来讨论有理数的加法.

看下面的问题:

一个物体作左右方向的运动,我们规定向左为负、向右为正.

(1)如果物体先向右运动5m,再向右运动3m,•那么两次运动后总的结果是什么?

我们知道,求两次运动的总结果,可以用加法来解答.

这里两次都是向右运动,显然两次运动后物体从起点向右运动了8m,写成算式就是:

5+3=8 ①

这一运算在数轴上可表示,其中假设原点为运动的起点.(如下图)

(2)如果物体先向左运动5m,再向左运动3m,•那么两次运动后总的结果是什么?

显然,两次运动后物体从起点向左运动了8m,写成算式就是:

(-5)+(-3)=-8 ②

这个运算在数轴上可表示为(如下图):

(3)如果物体先向右运动5m,再向左运动3m,•那么两次运动后物体与起点的位置关系如何?

在数轴上我们可知物体两次运动后位于原点的右边,即从起点向右运动了2m.•(如下图)

写成算式就是:5+(-3)=2 ③

探究:

还有哪些可能情形?请同学们利用数轴,求以下情况时物体两次运动的结果:

(4)先向右运动3m,再向左运动5m,物体从起点向______运动了______m.

要求学生画出数轴,仿照(3)画出示意图.

写出算式是:3+(-5)=-2 ④

(5)先向右运动5m,再向左运动5m,物体从起点向_____运动了_____m.

先向右运动5m,再向左运动5m,物体回到原来位置,即物体从起点向左(或向右)•运动了0m,因为+0=-0,所以写成算式是:

5+(-5)=0 ⑤

(6)先向左运动5m,再向左运动5m,物体从起点向________运动了_______m.

同样,先向左边运动5m,再向右运动5m,可写成算式是:

(-5)+5=0 ⑥

如果物体第1秒向右(或左)运动5m,第2秒原地不动,两秒后物体从起点向右(•或左)运动了多少呢?请你用算式表示它.

可写成算式是:5+0=5或(-5)+0=-5 ⑦

从以上写出的①~⑦个式子中,你能总结出有理数加法的运算法则吗?

引导学生观察和的符号和绝对值,思考如何确定和的符号?如何计算和的绝对值?

算式是小学已学过的两个正数相加.观察算式②,两个加数的符号相同,都是“-”号,和的符号也是“-”号与加数符号相同;和的绝对值8•等于两个加数绝对值的和,即│-5│+│-3│=│-8│.

由①②可归结为:

同号两数相加,取相同的符号,并把绝对值相加.

例如(-4)+(-5)=-(4+5)=-9. 观察算式③、④是两个互为相反数相加,和为0.

由算式③~⑥可归结为:

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数相加得0.

由算式⑦知,一个数同0相加,仍得这个数.

综合上述,我们发现有理数的加法法则,让学生朗读课本第18页中“有理数的加法法则”.

一个有理数由符号与绝对值两部分组成,进行加法运算时,必先确定和的符号,再确定和的绝对值. 例1:计算.

(1)(-3)+(-5);(2)(-4.7)+2.9;(3)+(-0.125).

分析:本题是有理数加法,所以应遵循加法法则,按判断类型,确定符号、计算绝对值的步骤进行计算.(1)是同号两数相加,按法则1,取原加数的符号“-”,并把绝对值相加.(2)是绝对值不相等的异号两数相加.(3)是绝对值相等的两数相加,根据法则2进行计算.

解:(1)(-3)+(-5)=-(3+5)=-8;(2)(-4.7)+2.9=-(4.7-2.9)=-1.8;

(3)+(-0.125)=+(-)=0.

例2:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,•计算各队的净胜球数.

分析:净胜球数是进球数与失球数的和,我们可以分别用正数、负数表示进球数和失球数.红队胜黄队4:1表示红队进4球,失1球,黄队进1球失4球.

解:每个队的进球总数记为正数,失球总数记为负数.

三场比赛中,红队共进4球,失2球,净胜球数为:

(+4)+(-2)=+(4-2)=2;

黄队共进2球,失4球,净胜球数为:

(+2)+(-4)=-(4-2)=-2;

蓝队共进1球,失1球,净胜球数为:

(+1)+(-1)=0. 以上讲解有理数加法时,严格按照:先判断类型,然后确定和的符号,最后计算和的绝对值,这三步骤进行.

六、巩固练习

课本第18页练习1、2题.

七、课堂小结

有理数的加法法则指出进行有理数加法运算,首先应该先判断类型,然后确定和的符号,最后计算和的绝对值.类型为异号两数相加,和的符号依法则取绝对值较大的加数的符号,并把绝对值相减,因为正负互相抵消了一部分.有理数加法还打破了算术数加法中和一定大于加数的常规.

八、作业布置

1.课本第24页习题1.3第1题.

九、板书设计:

1.3.1 有理数的加法(1)

第一课时

1、同号两数相加,取相同的符号,并把绝对值相加.

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数相加得0.

2、随堂练习。

3、小结。

4、课后作业。

绝对值和有理数的加减法 篇4

一、绝对值

要求理解绝对值的概念,会求一个数的绝对值,已知一个数的绝对值会求这个数,首次学习不易过难,在后续的学习中慢慢体会其中分类讨论和转化的数学思想.

二、有理数的加减法

掌握有理数的加法法则、有理数的减法法则以及减法与加法的转换关系;会用有理数的加减法解决生活中的实际问题。

【知识要点】

一、绝对值

1、概念:

我们把数轴上的点到原点的距离叫做这个点表示的有理数的绝对值,记作|a|.

①正数的绝对值是它本身,即当

②负数的绝对值是它的相反数,即当

③0的绝对值是0,即当

时,时,时,.

由①②③可知,; [注]①任何一个数的绝对值都是非负数,即

②绝对值最小的数是0;

③互为相反数的两个数的绝对值相等;

④绝对值相等的两个数,它们相等或者互为相反数; ⑤绝对值为a(a>0)的数有两个,它们是a和-a;

1、求下列各数的绝对值:

(1);(2);(3)0.

[分析]首先判断这个数是正数还是负数,然后再求它的绝对值.

解:(1)

2、(1)

(2);(2);(3).,则_________;,则

_________;

(3),则_________.

[分析]a表示一个有理数,所以应分a是正数、0、负数三种情况讨论.

解:(1)当x为正数时,当x为负数时,综上,.,;

[小结]绝对值等于某一个正数的数有两个,而且这两个数互为相反数.

(2)法1:

法2:

(3),或

,或

3、填空

(1)若|a|=a,则a的取值范围是_________;(2)若|a|=-a,则a的取值范围是_________;

(3)若|-a|+a=0,则a的取值范围是_________.

时,; ;

;当

时,(即),解:(1)当

(2)

(3)

2、有理数的大小比较

①正数大于0,负数小于0,正数大于负数;

②两个正数中,绝对值较大的数较大;

两个负数中,绝对值较大的数反而小;

③在数轴上表示有理数,右边的点表示的数大于左边的点表示的数.

4、比较这四个数的大小.

解:因为,且

二、有理数的加减法

1、有理数加法的意义

(1)在小学我们学过,把两个数合并成一个数的运算叫加法,数的范围扩大到有理数后,有理数的加

法所表示的意义仍然是这种运算。

(2)两个有理数相加有以下几种情况:

①两个正数相加;

②两个负数相加;

③异号两数相加;

④正数或负数或零与零相加。

2、有理数的加法法则

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小

的绝对值;互为相反数的两个数相加得0;

(3)一个数同0相加,仍得这个数。

注:

①有理数的加法和小学学过的加法有很大的区别,小学学习的加法都是非负数,不考虑符号,而有理数

的加法涉及运算结果的符号;

②有理数的加法在进行运算时,首先要判断两个加数的符号,是同号还是异号?是否有零?接下来确定

用法则中的哪一条;

③法则中,都是先强调符号,后计算绝对值,在应用法则的过程中一定要“先算符号”,“再算绝对

值”。

3、有理数加法的运算律

(1)加法交换律:a+b=b+a;

(2)加法结合律:(a+b)+c=a+(b+c)。

根据有理数加法的运算律,进行有理数的运算时,可以任意交换加数的位置,也可以先把其中的几个数加起来,利用有理数的加法运算律,可使运算简便。

4、有理数减法的意义

有理数的减法的意义与小学学过的减法的意义相同。已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。减法是加法的逆运算。

5、有理数的减法法则

因此,.,则,.

有理数的减法法则:减去一个数等于加上这个数的相反数.例

5、计算

(1);

(2);

(3);

(4).

[分析]根据有理数的加法法则,先定符号,再算绝对值.

解:(1)原式=

(2)原式

(3)原式

(4)原式

6、计算:

(1)

(2);

(3)

[分析]适当运用运算律.

解:(1)原式

(2)原式

(3)原式

[小结](1)尽量把正数分成一组,负数分成一组分别计算;

(2)遇到分数运算时,尽量把异通分的分为一组.

7、计算

(1);(2);(3).

[分析]把减法转化为加法.

解:(1)原式;

(2)原式

(3)原式

8、计算:;

有理数加减法教案 篇5

一、素质教育目标

(一)知识教学点

1.理解掌握有理数的减法法则.

2.会进行有理数的减法运算.

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想.

2.通过有理数减法法则的推导,发展学生的逻辑思维能力.

3.通过有理数的减法运算,培养学生的运算能力.

(三)德育渗透点

通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

2.学生学法:探索新知→归纳结论→练习巩固.

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);

(2)-3+(-7);

(3)-10+(+3);

(4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3).

(1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3).

(2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.

【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

4.例题讲解:

[出示投影1(例题1、2)]

例1 计算(1)(-3)-(-5);

(2)0-7;

例2 计算(1)7.2-(-4.8);

(2)()-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

师:组织学生自己编题,学生回答.

【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2(计算题1、2)]

1.计算(口答)

(1)6-9;

(2)(+4)-(-7);

(3)(-5)-(-8);

(4)(-4)-9(5)0-(-5);

(6)0-5.

2.计算

(1)(-2.5)-5.9;

(2)1.9-(-0.6);

(3)()-;

(4)-().

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第45页的画面.

3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米.

【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)课堂小结

提问:通过本节课学习你学到了什么?生答:略.

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

八、随堂练习

1.填空题

(1)3-(-3)=____________;

(2)(-11)-2=______________;

(3)0-(-6)=____________;

(4)(-7)-(+8)=____________;

(5)-12-(-5)=____________;(6)3比5大____________;

(7)-8比-2小___________;

(8)-4-()=10;

(9)如果,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数.()

(2)(-2)-(+3)=2+(-3).()

(3)零减去一个数等于这个数的相反数.()

(4)方程在有理数范围内无解.()

(5)若,,.()

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.

有理数加减法教学设计 篇6

【教学目标】

1.会进行有理数加法运算.

2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算.

3.会将有理数的减法运算转换成加法运算.

4.会进行加减混合运算.

此外,感受有理数加法法则的合理性以及“分类”的思想方法,感受有理数减法与加法的对立统一,体 会“化归”的思想方法.

【教学过程设计建议(第一课时)】

1.情境创设

除课本提供的情境外,还可以用学生熟悉的生活实例,如用水位变化、存钱取钱等问题引进有理数加法.例如:

第1天水位上涨了3 cm,第2天上涨了2 cm,两天共上涨了多少?第1天水位上涨了3 cm,第2天下降了2 cm,两天共上涨了多少?第1天水位下降了3 cm,第2天下降了2 cm,两天共下降了多少?第1天水位上涨了3 cm,第2天不升也不降,两天共上涨了多少? 如果将上涨记为正,上涨“3 cm“可记为“ 3”,下降记为负,下降“2 cm”可记为“一2”,你能用含正、负数的算式表示水位的变化过程和结果吗?两天的水位还 可能出现哪些变化?请用含正、负数的算式表示变化过程和变化结果.

2.探索活动

(1)需要特别注意的是,算式“(3)(一2)= 1”

只是借助正、负号,记录计算净胜球的计算过程与结果,算式的左边是加法,而右边的“ 1”是根据生活经验得到的.

课本提供的情境是“先赢后输”、“累计为赢”的类型,在将其写成含正、负数的算式并根据生活经验得出结果后,可问学生:除“先赢后输”外,两场比赛的结果还会出现哪些情况?在学生列举出“赢了再赢”,“先输后赢”,“输了再输”,“先赢后平”,“先平后赢”及“平局”等情况后,再让学生填写净胜球计算表,感受两个有理数相加的各种情况,提高学生探求运算规律的积极性.

与小学不同的是,由于有理数由符号和绝对值两部分组成,所以运算时既要考虑符号也要考虑绝对值.例如,首先要确定两场比赛的输赢,这是符号问题,然

后确定输赢球的个数,这是绝对值问题.

(2)设置“数学实验室”的目的是让学生从“形”上感受有理数的加法运算法则.采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解.

3.例题教学

例1第(1)小题是求一个正数与一个负数的和;第(2)小题是求两个负数的和;第(3)小题是求两个互为相反数的和;第(4)小题是求0与一个有理数的和.为突出运算法则,4个题目都设计为简单的整数运算.

学生应能熟练进行有理数的加法运算,但运算难度要以《标准》要求为准.教师在补充例题、习题时不宜在数字运算上设置障碍,当学生熟练掌握运算法则后,随着知识的积累、技能的提高、数感的增强、计算器的引入,学生处理繁难运算的能力也会逐渐增强。

【教学过程设计建议(第二课时)】

1.探索活动

从复习有理数的加法运算开始,由问题“在含有负数的加法运算中,加法交换律和结合律还成立吗?”引发思考,让学生感受验证的必要性,主动投入验证活动.

采用在几何图形中填数字的验证方法,直观性强且易于操作.通过心算、观察、比较及更改数字等活动,学生很容易认同加法“交换律”和“结合律”的合理性.这种验证方法也适用于乘法对于加法的分配律.

在认同加法“交换律”和“结合律”后,可让学生口述这两个运算律,然后再用字母来表述,从中体会用字母表示数的优越性.

此外,按课本中对扑克牌的约定,随意抽取扑克牌进行计算,也是验证有理数加法运算律的好办法.

2.例题教学

例2没有要求“用运算律进行计算”,只是通过卡通人的旁白告诉学生“这样算简便”,让学生感受有时可以用运算律简化运算,练习和作业时不宜强求学生要用运算律来运算.

【教学过程设计建议(第三课时)】

1.情境创设

小丽从观察温度计上的读数出发,借助生活经验得出了日温差;小明由减法的意义,利用加法“凑”出了日温差.教学时可让学生直接观察温度计,也可制作温度计的教学课件或利用数轴演示日温差.

2.探索活动

(1)用问题串引导学生展开探索活动,例如:

小丽从温度计上看到,从5℃降到一3℃,温差为8℃.你认为小丽的结论正确吗?小丽是在做加法运算还是在做减法运算? 小明根据“日温差”的意义,联想小学里加法与减法的关系,“算出”日温差也是8℃.你认为他的算法行吗?说说你的理由.

小明与小丽的结论相同,是偶然巧合吗?请举例说明.

(2)比较小明与小丽的算式,感受有理数减法运算转化为加法运算的转化过程:减号变为加号,减数变为它的相反数.

3.例题教学

3、例4的教学中,要注重“减法转化为加法”的过程,引导学生加深对“减去一个数等于加上这个数的相反数”的认识.例4之后,课本指出有理数的加、减法运算可以统一为加法运算,并出现了“2 5—8”可以看成“2 5(一8)”这样的例子,但没有提出“代数和”的概念.

设计课本上“练一练”的程序运算和习题第ll题的仿“幻方”问题,是为了吸引学生积极参与,用寓教于乐的方式提升学生的运算能力.可以在此基础上,让学生自行设计一些易于操作的有趣活动,进行有理数加、减混合运算的练习.

教学中,如有必要可适当补充加、减混合运算的例题、习题.

4.小结

除对有理数加、减法的运算法则进行小结外,还应向学生指出,由于有理数的减法运算可以转化为加法运算,所以,小学里无法解决的被减数比减数小的减法问题,现在就有了合理的解释.换言之,在有理数范围内减法运算总可以实

有理数加减法说课教案 篇7

一、教材的地位和作用

有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。同时,也为后继学习实数、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值。就本章而言,有理数的加法是本章的一个重点。在有理数范围内:加、减法可以统一成为加法,因此加法运算是本节的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成运算思考方式,关键在于这一节的学习。

二、教学目标

1.掌握有理数加法法则和加法运算律并且能够熟练运用。

2.让学生探索有理数加法法则和运算律的过程,体会总结归纳的学习方法。3.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算,渗透数学中的一个重要思想————转化思想。4.培养学生的观察,比较,归纳及运算的能力。

三、教学重点和难点

教学重点:有理数的加法法则以及加法运算律;

教学难点:异号两数相加的加法法则以及运算律的运用;

四、教学方法

启发式教学,旨在培养学生自主探究的学习意识,为将来的自学打基础。

五、教学过程

教学准备:采用提问或者集中回答的方式回忆正负数、绝对值的概念,小学数学中学的加法交换律和结合律的相关知识。

(一)引入新课

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.

问:两个有理数相加,有多少种不同的情形?(本例体现归纳总结思想)举一个熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.七年级一班在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5. ①

(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3. ②

现在,请同学们说出其他可能的情形.

答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1; ③

上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; ④

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2; ⑥ 上半场打平,下半场也打平,全场仍是平局,也就是 0+0=0.

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.

问:现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?

这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加;(同号不变,绝对值相加)

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(异号取值大的号,绝对值相减)

3.一个数同0相加,仍得这个数.

(二)应用举例,变式练习

【例】计算下列算式的结果,并说明理由:

(1)(+4)+(+7);

(2)(-4)+(-7);

(3)(+4)+(-7);

(4)(+4)+(-4);

(5)(-9)+0;(6)0+(+2);

(7)0+0;

学生逐题口答后,教师小结: 进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

全班学生书面练习,学生板演,教师对学生板演进行讲评.

(三)从学生原有认知结构提出问题

【问】1.叙述有理数的加法法则.

2.“有理数加法”与小学里学过的数的加法有什么区别和联系?

答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算.

3.计算下列各题,并说明是根据哪一条运算法则?

(1)(-9.18)+6.18;

(2)6.18+(-9.18);

(3)(-2.37)+(-4.63);

4.计算下列各题:

(1)[8+(-5)]+(-4);(2)8+[(-5)+(-4)];(3)[(-7)+(-10)]+(-11);

(4)(-7)+[(-10)+(-11)];(5)[(-22)+(-27)]+(+27);

(四)共同探索,归纳有理数运算律

通过上面练习,引导学生得出:

交换律——两个有理数相加,交换加数的位置,和不变. 用代数式表示上面一段话:a+b=b+a.

运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.

结合律—三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. 用代数式表示上面一段话:(a+b)+c=a+(b+c). 这里a,b,c表示任意三个有理数. 【例】计算16+(-25)+24+(-32).

引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便.

解:16+(-25)+24+(-32)=16+24+(-25)+(-32)

(加法交换律)=[16+24]+[(-25)+(-32)]

(加法结合律)=40+(-57)

(同号相加法则)=-17.

(异号相加法则)

(五)有理数的减法

通过代数和的概念,理解有理数加减法可以互相转化。

比较4+(-3)和 4-3,3-4和3+(-4)的结果,让学生体会出加减法如何转化。

引导学生发现,在本例中,某数加上一个数等于某数减去这个数的相反数;某数减去一个数等于加上这个数的相反数。

课堂练习

1.计算:(要求注理由)(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4); 2.计算:(要求注理由)(1)(-8)+10+2+(-1);

(2)5+(-6)+3+9+(-4)+(-7); 3.当a=-11,b=8,c=-14时,求下列代数式的值:

(1)a+b;

(2)a+c;(3)a+a+a;

(4)a+b+c.

利用有理数的加法解下列各题(第4~8题):

4.飞机的飞行高度是1000米,上升300米,又下降500米,这时飞行高度是多少?

5.存折中有450元,取出80元,又存入150元以后,存折中还有多少钱? 6.一天早晨的气温是-7℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是多少?

7.小吃店一周中每天的盈亏情况如下(盈余为正):

128.3元,-25.6元,-15元,27元,-7元,36.5元,98元 一周总的盈亏情况如何?

8.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:

1.5,-3,2,-0.5,1,-2,-2,-2.5 8筐白菜的重量是多少?

(六)小结

这节课,我们从实例出发,经过比较,归纳,得出了有理数的加法法则和有理数的加法运算律,在应用有理数的加法法则时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。对于有理数加法的运算律的应用,我们要注意观察,探究简便运算的特点,让计算更加快捷,简单;对于有理数减法,可以利用加减法转化的办法把减法化成加法后在利用加法法则进行运算。

《有理数的减法》教学反思 篇8

4-(-3)=7(1)4+(+3)=7(2)4-(-3)=4+(+3)

通过对比三个式子使学生思考减法计算,引导学生自己举出几个例子来验证下减法的计算方法,使学生在计算中发现,总结出有理数减法法则:减去一个数,等于加上这个数的相反数,使学生亲身体验知识的形成过程,感悟数学的转化思想。本课改变了以往学生被动学习,被动接受知识的局面。但学生的认知水平毕竟存在差异,从学生的练习来看,大部分学生都掌握了有理数的运算法则,但还有些学生在将减法转化为加法时,总弄不清该减去哪个数的相反数,有的甚至把被减数也改变符号,特别是减去一个正数时,往往又再加上该正数,如误解——=—+。因此,给学生总结了a-(+b)=a+(-b)指导学生观察式子,发现在有理数减法的计算中,要把减法变成加法,需要改变的符号有两个,首先把减号变成加号(变加法),然后要把减数变成其相反数。

存在问题:

1.讲解稍微有点多,在本节课上,重在学生练习,本节课老师应该要讲的内容尽量缩短,一般控制在10-15分钟即可;

《有理数的减法》观课报告 篇9

在本次互联网+远程研修中,我很认真的观看了李姝珩老师《有理数的减法》这节课。本节课教学环节完整,层次清晰,结构严谨,课堂容量适当,练习题选择精准。在提高学生数学能力和数学素养方面做到了点睛和引领作用。使我受益匪浅。下面我简单说一下对这堂课的浮浅的想法和认识。

一、注重创设情境,视野决定高度

看完这节课后,我感悟到李老师站在一定的高度设计这节课,她沿着(1)确定单元学习主题(2)确定单元总目标(3)确定单元重难点(4)确定课时重难点设计的问题,学生能主动参与,实现重点突出,难点分散,李老师用三亚1月份气温情况为例子,通过问提串的方式引导学生层层递进,步步深入,激发学生主动参与和浓厚的学习兴趣,把教材中的乌鲁木齐温差改为三亚的温差问题,让学生在温差中挖掘有理数减法知识,同时体会数学来源于生活,来自身边,明白为什么学数学。经历推导有理数的减法法则过程,明白怎样学数学。应用有理数的减法法则,计算培养学生运算能力,应用题培养学生解决实际问题能力。试一试让知识升华,用有理数减法解决实际问题。体现数学服务于生活,明白学数学干什么,能解决生活问题。整节课围绕“为什么学数学”—— “怎样学数学”——“学数学可以解决实际问题”教与学,让学生明白数学来源于生活,又服务于生活,培养了用数学的意识。

二、注重新旧结合,高度决定深度

在经历推导有理数的减法法则过程中,让孩子各抒己见,一共归纳出4种比较清晰的做法,增加新旧知识的联系,强化数形结合和方程思想的运用,使学生体会到数学无新知,接受新知识自然,符合学生年龄特征。轻松推导出有理数减法可以转化为有理数加法,学会化未知为已知的转化思想。

三、注重合作探究,赏识激发宽度

李老师选择的数据具有代表性,又很典型,学生学习的主体意识十分强烈,学生的学习有很大的自主性,让学生充分体验学习的过程,感受成功的喜悦,这种丰富的数学体验是对学生最好的奖赏。在合作探究学习的过程中,学生的分析问题、思考问题和解决问题的能力也得到很大的提高。教师对学习任务表达清晰,充分考虑了不同学生学习差异,教师的指导十分有效,教学设计十分合理,重视倾听习惯的培养,对学生的学法指导非常到位。

四、对本节课的思考:

1、时间分配感觉前松后紧,引例的时间设计能否在精准把握?

2、提出问题后,孩子展示的形式能否再多样化以及展示的人数能否再广泛化?

3、有理数减法法则推导完成并用字母表示后,能否再给学生点落实的时间,夯实到位?

七年级上册《有理数的减法》教案 篇10

.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力。

有理数减法法则。

有理数的减法转化为加法时符号的改变。

电脑、投影仪

一、从学生原有认知结构提出问题

.计算:+;+3;8+;+0.

2.化简下列各式符号:-;-;+;+;-;-.

3.填空:____+6=20;

20+____=17;____+=-20;

+___=-6.

二、师生共同研究有理数减法法则

问题1

4-=______;4+=______.

教师引导学生发现:两式的结果相同,即4-=4+.

思考:减法可以转化成加法运算.但是,这是否具有一般性?

问题2

-=______;+=______.

对于,根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?的结果是多少?于是,-=+.

归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.

强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.

三、运用举例 变式练习

例1

计算:9-;

0-8.-1;-0()-[6-];(6)1-

例2

世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-1米两处高度相差多少米?

例3

P63例3

例4

℃比℃高多少?1℃比-℃高多少?

练一练:P631题

P64-6数学理解

1、问题解决

1、联系拓广1、2题

补充:1.计算:-8-8;-;8-;8-8;

0-6;

6-0;

0-;-0.

2.计算:16-47;

28-;

-;

-14;

123-190;

-98;

-;

341-249.

3.计算:-2;

3-;-;

4.当a=11,b=-,=-3时,求下列代数式的值:

a-;b-;a-b-;-a-b.

四、反思小结

.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。

习题26知识技能1、3、4题。

有理数的加法与减法教学方案 篇11

教学目标

1.理解有理数减法法则,能熟练进行减法运算;

2.会将减法转化为加法,进行加减混合运算,体会化归思想.

教学重难点会将减法转化为加法,能熟练进行减法运算;

教学设计

1.阅读P30页解决问题的方法,完成下列问题:

(1)3-(-5)=3+;

(2)(-3)-(-5)=(-3)+;

(3)(-3)-5=(-3)+;

(4)3-5=3+.

2.依据上述问题的解答,归纳:有理数的减法运算可以转化为运算,

有理数减法法则:.

3.仿照P31例3计算

【展示交流】

活动一:

10-(+3)=10+(-3)和(-10)-(-8)=(-10)+(+8)成立吗?若成立,回答下列问题:

(1)两个等式中运算有共同点吗?

(2)等号两边不变的.是什么?变的是什么?

(3)你还能举一些类似例子吗?

活动二:

1.说一说:两个有理数减法有多少种不同的情形?

2.议一议:在各种情形下,如何进行有理数的减法计算?

3.试一试:你能归纳出有理数的减法法则吗?

【思考】:两个有理数相减,差一定比被减数小吗?

活动三:

例3:计算:

(1)0-(-22);(2)8.5-(-1.5);(3)(+4)-16(4)

【课堂反馈】

1.课本32页练一练1、2、3、4

2.判断下列说法是否正确?正确的打“√”,错误的打“×”,并说明理由.

(1)(-5)-(-6)=(-5)+(-6)=-11;

(2)(-40)-(-10)=-(40+10)=-50;()

(3)两个有理数的差一定小于被减数;()

(4)0减去任何数都等于这个数的相反数;()

(5)两个有理数差的绝对值等于这两个数绝对值的差。()

3.计算:(请务必写出计算过程)

(1)(-37)-(+14);(2)(+42)-(-98);(3)8-20;(4)(-)-;

【迁移创新】

1.已知a=8,b=-5,c=-3,求下列各式的值:

(1)a-b-c;(2)a-(c+b)

2.已知|a|=3,|b|=4,且a

3.若a<0,b>0,则a,a+b,a-b,b中最大的是()

A.aB.a+bC.a-bD.b

上一篇:大鞋和小鞋教案下一篇:铅冶金发展现状