五年级上册解方程教案

2024-10-12

五年级上册解方程教案(通用12篇)

五年级上册解方程教案 篇1

解方程

【学习内容】人教版小学数学五年级上册第五四单元67——68页例

1、例2 【课程标准描述】

能用等式的性质解简单的方程。【学习目标】

1.通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。2.能结合解方程的过程,正确表达“方程的解”和“ 解方程”的含义,知道解方程是求方程的解的一个过程,而方程的解是一个数。【学习重、难点】

通过演示操作,能借助等式的性质解简单的方程(形如X± a=b、aX=b、X ÷a=b),能按照检验的格式,学会检判断一个具体的值是不是方程的解,逐步养成自觉检验的习惯。【评价活动方案】

1.通过练习十五第1题,关注学生是否能正确判断括号中哪个X的值是方程的解,以评价目标1。

2.通过做一做P68第1题(前两栏)和练习十五第3题,关注学生是否能正确求出方程的解,能否自觉检验,以评价目标2。【学习活动方案】

一、通过演示操作,根据等式的性质解方程(X±a=b)(评价目标1)1.出示一个不透明盒子,学生猜测里面小球的数量。

引导:能准确说出小球个数吗?我们可以用什么来表示?(引导学生用字母X表示)

(课件出示例1)根据图中信息,列出方程。

2.通过演示操作,理解天平平衡的原理。独立思考:盒子里有几个球?X的值是多少? 小组内交流:你是怎样想的?

全班汇报:X的值是多少?你是怎样想的? 预设一:利用加减法的关系计算:9-3=6。预设二:想6+3=9,所以x=6。

预设三:把9分成6和3,想x+3=6+3,所以x=6。

预设四:在方程两边同时减去3,就得到x=6。

思考:前三种都是利用的加减法的关系得到的答案,第四种有什么不同?明确第四种 是根据等式的性质。

引导:他的想法正确吗?我们来验证一下。同时拿走3个球,天平会怎么样?

一名学生借助天平(左边是一个不透明盒和3个球,右边是一个透明盒里9个球,天平平衡)演示操作,两边同时拿走3个球,天平平衡。学生看到左边盒子里确实和右边盒子一样也有6个球。学生复述刚才的操作过程,教师用课件演示。

思考:天平的两边为什么要同时拿走3个球呢?难道同时拿走1个、2个不平衡吗? 明确:只有同时拿走3个,才能让天平的左边只剩下X,这样右边刚好就是X的值。3.规范解方程的书写格式。

学生尝试用算式表示刚才的操作过程。

教师边示范边强调:⑴第二行要写个“解“字;⑵为了清晰美观,每一步的等号都要对齐。

4.思考:在以前计算加减乘除的算式后,我们都要验算。那方程该怎样检验算地对不对呢?

学生交流后汇报,教师根据学生的回答板书检验过程。

二、结合解方程的过程,理解“方程的解”和“解方程”的含义(评价目标2)结合例1明确:像上面x=6这样使方程左右两边相等的未知数的值,叫做方程的解。而求方程的解的过程叫做解方程。(括起解方程的过程,板书:解方程)

(课件出示“方程的解”和“解方程”的定义)说一说这两个概念有什么不同。

小结:方程的解是使方程左右两边相等的未知数的值,是一个数;而解方程是求方程的解过程,是一个计算过程。

三、根据例1的方法,使用等式的性质解方程(形如aX=b、X ÷a=b)(评价目标1)出示例2(3X=18),学生尝试解方程。

一名学生板演到黑板上讲解,并与其他同学进行交流。交流的内容是:

解这个方程的依据是什么? 两边为什么要同时除以3?

(课件演示例2的操作过程,帮助理解为什么要同时除以3)全班口述检验过程。

四、通过练习,进一步巩固解方程的方法(评价目标1、2)1.练习十五第1题。独立判断括号中哪个X的值是方程的解。

2.做一做P68第1题(前两竖栏)。独立解方程,并书面检验第二竖栏。3.练习十五第3题。独立列方程并解答。

五、回顾总结

今天是利用什么知识来解方程的? 解方程大体有几个步骤?应该注意什么? 步骤:1.写“解“;

2..等式的性质求方程的解; 3.检验。

注意:1.“=”要对齐;2.X表示一个数值,后面不写单位名称。

五年级上册解方程教案 篇2

教过老教材的教师对依据“四则运算的互逆关系”来解方程有多年的经验,所以觉得驾轻就熟。同时,学生在学习“解方程”之前,已经初步认识了运用四则运算的关系式,在解决形如()+3=8,()÷5=3的题目时,能依据关系式直接说出结果。

而依据《数学课程标准(实验稿)》编写的“解方程”,主要是借助“天平两边同时加减同等重量的物品,或同时扩大相同的倍数,天平还是保持平衡”这一直观的等式性质作为解方程的依据。这与初中的“解方程”依据相一致,有利于更好地实现初小衔接。但在实际教学中却发现过程较繁,学生不喜欢。而且最为主要的是教材还因此回避形如“a-x=b”与“a÷x=b”类型的题目,而这些题目,如果用四则运算关系式解方程并不难。

基于以上的分析,笔者认为,在遵循等式性质的同时,教师也应该关注学生已经熟悉四则计算题这一认识起点,使两种依据相辅相成,灵活选择合理的依据解方程。

一、教学实践过程

(一)尊重起点,自选方法

在教学“解方程”例1时,笔者出示教材情境图,让学生据此列出方程“x+3=9”,然后让他们自主探究寻求x的值,反馈时发现学生当中出现了以下几种不同的思路:

1.直接尝试:因为(6)+3=9,所以x=6。

2.运用关系式:因为一个加数=和-另一个加数,所以x=9-3,x=6。

3.根据等式性质:等式两边同时减3,求出x=6。

在教学中,笔者在充分尊重学生已有认识起点的同时,也为学生自主探究提供了学习的空间。所以就安排了比较简单的数据,有利于学生用多种方法解决问题。这三种思路中,第二种思路占了大部分,第三种思路只占了10%左右,说明大多数学生的认知起点是第二种方法,用等式的性质作为依据解方程的方法大多数学生还不认同,或者说对等式的性质理解不深刻。为了加深学生对第三种方法的理解,笔者用天平图作出了说明(见图1)。

(二)提供思路,评价方法

既然学生出现了三种不同的思路,那教师就有必要让学生共同讨论,评价各类方法,明白各种方法的优势与局限性。于是笔者一方面组织学生对不同思路展开讨论,另一方面呈现一些数据较为复杂的题目,比如:33.5+x=164.3,x-1 1.9=13.5,让学生运用自己喜欢的方法解答。而此时学生感到用直接尝试法解决比较困难。于是自然就倾向于选择二、三两种方法,这个选择方法的过程,也就是自然淘汰第一种解法的过程。

笔者把两种方法进行了板书:

并了解上面两种解法出现错误的情况,结果发现用运算关系式来解的,会出现用错关系式的现象(x=13.5-11.9),而用等式性质解的仅有一个出现计算错误。

在接下来的基本练习中,笔者允许学生自主选择方法,主要是想了解学生对等式性质解方程的认同程度,尽管以等式性质为依据解方程的人数已大幅度增加。

(三)优化思路,实现统一

在上完两类简易方程后,笔者补充了如下例题“42-x=15、5.2÷x=4”

笔者先让学生独立解决这类问题,要求用两种思路解答。几乎所有人都能用四则运算的关系式求未知数,但能用等式的基本性质来解的就为数不多了,因为在这类题的求解过程中,要求学生能从数的运算过渡到式的运算(等式两边同加x),这是学生认识上的又一次飞跃。

为了帮助学生理解第二种思路,笔者用课件出示了天平图(见图2)。

以上的学习都是由学生自主选择方法来完成的。在学完第一层次简易方程后,进入到稍复杂方程的学习,学生逐渐体会到了等式性质解方程的优越性。如在解答(2.8+x)×2=10.4时,运用关系式解需要思考把谁看做一个整体,当做一个因数,然后用一个因数=积÷另一个因数求出(2.8+x)……而用等式性质解只需要思考等式两边同加还是同减或同乘还是同除以一个数,思维过程相对比较简单,出错的概率也大大降低。

继稍复杂的三个方程例题之后,笔者补充了例题“4x-3=2x+3”,此题的出现彻底改变了一些学生的想法,那些刚才习惯于用四则运算关系式解题的同学,苦思冥想不得其解,此时优化思路已经水到渠成,笔者要求他们尝试用等式的性质来解,求此类方程解的过程让全体同学都充分体会到了利用等式性质解方程的优越性。通过题型的逐步变化,他们从心底里慢慢认同了这种思路,这一个过程是一个自然淘汰、自然选择的过程。

总之,通过以上的过程,学生感受到运用等式的性质解方程,这是一个不断优化的过程,学生经历这样一个从多样化到优化的过程,可以更好地体会到数学的形成与发展的规律。

二、思考

(一)找准编者意图与学生认识的融合点

利用“等式性质”教学解方程,把小学与初中解方程的知识自然地连成一体,使学生从“开始”就学习到最基本的解方程知识,加强了知识的系统性。依据“等式的基本性质”解方程的好处是学生将逐步接受并运用代数的方法思考、解决问题,使思维水平得到提高。

因此,教师首先要做的就是转变观念,要以整体、发展的眼光来看问题,摒弃传统的思维和习惯,以学生的发展为着眼点,习惯于新的方法与要求,适应现代教学理念,同时也要认清依据“等式的基本性质”在解方程中的教学价值。但学生在学习这部分内容之前,是有一定的认知基础的,要想让他们接受等式性质作为解方程的依据,应该通过引导,巧妙安排教学内容,让学生在一次次思维碰撞的过程中,允许差异发展,发现这种思路的优越性,从而自然认同等式性质,这样才符合学生的认识规律,到时候(升入初中)讲一般方程的解法时,学生就有了牢固的知识基础,也就能比较透彻地理解解方程的法则,显然这也是编者的初衷。

(二)凸显等式性质解方程的优越性

旧教材是要学生牢记并灵活应用六种解方程的关系式,万一学生忘了关系式,或稍稍粗心,便会造成解题上的失误,而利用“等式的基本性质”来解方程,学生只需记住一种性质即可解题,显而易见,后者与前者对比更易被学生所理解与运用,所以学生解方程的正确率比较高。另外,新教材不要求死记硬背,学生容易理解,与以后学习解比较复杂的方程统一了起来,对学生以后的发展是有利的。

五年级上册解方程教案 篇3

摘 要:解方程在小学教育中是一个重要的知识点,在小学教育中占据着非同一般的地位。因此,提升小学生在解方程方面的知识已经迫在眉睫。所以,教师应在小学数学教学中采用具有自己特色的正确的教学方法对学生进行教学,让学生进一步了解小学数学解方程方面的知识,提升小学生在数学学习中的思维学习能力。就教师如何在人教版小学五年级数学教学中教好解方程的知识进行探讨。

关键词:小学五年级;数学;教学;方程

一、解方程在数学教学中存在的问题

新课标把解方程方面的知识编排在第九册的教科书上,给教师在这个阶段的教学带来了很大的不便之处,需要教师花费更多的精力和心血来讲授方程,让学生更能理解方程的基本性质。因此,教师可以在教学中适当改变教授方程知识的顺序,让学生能够在课堂中通过思考问题的本质,并尝试通过自己的研究来理解解未知方程的学习过程,对于解未知方程有一个具体的理解思路,找出解方程的学习规律。因此,教师应该有自己的一套解方程的教学方式方法。

二、在教学中教育学生解方程的方式方法

解方程方面的知识教学方法多种多样,一个好的教学方法是决定学生是否能够更好、更有效率地学习到小学数学解方程的知识点。而由于个人性格上的差异,每个教师在教育中都有一种独具特色的教育方法。

1.教师应在教学中合理地安排自己的教授内容

科学地安排教授学习任务对于教师和学生来说是非常有必要的。如果教师想要在解方程方面给学生打下学习的基础,就必须学会科学地安排自己教授的学习任务,这样能使得学生进一步认识到解方程在小学数学教育中的重要性,更加能够理解方程中的基本性质和解方程的一般规律。

2.教师要正确引领学生,让学生进行知识的探索

一个方程必定有两种及以上的解法,教师可以在教学中用方程的性质引领学生的思维,把复杂的方程逐渐的简单化,尽量与学生的日常生活融为一体,使学生在生活中学习到更多数学方程的新知识,让学生在日常生活中积累一定关于方程的数学知识,使学生在生活中逐渐地了解小学数学解方程的知识;加强小学生自主探索小学数学解方程的能力。例如,小学数学一元一次方程中,“2x+10=22”学生可以通过直接移项得到2x=22-10,合并方程等式的右边得到2x=12,两边再同时除以一个2,就可以得到答案x=6。但是教师如果让学生自己进行解方程运算,就能够找出另外一种解题的方法:先等式两边同时除以2得到x+5=11,再通过移项得到x=6。从方程的解法中,就能够发现第二种解题方法比第一种解法较之简单。所以,教师的教学方法对于学生的学习来说是非常重要的。

3.遵循循序渐进的原则,多与学生在课堂中进行沟通

沟通是教师与学生进行解方程知识交流的一座桥梁。教师通过在课堂教学中与学生建立良好的师生关系并进行沟通交流,可以启发学生学习小学数学知识的思想,使学生通过观察事物的本质、思考事物本身的性质,慢慢地尝试问题的解决方法,并进行相互讨论、总结,得出方程的解决方案来。所以,教师应该更加倾向于对于学生来说更为有利的交流式教学。

总而言之,小学数学解方程在数学知识中起着非常大的作用。所以作为小学数学教师就必须改良自己的教学方法,整理出一套独具特色的教学方案,改善学生学习数学知识的质量和学习知识的效率。

参考文献:

[1]崔凤莲.对小学阶段根据“等式的性质”解方程的冷思考[J].中国科教创新导刊,2011(15):111.

[2]顾志能.漫谈小学解方程方法的教学[J].小学教学:数学版,2008(11):16-18.

[3]沈梓建.小学数学如何进行有效教学[N].學知,2010.

五年级上册解方程教案 篇4

教学内容:P105~106页例5、6和做一做。

教学目标:

1、初步学会ax±bx=c这一类简易方程的解法,知道计算这类方程的道理。

2、能正确解ax+bx=c的方程,提高学生的计算能力。

3、渗透事物之间相互联系又相互转化的观点。培养学生认真计算,自觉检验的好习惯。

教学重点:ax+bx=c这一类方程的解法。

教学难点:化简形如ax+bx的含有字母的式子。

教学过程:

一、复习

解下列方程

3x-43=273x+4×3=27

二、新授

1、出示下图:看图自己提出数学问题并用含有字母的式子表示。

板书: 4x+3x(4+3)x

说明:这个式子中含有两个未知数。这就是今天要学习的解简易方程。(板书课题)

(1)这个式子怎样计算呢?学生分组讨论怎样计算,师巡视。

(2)分组汇报讨论结果:可能出现两种情况:一种认为4x表示4个x,3x表示3个x,4x+3x一共是(4+3)个x,也就是7x。或者先求一共有多少部车:4+3,再求一共多少元,就是(4+3)x=7x。

(3)教师对两种思考给以充分肯定后说明:两种思考方法既有联系又有区别,最后的结果都是正确的。板书如下:

4x+3x=(4+3)x=7x

答:这一天共卖出玩具车7X元。

(4)思考:上午比下午多卖多少元?口头列式后,板书:4X-3X=X。

(5)订正并提示:1个x,可以写成x,1可以省略不写。

(6)引导学生小结:一个式子中如果含有两个x的加减法,可以根据乘法分配律和式子所表示的意义,将x前面的因数相加或相减,再乘以x,计算出结果。

(7)练习:

4X+5X= 3.5t-t= 7b+b= 12a-2a-4a=

3X+6X-8X= 2X+5X+3=

学生自己计算结果,集体订正。

订正时注意特殊类型如:3.5t-t3x+6x-8x 2X+5X+3

2、将上题补充条件和问题:“玩具车一天共卖得56元,每辆玩具车多少钱?”

(1)生尝试列方程解答,师个别指导。

(2)集体订正,让学生讲计算过程,并板书解题过程。

解方程4x+3x=56

解: 7x=56

x=8

检验:把x=8代入原方程。

左边=4×8+3×8=56,右边=56。

左边=右边

所以x=5是原方程的解。

3、练习:P106做一做:独立完成,集体订正,计算小数时要注意小数点。

4、拓展:

师:其实,用方程解决问题在人类历史上早有出现,你们知道吗?请看书P106。

生看书后让他们谈一谈自己的古朴,以激发他们热爱数学的感情。

三、巩固练习

1、判断正误,对的画“√”,错的画“X”

(1)5x-4.7x==1.7x()

(2)8x+0.06x=8.06x()

(3)3.5x-x=3.4x()

2、P107第4题。

3、对比练习:解下列方程

3X+2=20 3X+2X=20 3X+2X+5=20

4、全课小结:

今天我们学习的方程与前几节课学习的方程有什么不同?解这样的方程首先应该怎么做?

四、作业

五年级上册解方程教案 篇5

一、教材:人教版小学五年级上册解方程

二、试讲稿

导入:

师:上课,同学们好,请坐

师:大家看一下我手里的盒子,猜一猜里面有几个小球。学生踊跃发言。

师:大家说什么的都有,那我们现在就借助天平来测量一下吧。师:同学们现在看一下讲桌上的这个天平,大家可以得到什么信息呢? 生(众):两边平衡了,右边有9个小球,左边是盒子和3个小球 师:很好,我们已经学习了方程,大家可以就此列一个等式吗? 生:x+3=9 师:非常棒,那x是多少呢?带着这个问题,我们今天来学习解方程。(板书—解方程)新授

师:x是多少呢?大家四人小组讨论一下

师:我见大家讨论的差不多了,来靠窗的那组同学来回答一下 学生:x=6 师:说一下理由

学生:6+3=9,所以x肯定是6.师:非常好,请坐,其实我们还可以用等式的性质来解决这个问题。大家再回忆一下等式的性质

学生(众):等式的两边同时加上或减去同一个数,等式左右仍然相等。

师:好,大家上节课学的都很扎实。现在看讲台上的天平,我把左边去掉三个球,根据等式的性质,那右边应该去掉几个 学生:3个

师:大家试着将刚才的过程用式子写出来。我们请两个学生在黑板上写。X+3-3=9-3 师:大家和这个同学写的一样吗?很好,大家完成的都非常好,师:大家现在观察天平,可以发现了什么? 生:盒子里有6个球

师:对,盒子里有6个球,也就是x等于(教师停顿,学生回答)6,大家把它写在本上。师:通过这样的过程,我们就求出了x=3。老师,现在有个问题,刚才我们两边同时减去了3,减去3有什么好,大家思考一下,来穿白色上衣的那位同学回答一下

生:根据等式的性质,可以知道减去3和减去2等式都成立,但是减去3后,就可以直接得到x的值了。

师:请坐,回答的非常好,我们要记得我们的目的是要求未知数x的值。师:我们把x=3叫做这个方程的解,而刚才求方程的解x=3的过程叫做解方程。师:大家看一下课本上对方程的解和解方程的概念,好,现在来一块说一下 生:使方程两边相等的未知数的值叫做方程的解

求方程解的过程叫做解方程。

师:结合刚才我们学的题目,同桌之间讨论一下方程的解和解方程 师:好,现在我们一块来答一下。非常好,方程的解为x=3 师:那解方程呢,嗯嗯,非常好,整个求解的过程的就叫做解方程

师:那老师有一个问题方程的解和解方程都有一个解字,他们之间有什么区别呢,同桌讨论一下

师:好,你来回答一下

生:方程的解,是一个值,解方程的解代表的是一个过程。师:回答的很利索,很好,请坐。

师:那大家观察一下大屏幕上这3个解方程的过程,看一下他们的格式有什么共同点 生:所有的等号都对齐了。

师:大家观察的很细致,这也是我们书写时需要注意的。

师:按x=3是不是这个方程的解呢?这个需要大家检验一下,同桌之间讨论一下,如何检验呢

学生:可以把x=3带入,看看等号左边和右边是否相等。师:很好,思路很清晰,大家是这检验一下,这个解正确吗? 生:正确

师:好,同学们看一下大屏幕上的书写过程,看看和你的一样吗?非常好,接下来,我们做一下做一做的三道题,老师请3个同学来黑板上做,好,就靠墙的这三位同学吧,其它的同学在下面做。巩固练习

师:大家和它们做的一样吗?来,你来说 生:第二个同学没有检验 小结

师:对,我们得到方程的解后要检验一下,我们这节课就快接近尾声了,那大家说一下这节课你们有哪些收获呢?

师:嗯,学会了解方程,对,解方程就是求未知数x的值,还有吗?嗯,需要检验......。作业

五年级上册解方程教案 篇6

(一)授课班级:

五年级 班

授课内容:人教版五年级上册数学教科书第57—59页内容。教材分析:

前面在引入方程时,曾通过实验得出杯子重100克,设水重x克,则杯子和水共重250克。即100+x=250。这里,教材利用这个例子通过让学生尝试找x的值,引用方程的解与解方程两个概念。教学时可由复习方程的意义入手。教学目标:

1、知识与技能:结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、过程与方法:掌握解方程的格式和写法。

3、情感态度与价值观:进一步提高学生分析、迁移的能力。教学重点:

1、比较方程的解和解方程这两个概念的含义。

2、掌握解方程的方法

教学难点:利用天平平衡的道理理解比较简单的方程的方法。课的类型:新授课。

教学方法:教授法、讨论法、练习法。教学用具:天平。教学过程:

第一课时

一、导入新课

上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。

二、新知学习

1、解决问题。出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(2)利用加减法的关系:250-100=150。(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

2、认识、区别方程的解和解方程。

得出方程的解与解方程的含:像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

3、练习。(做一做)齐读题目要求。

怎么判断X=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x

=5×3 =15

=方程右边

所以,x=3是方程的解。

用同样的方法检查x=2是不是方程5x=15的解。

三、练习设计:

独立完成练习十一第4题,强调书写格式。

四、小结。

通过这节课学到了什么?还有什么问题?

第二课时

一、导入新课

前面,我们学习了等式保持不变的规律,等式在哪些情况下变换

仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

二、新知学习

(一)、教学例1 出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9 要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3 化简,即得:x=6 这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二)、教学例2 利用等式不变的规律,我们再来解一个方程。出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

展示、订正。

通过,刚才的学习,我们知道了在方程的两边同时减去一个相同 的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

三、作业设计:

1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。

2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。试着解方程:x-2.4=6

x÷9=0.7(强调验算)

3、“做一做”第2题。

四、课堂小结:

这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

板书设计:

解方程

(一)方程左边=x+3

=6+3 =9

=方程右边

五年级上册解方程教案 篇7

1、教材所处的地位和作用:

从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法.

《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验.

2、教学目标:

根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:

知识技能目标

①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.

②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.

③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.

数学思考目标

用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决.

情感价值目标:

让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情.

3、重点、难点:

结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点.

教学重点:知道什么是方程、一元一次方程,找相等关系列方程.

教学难点:思维习惯的转变,分析数量关系,找相等关系。

二、教学策略:

如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段:

1.生活引路,感知概念背景;

2.比较方法,明确意义;

3.感受过程,形成核心概念;

4.运用新知,巩固方法;

5.归纳总结,巩固发展.

本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型.采用教师引导,学生自主探索、观察、归纳的教学方式。

三、学情分析:

根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法.通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力.

四、教学过程:

本节课的教学过程我设计了以下六个环节:

(一) 情景引入

采用教材中的情景

在这个环节中我提出了三个问题:

问题1:从上图中你能获得哪些信息?

问题2:你会用算术方法求吗?

问题3:你会用方程的方法解决这个问题吗?

(二)学习新知

在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为·千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题.

通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在.

然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念.

解决实际问题的步骤:(1)用字母表示问题中的未知数;(2)根据问题中的相等关系,列出方程.(17世纪的法国数学家迪卡尔最早使用·,y,z等字母表示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族.)

在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现.

方程的概念:含有未知数的等式叫方程.小学里已经给出了方程的概念,这里可适当处理.

在这里我开始向学生渗透列方程解决实际问题的思考程序.

(三)讨论交流

讨论1:比较列算式和列方程两种方法的特点.

列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

通过讨论,学生体会到了:用算术方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数,这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系.

而且随着学习的深入,学生会逐步体会到从算式到方程是数学的进步。

紧接着的思考让全班学生参与学习的过程,从而进一步地拓宽了学生的思维.

讨论2:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

在这个讨论活动中,我采取了先小组合作交流后全班交流.

通过交流后,学生中出现如下结果:

从学生的分析所得,这两种设未知数的方法就是在以后学习中将遇到的直接设元和间接设元两种设元.

要求出路程,只要解出方程中的·即可,我们在以后几节课中再来学习.

在这个环节里,问题的开放有利于培养学生的发散思维。这样安排的目的是使所有的学生都有独立思考的时间和合作交流的时间。

(四)初步应用

学生在小学已经学过简易方程,通过以下的例题和练习可以回顾已经学过的知识,并为一元一次方程提供素材。

1、例题:根据下列问题,设未知数并列出方程:

(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

2、课堂练习:这一组例题和课堂练习的设置,其目的是让学生更进一步加强列方程解决实际问题的能力。

(五)再探新知

提取例题和练习中出现的方程请学生观察方程它们有什么共同的特点?然后达成共识:只含有一个未知数;未知数的次数是1.

在这个环节中,我引导学生观察方程特点,给出一元一次方程的概念

教师总结:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程.

思考:下列式子中,哪些是一元一次方程?通过思考辨析,使学生巩固一元一次方程的概念,把握住概念的本质.

(六)课堂小结

让学生先归纳,然后教师补充方式进行,主要围绕以下问题:

本节课学习了哪些主要内容?一元一次方程的三个特征是什么?从实际问题中列出方程的步骤及关键是什么?

五、课堂设计理念

本节课着力体现以下几个方面:

1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。

2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。

3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。

五年级上册解方程教案 篇8

教学内容

新人教版七年级上册解一元一次方程合并同类项。教学目标

一、知识与技能

1、会根据实际问题找相等关系列一元一次方程;

2、会利用合并同类项解一元一次方程。

二、过程与方法

体会方程中的化归思想,会用合并同类项解决“ax+bx=c”型方程,进一步认识如何用方程解决实际问题。

三、情感态度

通过对实际问题的分析,体会一元一次方程作为实际问题的数学模型的作用。教学重点:会列一元一次方程解决实际问题,•并会合并同类项解一元一次方程. 教学难点:会列一元一次方程解决实际问题。教法学法:自主探索、合作交流、指导探究

教学过程设计

一、复习回顾,引入新课

1.合并同类项的法则:各项系数相加,字母和字母的指数不变。2.利用等式性质二,提出系数化为1的概念。

本节结合一些实际问题讨论:

(1)如何根据实际问题列一元一次方程?(2)如何解一元一次方程?

二、探索合并同类项解一元一次方程

问题1 某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍。前年这个学校购买了多少台计算机?

分析:设前年购买计算机x台。则去年购买计算机2x台,今年购买计算机4x台。问题中的相等关系是什么?

前年购买量+去年购买量+今年购买量=140台 依题意,可得方程: x+2x+4x=140 这个方程怎么解呢?我们知道,解方程的最终结果是要化为x=a的形式,为此可以作怎样的变形?

合并同类项,得 7x=140 系数化为1,得

x=20 所以前年这个学校购买了20台计算机。(注意作答)

思考:上面解方程中为什么要“合并同类项”?

它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了转化的作用。

三、例题,解方程(1)3x+2x-8x=3 解:合并同类项得,-3x=3 系数化为1得,x=-1(2)9x+5x=28-14 解:合并同类项得,14x=14 系数化为1得,x=1 注意:如果方程中有同类项,一定要先合并同类项。

四、课堂练习

1.解下列方程

(1)13x+ x=8 22

(2)6m-1.5m-2.5m=3×2 2.全效学习p76当堂检测第五题(采用问答形式)3.全效学习p76当堂检测第1.2.3.4.6题

(目的:检测学生是否真正掌握用合并同类项解一元一次方程)

五、实际应用

例:甲,乙两人在环形跑道上练习跑步,已知跑道一圈长400米,乙每秒跑7米,甲每秒跑9米。

(1)如果甲乙两人同时同地向同一方向出发,多少秒后两人相距100米?

(2)如果甲乙相距32米背向出发,那么经过多少秒两人首次相遇? 分析:设经过t秒后,则甲跑了9t米,乙跑了7t米。

问题中的等量关系是什么?(运用画图向学生展示等量关系)

(1)S甲-S乙=100米 9t-7t=100(2)S甲+S乙=400米-32米 9t+7t=400-32 利用合并同类项解方程,注意最后作答。

六、数学文化拓展

约公元825年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁译本为《对消与还原》。“对消”与“还原”是什么意思呢?

对消”指的就是“合并”,“还原”将在下一节继续学习。

七、课堂总结

1、合并同类项解一元一次方程。

合并同类项,系数化为1(等式性质二)

2、列一元一次方程解实际问题。找等量关系是关键,也是难点;

八、布置作业:

第91页习题3。2第一题

九、思维拓展

五年级上册解方程教案 篇9

【学习内容】

人教版小学数学五年级上册第五单元P73例1。

【课程标准描述】

通过分析数量之间的等量关系,初步学会列方程解决问题的方法和步骤,会列方程解决x±b=c、ax+ b=c类型的实际问题。

【学习目标】

1.初步理解和掌握列方程解决一些简单的实际问题的步骤,掌握x±b=c、ax+ b=c等这一类型的简易方程的解法,提高解简易方程的能力。

2.分析数量之间的等量关系,并正确地列出方程解决实际问题。

【学习重点】

正确设未知数,找出题目中的等量关系,会列方程,并会解方程。【学习难点】

根据题意分析数量间的相等关系。【评价活动方案】

1.通过具体情境,合作探究,理解和掌握列方程解决一些简单的实际问题的步骤,掌握x±b=c这一类型的简易方程的解法,评价目标1。

2.通过整体感知和练习,分析数量之间的等量关系,并正确地列出方程解决实际问题,评价目标2。

【学习过程】

一、预设目标

复习引入,明确目标 1.解下列方程:

x+5.7=10 x-3.4=7.61 4x=0.56 x÷4=2.7 2.分析数量关系:

(1)我们班男生比女生多8人。(2)实际用煤比计划节约5吨。

(3)实际水位超过警戒水位0.64 m。

学习方程的目的是为了利用方程解决生活中的问题,这节课我们就来一起学习如何用方程解决问题。(板书课题:实际问题与方程)

二、达成目标

自学指导,整体感知

出示教材第73页例1的情境图。

请大家认真观察情境图,然后说说从图中获得了哪些信息。学生观察情境图,然后回答。

小明的成绩为4.2lm,超过了学校的原纪录0.06m。根据这些信息,你们能告诉我学校的原跳远纪录是多少吗?

预设:用小明的跳远成绩减去小明的成绩比学校原跳远纪录多的成绩,得到的结果就是学校原跳远纪录。

学生列式并板书:4.21-0.06=4.15(m)也可以用方程来求解。

由于原纪录是未知数,可以把它设为x m,再根据题意列出方程。学生尝试说具体解题过程,并板书: 解:设学校原跳远记录是x m 原纪录+超出部分=小明的成绩

x+0.06=4.21 x+0.06-0.06=4.21-0.06

x=4.15 答:学校原跳远记录是4.15 m 让学生检验方程的解是否正确。先说一说如何检验,再自主检验。(把x=4.15代人方程,如果左边和右边相等,求解结果就正确)。同学们以后在解方程时,一定不要忘了检验结果是否正确!

三、反馈目标

达标检测,拓展提高

完成教材第73页“做一做”。

先让学生审题,从题中找到等量关系,然后根据等量关系式列出方程并解答。第(1)题是有关测量身高的实际问题,等量关系:今年的身高=去年的身高+长高的部分。引导学生说出给出的单位不统一,要化成统一单位。

第(2)题取材于节约用水,小组讨论怎样找到相等的关系。指名汇报并板书: 每分钟滴的水×30=半小时滴的水

请学生思考应该把哪个条件设为x,怎样列方程? 小组讨论后,指名汇报。

学生解答后,教师可指导学生进行检验。

四、课堂小结

这节课你学会了什么知识?用方程解决问题应注意哪些问题?

引导总结:列方程解应用题,关键是要找出题目中的等量关系,根据等量关系式假设未知数为x,然后再列方程解应用题。

五、布置作业

教材第75页“练习十六”第2、3、4题。【学习目标检测】

根据题意写出等量关系,再列方程并解答。

五年级上册解方程教案 篇10

教学目标:

1、会根据两个未知量之间的关系,列含有两个未知数的方程解“已知有两个数的和或差,和两个数的倍数关系,求两数各是多少”的实际问题,理解和掌握列方程解这类问题的数量关系和解题方法;

2、在教学解题思路的同时培养初步的分析、综合、类比、比较的能力;

3、在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯

4、在教学中渗透环保教育。

教学重点:学会根据两个未知量之间的关系,列方程解答含有两个未知数的实际问题。

教学难点:理清题中的数量关系,找出等量关系。恰当地设未知数,并根据数量据两个未知量之间的关系,列出方程。

教学准备:教学课件。

教学流程:

一、复习铺垫:

1、用含有字母的式子填空。

(1)科技组的男同学人数是女同学的3倍。设女同学有X人,男同学有()人;设男同学有X人,女同学有()人。

(2)美术组的男同学人数比女同学多18人。设女同学有X人,男同学有()人;设男同学有X人,女同学有()人。

比较两种设求知数的方法,选择设哪个量为X,另一个量就比较容易表示?

(3)书法组有女同学X人,男同学人数是女同学的2.5倍。男同学有()人,男女同学一共有()人,男同学比女同学多()人。

2、地球科普知识介绍,引出准备题。

(1)地球科普知识介绍:(电脑演示出现地球)同学们,这就是我们人类赖以生存的地球,你对它了解多少呢?地球表面大部分的地方都被海洋所覆盖,海洋的面积要远远超出陆地的面积。因此,也有人把地球称为“水球”,所以通过卫星,地球看上去是漂亮的深蓝色。你想知道陆地面积、海洋面积到底有多少吗?好,下面你给老师提供一些信息。(课件出示:地球上的陆地面积为1.5亿平方千米;

海洋面积约为陆地面积的2.4倍;)

(2)教师:你能根据老师给出的关于地球面积的信息,提出一个数学问题吗?

反馈学生提出的问题,并引出准备题:

地球上的陆地面积为1.5亿平方千米,海洋面积约为陆地面积的2.4倍。地球的表面积是多少亿平方千米?

理解题意后,引导学生画出线段图,并就学生找出数量关系,独立完成计算。

二、探究新知:

1、(课件出示:)地球的表面积为5.1亿平方千米;

其中,海洋面积约为陆地面积的2.4倍。

教师:现在又能提出哪些数学问题?

引出例3:地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。

地球上的海洋面积和陆地面积分别是多少亿平方千米?

2、让学生比较复习题与例3的相同点和不同点。

3、引导学生把准备题的线段图改为例3的线段图,引导学生进一步理解题意和找出题目中数量关系。

4、引导学生小组讨论:这道题要求的数量有两个,根据题目的已知条件我们应设哪一个数量为x比较简便?为什么?

5、让学生任意选择一个喜欢的关系式尝试列方程解答。

6、反馈学生的尝试完成情况,引导学生列方程完成例3(重点在于解方程方法的指导)。

解:设陆地面积为X亿平方千米,海洋面积为2.4X亿平方千米。

陆地面积+海洋面积=地球上的表面积

x+2.4x=5.1

(1+2.4)x=5.1(这是用了什么运算定律?)

x=1.5

7、教师:方程求出了陆地面积后,海洋面积怎样求呢?根据是什么?

5.1-1.5=3.6(利用和的关系)

或2.4X=1.5×2.4=3.6(利用倍数的关系)

答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。

8、引导学生进行检验。

教师:我们做得对吗?如何检验呢?除了代入方程检验之外,还可以怎样验算?

9、引导学生观察讨论:今天我们学习的列方程解决的这种问题有什么特点?怎样怎样列方程解答?

归纳小结:今天我们学习的列方程解决的这种问题是已知两个数量的倍数关系,以及这两个数量的和或差的关系,求这两个数量各是多少?我们一般根据这两个数量的倍数关系,设一倍数的数量为x,另一个数量用含有字母的式子表示,再根据这两个数量的和或差的关系,找出等量关系,列出方程求出一个数量,最后再利用先求出的数量,求出另一个数量。

三、练习巩固:

1、解方程。

7x+9x=803.6x-0.9x=5.4

2、看图列方程(单位:棵)

3、铅笔的支数是钢笔的3倍,铅笔比钢笔多8支,铅笔和钢笔各有多少支?列方程是()。

解:设钢笔有x支,铅笔有3x支。

①3x+x=8②3x-x=8③(x+8)÷x=3

4、、试一试,我能行:列方程解决问题。

(1)小英买了一枝铅笔和一个练习本,一共花了1.5元,练习本的价钱是铅笔价钱的2倍。铅笔和练习本的单价各是多少钱?

(2)小红妈妈年龄是小红的4倍,小红比妈妈少27岁。她们俩人的年龄各是多少岁?

板书设计:

稍复杂方程(三)

例3:解:设陆地面积为X亿平方千米,海洋面积为2.4X亿平方千米。

陆地面积+海洋面积=地球上的表面积

x+2.4x=5.1

(1+2.4)x=5.1

x=1.5

5.1-1.5=3.6(利用和的关系)

或2.4X=1.5×2.4=3.6(利用倍数的关系)

答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。

课后反思:

小学五年级解方程试题 篇11

(1)X×7×y可以简写为( )。

(2)王阿姨买了5支笔,每支a元,付了50元,应找回( )元。

(3)小红有a张邮票,小刚的邮票张数是她的8倍,两人共有邮票( )张。

(4)如果4a+3=7.8,那么4a-3=( ).

(5)长方形的面积计算公式用字母表示是:(

则长方形的面积是( )cm.

二,判断。(对的打“√”,错的打“×”)

(1)7m+5m=12m ( )

(2) 17+8=25 是等式不是方程。 ( )

(3)方程的解不会是0. ( )

三,解下列方程。

X+9=11.8 X-7.5=2.5

6.3X+3×6=81 (检验) 6(X+8)=73.2 (检验)

,如果a=5cm,b=4.2cm, 5X+6X=24.2 9X÷6=135(检验) )

四,列方程解决问题上。

1、小明用一根长42厘米的铁丝围成一个长方形,已知围成的长方形的长比宽多5厘米,这个长方形的长和宽各是多少?

2、一个篮球的价格比一个足球的2倍少30元,王老师买了5个篮球和5个足球,一共用了870元,两种球的单位各是多少元?

3、刘大伯在银行存款200元,张大伯在银行存了150元,以后每个月刘大伯存10元,张大伯存20元,几个月后两人存款一样多?

五年级上册解方程教案 篇12

1.掌握有分母的一元一次方程的解法;

2.通过列方程解决实际问题,感受到数学的应用价值; 3.培养分析问题、解决问题的能力. 【教学重难点】

知识点: 有分母的一元一次方程的解法 【教学过程】

一、复习引入

1、复习回顾(5分)

解一元一次方程:2-2(x-7)=x-(x-4)

解:

问:解一元一次方程有哪些基本程序呢?

回顾我们所学解一元一次方程的步骤及要注意的事项。

2、引例:(5分)

问题: 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.

解方程解:

观察方程的项,含有分母,思考是否能把 分母系数 转化为整数系数。

注:根据,先去掉等式两边的分母,然后再去括号、移项、合并、系数化为1。

二、学习任务 典型例析

1、解方程(5分)211xxxx33 327(1)解:

想一想:去分母时要 注意什么问题?

(1)方程两边每一项都要乘以 各分母的最小公倍数。

(2)去分母后如分子中含有两项, 应将该分子添上括号。3y1143y36练习1:解下列方程(10分)

2x1x1(1)53(2)2y12y105

解: 解:

注:①小结解一元一次方程的步骤;②解一元一次方程每步的依据。

2、解方程(5分)

23xx132x1 23解: 去分母(方程两边同乘6),得 “去分母”要注意什么?

练习2:解下列方程(10分)18x+3(x-1)=18-2(2x-1).①不漏乘不含分母的项;

去括号,得 ②分子是多项式,应添括号.18x+3x-3=18-4x+2 移项,得

18x+3x+4x=18+2+3.合并同类项,得

25x=23 系数化为1,得

23x25x12x5(1)343x32x(1)x52

解: 解:

注:①小结解一元一次方程的步骤;②解一元一次方程每步的依据。

3、教师归纳(5分)

1、去分母时须注意?

2、注意事项。

上一篇:竞聘编辑演讲稿锦集5则范文下一篇:今天帮妈妈做家务小学生作文700字