第1次 多元函数的极限与连续练习题

2024-06-08

第1次 多元函数的极限与连续练习题(通用4篇)

第1次 多元函数的极限与连续练习题 篇1

多元函数的极限与连续习题

1.用极限定义证明:lim(3x2y)14。x2y1

2.讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。

(1)f(x,y)xy; xy

(2)f(x,y)(xy)sisi; 1

x1y

x3y3

(3)f(x,y)2; xy

1(4)f(x,y)ysi。x

3.求极限(1)lim(xy)x0y022x2y2;

(2)limx2y2

xy122x0y0;

(3)lim(xy)sinx0y01; 22xy

sin(x2y2)(4)lim。22x0xyy0

ln(1xy)4.试证明函数f(x,y)xy

x0x0在其定义域上是连续的。

1.用极限定义证明:lim(3x2y)14。

x2y1

因为x2,y1,不妨设|x2|0,|y1|0,有|x2||x24||x2|45,|3x2y14||3x122y2|

3|x2||x2|2|y1|15|x2|2|y1|15[|x2||y1|]

0,要使不等式

|3x2y14|15[|x2||y1|]成立 取min{

30,1},于是

0,min{

30,1}0,(x,y):|x2|,|y1|

且(x,y)(2,1),有|3x2y14|,即证。

2.讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。(1)f(x,y)

xy

; xy

xyxy

limli1,limlim1

y0x0xyx0y0xy

二重极限不存在。

xyxy1

或lim0,li。

x0xyx0xy3

yx

y2x

(2)f(x,y)(xy)sin

11sin; xy

0|(xy)sinsin||x||y|

xy

可以证明lim(|x||y|)0所以limf(x,y)0。

x0y0

x0y0

当x

111,y0时,f(x,y)(xy)sinsin极限不存在,kxy

因此limlim(xy)sisi不存在,x0y0xy

lim(xy)sisi不存在。同理lim

y0x0

x1y

x3y3

(3)f(x,y)2;

xy

2x3

limf(x,y)lim0,x0x0xx

yx

当 P(x, y)沿着yxx趋于(0,0)时有

yxx

x3(x3x2)3limf(x,y)li21,x0x0xx3x223

x0y0

所以 limf(x,y)不存在;

limlimf(x,y)0,limlimf(x,y)0。

x0y0

y0x0

(4)f(x,y)ysinx

0|ysin||y|

x

∴limf(x,y)0,x0y0

limlimysi0,limlimysi不存在。x0y0y0x0xx

3.求极限(1)lim(xy)

x0

y0

2x2y2;

(x2y2)2

0|xyln(xy)||ln(x2y2)|,22

(x2y2)2t

ln(x2y2)limlnt0,又 lim

x0t044

y0

∴lim(xy)

x0

y0

2x2y2

e

limx2y2ln(x2y2)(x,y)(0,0)

1。

(2)lim

x2y2xy1

x0y0;

(x2y2)(x2y21)lim2。lim2222x001xy1xy1x

y0y0

x2y2

(3)lim(xy)sin

x0y0

;22

xy

||xy|,|(xy)sin2

xy

而lim(xy)0

x0

y0

故lim(xy)si20。2x0xyy0

sin(x2y2)

(4)lim。22x0xyy0

令xrcos,yrsin,(x,y)(0,0)时,r0,sin(x2y2)sinr2

limlim21。22x0r0rxyy0

ln(1xy)

4.试证明函数f(x,y)x

y

x0x0

在其定义域上是连续的。

证明:显然f(x, y)的定义域是xy>-1.当x0时,f(x, y)是连续的,只需证明其作为二元函数在y轴的每一点上连续。以下分两种情况讨论。(1)在原点(0,0)处

f(0, 0)=0,当x0时

0ln(1xy)1f(x,y)

xyxyln(1xy)

由于limln1(xy)

x0

y0

1xy

y0,y0

1

1xy

不妨设|ln1(xy)从而0,取

xy

1|1,|ln1(xy)|2,当0|x|,0|y|时,

ln(1xy)

0||yln(1xy)xy||

x

|y||ln(1xy)|2|y|,于是,无论x0,x0,当|x|,|y|时,都有limf(x,y)0f(0,0)

x0y0

1xy

(2)在(0,)处。(0)

xy

当x0时,|f(x,y)f(0,)||yln(1xy)

1xy

|

1(xy)|y(ln1)(y)| 1||y|

|y||ln(1xy)

xy

当x=0时,|f(x,y)f(0,)||y|,1xy

注意到,当0时limln1(xy)

x0

y1,于是,无论x0,x0,当0时lim|f(x,y)f(0,)|0,x0y即 f(x, y)在在(0,)处连续,综上,f(x, y)在其定义域上连续。

函数极限与连续习题(含答案) 篇2

(2)若

(3)若

(4)若f(x)在x0点连续,则f(x)在xx0点必有极限 f(x)在xx0点有极限,则f(x)在x0点必连续 f(x)在xx0点无极限,则f(x)在xx0点一定不连续f(x)在xx0点不连续,则f(x)在xx0点一定无极限。其中正确的命题个数是(B、2)

2、若limf(x)a,则下列说法正确的是(C、xx0f(x)在xx0处可以无意义)

3、下列命题错误的是(D、对于函数f(x)有limf(x)f(x0))

xx04、已知f(x)1

x,则limf(xx)f(x)的值是(C、1)

x0xx2

x125、下列式子中,正确的是(B、limx11)2(x1)

26、limxaxb5,则a、x11xb的值分别为(A、7和6)

7、已知f(3)2,f(3)2,则lim2x3f(x)的值是(C、8)

x3x38、limxa

xxaa(D、3a2)

29、当定义f(1)f(x)1x

2在x1处是连续的。1x10、lim16x12。

x27x31111、lim12、x21xxx12x31

limx2x112 3x1113、lim(x2xx21)1

x

214、lim(x2xx21)1

x2

x,0x1115、设(1)求xf(x),x1

2

1,1x2

1时,f(x)的左极限和右极限;(2)求f(x)在x1的函数值,它在这点连续吗?(3)求出的连续区间。

第1次 多元函数的极限与连续练习题 篇3

1一、选择题:

(1)函数yxarccosx1的定义域是()

2(A)x1;(B)3x1(C)3,1(D)xx1x3x

1(2)函数yxcosxsinx是()

(A)偶函数(B)奇函数(C)非奇非偶函数(D)奇偶函数

(3)函数y1cos

2x的最小正周期是()

(A)2(B)

(4)与y(C)4(D)1 2x2等价的函数是()

(A)x;(B)x(C)x(D)23x

x11x0(5)fx,则limfx()x0x1x0

(A)-1(B)1(C)0(D)不存在二、填空题:

(1)若f1

t52t2,则ft_________,ft21__________.t



1(2)tsinx3,则______。______,66x

30,1,则fx2的定义域为______,fsinx的定义域为x(3)若fx的定义域为

______,fxaa0的定义域为___,fxafxaa0的定义域为______。

14x

2(4)lim。__________

12x1x2

(5)无穷小量皆以______为极限。

三、计算题

(1)证明函数y11sin在区间0,1上无界,但当x0时,这个函数不是无穷大。xx

(2)求下列极限(1)lim2x33x25

x7x34x21

(3)limtanxtan2x

x

(5)limex1

x

x0

(7)limxsinx1

x0x2arctanx

(2)lim1cos2x x0xsinx(4)lim12n3n1n n(6)limtanxsinxx0sin32x 1(8)limxex1x

(3)设fx

1xx0,求limfx。2x0x1x0

(4)证明数列2,22,222,的极限存在,并求出该极限。

f(x)2x3f(x)2,lim3, 求f(x)(5)设f(x)是多项式, 且lim2xx0xx

(6)证明方程xasinxb,其中a0,b0,至少有一个正根,并且它不超过ab。

第一章函数、极限与连续学习指导 篇4

重点:极限基本理论及计算、闭区间上连续函数的性质。

难点:

1.计算极限技巧;

2.极限的“X”,“”语言,(一)

A1函数概念是高等数学的基本概念,反应了同一过程中,几个变量的联系以及依赖关系。函数定义强调了自变量x在定义D上每取一值时,函数y都有唯一确定的值与它对应,而对于对应关系的形式,定义中并无限制,因此一个函数可以用分析式子来表达,也可以用图象法和表格法来表达。在用分析式子来表达时,可用一个式子表达,也可用几个式子(即分段函数),参数式(实质是以参变量为中间变量的复合函数),隐式(即隐函数)表达。

A2高等数学讨论的函数主要是初等函数。初等函数是由基本初等函数组成,因此对基本初等函数及其性质要非常熟悉,否则在研究初等函数的性质时会遇到困难。对基本初等函数以及性质的深入了解应结合函数图形进行,将函数的性质与图形的特点逐一对照,在此基础上利用图形来记忆函数的性质。

A3由于极限是研究变量在无限变化过程中的趋势,因此必须从变化的、运动的角度来认识极限,在极限的描述性定义中应明确fx“无限接近于A”的含义。“fx无限接近于A”是指x在某一过程中,fx与A要有多接近就有多接近,或者说fx与A的误差可达到任意小。

“x无限接近于a”,“fx无限接近于A”均刻划了变量无限接近于某个常数。这里有两点值得注意:

①无限接近是指在变化过程中,变量与某个常量要有多接近就有多接近,或者说fx与A的误差可以达到任意小,因此“无限接近”与“越来越接近”的含义是不同的。

②变量无限接近于某个常量并没有要求达到这个常量,如“x无限接近于a时,fx无限接近于A”,这个描述并不要求也不要求...x最终达到a,...fx达到A。这一点不可忽视。

A4闭区间上连续函数具有:有界性、最值性、介值性、零值性。在这里,闭区间与函数连续这两个前提应引起充分的注意,当前提不满足时结论就不能成立。

数列极限是特殊的函数极限。因此,其极限性质也有其特殊性。如函数极限只具有局部有界性,而存在极限的数列xn是有界的,这里就有一个局部和整体的差别,其它性质也可进行对照比较。

A5闭区间上连续函数的性质在实际中应用较广泛,在科学技术中常需知某个方程的根的近似值。对于较复杂的方程,若知fafb0便可由零值定理知所求的根落在a,b内,而求出满足fafb0的a,b一般比求出方程

fx0的根要容易得多。

(二)B1“连续”是个局部的概念,是在xx0这一点定义的,因此区间上的连续函数是指对区间上的任一点处,函数都连续。

B2函数fx在x0连续的定义常用以下两种:

定义1:若fx在点x0的某个邻域内有定义,且limfxfa,则称函数

xx0

fx在x0处连续。

定义2:若fx在点x0的某个邻域内有定义,且fx在x0处有limy0,x0

则称函数fx在x0处连续。

从以上定义中看出,fx在x0处连续的充要条件为同时满足以下三条: ①limfx存在;②fx在xx0处有定义;③极限值limfx与函数值

xx0

xx0

fx0相等。

B3无穷小量就是极限为0的变量,因此,极限为的变量显然不是无穷小量,依无穷大量的定义,它是无穷大量。

常用的等价无穷小量:当x0时,x~sinx~tgx~ln1x~ex1;

ax1~xlnaa0;1x1~x0。

B

4计算极限的基本方法小结:

1.利用极限四则运算、夹逼原理、两个重要极限求极限; 2.约简分式、分子(分母)有理化法; 3.变量替换法; 4.等价无穷小的替换法; 5.利用连续函数求极限法 6.利用对数求极限法;

7.利用洛必塔法则求极限(第二章后)。

(三),“”语言定义函数极限具有简练、精确、使用方便的C1用“X”

特点。但由于这种语言要通过一些符号、式子来表达,从而比较抽象。因此应将极限的描述性定义与用“X”,“”语言给出的定义加以对照,深入理解。

下面以limfxA为例,将极限的描述性定义转化为用“”语言给出

xx0的定义,从而加深对用“”语言的理解。

xx0

limfxA表示了:

当x无限接近于x0时,因变量fx无限地接近于常数A,即:fxA可以任意小,只要xx0充分小(不用考虑xx0的情况)即:0,只要xx0充分小,(不用考虑xx0的情况),就有fxA,即:0,0,当0xx0时,就有fx。

这时应注意到,且不唯一。而定义中对,只要求了它的存在性,加外并无要求。由的任意给定和fxA的呼应,用运动变化的观点来刻划fx与A的无限接近。,“”语言中,X、均用于刻划自变量x的变化过程,C2“X”

而是用于刻划因变量y的变化趋势的。自变量x的变化过程有:x、、xx0。而对自变量每个变化过程,因x、x、xx、xx0

变量yfx可有不同的变化趋势:fxA、fx、fx、(当然也可以考虑分得更fx。因此搭配起来就有24个不同的极限定义。细些)

只要真正掌握了极限的基本思想,理解了以上C1,这24个不同的极限定义,是可以理解和掌握的。,“”语言给出的极限定义。C3可利用图象理解“X”

从图中易看出无论取多么小,作二条平行线yA,一定存在邻域

ˆ0,,当x在这个邻域内变化的时候,对应函数图象落入这二条平行线之间。Nx

请将图中看到的这个结果与极限的“”的叙述语言联系起来考虑,并可考虑相应的图象来理解“”语言给出的极限定义。,“”语言来证明函数的极限为某值时,语言一定C4使用“X”

要规范,初学者应按教材上的例题为范例,进行证明,否则易走弯路。

例证明:当x00时,limxx0。

xx0

证:0,因为fxA

xx0

xx0xx0

1x0

xx0

要使fxA,只要xx0x0,且x0,而x0,可用xx0x0保证,因此取minx0,x0 则当x满足0xx0时,对应的函数值x满足不等式

xx0



即limxx0。

xx0

特别注意:

①证明中的划直线部分,实际上正是limxx0的“”语言定义;

xx0

②划曲线部分是用“X”,“”语言来证明xx0时,函数极限为A这类问题的主要叙述语言,要尽快地熟悉和掌握;

③式子fxA

1x0

该式应引起充分注意,通过放大的手段,xx0,将fxA与xx0联系起来了。

④从以上证明中不难看出的取法不唯一,对小于minx0,x0的数均可作为。



C5一致连续是个整体性的概念,它与fx在区间上连续的差别在于fx在区间I上连续,即0,对I上的不同的x0,分别存在x00,当xx0x0

时,fxfx0,这里的x0一般因x0的不同而不同。但若fx在区间I上一致连续,则对于给定的0,存在公共的0,对于I上的任一x0,当恒有fxfx0 成立。由于x与x0地位是相当的,因此f在xx0时,I上一致连续用“”语言来定义时通常表达为:0,0,x1I,x2I,当x1x2时恒有fx1fx2。

C6柯西准则

我们以数列极限为例容易知道,①有极限的数列在n充分大时,它们的项的变化是很微小的。这个特点就是收敛数列的本质。因此,一个数列的收敛或发散可从该数列本身的结构入手进行刻划,柯西准则就是这样刻划数列的敛散性的,它是数列an存在极限的充要条件。

上一篇:举案齐眉成语趣味谜语下一篇:阳龙小学2014年五年级班主任工作总结