等比数列练习题

2025-03-21|版权声明|我要投稿

等比数列练习题(共14篇)

等比数列练习题 篇1

等比数列练习题

一、选择题

1.等比数列{an}中,a1=2,q=3,则an等于( )

A.6 B.3×2n-1

C.2×3n-1 D.6n

答案:C

2.在等比数列{an}中,若a2=3,a5=24,则数列{an}的通项公式为( )

A.322n B.322n-2

C.32n-2 D.32n-1

解析:选C.∵q3=a5a2=243=8,∴q=2,而a1=a2q=32,∴an=32×2n-1=32n-2.

3.等比数列{an}中,a1+a2=8,a3-a1=16,则a3等于( )

A.20 B.18

C.10 D.8

解析:选B.设公比为q(q≠1),则

a1+a2=a1(1+q)=8,

a3-a1=a1(q2-1)=16,

两式相除得:1q-1=12,解得q=3.

又∵a1(1+q)=8,∴a1=2,

∴a3=a1q2=2×32=18.

4.(高考江西卷)等比数列{an}中,|a1|=1,a5=-8a2,a5>a2,则an=( )

A.(-2)n-1 B.-(-2)n-1

C.(-2)n D.-(-2)n

解析:选A.∵|a1|=1,

∴a1=1或a1=-1.

∵a5=-8a2=a2q3,

∴q3=-8,∴q=-2.

又a5>a2,即a2q3>a2,

∴a2<0.

而a2=a1q=a1(-2)<0,

∴a1=1.故an=a1(-2)n-1=(-2)n-1.

5.下列四个命题中正确的是( )

A.公比q>1的等比数列的各项都大于1

B.公比q<0的等比数列是递减数列

C.常数列是公比为1的等比数列

D.{lg2n}是等差数列而不是等比数列

解析:选D.A错,a1=-1,q=2,数列各项均负.B错,a1=1,q=-1,是摆动数列.C错,常数列中0,0,0,…,不是等比数列.lg2n=nlg2,是首项为lg2,公差为lg2的等差数列,故选D.

6.等比数列{an}中,a1=18,q=2,则a4与a8的等比中项是( )

A.±4 B.4

C.±14 D.14

解析:选A.由an=182n-1=2n-4知,a4=1,a8=24,其等比中项为±4.

二、填空题

7.若x,2x+2,3x+3是一个等比数列的.连续三项,则x的值为__________.

解析:由于x,2x+2,3x+3成等比数列,

∴2x+2x=3x+32x+2=32且x≠-1,0.

∴2(2x+2)=3x,∴x=-4. X k b 1 . c o m

答案:-4

8.等比数列{an}中,若an+2=an,则公比q=__________;若an=an+3,则公比q=__________.

解析:∵an+2=an,∴anq2=an,∴q=±1;

∵an=an+3,∴an=anq3,∴q=1.

答案:±1 1

9.等比数列{an}中,a3=3,a10=384,则该数列的通项公式为an=________.

解析:a3=a1q2=3,a10=a1q9=384.

两式相比得q7=128,∴q=2,∴a1=34.

an=a1qn-1=34×2n-1=32n-3.

答案:32n-3

三、解答题

10.已知数列{an}满足:lgan=3n+5,求证:{an}是等比数列.

证明:由lgan=3n+5,得an=103n+5,

∴an+1an=103n+1+5103n+5=1000=常数.

∴{an}是等比数列.

11.已知{an}为等比数列,a3=2,a2+a4=203,求{an}的通项公式.

解:设等比数列{an}的公比为q,

则q≠0.a2=a3q=2q,a4=a3q=2q,

∴2q+2q=203.解得q1=13,q2=3.

当q=13时,a1=18,

∴an=18×(13)n-1=2×33-n.

当q=3时,a1=29,

∴an=29×3n-1=2×3n-3.

综上,当q=13时,an=2×33-n;

当q=3时,an=2×3n-3.

12.一个等比数列的前三项依次是a,2a+2,3a+3,则-1312是否是这个数列中的一项?如果是,是第几项?如果不是,请说明理由.

解:∵a,2a+2,3a+3是等比数列的前三项,

∴a(3a+3)=(2a+2)2.

解得a=-1,或a=-4.

当a=-1时,数列的前三项依次为-1,0,0,

与等比数列定义矛盾,故a=-1舍去.

当a=-4时,数列的前三项依次为-4,-6,-9,

则公比为q=32,∴ an=-4(32)n-1,

令-4(32)n-1=-1312,

即(32)n-1=278=(32)3,

∴n-1=3,即n=4,

∴-1312是这个数列中的第4项.

等比数列练习题 篇2

一、课堂教学尝试的设计

1、课堂教学内容介绍。

本次课堂教学内容是“等差数列与等比数列的应用”, 具体教学内容包含四个例题, 如下:

例1某林场计划2001年造林5公顷, 以后每年比上一年多造3公顷, 问20年后林场共造林多少公顷?

2、课堂教学尝试的具体思路。

本次课堂教学“以学生为主, 教师为辅”为根本原则, 师生互换角色。具体就是将本次课堂教学内容按例题划分成四个部分, 然后选取四位学生, 让每位学生完成一道例题的课堂教学任务, 教师在每一位学生完成教学任务后给以补充、完善、拓展, 由师生共同完成本次教学任务。

3、课堂教学尝试的具体步骤

(1) 任务安排。提前将教学内容安排给学生, 让学生有足够的时间对自己的教学内容进行学习、探索, 并做好教学的准备。

(2) 教学实施。教师:同学们, 前面我们学习了等差数列与等比数列的基本知识, 这些知识在实际生活中的用途很广泛, 今天我们就来看看等差数列与等比数列的应用 (教师将课题板书在黑板上) , 本次课由同学们代老师完成教学任务, 下面从例1开始 (教师将例1板书在黑板上) , 并将学生甲请上讲台。

例1某林场计划2001年造林5公顷, 以后每年比上一年多造3公顷, 问20年后林场共造林多少公顷?

学生甲:请大家跟我读题 (读完后学生甲开始分析并板书)

分析 2001年造林5公顷

2002年造林8公顷

2003年造林11公顷……

从分析知道, 每年造林公顷数成等差数列{an}

就这样, 学生基本将例1讲授完。

教师 (走上讲台) :对学生甲进行肯定和鼓励并接着问:

同学们, 对例1你还有补充吗?

教师根据学生的反馈进行补充, 完善, 并结合本例加强环境绿化意识教育。

二、课堂教学模式分析

1、教学内容选取分析。

笔者之所以选取“等差数列与等比数列”的应用作为这种师生互换角色的教学模式的教学内容, 是因为在此前的教学中, 学生已经学习过等差数列与等比数列的基本知识, 就算学生对教学内容的分析不够透彻, 因为有基础知识作为铺垫, 再加上教师的补充, 我想学生也容易理解并接受。此种教学模式内容的选取十分重要, 即要让站上讲台的学生有信心, 同时也要让其他同学易于接受。教学内容的选取可以是习题课, 可以是知识点讲授后的某个例题, 也可以是一些难度不大的练习等等。

2、教学安排分析。

这种教学模式的实现提前安排是必须的, 要事先将教学内容安排给学生, 目的在于要让站上讲台的学生有足够的时间去自主获取知识、去查阅资料、将知识点完全弄懂, 要知其然, 更要知其所以然。当然, 在学生进行教学准备的过程中, 教师必须要对其进行知识点、教学技巧、教学管理等方面的指导, 并加以鼓励, 增强其自信心。这些工作是保证学生能够顺利完成教学内容的前提条件。

3、教学实施过程分析。

在教学的实施过程中, 学生的教学肯定存在这样或那样的问题, 这都是正常的。但不管如何, 只要在教师的引导或指导下, 学生能大致讲完教学内容, 教师要给予肯定和鼓励。教师在教学的实施过程中更能发现学生存在的问题, 不足等, 更利于对学生进行指导。总之, 通过这样的教学, 学生能感受教学的辛苦, 更能理解老师;老师更能了解到学生的综合素质, 师生在这样的教学中共同成长, 共同进步。

4、培养学生的综合能力。

通过这样的教学尝试, 可以培养学生积极、主动、认真的学习态度和自主学习能力、分析问题与解决问题的能力、语言组织表达能力, 管理等能力, 使学生的综合能力得到提高。

三、结束语

教学有法而无定法, 在教学中, 教师要不断学习, 不断摸索, 最大限度地调动学生参与教学的积极性、主动性, 不断培养学生对数学知识的浓厚兴趣。只有教师与学生共同努力, 才会取得良好的教学效果。

参考文献

数列、不等式、推理证明专项练习 篇3

1.已知-π2<α<β<π2,则α-β2的取值范围是.

2.当x>0时,则f(x)=2xx2+1的最大值为.

3.对于平面几何中的命题“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题:“”,这个类比命题的真假性是.

4.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品件.

5.设a,b为正实数.现有下列命题:

①若a2-b2=1,则a-b<1;

②若1b-1a=1,则a-b<1;

③若|a-b|=1,则|a-b|<1;

④若|a3-b3|=1,则|a-b|<1.

其中的真命题有.(写出所有真命题的编号)

6.用锤子以均匀的力敲击铁钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的1k(k∈N*),已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,请从这个实事中提炼出一个不等式组是.

7.已知a∈R+,函数f(x)=ax2+2ax+1,若f(m)<0,比较大小:f(m+2)1.(用“<”或“=”或“>”连接).

8.观察下列等式:

1-12=12

1-12+13-14=13+14

1-12+13-14+15-16=14+15+16

……

据此规律,第n个等式可为.

9.设关于x,y的不等式组2x-y+1>0,x+m<0,y-m>0表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,求得m的取值范围是.

10.在等比数列{an}中,已知a6-a4=24,a3·a5=64,则数列{an}的前8项和为.

11.已知函数y=ax+b的图象如图所示,则1a-1+2b的最小值=.

12.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示n条直线交点的个数,当n>4时,f(n)=.

13.已知x,y∈R,满足2≤y≤4-x,x≥1,则x2+y2+2x-2y+2xy-x+y-1的最大值为.

14.数列{an}满足(sn-n2)(an-2n)=0(n∈N),其中sn为数列{an}的前n项和,甲、乙、丙、丁四名同学各写了该数列的前四项:甲:1,3,5,7;乙:1,4,8,7;丙:1,4,4,7;丁:1,3,8,4.请你确定这四人中所有书写正确的学生.

二、解答题(共90分)

15.已知不等式mx2-nx-n2<0,

(1)若此不等式的解集为{x|-1

(2)若m=2,求此不等式的解集.

16.已知等比数列{an}的前n项和是Sn,满足an+1=(q-1)Sn+1(q≠0).

(1)求首项a1的值;

(2)若S4,S10,S7成等差数列,求证:a3,a9,a6成等差数列.

17.已知集合A={x|x2-(3a+3)x+2(3a+1)<0,x∈R)},B={x|x-ax-(a2+1)<0,x∈R}.

(1)求4B时,求实数a的取值范围;

(2)求使BA的实数a的取值范围.

18.设向量a=(x,2),b=(x+n,2x-1)(n∈N*),函数y=a·b在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+bn=(910)n-1+(910)n-2+…+910+1.

(1)求证:an=n+1;

(2)求数列{bn}的通项公式;

(3)设cn=-anbn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.

19.如图,某生态园欲把一块四边形地BCED辟为水果园,其中∠C=∠D=90°,BC=BD=3,CE=DE=1.若经过DB上一点P和EC上一点Q铺设一条道路PQ,且PQ将四边形BCED分成面积相等的两部分,设DP=x,EQ=y.

(1)求x,y的关系式;

(2)如果PQ是灌溉水管的位置,为了省钱,希望它最短,求PQ的长的最小值;

(3)如果PQ是参观路线,希望它最长,那么P、Q的位置在哪里?

20.设正整数a,b,c满足:对任意的正整数n,an+bn=cn+1.

(1)求证:a+b≥c;

(2)求出所有满足题设的a,b,c的值.

参考答案

一、填空题

1.(-π2,0)

2.1

3.如果两个二面角的两个半平面分别对应垂直,则这两个二面角相等或互补.(答案不唯一)假命题

4.80

5.①④

6.47+47k<147+47k+47k2≥1

7.>

8.1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n

9.(-∞,-23)

10.85或255

11.3+22

12.12(n-2)(n+1)

13.103

14.甲、丙、丁

二、解答题

15.(1)因为mx2-nx-n2<0的解集为{x|-1

所以-1,2是方程mx2-nx-n2=0的两个根.

根据根与系数的关系,有nm=-1+2=1,-n2m=(-1)×2=-2,

解得m=n=2.

(2)m=2,不等式mx2-nx-n2<0即2x2-nx-n2<0,

2x2-nx-n2<0(2x+n)(x-n)<0.

(1)若n=0,则原不等式为2x2<0,解集为.

(2)若n>0,则n-(-n2)=3n2>0,即-n2

(3)若n<0,则n-(-n2)=3n2<0,即-n2>n,原不等式的解集为(n,-n2).

故当n=0时,不等式的解集为;

当n>0时,解集为(-n2,n);

当n<0时,解集为(n,-n2).

16.(1)由an+1=(q-1)Sn+1可得an=(q-1)Sn-1+1(n≥2),

两式相减得an+1-an=(q-1)an,所以an+1=qan(n≥2).

欲使数列{an}等比数列,只需a2=qa1即可,

因为a2=(q-1)S1+1=(q-1)a1+1,所以(q-1)a1+1=qa1,所以a1=1.

若由a22=a1·a3,求出a1=1再验证数列{an}是等比数列,参照上述解法给分.

(2)方法一:若q=1,2S10≠S4+S7,与已知矛盾,故q≠1.

由2S10=S4+S7,得

2a1(1-q10)1-q=a1(1-q4)1-q+a1(1-q7)1-q,

即2a1q8=a1q2+a1q5,即2a9=a3+a6,所以a3,a9,a6成等差数列.

方法二:由S4,S10,S7成等差数列,可得2S10=S4+S7,

因为S7=S4+q4S3,S10=S4+q4S3+q7S3,可得q4S3+2q7S3=0,

因为S3≠0,所以q3=-12,

又2a9-(a3+a6)=a1q2(2q6-q3-1)=0,所以a3,a9,a6成等差数列.

17.(1)若4∈B,则4-a3-a2<0a<-3或3

∴当4B时,实数a的取值范围为[-3,3]∪[4,+∞).

(2)∵A={x|(x-2)(x-3a-1)<0},B={x|a①当a<13时,A=(3a+1,2).

要使BA,必须a≥3a+1a2+1≤2,此时-1≤a≤-12;

②当a=13时,A=,使BA的a不存在;

③当a>13时,A=(2,3a+1),

要使BA,必须a≥2a2+1≤3a+1,此时2≤a≤3.

综上可知,使BA的实数a的取值范围是[2,3]∪[-1,-12].

18.解:(1)∵y=x(x+n)+4x-2=x2+(4+n)x-2在[0,1]上为增函数,

∴an=-2+1+4+n-2=n+1﹒

(2)∵nb1+(n-1)b2+…+bn=(910)n-1+(910)n-2+…+910+1=10[1-(910)n],

∴(n-1)b1+(n-2)b2+…+bn-1+0=10[1-(910)n-1](n≥2)﹒

两式相减得b1+b2+…+bn=(910)n-1(n≥2),

∴b1+b2+…+bn-1=(910)n-2(n≥3).

两式相减得bn=-110·(910)n-2(n≥3).

又b1=1,b2=-110,

∴bn=1,(n=1)-110·(910)n-2,(n≥2,n∈N*).

(3)由cn=-2,(n=1)n+110·(910)n-2,(n≥2,n∈N*)及当k≥3时ckck-1≥1,ckck+1≥1,得k=9或8﹒

又n=1,2也满足,∴存在k=8,9使得cn≤ck对所有的n∈N*成立.

19.(1)延长BD、CE交于点A,则AD=3,AE=2,则S△ADE=S△BDE=

S△BCE=32.

∵S△APQ=3,

∴14(x+3)(y+2)=3,

∴(x+3)(y+2)=43.

(2)PQ2=AP2+AQ2-2AP·AQcos30°

=(x+3)2+(43x+3)2-2×43×32

≥2×43-12=83-12,

当(x+3)2=(43x+3)2,即x=243-3时,

PQmin=83-12=223-3.

(3)令t=(x+3)2,∵x∈[33,3],∴t∈[163,12],(x的范围由极限位置定)

则PQ2=f(t)=t+48t-12,

∵f′(t)=1-48t2,令f′(t)=1-48t2=0,得t=43,

∴f(t)在(0,43)上是减函数,在(43,+∞)上是增函数,

∴f(t)max=max(f(163),f(12)}=f(12)=4,PQmax=2,

此时t=(x+3)2=12,x=3,y=0,P点在B处,Q点在E处.

20.证明:(1)依题意,当n=1时,a+b=c2,

则a+b-c=c2-c=c(c-1),

因为c∈N*,所以c(c-1)≥0,

从而a+b-c≥0,故a+b≥c;

(2)an+bn=cn+1即(ac)n+(bc)n=c,(*)

若a>c,即ac>1,则当n≥logacc时,

(ac)n≥c,而(bc)n>0,于是(ac)n+(bc)n>c,与(*)矛盾;

从而a≤c,同理b≤c.

若a≤c,则0

又c∈N*,故c=1或2,

当c=1时,an+bn=1,而an+bn≥2,故矛盾,舍去;

当c=2时,(ac)n+(bc)n=2,从而ac=bc=1,故a=b=2,

综上,所有满足题意的a,b,c依次为2,2,2.

(作者:夏志勇,海安县曲塘中学)

等比数列练习二 篇4

1.在等比数列{an}中,如果a6=6,a9=9,那么a3等于()

A.4B.32C.16

D.2

2.各项均为正的等比数列{a11

n}中,q2,那么当a616

时,该数列首项a1的值为()A.1B.-1C.2D.-2

3.在等比数列{an}中, a116,a48,则a7()A.4B.4C.2D.2 4.在等比数列an,a32,a732,则q=()

A.2

B.-2

C.±2D.4

5.设,x1,55成等比数列,则x为()A.4或-4B.-4或6C.4或-6D.4或6

6.若6,x,y,z,54这五个数成等比数列,则实数x的值是()A.6B.63C.36D.3

7.等比数列中,已知a1a220,a3a440,则a5a6().A.30B.60C.80D.160

8.已知等比数列{a1

a1a3a5a7n}的公比q3,则a等于()

2a4a6a8A、13B、3C、1

D、3

9.如果a,b,c成等比数列,那么函数f(x)ax2bxc的图象与x轴

交点的个数是()A.0个B.恰有一个C.两个D.不能确定

10.若lga,lgb,lgc成等差数列,则()

A.b=ac2B.b=12(lga+lgc)C.a,b,c成等比数列D.a,b,c成等差数列

11.若an为等比数列,且2a4a6a5,则公比q________. 12.在等比数列{an}中,已知a7a125,则a8a9a10a11

13.公差不为0的等差数列{an}中,a2,a3,a6依次成等比数列,则公比等于.14,已知数列an为等比数列.

⑴若a54,a76,求a12;

⑵若a4a224,a2a36,an125,求n.

15.已知数列满足a1=1,an+1=2an+1(n∈N*)

等差数列练习题 篇5

1.在等差数列{an}中,a2=5,a6=17,则a14=

A.45 B.41

C.39 D.37

2.在等差数列{an}中,a1=21,a7=18,则公差d=()

A。12 B。13

C.-12 D.-13

解析:选C。∵a7=a1+(7-1)d=21+6d=18,∴d=-12。

解析:选B。a6=a2+(6-2)d=5+4d=17,解得d=3。所以a14=a2+(14-2)d=5+12×3=41。

3.已知数列{an}对任意的n∈N*,点Pn(n,an)都在直线y=2x+1上,则{an}为()

A.公差为2的等差数列 B.公差为1的等差数列

C.公差为-2的等差数列 D.非等差数列

解析:选A。an=2n+1,∴an+1-an=2,应选A。

4.数列{an}是首项为2,公差为3的等差数列,数列{bn}是首项为-2,公差为4的等差数列.若an=bn,则n的值为()

A.4 B.5

C.6 D.7

解析:选B。an=2+(n-1)×3=3n-1,

bn=-2+(n-1)×4=4n-6,

令an=bn得3n-1=4n-6,∴n=5。

5.下方数列中,是等差数列的有()

①4,5,6,7,8,…②3,0,-3,0,-6,…③0,0,0,0,…

④110,210,310,410,…

A.1个 B.2个

C.3个 D.4个

解析:选C。利用等差数列的定义验证可知①、③、④是等差数列.

6.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()

A.2 B.3

C.6 D.9

解析:选B。由题意得m+2n=82m+n=10,∴m+n=6,

∴m、n的等差中项为3。

二、填空题

7.已知等差数列{an},an=4n-3,则首项a1为__________,公差d为__________.

解析:由an=4n-3,知a1=4×1-3=1,d=a2-a1=(4×2-3)-1=4,所以等差数列{an}的首项a1=1,公差d=4。

答案:14

8.在等差数列{an}中,a3=7,a5=a2+6,则a6=__________。

解析:设等差数列的公差为d,首项为a1,则a3=a1+2d=7;a5-a2=3d=6。∴d=2,a1=3。∴a6=a1+5d=13。

答案:13

9.已知数列{an}满足a2n+1=a2n+4,且a1=1,an>0,则an=________。

解析:根据已知条件a2n+1=a2n+4,即a2n+1-a2n=4,

∴数列{a2n}是公差为4的等差数列,

∴a2n=a21+(n-1)?4=4n-3。

∵an>0,∴an=4n-3。

答案:4n-3

三、解答题

10.在等差数列{an}中,已知a5=10,a12=31,求它的通项公式.

解:由an=a1+(n-1)d得

10=a1+4d31=a1+11d,解得a1=-2d=3。

∴等差数列的通项公式为an=3n-5。

11.已知等差数列{an}中,a1

(1)求此数列{an}的通项公式;

(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.

解:(1)由已知条件得a3=2,a6=8。

又∵{an}为等差数列,设首项为a1,公差为d,

∴a1+2d=2a1+5d=8,解得a1=-2d=2。

∴an=-2+(n-1)×2

=2n-4(n∈N*).

∴数列{an}的通项公式为an=2n-4。

(2)令268=2n-4(n∈N*),解得n=136。

∴268是此数列的第136项.

12.已知(1,1),(3,5)是等差数列{an}图象上的两点.

(1)求这个数列的通项公式;

(2)画出这个数列的图象;

(3)决定这个数列的单调性.

解:(1)由于(1,1),(3,5)是等差数列{an}图象上的两点,所以a1=1,a3=5,由于a3=a1+2d=1+2d=5,解得d=2,于是an=2n-1。

(2)图象是直线y=2x-1上一些等间隔的点(如图).

(3)因为一次函数y=2x-1是增函数,

奥数等差数列练习题 篇6

1.一个剧场设置了22排座位,第一排有36个座位,往后每排都比前一排多2个座位,这个剧场共有多少个座位?

2.自1开始,每隔两个数写一个数来,得到数列:1,4,7,10,13,….,求出这个数列前100项只和?

3.影剧院有座位若干排,第一排有25个座位,以后每排比前一排多3个座位。最后一排有94个座位。问这个影剧院共有多少个座位?

4.小张看一本故事书,第一天看了25页,以后每天比前一天多看的页数相同,第25天看了97页刚好看完。问:这本书共有多少页?

5.已知数列:2,5,3,3,7,2,5,3,3,7,2,5,3,3,7,….,这个数列的第30项是哪个数字?到第25项止,这些数的和是多少?

植树问题

1.在一段公路的一旁栽95棵树,两头都栽,每两棵树之间相距5米,这段公路长多少米?

2.有三根木料,打算把每根锯成3段,每锯开一处,需要3分钟,全部锯完需多少时间?

等比数列练习题 篇7

类比是根据两个或两类对象的某些属性相同或相似之处, 推出它们的其它属性也相同或相似的思维方式, 类比联想可以发现新的结论、新的规律, 可以找到解决数学问题的有效方法和途径;类比问题已成为近几年高考命题的新热点和新亮点.此类题型不仅可以考查学生的思维能力、分析问题和解决问题的能力及运算能力.同时, 无论是发展学生的创造性思维还是进入高校继续学习和持续发展, 都具有非常重要的意义.

从表1可以看出, 由等差到等比是运算升级的过程——和↔积, 差↔商, 系数↔指数, 0↔1.

例1 在等差数列{an}中, 前n项和Sn=n (a1+an) 2=na1+n (n-1) 2d.类比上述性质, 相应地在等比数列{bn}中, 有如下结论__.

解:类比等差数列到等比数列——和↔积, 系数↔指数.在等比数列{bn}中, 前n项积为Tn, 则有如下结论:

Τn=b1b2bn= (b1bn) n2=b1nqn (n-1) 2.事实上:Τn=b1b2bn=b1b1qb1q2b1qn-1=b1nq1+2++ (n-1) =b1nqn (n-1) 2=b1n2 (b1qn-1) n2= (b1bn) n2=b1nqn (n-1) 2.

例2 若{an}是等差数列, 则bn=a1+a2++ann也是等差数列, 类比上述性质, 相应地:若数列{cn}是等比数列, 且cn>0, 则有dn=__也是等比数列.

解:类比等差数列到等比数列——和↔积, 系数↔指数.

若数列{cn}是等比数列, 且cn>0, 则有dn=c1c2cnn成等比数列.

事实上:dn=c1c2cnn=c1nqq2qn-1n=c1nqn (n-1) 2n=c1qn-12=c1 (q) n-1.

例3 已知等差数列{an}的首项为a1, 公差为d (a1, d为常数, 且d≠0) , k, l, m∈N+, 且k, l, m互不相等, 则 (l-m) ak+ (m-k) al+ (k-l) am=0.

请你用类比的思想在等比数列中写出与之类似的结论__.

解:类比等差数列到等比数列——和↔积, 系数↔指数, 0↔1.

已知等比数列{an}的首项为a1, 公比为q (a1, q为常数, 且q≠0) , k, l, m∈N+, 且k, l, m互不相等, 则akl-m·alm-k·amk-l=1.

事实上: (a1qk-1) l-m· (a1ql-1) m-k· (a1qm-1) k-l=a (l-m) + (m-l) + (k-l) ·

q (k-l) (l-m) + (l-1) (m-k) + (m-1) (k-l) =a10·q0=1.

例4 在等差数列{an}中, a10=0, 则有等式a1+a2+…+an=a1+a2+……+a19-n (n<19, n∈N+) 成立, 类比上述性质, 相应地:在等比数列{bn}中, 若b9=1, 则有等式__成立.

解:类比等差数列到等比数列——和↔积, 系数↔指数, 0↔1.

从而对等比数列{bn}, 如果b9=1, 则有等式:b1b2…bn=b1b2…b17-n (n<17, n∈N+) 成立.事实上, 对等比数列{bn}, 如果bk=1, 则bn+1·b2k-1-n=bn+2·b2k-2-n=…=bk·bk=1.所以有:bbb3…bn=bb2…bn· (bn+1·bn+2…b2k-2-n·b2k-1-n) (n<2k-1, n∈N+) .从而, 当b9=1, b1b2…bn=b1b2…b2×9-1-n=b1b2…b17-n (n<17, n∈N+) .,

例5 设数列{an}是等差数列, 其中am=a, an=b, am+n=bn-amn-m, 用类比的思想方法在等比数列中写出类似的结论, 设数列{bn}是等比数列, 其中am=a, an=b, bm+n=.

解:类比等差数列到等比数列——和↔积, 系数↔指数, 0↔1.设数列{bn}是等比数列, 其中bm=a, bn=b, 则bm+n=bnamn-m.事实上:qn-m=bnbm=ba, bm+n=bmq (m+n) -m=aqn=a (ban-m) n=bnamn-m.

例6 在正数等比数列{an}中, 设a1a2…a50=S, an-49an-48…an=t (n>49, n∈N+) , 其中St都是常数, 证明:a1a2an= (St) n100;

(2) 类比上述性质相应地在等差数列{bn}中, 写出一个类似的真命题并加以证明.

证明:

(1) St= (a1a2a50) (an-49an-48an) = (a1an) (a2an-1) (a50an-49) = (a12qn-1) 50= (a1qn-12) 100.

所以a1qn-12= (St) 1100, 所以a1a2an=a1nqn (n-1) 2= (St) n100.

(2) 类比等差数列到等比数列——和↔积, 系数↔指数.

在等差数列{bn}中, 设b1+b2+…b50=S, bn-49+bn-48+bn=t (n>49, n∈N+) , 则b1+b2+bn=n100 (S+t) .

事实上:S+t= (b1+b2+…+b50) + (bn-49+bn-48+…+bn) = (b1+bn) + (b2+bn-1) +…+ (b50+bn-49) =50 (b1+bn) ,

b1+bn=150 (S+t) .b1+b2++bn=n (b1+bn) 2=n100 (S+t) .

例7 有以下真命题:设an1, an2, …, anm是公差为d的等差数列{an}中任意m项, 若n1+n2++nmm=p+rm (0rm, p, r, mΝ+r=0) ①

an1+an2++anmm=ap+rmd

特别地, 当r=0时, 称apan1, an2, …, .anm的等差平均项.

(1) 当m=2, r=0时, 试写出与上述命题中的①、②两式对应的等式;

(2) 已知等差数列{an}的通项公式为an=2n, 试根据上述命题求a1, a3, 10, a18的等差平均项;

(3) 试将上述真命题推广到各项为正实数的等比数列中, 写出相应的真命题, 并加以证明.

解: (1) 当m=2, r=0时, ①式为n1+n22=p, 式为an1+an22=ap.

(2) 由1+3+10+184=8, 即p=8, r=0, 因此, a1+a3+a10+a184=2+6+20+364=16, 故所求等差数列平均项为16.

(3) 类比等差数列到等比数列——和↔积, 系数↔指数.

an1, an2, …anm是公比为q, 且各项均为正数的等比数列{an}中的任意m项, 若n1+n2++nmm=p+rm (0r<m, p, r, mΝ+或r=0) , 则有 (an1an2anm) 1m=apqrm.事实上: (an1an2anm) 1m= (a1qn1-1a1qn2-1a1qnm-1) 1m= (a1mqn1+n2++nm-m) 1m=a1qn1+n2++nmm-1=a1qrm+p-1=apqrm.

练习:

1.设数列{an}的前n项和Sn=n (a1+a2) 2=Snn=12an+12a1, 可知点 (a1, S11) , (a2, S22) , , (an, Snn) 都在直线y=12x+12a1上, 类似地, 若{an}为等比数列, 公比q≠1, 则点 (a1, S1) , (a2, S2) , …, (an, Sn) 都在直线__.

2.当a0, a1, a2成等差数列时, 有a0-2a1+a2=0, 当a0, a1, a2, a3成等差数列时, 有a0-3a1+3a2-a3=0, 当a0, a1, a2, a3, a4成等差数列时, 有a0-4a1+6a2-4a3+a4=0, 由此归纳出当a1, a2, …, an成等差数列, 有C0na0-C1na1+C2na2-…+ (-1) nCnnan=0, 如果a1, a2, …, an成等比数列时, 请用类比的思想, 写出相应的结论:__.

答案:1.y=-q1-qx+11-qa1.2.略

等比数列“错解狂” 篇8

一、 公比设法有“蹊跷”,顾此失彼解无效

例1 已知一个等比数列{an}前四项之积为,第二、三项的和为,求这个等比数列的公比.

错解 因为四个数成等比数列,可设其分别为,,aq,aq3,

则有a4=,+aq=,解得q=±1或q=-±1,

故原数列的公比为q2=3+2或q2=3-2.

反思 将成等比数列的四个数分别设为,,aq,aq3,表面上看,似乎可以减少计算量,优化解题过程,但事实上犯了顾此失彼的错误,因为若按上述设法,等比数列公比q2>0,各项一定同号,而原题中无此条件.

正解 设四个数分别为a,aq,aq2,aq3,

则a4q6=,aq+aq2=,所以(1+q)4=64q2.

由q>0时,可得q2-6q+1=0,所以q=3±2;

当q<0时,可得q2+10q+1=0,所以q=-5-4.

二、 遗漏特殊浑不知,以偏概全终铸错

例2 设等比数列{an}的前n项和为Sn,若S3+S6=2S9,求数列的公比q.

错解 因为S3+S6=2S9,所以+=,整理得q3(2q6-q3-1)=0.

由q≠0,得2q6-q3-1=0,所以(2q3+1)(q3-1)=0,所以q=-或q=1.

反思 由+=,整理得q3(2q6-q3-1)=0时,应有a1≠0和q≠1.在等比数列中,a1≠0是显然的,但公比q完全可能为1,因此,在解题时应先讨论公比q=1的情况,再在q≠1的情况下,对式子进行整理变形.

正解 若q=1,则有S3=3a1,S6=6a1,S9=9a1,但a1≠0,即得S3+S6≠2S9,与题设矛盾,故q≠1.

又依题意S3+S6=2S9,可得+=,整理得q3(2q6-q3-1)=0,即(2q3+1)(q3-1)=0.由q≠1,得q3-1≠0,所以2q3+1=0,所以q=-.

三、 求解通项要注意,下标不清会出错例3 已知数列{an}的前n项之和为:①Sn=2n2-n,②Sn=n2+n+1,求数列{an}的通项公式.

错解① an=2n2-n-2(n-1)2+(n-1)=4n-3;

② an=n2+n+1-(n-1)2-(n-1)-1=2n.

反思 在对数列概念的理解上,仅注意了an=Sn-Sn-1与通项的关系,没注意a1=S1.

正解 ① 当n≥2时,an=2n2-n-2(n-1)2+(n-1)=4n-3.经检验,当n=1时,a1=S1=1也适合此式,所以an=4n-3.

② 当n≥2时,an=n2+n+1-(n-1)2-(n-1)=2n;当n=1时,a1=S1=3.所以an=3, n=1,2n,n≥2.

四、 实际问题须琢磨,题意不清必致错

例4 一个球从100m高处自由落下,每次着地后又跳回到原高度的一半,当它第10次着地时,共经过了多少米?

错解 因球每次着地后跳回到原高度的一半,从而每次着地之间经过的路程构成一个等比数列,q=,a1=100,所以S10=≈199(m).

反思 每两次着地之间经过的路程应为上、下路程之和;而第一次从100m落下时只有下的路程,应单独计算.

正解 S=100+2×=299.609 375(m).

1. {an}是首项为1的正项数列,且(n+1)a2 n+1-na2 n+an+1an=0(n=1,2,3,…),则它的通项公式为:an= .

2. 设数列的前n项和为Sn=n2+2n+4(n∈N*),求这个数列的通项公式.

3. 设f(n)=2+24+27+210+…+23n+1(n∈N*),求f(n)的表达式.

4. 一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一出生就在每年生日,到银行储蓄a元一年定期,若年利率为r保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁上大学时,将所有存款(含利息)全部取回,则取回的钱的总数是多少?

1. . 2. an=7, n=1,2n+1,n≥2. 3. .

小学五年级奥数等差数列练习题 篇9

1、有一个数列:2,6,10,14,…,106,这个数列共有多少项?。

2、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项?

3、求1,5,9,13,…,这个等差数列的第3O项。

4、求等差数列2,5,8,11,…的第100项。

5、计算1+2+3+4+…+53+54+55的和。

6、计算5+10+15+20+⋯ +190+195+200的和。

7计算(1+3+5+7+…+2003)-(2+4+6+8+…+2002)

高考数列专题练习(汇总) 篇10

1.已知等差数列满足:,的前n项和为.

(Ⅰ)求及;

(Ⅱ)令bn=(),求数列的前n项和。

2.已知递增的等比数列满足是的等差中项。

(Ⅰ)求数列的通项公式;

(Ⅱ)若是数列的前项和,求

3.等比数列为递增数列,且,数列(n∈N※)

(1)求数列的前项和;

(2),求使成立的最小值.

4.已知数列{

}、{

}满足:.(1)求;

(2)求数列{

}的通项公式;

(3)设,求实数为何值时恒成立

5.在数列中,为其前项和,满足.

(I)若,求数列的通项公式;

(II)若数列为公比不为1的等比数列,且,求.

6.已知数列中,,(1)求证:数列为等比数列。

(2)设数列的前项和为,若,求正整数列的最小值。

7.已知数列的前n项和为,若

(1)求证:为等比数列;

(2)求数列的前n项和。

8.已知数列中,当时,其前项和满足.

(1)求的表达;

(2)求数列的通项公式;

9.已知数列的首项,其中。

(1)求证:数列为等比数列;

(2)记,若,求最大的正整数.

10已知数列的前项和为,且对任意,有成等差数列.

(1)记数列,求证:数列是等比数列;

(2)数列的前项和为,求满足的所有的值.

11.已知数列的前n项和满足:(为常数,)

(1)求的通项公式;

(2)设,若数列为等比数列,求的值;

(3)在满足条件(2)的情形下,数列的前n项和为.

求证:.

正数数列{an}的前n项和为Sn,且2.

(1)试求数列{an}的通项公式;

(2)设bn=,{bn}的前n项和为Tn,求证:.

13已知数列是公差不为零的等差数列,其前项和为,且,又

成等比数列.

(1)求;

(2)若对任意,都有,求的最小值.

14已知数列满足:.

(1)求证:数列是等比数列;

(2)令(),如果对任意,都有,求实数的取值范围.

在数列中,,(1)设,求数列的通项公式;

(2)求数列的前项和.

16.已知各项均为正数的数列{an}前n项和为Sn,(p

1)Sn

=

p2

an,n

∈N*,p

0且p≠1,数列{bn}满足bn

=

2logpan.

(1)若p

=,设数列的前n项和为Tn,求证:0

Tn≤4;

(2)是否存在自然数M,使得当n

M时,an

1恒成立?若存在,求出相应的M;若不存在,请说明理由.

17.设数列的前n项和为,且对任意正整数n都成立,其中为常数,且,(1)求证:是等比数列;

(2)设数列的公比,数列满足:,求数列的前项和.

END

等比数列的前n项和 篇11

【关键词】等比数列;前n项和;教学设计;教学目标;教学方法

Geometric series and the first item n—— teaching design

Du Ke-bao

【Abstract】geometric series of pre-n and the formula is the key to change “and” to “reduce”, it seems that this teacher is “natural”, but the students seem it was “unimaginable”.

【Key words】geometric series; before the n and teaching design; teaching objectives; teaching methods

[教学目标]

1、理解并掌握等比数列前n项和公式的推导过程、公式的特点,并能初步应用公式解决与之有关的问题。

2、通过对公式推导方法的探索与发现,渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力。

3、通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。

[教学重点、难点]

重点:等比数列的前n项和公式的推导及运用

难点:公式的推导方法及运用公式时对公比的分类讨论

[教学类型]

新授课

[教学用具]

多媒体、幻灯片

[教材分析]

《等比数列的前n项和》这一节内容是在学生学习了等差数列、等比数列的概念及通项公式、等差数列的前n项和公式的基础上进行的。它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论和方程等思想方法,都是学生今后学习和工作中必备的数学素养。学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是认知的有利因素。认知的不利因素有:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维定势是一个突破。另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

[教学方法]

本节是对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。所以在教学中,采用“问题——探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段,并利用多媒体辅助教学,直观反映教学内容,使学生思维活动得以充分展开,从而优化教学过程,提高教学效率。

[教学过程]

1、创设情境,提出问题(幻灯片)

引入:古印度国际象棋发明者受赏的故事

提问:同学们,你们知道发明者西萨要的是多少小麦吗?

国王能满足他的要求吗?

引导同学写出麦粒总数为:

1+2+22+23+…+263

这是什么数列求和?是等差数列求和吗?

(板书)等比数列的前n项和

设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点,并留下悬念。

2、师生互动,探究问题(幻灯片)

探讨:发明者要的麦粒总数为:

上式有何特点?

不难发现,右式中有64项,后项与前项的比为公比2

如果①式两边同乘以2得

结束开头引入的故事,若把1.84×10粒小麦依次排列,它的长度就相当于地球到太阳距离的2万倍;若按万粒400克计算,可达7000亿吨,而我国小麦现年产量在1亿吨左右,多么庞大的量呀!

把引入课题时的悬念给予释疑,有助于学生克服认知疲劳,更从计算结果中让学生明确实际问题的解决离不开数学,在市场经济中必须有敏锐的数学头脑。

5、课堂练习

课本第305页A组1、2

针对练习,巩固知识。

6、课堂小结:(幻灯5)

(1)学习了等比数列的前n项和公式,应用时注意公比q的取值范围当q≠1时,Sna1(1-qn)1-q=或Sn=a1-anq1-q当q=1时,Sn=na1

(2)学习了推导数列求和公式的一种常用方法:错位相减法

(3)进一步了解数学思想方法及其作用,通过类比联想,打通解题思路,分类讨论等思想,更直接地提高了分析、解决问题的能力。

师生共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。

7、布置作业

(1)书面作业:课本第305页B组1、2、3

(2)弹性作业:求1+a+a+a+…a

弹性作业目的是注意分层教学和因材施教,为学有余力的学生提供思考的空间

[板书设计]

收稿日期:2008-01-06

《等比数列的前n项和》教学设计 篇12

1.知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点, 在此基础上能初步应用公式解决与之有关的问题.

2.过程与方法目标:

通过公式的推导方法的探索与发现, 向学生渗透特殊与一般、类比与转化、分类讨论等数学思想, 培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维能力.

3.情感态度与价值观:

通过公式的探索发现过程, 学生亲历结论的“再创造”过程, 体验成功与快乐, 感悟数学美.

二、教学重点

理解并掌握等比数列前n项和公式的推导过程、公式的特点, 在此基础上能初步应用公式解决与之有关的问题.

三、教学难点

等比数列前n项和公式的推导过程及应用公式解决与之有关的问题.

四、教学方法

采用教师引导学生自主探究的教学方法, 按照“创设情境——学生自主探究——得出定理——应用定理——变式训练”的模式来组织教学.

五、教学过程设计

在数学的天地里, 重要的不是我们知道什么, 而是我们怎么知道什么.——毕达哥拉斯

1.创设情景, 引入新课

“棋盘上的麦粒 (以2为底的幂) 历史典故, 通过历史典故引出《等比数列的前n项和》的课题.

2.出示三维目标

3.情境创设, 提出问题

数学游戏问题:甲、乙两人约定在一个月 (按30天) 内甲每天给乙100元钱, 而乙则第一天给甲返还一分, 第二天给甲返还两分, 即后一天返还的钱是前一天的两倍.请问谁赢谁亏?

分析:数学建模.{an}:100, 100, 100, …, 100, q=1.

{bn}:1, 2, 22, …, 229, q=2.

T30=100+100+…+100与S30=1+2+22+…+229比较大小, 求和问题如何化简?

4.启发引导, 探索发现

如何计算:S30=1+2+22+…+229.

启发:等比数列{an}的前n项和Sn也可以构成一个新的数列{Sn}.自然的化简Sn的问题就成了求新数列{Sn}的通项问题.

引导:归纳、猜想、证明是我们学习数列获得的一种重要方法, 是解决数列问题的通法.能否利用此法解决问题呢?

如何计算:S30=1+3+32+…+329.

启发:类比q=2时, Sn=2n-1.

由此可以猜想:undefined

那么undefined

公式推导——方法1 (验证法)

undefined

∴当q≠1时, undefined

从而undefined

公式推导——方法2 (错位相减法)

Sn=a1+a1q+a1q2+…+a1qn-2+a1qn-1,

qSn=a1q+a1q2+…+a1qn-2+a1qn-1+a1qn.

undefined

公式推导——方法3

由定义可得undefined, 由等比定理有undefined, 于是undefined, 得出undefined

5.应用示例, 巩固公式

数学游戏问题:甲、乙两人约定在一个月 (按30天) 内甲每天给乙100元钱, 而乙则第一天给甲返还一分, 第二天给甲返还两分, 即后一天返还的钱是前一天的两倍.问:谁赢谁亏?

T30=100+100+…+100与S30=1+2+22+…+229比较大小 , 求和问题如何化简?

数学游戏问题答案:230-1 (分) =10737418.23 (元) , 远大于3000元.

棋盘上的麦粒问题:

解 ∵a1=1, q=2, n=64,

人们估计, 如果把这些麦粒依次排列, 它的长度就相当于地球到太阳距离的2万倍.若按万粒400克计算, 可达7000亿吨, 而我国现年产量在1亿吨左右.

6.公式的灵活运用

在等比数列{an}中, 已知a1=2, a5=32, q>0, 求S5.

解由a1=2, a5=32, 可得32=2×q4.

又由q>0, 可得q=2.

于是当n=5时,

7.变式训练, 巩固公式

在等比数列{an}中, 已知a1=2, S3=6, 求q.

解 (1) 当q=1时, 满足题意;

整理得q2+q-2=0, 解得q=-2或q=1 (舍去) .

综上可得q=1或q=-2.

六、小结

1.五个量n, a1, q, an, Sn中, 解决“知三求二”问题.

2.q≠1时.

3.注意q=1与q≠1两种情形.

尝试小结请回顾一下本节课你学到了什么?

本节课你最大的收获是什么?

高三数列复习题(11月1日) 篇13

1.若{an}是等差数列,首项a10,a2003a20040,a2003.a20040,则使前n项和Sn0成立的最大自然数n是:

A.4005B.4006()C.4007D.4008

2.设数列an是等差数列,且a26,a86,Sn是数列an的前n项和,则()

A、S4S5B、S4S5C、S6S5D、S6S5

3.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是()

A.5B.4C.3D.2

(该直线不过原点O),则S200=()

A.100B.101C.200D.201

5.数列{an}的前n项和为Sn,若an

A.1B.4.已知等差数列{an}的前n项和为Sn,若OB=a1OA+a200OC,且A、B、C三点共线1,则S5等于()n(n1)511C.D. 6630

6.已知数列{an}的前n项和Snn29n,第k项满足5ak8,则k()

A.9B.8C.7D.6

7.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且

an为整数的正整数n的个数是()bnAn7n45,则Bnn3使得

A.2B.3C.4D.5

8.在等差数列bn中,b1b4b8b12b152,则b3b13的值等于________________

9.在等差数列an中,a2a8,公差d<0,则使它的前n项和Sn取最大值的自然数n=___

210.在各项均不为零的等差数列an中,若an1an则S2n14n____ an10(n≥2),11.已知某等差数列共有10项,其奇数项的和为15,偶数项和为30,则它的公差d=_______;

12.在小于100的正整数中,被3除余2的所有数的和为____________;

证明数列是等比数列 篇14

当此数列为等比数列时,显然是常数列,即2a-6b=0

这个是显然的东西,但是我不懂怎么证明

常数列吗.所以任何一个K和M都应该有ak=amak=(2a-6b)k+6bam=(2a-6b)m+6bak-am=(2a-6b)(k-m)因为ak-am恒为0km任意所以一定有2a-6b=0即a=3b

补充回答:题目条件看错,再证明当此数列为等比数列时

2a-6b=0

因为等比a3:a2=a2:a

1即(6a-12b)*2a=(4a-6b)^

2a^2-6ab+9b^2=0

即(a-3b)^2=0

所以肯定有a=3b成立

2数列an前n项和为Sn已知a1=1a(n+1)=(n+2)/n乘以Sn(n=1,2,3......)证明

(1)(Sn/n)是等比数列

(2)S(n+1)=4an1、A(n+1)=(n+2)sn/n=S(n+1)-Sn

即nS(n+1)-nSn=(n+2)Sn

nS(n+1)=(n+2)Sn+nSn

nS(n+1)=(2n+2)Sn

S(n+1)/(n+1)=2Sn/n

即S/=

2S1/1=A1=

1所以Sn/n是以2为公比1为首项的等比数列

2、由1有Sn/n是以2为公比1为首项的等比数列

所以Sn/n的通项公式是Sn/n=1*2^(n-1)

即Sn=n2^(n-1)

那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)

An=Sn-S(n-1)

=n2^(n-1)-(n-1)2^(n-2)

=n*2*2^(n-2)-(n-1)2^(n-2)

=*2^(n-2)

=(n+1)2^(n-2)

=(n+1)*2^n/2^

2=(n+1)2^n/

4=S(n+1)/4

所以有S(n+1)=4An

a(n)-a(n-1)=2(n-1)

上n-1个式子相加得到:

an-a1=2+4+6+8+.....2(n-1)

右边是等差数列,且和=(n-1)/2=n(n-1)

所以:

an-2=n^2-n

an=n^2-n+24、已知数列{3*2的N此方},求证是等比数列

根据题意,数列是3*2^n(^n表示肩膀上的方次),n=1,2,3,...为了验证它是等比数列只需要比较任何一项和它相邻项的比值是一个不依赖项次的固定比值就可以了.所以第n项和第n+1项分别是3*2^n和3*2^(n+1),相比之后有:

/(3*2^n)=

2因为比值是2,不依赖n的选择,所以得到结论.5数列an前n项和为Sn已知a1=1a(n+1)=(n+2)/n乘以Sn(n=1,2,3......)证明

(1)(Sn/n)是等比数列

(2)S(n+1)=4an1、A(n+1)=(n+2)sn/n=S(n+1)-Sn

即nS(n+1)-nSn=(n+2)Sn

nS(n+1)=(n+2)Sn+nSn

nS(n+1)=(2n+2)Sn

S(n+1)/(n+1)=2Sn/n

即S/=

2S1/1=A1=

1所以Sn/n是以2为公比1为首项的等比数列

2、由1有Sn/n是以2为公比1为首项的等比数列

所以Sn/n的通项公式是Sn/n=1*2^(n-1)

即Sn=n2^(n-1)

那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:逻辑狗思维上课流程下一篇:街道党建工作自查报告

付费复制
期刊天下网10年专业运营,值得您的信赖

限时特价:7.98元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题