一元二次函数教学设计

2024-12-11

一元二次函数教学设计(通用13篇)

一元二次函数教学设计 篇1

二次函数与一元二次方程教学设计

留格初中

黄美娜

一、教材分析

1、教材所处的地位和作用:

《二次函数与一元二次方程》是初中数学(山东教育出版社)九年级上册《二次函数》的一节内容。本节内容体会二次函数与一元二次方程之间的联系;理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,及何时方程有两个不等的实根,两个相等的实根和没有实根;通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生运用数形结合思想解决问题的能力;通过这节的学习,学生将掌握二次函数与一元二次方程的关系,本节是初中阶段所学的有关函数知识的重要内容之一。2.教学目标

知识与技能目标:理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,及何时方程有两个不等的实根,两个相等的实根和没有实根;理解一元二次方程的根就是二次函数y=h(h是实数)图象交点的横坐标.

过程与方法目标:体会二次函数与方程之间的联系;掌握用图象法求方程的近似根; 情感态度与价值观:培养学生热爱数学、主动探究的能力

教学重点:把握二次函数图象与x轴(或y=h)交点的个数与一元二次方程的根的关系. 教学难点:应用一元二次方程根的判别式,及求根公式,来对二次函数及其图象进行进一

步的理解.

二、教学策略:

1、教学手段:启发式讲解 互动式讨论 研究式探索

本节课以学生的自主探索为主,老师主要通过演示引导启发学生得出结论,这样有利于学生提高学习兴趣,获得成就感。在教学中可以放手让学生自己去画图象,讨论研究出函数与一元二次方程的关系,以提问的形式与学生互动,通过练习加深学生对函数性质的理解和应用。

2、教学方法及学法:自主探索 观察发现 合作交流 对比归纳

三、学情分析:

学生的知识技能基础:学生在上学期已经学习过一元二次方程的知识,之前学习了二次函数的图象和代数表达式的三种表示方法,其中主要对一般式和顶点式做了大量的训练,因而从“数”的方面对二次函数有了比较全面的认识,但对交点式仍然停留在感性认识层面,特别是对于从数形结合的这一数学思想来认识二次函数,他们对整章各节知识的关系还没有真正完整的形成,通过从本节课学习二次函数与一元二次方程之间的关系开始,学生将会对二次函数的“数”和“形”真正开始进行全面、深刻的接触。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了认识二次函数图象、求二次函数解析式、利用建立二次函数的数学模型,通过转化为顶点式求出最值,解决了一些简单的实际问题,感受到了二次函数与生活的紧密联系,他们已经有了探索本节课的数学基础;同时在以前的数学学习中学生已经经历了一次函数图象应用的学习,对于一次函数和一元一次方程的关系有了较多的认识,因此教学中多采取联想、类比的启发式教学,相信他们会有能力完成好本节新课的学习任务。

【学习过程】

环节一:学生预习,教师导学:

我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面以40m/s的速度竖直向上抛出起,小球的高度h(m)与运动时间t(s)的关系如图所示,那么(1)h和t的关系式是什么?

(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.【设计意图】:通过设置问题,帮助学生体会二次函数与实际生活密不可分的关系;初步感受二次函数与一元二次方承的联系。

环节二:学生合作,教师参与:

1.在同一坐标系中画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象并回答下列问题:(1).每个图象与x轴有几个交点?

(2).一元二次方程? x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 例题讲解

1、在本节一开始的小球上抛问题中,何时小球离地面的高度是60cm?你是如何知道的?

2、二次函数y=ax+bx+c何时为一元二次方程?它们的关系如何?

【设计意图】:这是本节的重点,比较抽象,因此通过画图让学生能够清楚形象的解决问题,并且能够培养学生总结问题的能力。环节三:学生展示,教师点拨: 若方程ax2+bx+c=0的根为x1=-2和x2=3,则二次函数 y=ax2+bx+c的图象与x轴交点坐标是

.2 抛物线y=0.5x2-x+3与x轴的交点情况是()

A 两个交点

B 一个交点

C 没有交点

D 画出图象后才能说明 3 不画图象,求抛物线y=x2-x-6与x轴交点坐标.【设计意图】:本环节是对本节知识的巩固应用,是对新知识点生华,培养学生数学思维的严谨性

环节四:学生探究,教师引领:(给同学充分的时间考虑,1号同学发言交流,教师引导补充)

2如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=-x2+2x+3(x﹥0).柱子OA的高度是多少米?若不计其它因素,水池的半径至少为多少米,才能使喷出的水流不至于落在池外?

【设计意图】:本环节目的是为了培养优生,锻炼学生的发散思维能力。环节五:学生达标,教师测评:

1.这节课我们主要学习了哪些知识?(提示:鼓励学生交流收获,视情况给小组加分)2.检测:

(1)抛物线y=x2+2x-3与x轴的交点个数是

(2)抛物线y=mx2-3x+3m+m2经过原点,则其顶点坐标为

【设计意图】:本环节是为了检测学生一节课的收获,使教师能够全面了解学生的接收受情况,以备个别辅导。

教学反思:

本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。教材结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系,然后介绍了用图象法求一元二次方程近似解的过程。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

本节课,在引入问题的设计中做的不够充分,知识的生成没能有效呼应,没有达到预设的课堂效果。我要在以后的课堂教学中,加强对教材的研读,合理把握重难点,在情景引入和知识生成的问题设计上多下功夫,力争使自己的教育教学水平有新的突破

一元二次函数教学设计 篇2

一、一元二次函数与一元二次方程

一元二次函数是初中数学的重要内容 ,是初中、高中数学知识的衔接点,是中考中数学的重点考察内容之一,要全面掌握一元二次函数的基础知识和基本性质,并能分析和解决有关一元二次函数的综合问题,合理利用一元二次函数与一元二次方程的联系是十分必要的.

首先,从其形式上来看:

一元二次函数y = ax2+ bx + c(a≠0)与一元二次方程0 =ax2+ bx + c(a≠0)(其中a,b,c为常数 ):

1它们都是关于x的二次式,从上面我们可以看出,y =0时 ,便是一个一元二次方程. 所以 ,我们可以认为一元二次方程是一元二次函数的特殊形式,这是用函数的观点看一元二次方程.

2 条件上,都是在保证 a ≠ 0 的情况下,去认识一元二次函数和一元二次方程. 如果 a = 0 时,再谈便无意义.

3 从其表达式上可知道, 无论是一元二次函数 y 的值,还是一元二次方程的解 x 应该都与系数 a,b,c 有关.

其次,我们还可以从其内涵上来看:

1一元二次方程是求ax2 + bx + c = 0时x的某确定值,即方程的根. 实质是用a,b,c来表示, 如将x反代入表达式,则ax2+ bx + c值为0.

2一元二次函数y = ax2 + bx + c是研究变量y随自变量x的变化情况 ,反应的是y的变化规律. 当x变化时 ,y也随着x以ax2 + bx + c变化. 而当y = 0时,求出方程x2 + bx + c = 0的两根x1,x2. 而此时的x1,x2正是一元二次函数y = ax2+ bx + c与x轴的交点.

最后,我们知道,无论是一元二次函数还是一元二次方程, 其交点或根都与系数a,b,c有关. 有交点就说明方程ax2+ bx + c = 0有根. 那么 ,是不是所有的一元二次方程ax2 +bx + c = 0都有根或者说所有的一元二次函数y = ax2 + bx + c都与x轴有交点呢? 又是不是只要一元二次方程ax2+ bx + c =0有根 ,一元二次函数y = ax2 + bx + c就与x轴有交点呢 ?

通过学习我们知道,并不是所有的一元二次方程都有实数根, 也不是全部一元二次函数都与实数轴x轴有交点. 既然这样,那怎样的一元二次方程才有实数根,又是什么样的一元二次函数才与实数轴有交点呢? 上面已经说过,无论是方程的根,还是函数与x轴的交点坐标都应该和其系数a、b、c有关. 所以 ,现在我们应该考虑 ,能否通过它们的系数关系来判断一元二次方程有根或一元二次函数有交点的问题. 有根,有几个根;有交点,又有几个交点;满足有根或有交点时,系数之间是否呈现一定的关系和规律呢?

综上,我们可以看到,无论a∈(-∞,+∞),且a≠0时,1当b2 - 4ac > 0时, 一元二次函数与x轴有两个不同的交点,且相应方程有两个不同的实数根;2当b2- 4ac = 0时 ,一元二次函数与x轴仅有一个交点和对应方程有一对相等的根(即x1= x2);3当b2- 4ac < 0时 ,一元二次函数与x轴无交点, 对应方程无实数根. 亦说明一元二次函数与一元二次方程间是有着密切联系的. 它们都有一共同特征: 就是一元二次函数与x轴有无交点和一元二次方程有无实数根都决定于b2- 4ac与0的比较 . 一元二次函数与x轴有无交点和一元二次方程有无根都与表达式b2- 4ac有关 , 并把它作为判断有无交点和有无根的依据,所以叫它为判别式,记为△[2].(注:它只是一个记号.)

二、用一元二次函数的观点看一元二次方程

例4如图-2,以40 m/s的速度将小球沿以地面成30°角的方向击出时,球的路线将是一条抛物线, 如果不计空气阻力,球的飞行高度(单位:m)与飞行时间t(单位:s)之间具有关系h = 20t - 5t2.

(1)球飞行高度能否达到15 m? 20 m呢 ? 20.5 m呢 ?

(2) 若能 ,需多长时间呢 ?

解 h = 20t - 5t2 = -5(t - 2)2 + 20

当t = 2s时h = 20 m, 是球飞行 的最大高 度.15 < 20 <20.5,即球不能达到20.5 m;能达到15 m,当h = 15,则t = 1 s或3 s.

此题实际上是求分别满足20t - 5t2= 15、20或20.5时 ,t是否存在实数解,但这要分别对这三个一元二次方程进行讨论,这是很烦琐的. 如按以上的解法,就是充分运用了函数的性质,进而将问题简单化、明了化.

一元二次函数根的分布规律探究 篇3

错解:用韦达定理 设x1,x2为方程x2-2ax+4=0两根,则x1,x2均大于1的充要条件x1+x2>2x1·x2>1·驻≥0

分析:错误的原因在于若此题运用韦达定理求解,则方程x2-2ax+4=0两根x1,x2均大于1的充要条件(x1-1)+(x2-1)>0(x1-1)·(x2-1)>0·驻≥0

另解:运用求根公式方程x2-2ax+4=0的两根为x=■=a±■.要使两根均大于1,只要小根a-■>1即可,解得2≤a<■.

分析:此种解法思路简单,但是求解过程计算量太大。

此例属于一元二次函数根的实根分布问题。一元二次函数根的实根分布问题是初高中数学衔接的一个重要问题,也是高考的一个热点问题。一元二次方程根的分布也是二次函数中的重要内容,也是历来学生难以掌握的地方。这部分知识在初中数学中虽有所涉及,但远远不够系统和完整。而且解题方法多局限于应用判别式法和根与系数的关系。本文通过“数形结合、函数与方程”浅显易懂的简析。分两根分布在同一区间与两根分布在不同区间两种情况系统地介绍一元二次方程实根分布的充要条件及其运用,有助于学生掌握其精髓。

设方程ax2+bx+c=0(a>0)的不等两根为x1,x2且x1

情况一:两根分布在同一区间

情况二:两根分布在不同区间

对表二的根的分布表中一些特殊情况作说明:

(1)有且仅有一根在(m,n)内有以下特殊情况:1.若f(m)=0或f(n)=0,则此时f(m)·f(n)<0不成立,但对于这种情况知道了方程有一根为m或n,可以求出另外一根,然后可以根据另一根在区间(m,n)内,从而可以求出参数的值.求出参数值后需检验是否满足题意。若不满足题意,则舍去所得参数值。2.方程有且只有一根,且这个根在区间(m,n)内,只要满足·驻=0,此时由·驻=0可以求出参数的值,然后再将参数的值代入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数.

练习:已知二次方程x2+(m-3)x=0,根据下列条件求m的范围.

(1)两根都小于1;(2)两根都在(0,2)內;(3)一根大于1,一根小于1;(4)一根小于2,一根大于4;(5)一根在(-2,0),一根在(0,4);(6)有且只有一根在(0,2)之间.

分析:对于(1),(2)属于两根在同一区间的情况;(3)(4)(5)属于两根在不同区间的情况;(6)要考虑(ⅰ)f(0)·f(2)<0,解得0

一元二次函数教学设计 篇4

本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

【知识与能力目标】

掌握二次函数与一元二次方程的联系。【过程与方法目标】

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。【情感态度价值观目标】

1、经历探索二次函数与一元二次方程的关系的过程,提高学生的分析能力与在探索过程中抽象概括能力。

2、培养学生团结合作学习的良好意识和积极进取的精神。

3、培养学生用联系的观点看问题。

【教学重点】

二次函数的图象和一元二次方程的联系。【教学难点】

培养学生的数形结合的意识和学会用数形结合的方法解决问题。

课前准备

多媒体课件等。

教学过程

一、导入新课

我们以前学习了一次函数,并从一次函数的角度看一元一次方程,认识了一次函数与一元一次方程的联系。今天节我们学习二次函数,并从二次函数的角度看一元二次方程,从而认识二次函数与一元二次方程的联系。

二、新课教学

问题如图(见教材图22.2-1),以40 m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系

h=20t-5t2。

考虑以下问题:

(1)小球的飞行高度能否达到15 m?如果能,需要多少飞行时间?(2)小球的飞行高度能否达到20 m?如果能,需要多少飞行时间?(3)小球的飞行高度能否达到20.5 m?为什么?(4)小球从飞出到落地要用多少时间?

教师引导学生阅读例题,请大家先发表自己的看法,然后解答.师生互动,完成上面4个问题。

(1)当小球飞行1s和3s时,它的飞行高度为15m。(2)当小球飞行2 s时,它的飞行高度为20 m。

(3)方程无实数根.这就是说,小球的飞行高度达不到20.5 m。

(4)当小球飞行0 s和4s时,它的高度为0 m。这表明小球从飞行到落地要用4 s.从上图来看,0 s时小球从地面飞出,4 s时小球落回地面。

从上面可以看出,二次函数与一元二次方程联系密切。一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0。

问题2 观察下列函数图像回答下列问题:

(1)y=x2+x-1;(2)y=x2-4x+4;(3)y=x2-x+2.

① 二次函数 y=x2+x-1 的图象与 x 轴有______个交点,则一元二次方程 x2+x-1=0 的根的判别式Δ______0。

②二次函数 y=x2-4x+4 的图像与 x 轴有______个交点,则一元二次方程 x2-4x+4=0 的根的判别式Δ______0。

3二次函数 y=x2-x+2 的图象与 x 轴________公共点,则一元二次方程 x2-x○+2=0 的根的判别式Δ______0。

三、归纳总结

从二次函数y=ax2+bx+c的图象可以得出如下结论:

(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数值是0,因此x=x0是方程ax2+bx+c=0的一个根。

(2)二次函数y=ax2+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

(3)利用函数图象求一元二次方程的根步骤:(1)作函数图象;(2)确定根所在的范围;

(3)通过取平均数的方法不断缩小根所在的范围,直至符合题目要求。

四、巩固练习

1.不与x轴相交的抛物线是()

A.y = 2x2 – 3

B.y=-2 x2 + 3

C.y= -x2 – 3x

D.y=-2(x+1)2-3 2.若抛物线 y = ax2+bx+c= 0,当 a>0,c<0时,图象与x轴交点情况是()A.无交点

B.只有一个交点 C.有两个交点

D.不能确定

3.利用函数图象求方程x2-2x-2=0的实数根(结果保留小数点后一位)。

解:画出函数y=x2-2x-2的图象(下图),它与x轴的公共点的横坐标大约是-0.7,2.7。

所以方程x2-2x-2=0的实数根为

x1≈-0.7,x2≈2.7.

我们还可以通过不断缩小根所在的范围估计一元二次方程的根。

五、课堂小结

一元二次不等式及其解法教学设计 篇5

姓名:郑尚运 单位:金沙中学 邮编:551800

本节课是人民教育出版社A版必修数学5第三章不等式第二大节3.2一元二次不等式及其解法的第一节课。一元二次不等式及其解法教学分为三个学时,第一个学时先由师生共同分析日常生活中的实际问题来引出一元二次不等式及其解法中的一些基本概念、求解一元二次不等式的步骤、求解一元二次不等式的程序框图。

教学重点 1.从实际问题中抽象出一元二次不等式模型。

2.围绕一元二次不等式的解法展开,突出体现数形结合的思想。

一元二次函数教学设计 篇6

自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.

教学过程

创设情境,导入课题,展示教学目标

1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗?

2.展示学习目标:

(1)、理解一次函数图象与一元一次不等式的关系。

(2)、能够用图像法解一元一次不等式。

(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。

积极思考,尝试回答问题,导出本节课题。

阅读学习目标,明确探究方向。

从生活实例出发,引起学生的好奇心,激发学生学习兴趣

学生自主研学

一元二次函数教学设计 篇7

关键词:一元二次不等式;教学设计

【中图分类号】G712

一、教材的地位和作用:

《一元二次不等式的解法》这节课属于高中数学必修五的内容,是初中一元一次不等式的解法、一元二次方程的根在知识上的延伸和发展,又是上一章集合知识的运用与巩固,也为下一章研究函数的定义域和值域作铺垫,起着承上启下的作用,它也是《不等式》的核心内容。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

二、学生现状分析

现阶段高中生已经掌握了一元一次不等式(组)的解法,一元二次方程的求根等基础知识,有着良好的知识基础;而且他们通过初中的学习心智发育逐渐成熟,发散思维习惯和方式已初步养成,具备了一定的数形结合的思想,有着较好的观察与总结、化归、探究能力。

三、教学目标分析

根据教学大纲的要求及上述教材内容地位分析,结合学生实际学习水平制定本节课教学目标如下:

1、知识与技能目标:(1)掌握看图象找解集的方法,并能熟练应用一元二次不等式的解法。(2)正确理解一元二次方程、一元二次不等式和二次函数三者的关系,探求一元二次不等式的解法。

2、过程与方法目标:通过看图象找解集,培养学生从"从形到数"的转化能力,"由具体到抽象"、"从特殊到一般"的归纳概括能力。

3、情感态度与价值观目标:(1)通过对解不等式过程中"等"与"不等"对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。(2)创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、教学重难点

重点:熟练掌握一元二次不等式的解法;

难点:正确理解一元二次方程、一元二次不等式和二次函数三者的关系,探求一元二次不等式的解法。

四、教法与学法

确定了课堂教学的重点和难点后,在设计教学时,我的策略如下。以"诱思引探教学法"为主要教学方法;以现代多媒体为辅助教学手段;充分体现课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念。这样能让学生在教师的启发、诱导和激励下,体会知识的发生、发展以及运用,更加符合学生的发现问题、探究问题、解决问题的认知规律。

五.教学过程设计

第一阶段:创设情景,引出"三个一次"的关系

环节1:提出问题

(1)先让学生解一元二次方程

(2)把"="改成">"则变成一元二次不等式

(3)向学生介绍一元二次不等式的定义和一般形式。

学生活动:积极回答问题,认真思考

设计意图和原理:"思维往往是从惊奇和疑问开始",这样直奔主题,目的在于构造悬念,激活学生的思维兴趣,带着问题学习。

环节2:引出"三个一次"的关系

(1)请同学们解以下方程和不等式:① ② ③.

(2)画出一次函数的图象。

(3)借助动画从图象上直观认识方程和不等式的解, 得出一元一次不等式的解、一元一次方程的根和一次函数的关系。

学生活动:动手,观察,讨论,分析,归纳,总结。

设计意图和原理:让学生找到了利用"一次函数的图象"来解一元一次方程和一元一次不等式的方法。此时,学生很自然联想到利函数的图象来求求不等式的解集。(对已研究的问题,归纳,总结,从而类比到新问题的解决上。)

第二阶段:比旧悟新,引出"三个二次"的关系

环节1:看函数的图象并说出:

①方程的解是 ;

②不等式的解集是 ;

③不等式的解集是 。

学生活动:看图观察,讨论,分析

设计意图和原理:在分析"三个一次"的关系后,再在教师的引导下,让学讨论并完成这几个问题。可以让学生体会成功的喜悦,提高学生兴趣。

环节2:看图写解集

(1)(2)(3)

(给出各不等式所对应的函数图象,并要求学生求出相应方程的根,最后由图象写解集)

学生活动:积极思考,讨论,完成各题

设计意图和原理:第一题的训练可以上学生巩固图解法解一元二次不等式,而第2、第3解可以向学生指出不等式所对应的方程无实根或有两个相等的实根的情况,并且向学生指出一元二次不等式无解和解为R的情况。已上几个问题基本上涵盖了一般一元二次不等式解的各种情况,为后面总结一元二次不等式解集的一般律做准备。这样有助于难点的突破。

第三阶段:归纳提炼,得出"三个二次"的关系

环节1:总结一元二次不等式解集的一般规律,完成相应表格

学生活动:展开讨论,师生共同归纳、总结。

设计意图和原理:"三个二次"的关系式本节课的难点,但是通过此表格在教师和学生的共同努力下,在前面的知识的铺垫下,学生不难得出结论,这样可以让学生体会到成功的喜悦。

第四阶段 应用新知,熟练掌握方法

環节1: 例题分析(教材例1、2)

例1、2的解决达到了两个目的:一是归纳求一元二次不等式解集的方法;二是规范了一元二次不等式的解题格式。

学生活动:师生共同归纳,学生独立完成(3)(4)题。

环节2:(教材例3、4)

例题2 的解决是为了学生体会到解一元二次不等式在研究数学问题中的基础性和工具性。

学生活动:学生努力思考。

设计意图和原理:通过课堂的及时训练,可以掌握学生对新知识的掌握程度,同时也让学生自己独立的运用新知识解决实问题,享受到数学带来的乐趣。

第五阶段 课堂小结、作业布置

环节1:课堂小结:总结解一元二次不等式的"四部曲"

学生活动:总结本节课的知识要点,建构自己的知识网络。

设计意图和原理:总结所学的知识,是为了完善学生的知识结构,强化对知识的理解,好让学生在课后能独立的运用所学知识解决问题。

环节2:作业布置:教材习题第1、2、3题

设计意图和原理:使所有学生巩固所学知识,加深理解;便于教师了解教学效果。

六、教学反思

一元二次函数教学设计 篇8

景银霞

《一次函数与一元一次不等式》是人教版八年级第十四章的一节课。课前,我认真备课,讲课时,我先复习了上节所学的知识,之后导入新课,探究、小组合作学习新课。

对于例题“用画函数图象的方法解不等式5x+4<2x+10”,我原先打算板演两条直线y=5x+4和y=2x+10的图象,让学生通过两直线的交点找答案;另一种方法是通过画函数y=3x-6的图象,让学生观察图象在x轴下方时自变量x的取值范围。

由于学生的学习兴趣高涨,课堂气氛如此活跃是我原先所没有料想到的,学生对于学习内容的学习异常顺利,很快就要完成预设的教学任务。但看到学生的学习激情,我有了一种新的想法,能不能让学生自己提出解决问题的办法,并动手画出图形板演,用不同的方法来解决这一例题呢。紧接着,我又想到,如果让学生动手画图并板演会不会占用太多的课堂时间,后面有位老师在听课,如果到时不能按时完成教学任务,进而拖堂,那可是糗大了。后来,我又想了,应该让学生去动手展示,这样才能更好地了解学生的掌握程度,对症下药,拖堂就拖堂吧。于是,就在转瞬间,我决定了我的想法。在学习这道例题时,我把学生分成了小组,让他们去讨论,去探究解决这一问题的方法。学生讨论的很积极,我也在下面巡视学生的小组讨论,看着学生给出的答案,我也放下了心。于是,在答案展示环节,我果断地指名学生到黑板上动手画图说明。

我挑了一个小组的发言人板演,他是通过把一元一次不等式5x+4<2x+10化简为3x-6<0,然后画直角坐标系,通过画一次函数y=3x-6的图象,指出此直线与x轴的交点为(2,0),观察图象当x<2时,直线在x轴的下方。所以,不等式5x+4<2x+10的解集就是x<2。他的板演和说明,引来了班里的阵阵掌声。

我又选了一个小组的发言人板演不同的解题方法,他的思路是画两条直线y=5x+4和y=2x+10的图象,通过两直线的交点找答案。但通过这个学生的表述和画图,我看出这个学生属于中等偏下的水平,他在黑板上画一会儿就又擦掉,如此反复好大一会儿。看到这种情况,我也替他担心,就想立即换一位同学来板演,但我随即又制止了自己的这个想法,用鼓励的话语让他放下紧张的情绪,全班同学也在不断的为他加油。他终于整理好了自己的思路,开始工整地在黑板上作图„„他终于在同学们的“加油”声中完成了这个题的解答,通过比较这两条直线的位置关系解决了这一问题。

现在反思我的教学,我有以下几点体会:

1、这节课我对课的整体把握透彻,教学目标明确,重难点突出,教学过程设计得条理分明,对于课堂的全局把握较好,能调动学生的学习热情,课堂学习气氛浓厚。

3、最重要的是,我果断的放弃了对例题解题过程的演示,而改让学生小组合作学习和探讨,学生动手画图板演解题过程。现在回想起来,这才是把课堂还给了学生。而在那个中等偏下学生板演反复时,我没有制止他换人,而是鼓励他继续完成了解题过程,这是对学生的尊重。

从这节课中,我也有了很大的收获,那就是:课堂尽量还给学生,把课堂变成学生展示自己的舞台。教师应该尊重每一个学生,不要害怕学生学习有困难,只有暴露了困难,才会对症下药,知困而后进也。

二次函数教学反思 篇9

11月18日,我在九年三班上了《2.1 二次函数所描述的关系》这节课,结合一些听课老师的建议,现总结教学反思如下:

1.对二次函数的学习,本节课通过丰富的现实背景和学生感兴趣的问题出发,以多媒体演示图片的形式使学生感受二次函数的意义,感受数学的广泛联系和应用价值。对二次函数的学习,通过学生的探究性活动,通过学生之间的合作与交流,通过分析实际问题,如探究面积问题,利息问题、观察表格找规律及用关系式表示这些关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系。

2.在新知巩固环节,我精心设计了具有代表性和易错题型的问题,巩固应用了本节的新知,课堂达到了较好的教学效果。

3.在合作讨论的环节中,银行利率问题中文字叙述不够严密,两年后的利息一句产生分歧,应该改成第二年的利息。

《二次函数》教学反思 篇10

查哈阳乡中学 陈国平

二次函数是初中数学九年级的重要知识点,占中考的比例非常大,因此如何让学生学好二次函数的知识,也是困扰我很久的问题。二次函数知识抽象,不易理解,但是通过画图和列举生活中的实例再观察图形总结出图形的性质,对学生来说不是难点。重点和难点在准确灵活地应用性质。但是要想准确应用,熟记图形与性质是前提,于是我重点放在二次函数的“六个”知识点上。

为了有个较好的教学效果,我采用的是教师精讲、细讲,学生精炼、详练的方法加深记忆。每节课上课一开始,我在黑板上给出一些学过的有代表性的知识加以巩固,为防止出错,开始以小组或者同桌相互检查快速说性质:包括图象、一般形式、对称轴、顶点坐标、增减性、最值六个方面,目的在于牢牢地掌握基础知识。每节课都将前几节课学过的函数式板书,学生自然形成习惯。直到学习顶点式的一般形式这节课,共出示六个代表性的函数,尽管多,但是在前几节课的基础上,学生已经达到熟练快速准确。我和学生开玩笑说,在你的梦中也要呼喊函数的一般形式、图像、增减性、顶点、对称轴、最值;只有达到这种程度,你的函数知识学的才没问题了。

加深理解、强化训练,学生对着自己曾经画过图像的函数说性质,不知不觉中将图像和性质有机的结合在了一起。并逐步的将说具体函数的性质过渡到说一般表达式的函数性质。比如:y=ax2 y=ax2+k, y=a(x-h)2+k。提高要求,因为基础知识已经牢牢掌握,因此在练习中对学生严格要求。开始对学生的要求是最多错一个题,结果发现学生的错误很少,后期发现自己的要求低了,于是我改变要求,必须一个不错方可得优等级。结果发现,学生自然对自己的要求也提高了。当发现自己错一个时,就会反思自己那里没学好。一班的学生平时反映灵活,但是缺少深入细致,做题马虎现象严重,必须提高要求,方可让他们耐下心来认真学习。

《二次函数》教学反思 篇11

昨天我们学习了用函数的观念看一元二次方程,我通过类比引出二次函数与一元二次方程之间的关系,并结合具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系,然后介绍了用图象法求一元二次方程近似解的过程。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

由于九年级学生已经具备一定的抽象思维能力,再者,在八年级时已经学习了一次函数与一元一次方程的关系,因而,采用类比的方法在学生预习自学的`基础上放手让学生大胆地猜想、交流,分组合作,同时设定一定的问题环境来引导学生的探究过程,最后在老师的释疑、归纳、拓展、总结的过程中结束本节课的教学。在知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。本节课的知识障碍,本节课的主要目的在于建立二次函数与一元二次方程之间的联系,渗透数形结合的思想,而不仅仅是利用函数的图象求一元二次方程的近似解。

总之,在教学过程中,我始终遵循着“有效的数学学习活动不能单独地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”这一《新课程标准》的精神,注意发挥学生的主体作用,让学生通过自主探究、合作学习来主动发现问题、提出问题、解决问题,实现师生互动,通过这样的教学实践取得了一定的教学效果,我再次认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,使他们能够在独立思考与合作学习交流中解决学习中的问题。

二次函数的教学反思 篇12

2、本节课我注重学生探索中发现规律,培养学生归纳总结知识的习惯,这样调动了学生学习的积极性,体现了学生的主体地位,整洁课堂学生都参与其中,检测的效果也很好,有这样一句话:“没有学生的课堂,讲的再精彩也是徒劳”,但是这节课我个人感觉学生都在课堂,几个例题难度适中,学生通过配方准确无误的找出了对称轴、写出了顶点坐标。

一元二次函数教学设计 篇13

教材分析

一元二次不等式的解法是高中数学的一个重要内容,它是进一步学习不等式的基础,同时是解决有关实际问题的重要方法之一.这节课通过具体例子,借助二次函数的图像求解不等式,进而归纳、总结出一元二次不等式,一元二次方程与二次函数的关系,得到利用二次函数图像求解一元二次不等式的方法.最后,说明一元二次不等式可以转化为一元一次不等式组,由此又引出了简单分式不等式的解法.这节内容的重点是一元二次不等式的解法,难点是弄清一元二次不等式、一元二次方程与二次函数的关系.

教学目标

1.让学生经历从实际情境中抽象出一元二次不等式模型的过程.

2.通过函数图像了解一元二次不等式与相应函数、方程的联系,熟练掌握应用二次函数图像解一元二次不等式的方法.

3.通过一元二次不等式转化为一元一次不等式组的解法,让学生体会等价转化的数学思想,培养学生的逻辑推理能力.

任务分析

这节课的主要任务是应用二次函数的图像解一元二次不等式.首先通过实例抽象出一元二次不等式模型,让学生感受到现实生活中存在大量的一元二次不等式,从而得出本节的主要任务.然后通过解决一些具体的一元二次不等式,让学生体会和总结出借助二次函数的图像解一元二次不等式的方法.最后抽象和概括出一元二次不等式与相应函数、方程的关系.学习方法是讲练结合,引导学生从具体到一般地总结出一元二次不等式的图像解法.

教学设计

一、问题情境 1.出示问题

(1)某产品的总成本c(万元)与产量x(台)之间满足关系:c=3000+20x-0.1x2,其中x∈(0,240),x∈N,若每台产品售价25万元,试求生产者不亏本时的最低产量x.

引导学生建立一元二次不等式模型: 由题意,得销售收入为25x(万元),要使生产者不亏本,必须使

3000+20x-0.1x2≤25x,即x2+50x-30000≥0.

(2)国家为了加强对某特种商品生产的宏观管理,实行征收附加税政策.现知每件产品70元,不加收附加税时,每年大约产销100万件,若政府征收附加税,每销售100元要征税R元(即税率为R%),则每年的产销量要减少10R万件.要使每年在此项经营中所收取的附加税税金不少于112万元,问R应怎样确定.

2.引导学生建立一元二次不等式模型

设产销量为每年x(万件),则销售收入为每年70x(万元),从中征收的税金为70x·R%(万元),并且x=100-10R.

由题意,知70(100-10R)·R%≥112,即R2-10R+16≤0.

如何求解以上两个一元二次不等式呢?

二、建立模型

1.对于不等式x2+50x-30000≥0,可以借助二次函数的图像来解决

设二次函数f(x)=x2+50x-30000,抛物线开口向上,与x轴交点的横坐标是相应二次方程x2+50x-30000=0的解.此时x1=-200,x2=150.如图,所谓解不等式x2-50x-30000≥0,就相当于求使函数f(x)≥0的x的集合.考虑图像在x轴及其上方的部分,即f(x)≥0,相应的x的集合{x|x≤-200或x≥150}就是不等式的解集.结合实际,可知生产者不亏本时的最低产量为150台.

运用完全类似的方法,可以求解不等式R2-10R+16≤0的解集为{R|2≤R≤8}. 2.教师明晰

设a>0,解一元二次不等式ax2+bx+c>0(<0),首先,设f(x)=as2+bx+c.(1)计算Δ=b2-4ac,判断抛物线y=f(x)与x轴交点的情况.

(2)若Δ≥0,解一元二次方程ax2+bx+c=0,得两根为x1,x2,(x1≤x2).(3)结合(1)(2)画出y=f(x)的图像.

(4)解不等式ax2+bx+c>0,就相当于使f(x)>0.考虑图像在x轴上方的部分,即f(x)>0,相应的x的集合就是ax2+bx+c>0的解集.

解不等式ax2+bx+c<0,就相当于使f(x)<0.考虑图像在x轴下方的部分,即f(x)<0,相应的x的集合就是ax2+bx+c<0的解集.

根据上述内容,结合图像写出不等式的解集.

思考:对于一元二次不等式的二次项系数a,如果a<0,上述结论如何?

三、解释应用 [例 题]

1.解不等式2x2-3x-2>0.

解:∵Δ=(-3)2-4×2×(-2)=25>0,方程2x2-3x-2=0的两根为x1=-,x2=2,∴不等式2x2-3x-2>0的解集为{x|x<-2.解不等式-x2+2x-3≥0.

或x>2}.

3.已知不等式mx2-(m-2)x+m>0的解集为R,求m的取值范围. 解:(1)当m=0时,原不等式可化为2x>0,解集不是R.(2)当m<0时,抛物线y=mx2-(m-2)x+m开口向下,解集也不是R.

(3)当m>0时,须满足

[练习] 1.解下列不等式.

(1)-3x2+6x>2.

(2)4x2-4x-1>0.(3)x2-3x+5>0.

(4)-6x2-x+2≤0.

4.以每秒a(m)的速度从地面垂直向上发射子弹,t(s)后,子弹上升的高度x可由x=ab-4.9t2确定.已知发射后5s,子弹上升的高度为245m,问:子弹保持在245m以上高度有多少秒?

四、拓展延伸

一元二次不等式(ax+b)(cx+d)>0(<0)也可以根据实数运算的符号法则求解,如解不等式(x+4)(x-1)<0.

注意到不等式左边是两个x的一次式的积,右边是0,那么它可以根据积的符号法则化为一次不等式组:

点 评

上一篇:社会居委会党总支个人工作总结下一篇:外婆600字作文