组合异形柱(共7篇)
组合异形柱 篇1
0前言
异形柱最突出的特点是截面灵活, 可以避免因柱体突出墙面占用一定的室内空间, 增加房间的使用面积[1]。方钢管混凝土柱具有承载力高, 抗震性能好, 节点构造简单等特点[2]。由于方钢管混凝土组合异形柱是在钢管混凝土柱和异形柱的研究基础上新发展起来的一种结构, 同时具有方钢管混凝土柱和异形柱的特点。因此, 对住宅结构体系, 方钢管混凝土组合异形柱具有广阔的发展前景。荣彬等[3]通过轴压试验, 对L形截面方钢管混凝土组合异形柱的力学性能进行了研究。Chen等[4]通过6根方钢管混凝土组合异形柱的理论分析和试验研究, 推导出承载力计算公式。Zhou等[5]对方钢管混凝土组合异形柱进行了低周往复荷载作用下的抗震性能研究, 结果表明异形柱整体工作性能及抗震性能较好。
方钢管混凝土组合异形柱作为一种组合结构, 其力学性能的影响因素很多, 各参数之间的函数关系复杂, 性能指标难以用精确的解析表达式计算。此外, BP神经网络方法可以通过学习和记忆来找出输入、输出变量之间的非线性映射[6], 理论证明一个三层网络可以任意精度逼近任意给定的连续函数, 具有极强的非线性映射能力, 是一种很有效的求解非线性问题的方法[7]。本文采用有限元对T形截面异形柱的压弯承载力进行模拟分析。基于有限元分析结果作为神经网络训练样本, 并进行参数化分析, 对T形截面异形柱的压弯承载力进行研究。
1 压弯力学性能的有限元分析
采用有限元分析软件ANYSY, 编制命令流, 对已有的3根T形截面方钢管混凝土组合异形柱 (见图1) 压弯承载力进行模拟分析和试验研究, 通过分析结果与试验数据进行比较, 验证有限元分析的可行性。
1.1 有限元建模及网格划分
在有限元分析模型中, 建立的T形截面方钢管混凝土组合异形柱模型高1600mm;单肢方钢管截面尺寸80mm×80mm, 管壁厚为4mm, 钢材选用Q235钢;混凝土采用C30强度等级;设计在1600mm×80mm×4mm的连接钢板上挖13个圆孔, 圆孔半径20mm, 圆孔中心距115mm。
模型中混凝土采用Solid45模拟钢管内混凝土, 关闭混凝土的压溃和开裂;钢管和连接钢板采用Shell181单元;上下所盖钢板采用Solid45单元;4根钢管的网格划分相同, 单元尺寸均为16mm×13mm。4根钢管内浇筑的混凝土网格划分也都相同, 尺寸为160mm×40mm。连接钢板网格采用映射划分, 限制为三角形单元, 控制最大边长为10mm。图2为异形柱的钢材和混凝土的网格划分形式。
1.2 材料的本构关系
钢材和混凝土均采用Von Mises屈服准则。钢材选用Mises屈服准则中的双线性各向同性强化理论, 混凝土选用多线性各向同性强化理论。计算参数见表1。
1.3 加载和接触方式
T形截面方钢管混凝土组合异形柱有单向受压和双向受压, 为使其为压弯受力状态, 把力分别作用在异形柱的对称肢、不对称肢和中肢上。故设计在三个边肢的截面上加载面力, 并把这个力加载在截面各个节点上, 再耦合各节点。最后采取位移加载, 保证全截面均匀受力, 避免出现应力集中现象。
采用Targe170和Conta173单元模拟钢管和混凝土间的接触作用;采用Targe170单元和Conta174单元模拟上下钢盖板和混凝土之间的接触作用。设置接触单元Conta173和Conta174的部分关键字选项, 消除初始缝隙和初始渗透。在每一荷载子步更新接触刚度, 并加入Shell181壳单元的厚度影响。
1.4 分析与试验结果对比
通过对T形截面异形柱进行压弯试验, 利用试验数据与有限元计算结果分析对比, 验证有限元的可行性。
1.4.1 破坏形式
(1) T形截面方钢管混凝土组合异形柱中肢有限元分析和试验的破坏形式如图3所示。试验结果表明, 直接受力单肢弯曲, 并带动整体发生明显的弯曲现象。破坏时, 直接受力单肢出现局部鼓曲, 与其相连的两对称单肢发生轻微的扭转变形。连接钢板在顶部开孔处被剪坏。有限元分析得出, 直接受力单肢发生局部屈曲, 结构整体轻微的弯曲。由于试验中直接受力单肢布置了加劲肋, 提高了单肢的强度和刚度, 致使整体的承载力提高, 各肢共同作用明显。
(2) T形截面方钢管混凝土组合异形柱不对称边肢的有限元分析和试验破坏变形如图4所示。试验中, 直接受力单肢随着荷载的增大发生扭转变形, 直至局部屈曲出现。试件整体发生明显的弯曲现象。连接钢板在顶部开孔处被剪坏。有限元分析结果和试验结论吻合较好, 结构整体发生较大的弯曲, 连接钢板多个开孔处发生严重剪切破坏。
(3) T形截面方钢管混凝土组合异形柱对称边肢的有限元分析和试验破坏形式如图5所示。对称边肢直接受力的试验中, 整体发生轻微的弯曲现象, 直接受力单肢最后发生局部鼓曲。连接钢板开孔处剪切变形不明显。有限元分析结果与试验现象基本一致, 结构整体发生弯曲变形, 直接受力单肢屈曲破坏。
1.4.2 异形柱的承载力
试件的承载力见表2。由表2可知, T形方钢管混凝土组合异形柱压弯试验极限承载力与有限元程序ANSYS计算结果的最大误差为7.9%, 最小误差为3.7%, 二者较吻合, 验证了有限元程序的可靠性。
1.4.3 有限元计算结果
利用正交试验设计32组T形方钢管混凝土组合异形柱, 通过ANSYS有限元程序对这32组异形柱进行压弯模拟计算。试件承载力计算结果如表3所示。
k N
2 压弯承载力的神经网络模型
2.1 建立网络模型
由于BP网络结构是典型的有导师学习。因此必须有一个对网络进行训练的训练集, 使网络能按照学习算法调整各参数。此外, 还需要建立一个评价训练好的网络性能的测试集。
本文采用三层前馈型BP网络结构来建立评估承载力的模型。根据本次研究的目的, 选取T形方钢管混凝土组合异形柱压弯承载力作为输出变量;钢管尺寸、钢管高度、钢管厚度、连接板开孔大小、钢材强度、混凝土强度、盖板厚度7个因素为输入变量。隐含层节点个数通过程序的反复调试和综合考虑误差大小、训练速度等确定为22个。其拓扑结构为7-22-1, 模型如图6所示。
2.2 样本的选取
训练样本的选择对网络训练很重要, 当样本训练数据不足时, 会造成过度拟合。样本的训练原则是尽量使用较少的样本同时又包含尽量丰富的信息。实测数据和模拟数据是样本收集的主要途径。由于T形截面方钢管混凝土组合异形柱压弯试验试件只有3个, 故本文训练采用模拟数据。采用编制的ANSYS命令流文件对上述32组T形截面方钢管混凝土组合异形柱压弯承载力进行模拟仿真, 得出的结果作为神经的训练样本。
2.3 训练网络模型
本文采用模拟计算的32组数据作为样本数据, 训练前将数据规范化到[0, 1]之间, 其中28组作为网络模型的训练集, 传递函数为非线性对数S型函数。由于BP算法在实际应用中收敛速度较慢, 为加快学习收敛速度, 采用L-M优化算法, 学习速率取lr=0.06, 期望系数误差goal=0.001, 对网络系统反复训练, 直到满足期望误差要求。其余4组作为测试集, 对其进行仿真预测。样本训练结果见表4。
2.4 网络模型仿真预测
采用训练好的网络模型结构对训练数据无关的4组数据进行测试, 测试结果见表5。由表5可知, 4组数据误差不超过10%, 说明网络模型训练值与数值模拟结果较吻合。所以, 建立的神经网络模型具有可行性, 训练效果较好, 具有一定的泛化能力。
3 参数变化对压弯承载力的影响
利用上述网络模型, 分析各种参数变化对T形截面方钢管混凝土组合异形柱压弯承载力的影响, 可以假定该网络模型输入相应的参数。这些假定的参数必须在网络学习时所采用的样本空间范围内, 以确保网络的可靠性。本文假定在一组数据中其他参数相同的情况下, 分析钢材强度、混凝土强度、开孔大小、钢管尺寸4个参数对T形截面方钢管混凝土组合异形柱压弯承载力的影响情况。
3.1 钢材强度的影响
钢材强度对T形截面方钢管混凝土组合异形柱压弯承载力的影响情况如图7所示。钢材强度分别为215N/mm2、260N/mm2、290N/mm2、320N/mm2、340N/mm2、370N/mm2, 其他参数依次为:混凝土强度19.1Nmm2、钢管高度2000mm、钢管尺寸90mm、钢管厚度5mm、连接板开孔大小40mm、盖板厚度35mm。由图7可知, 随着钢材强度的提高, 异形柱承载力也相应提高。
3.2 混凝土强度的影响
图8为混凝土强度对T形截面方钢管混凝土组合异形柱压弯承载力的影响情况, 混凝土强度分别为14.3N/mm2、16.5N/mm2、17.5N/mm2、18.5N/mm2、19.5N/mm2、21.1N/mm2, 其他参数依次为:钢材强度215N/mm2、钢管尺寸90mm、钢管厚度5mm、连接板开孔大小40mm、盖板厚度35mm、钢管高度2000mm。由图8可知, 混凝土强度提高, 异形柱轴压承载力也相应提高。
3.3 钢管尺寸的影响
图9为钢管尺寸对T形截面方钢管混凝土组合异形柱压弯承载力的影响情况, 钢管尺寸分别为75mm、80mm、85mm、90mm、95mm、100mm, 其他参数依次为:钢材强度215N/mm2、混凝土强度19.1N/mm2、钢管厚度5mm、连接板开孔大小40mm、钢管高度2000mm、盖板厚度35mm。由图9可知, 随着钢管尺寸的提高, 异形柱压弯承载力也相应提高。
3.4 连接板开孔大小的影响
图10为连接板开孔大小对T形截面方钢管混凝土组合异形柱压弯承载力的影响情况, 连接板开孔大小分别为32mm、37mm、42mm、49mm、54mm、60mm, 其他参数依次为:钢材强度215N/mm2、混凝土强度19.1N/mm2、钢管尺寸100mm、钢管厚度5mm、盖板厚度35mm、钢管高度2000mm。
由图10可知, 随着连接板开孔变大, 异形柱承载力降低, 只是承载力降低的百分率随连接板开孔变大影响不显著。
4 结论
(1) 对T形截面方钢管混凝土组合异形柱压弯采用有限元分析模拟和试验研究结果进行对比, 验证了有限元的可行性。基于有限元分析结果对T形截面方钢管混凝土组合异形柱压弯承载力进行神经网络预测。结果表明, 建立的神经网络模型能较快、较准确的计算出T形截面方钢管混凝土组合异形柱压弯承载力。
(2) 混凝土强度、钢管强度、钢管尺寸、开孔大小对轴压承载力有显著影响。
参考文献
[1]陈志华.钢结构和组合结构异形柱[J].钢结构, 2006, 21 (2) :27-29.
[2]韩林海.现代钢管混凝土结构[M].北京:科学出版社, 2000.
[3]荣彬, 陈志华, 周婷.L形方钢管混凝土组合异形短柱的轴压强度研究[J].工业建筑, 2009, 39 (11) :104-99.
[4]Chen Zhihua, Rong Bin, Fafitis Apostolos.Axial compression stability of a crisscross section column composed of concretefilled square steel tubes[J].J Mech Mater Struct, 2009, 4 (10) :1787-1799.
[5]Ting Zhou, Zhihua Chen and Hongbo Liu.Seismic Behavior of Special Shaped Column Composed of Concrete Filled Steel Tubes[J].Journal of constructional steel research, 2012, 75:131-141.
[6]朱劲松, 宋玉普, 李庆斌.混凝土轴拉疲劳试验及损伤模型[J].水利学报, 2002 (12) :79-84.
[7]潘毅, 杨成, 林拥军, 等.基于BP神经网络的FRP加固混凝土柱承载力预测[J].西南交通大学学报, 2008, 43 (8) :736-739.
论述建筑框架结构异形柱设计 篇2
1 框架结构异形柱
在进行建筑框架结构设计的过程中是离不开异形柱的设计的, 异形柱是一个极其重要的支撑体系, 如果建筑框架中没有合适的异形柱, 那么整体的建筑框架结构就会出现问题。异形柱就是指异性的截面柱, 因为建筑物并不是完全规则的, 这样就对整个建筑框架结构有着较高的要求, 在这样的情况下就出现了异形柱, 异形柱框架结构主要是在矩形框架和剪力墙之间的一个结构, 在肢高上也非常的接近框结构的受力, 这样就需要结合实际的情况进行异形柱的设计, 在进行异形柱的设计的时候, 需要将整体性工作做好, 保证异形柱是满足框架结构的要求的。普通的钢筋混凝土框架在截面上主要是呈现:圆形、方形和矩形, 但是在异形柱的截面上也有着一定的体现, 在这样的情况下, 就要使用几何形状的异形柱, 因此, 在使用异形柱的过程中, 一定要考虑整个建筑主体的刚性和承载力进行异形柱的设计。
2 异形柱的设计特点
异形柱在设计的时候还要考虑整个建筑的特色, 在使用异形柱的过程中, 对于墙壁也是起到围护的作用, 不需要承受着任何的重量, 如果使用的是轻质的墙壁, 那么就要将建筑整体性考虑好, 在使用异形柱的过程中, 建筑框架结构会受到的影响是极其小的, 在布置上也是极其灵活的, 这样对于业主来说是极其有利的, 业主可以充分的享受大的建筑空间, 在这一建筑框架结构的设计中, 还要对整体的建筑框架进行分析主要体现在以下几点:
2.1 质量较轻、刚度较高。
异形柱框架结构通过与矩形的框架结构进行对比, 这样就可以保证整个异形柱的框架结构体系, 在正常使用的过程中, 还要提升整个抗震性, 保证设计的质量和刚度, 如果抗震性上得到合理的利用, 那么就可以保证整个建筑结构的安全性和稳定性。异形柱的这一特点在建筑框架结构设计的过程中是非常关键的, 由于有着很强的安全性, 引起了很多建筑结构设计者的注意。
2.2 性价比高。
在性价比上的施工会增加一定的难度, 在这样的情况下, 也有着很大的优势, 由于有着很大的安全性, 尽管在性价比上有着一定的难度, 但是由于自身的特性就导致了基础面积的使用费是非常少的, 性价比上也有着一定的优势, 从这样的情况来看, 总体的经济效益也十分的明显。
异形柱的设计尽管已经经过了很长的历史, 但是也存在着很大的难题, 需要进行改进, 不仅在安全性上满足要求, 还要在美观性上满足基本的要求, 这样就要在整个设计的过程中综合考虑不断提高设计的理念, 提高施工的质量。
3 建筑框架结构异形柱设计的要点
3.1 高度比、肢长比和长细比。
在异形柱框架上利用7度抗震来设立防烈度区, 整个房屋的高度一定要小于35m, 如果是8度区的房屋高度, 那么高度需要小于25m, 高宽比上也不能够超过4, 这就是基本的要求。
柱的净高和截面之间的长细比一定要小于8, 但是不能够小于4, 否则是无法达到相关的标准的。还要根据砼的结构进行合理的规范, 如果在长细比上小于4, 那么就属于短柱, 短柱容易被破坏, 基于这种情况, 建筑框架异形柱设计要尽量避免出现短柱, 这样的结构设计才是合理的, 在整个建筑结构设计中需要将整个建筑结构设计做好。如果异形柱在长细比上大于8, 易引起附加偏心矩, 对轴压构件及小偏心受压构件承载力影响较大。根据长细比不宜<4, 在梁高为600mm的前提下, 当标准层层高为3.0m时, 异形柱的最大肢长可为600mm;底层层高为4.2m时, 肢长可为900mm因此, 异形柱的柱肢不应过长, 各肢肢高与肢厚比不应>4, 且异形柱截面肢厚对多层建筑不应<150mm;对高层建筑不应<200mm。
3.2 异形柱框架结构设计构造
3.2.1 柱纵筋与箍筋设置形式有“L”、“T”、“十”及双排布置等形式。
在同一截面内, 纵向受力钢筋宜采用相同直径, 其直径应≥14mm, 且小于25mm:纵筋间距>250mm时, 应设置纵向构造筋, 其直径可采用12mm, 并设拉筋, 拉筋间距为箍筋问距的两倍。
3.2.2
柱截面厚度<200mm时, 纵向受力钢筋每排不应多于2根;肢厚在200~250mm时, 每排钢筋不应多于3根, 必要时可分二排设置, 二排钢筋之间的净距不应<50mm。
3.2.3 框架柱中全部纵向受力钢筋的配筋率:
抗震等级为2级时, 中柱、边柱不应<0.7%, 角柱不应<0.9%;抗震等级为3级时, 中柱、边柱不应<0.6%, 角柱不应<0.8%。框架柱中全部纵向钢筋的配筋率, 抗震设计时, 对Ⅱ、Ⅲ级钢筋不宜>3%。
3.2.4 框架柱应采用复合箍.
严禁采用具有内折角的箍筋, 箍筋必须做成封闭式, 箍筋末端做成≥135°的弯钩, 弯钩端头直段长度不应<10d (d为箍筋直径) 。
3.3 抗震等级对异性柱框架设计的影响。
异形柱框架结构应根据结构类型、房屋高度及抗震设防烈度采用不同的抗震等级, 并应符合相应的计算和构造措施要求。根据规定:抗震设计防烈度为7度, 房屋高度<22m时, 为三级抗震, 高度>22m时, 为二级抗震;抗震设防烈度为8度, 房屋高度≤25m时, 为二级抗震。有些地区的《规程》还规定了异形柱框架结构只适用于抗震设防烈度为7度及7度以下的地区且房屋高度不超过35m。
3.4 如何减轻扭转力对建筑的影响。
异形柱框架结构的设计要尽量使结构平面对称, 使建筑平面和刚度达到更高的均匀度, 在设计过程中, 异形柱框架结构的两个主轴方向应协调布置, 并宜纵向交联, 这样是为了避免扭转对整体异形柱框架结构带来的不利影响, 如果已经发生了明显的不对称, 一定要及时评估扭转对于结构受力的不利影响, 及时修正, 让建筑结构更加具有性价比和安全性。
4 结论
建筑框架结构异形柱设计, 需要综合多方面的因素, 整合多方面的资源来整体考虑和进行。异形柱框架结构具有抗震性高、室内空间布局灵活等等优点, 在实际的建筑框架异形柱设计中应该尽可能体现, 扬长避短, 让异形柱框架结构的优势体现出来。
参考文献
[1]张华.宾馆建筑异形柱框架结构设计探讨[J].建筑设计管理, 2012 (10) .
[2]阳旦娇.探讨异形柱框架结构设计在建筑工程中的应用[J].广东建材, 2011 (11) .
浅析异形柱框架结构设计 篇3
关键词:异形柱,轴压比,框架结构,节点构造
近年来, 随着现代化住宅建筑的不断发展以及人们对住宅平面与空间布置要求的不断提高, 原来普通框架结构的露梁露柱对建筑平面与空间的限定和分隔已越来越不能被房屋使用者所接受, 因为它直接影响到室内家具布置及空间使用的效果。异形柱框架结构很好地解决了这个问题。异形柱框架结构与传统的框架结构体系相比, 由于肢厚与填充墙基本等厚, 解决了普通矩形柱框架结构在房间内露柱造成的使用上不便的问题, 使用面积相应增加了许多, 同时解决了砖混结构超高和大开间要求存在的技术问题, 因此该结构受到了建筑师及广大用户的欢迎, 并推广应用。
异形柱框架结构与普通矩形柱框架结构的柱子在受力性能等方面不同, 因此异形柱框架结构在基本规定、计算、构造及施工方面均有不同的要求。本文着重对异形柱框架结构设计的一些疑难问题进行探讨。
异形柱框架结构是一种全新的结构体系。《混凝土异形柱结构技术规范》 (JGJ 149—2006) (以下简称《规范》) 中给出的异形柱定义为:截面几何形状为“L”形、“T”形和“十”字形, 且截面各肢的肢高肢厚比不大于4的柱。
1 异形柱框架结构体系的适应范围
异形柱框架结构的适应范围主要为:1) 抗震设防裂度为7度及7度以下地区;2) 房屋高度不超过27M;3) 柱网尺寸不大于7.2M, 当设置斜撑或剪力墙, 形成异形柱框一掌或异形柱框一剪结构体系, 房屋高度及抗震等级的确定可参照其他地区技术规程确定。
2 异形柱的轴压比
由于L、T、十、一形截面在压弯作用下其延性远不如矩形柱。现行规范中对框架柱轴压比限值的规定, 主要是按框架柱出现以受拉钢筋先屈服的大偏心, 受压破压, 这种破坏是延性的。可将轴压比限值和延性限值相联系, 最后得出结论:截面的曲率延性μp与轴压比n, 箍筋间距与纵筋直径之比s/d, 箍筋直径dv以及荷载角四种因素有关。确定异形柱的轴压比时取相应延性最差的荷载角方向的μp、n、s/d的关系回归出计算公式, 具体可参见《建筑结构》1999.1, 钢筋混泥土异形截面双向压弯柱延性性能理论研究。
3 梁、柱、节点构造
目前有关异形柱框架结构的研究中, 有关节点受力的分析及研究甚少。由于异形柱肢宽与梁宽相等, 且各肢常只有一个方向的梁与之相连。这种节点抗剪力面积较小, 同事节点核心区狭小 (与梁柱同宽) , 梁上荷载传给柱子时应力分布复杂, 尤其在地震荷载其应力分布将更加复杂。当异形柱轴压比较大时, 这种节点将有可能极易破坏。因此设计此类节点时建议在节点范围内增设钢筋网片, 以提高节点的承载能力。
4 基础设计
异形柱的基础形式常见有条基、独立基础、桩基。在基础设计时应将基础的抗力中心重合, 并验算在两个主惯性轴方向的强度, 其他有关验算同普通混凝土柱。
5 异形柱框架结构计算
由于异形柱框架结构柱截面形式多种多样, 故一般采用三维整体分析方法。由实验得出, 异形柱截面变形基本符合平截面假定, 力学特性接近于柱。目前可采用柱模型进行三维计算分析常用设计软件有:TBSA、TAT、SATWE等。
TBSA不能直接属兔异形柱的截面形式, 须按柱子双向刚度相等的原则, 将异形截面简化成矩形截面, 但存在着面积差。同事L型柱截面心主轴的角度也发生了变化, 进而影响构件内力计算及周期位移, 同时柱的定位、梁的计算长度都有问题。
TAT、SATWE可直接输入异形柱的截面, 不存在柱子定位, 面积误差及截面形心主轴的变化问题。在计算异形柱刚度时, 以其主形心的主轴坐标作为参考点, 求出异形柱主形叠加。计算时按材料力学的经典公式求出各种异形截面在主轴的惯性钜和方向角, 并建立主轴的单元刚度, 与梁元刚度, 墙元刚度一起组集总刚, 故雨TBSA相比, 采用TAT、SATWE进行异形柱结构分析计算得出的内力更合理。
6 结语
随着我国经济和技术的高速发展, 人民生活水平的不断提高, 现代住宅建筑要求大开间、平面及房间布置灵活、方便、室内不出现柱楞、不露梁等。而普通的砖混房屋分隔单一, 开间受制约, 可变性差, 无法满足人们对建筑使用功能的不同使用要求。致使人们对异形柱框架结构的研究不断深入, 异形柱框架结构将越来越多的被人们采用。
参考文献
[1]钢筋混泥土异形截面双向压弯柱延性性能理论研究.建筑结构, 1999.
[2]混凝土异形柱结构技术规程理解与应用.中国建筑工业出版社.
应用异形柱结构设计体会 篇4
关键词:异形柱,轴压比,结构设计
异形柱结构是指柱肢的截面高度与柱肢宽度的比值在2-4, 相对于正方形与矩形柱而言是异形的柱子, 常用的有“L”型角柱、“T”型边柱、“十”字型中柱。异形柱是短肢剪力墙向矩形柱过渡的一种构件, 它介于矩形柱与剪力墙之间, 是吸收了框架结构的优点而逐渐发展起来的, 克服了普通框架结构与普通剪力墙结构的缺点, 能较好地满足现代住宅建筑要求大开间、平面及房间规整、布置灵活、室内不出现柱楞、不露梁等, 具有更好的经济效益和社会效益, 因而深受住户和开发商的欢迎。
1 异形柱结构体系及其计算
异形柱结构型式有异形柱框架结构、异形柱框架-剪力墙结构和异形柱框架-核心筒结构。异形柱结构自身的特点决定了其受力性能、抗震性能与矩形柱结构不同。由于异形柱截面不对称, 在水平力作用下产生的双向偏心受压给承载力带来的影响不容忽视。因此, 对异形柱结构应按空间体系考虑, 宜优先采用具有异形柱单元的计算程序进行内力与位移分析。对异形柱框架结构, 一般宜按刚度等效折算成普通框架进行内力与位移分析;对有剪力墙的异形柱结构, 可按面积等效或刚度等效折算成普通框架-剪力墙结构进行内力与位移分析。异形柱的截面设计, 则可根据上述方法得出的内力, 采用适合异形柱截面受力特性的截面计算方法进行配筋计算。
由于异形柱的抗震性能低于相同条件的规则形柱 (如方形柱、矩形柱、圆形柱、多边形柱等) , 因此在进行结构布置时应注意以下问题:a.宜采用规则的设计方案, 使结构的平面和刚度均匀对称, 避免扭转对结构受力的不利影响, 抗震的异形柱结构应符合抗震概念设计要求;b.框架纵横柱网轴线宜分别对齐拉通, 异形柱截面肢厚中线宜与框架梁及剪力墙中线对齐;c.建筑立面和竖向剖面宜规则均匀, 避免过大的外挑和内收, 结构侧向刚度宜沿竖向均匀变化, 避免抗侧力结构的侧向刚度和承载力沿竖向发生突变;d.不宜采用楼层错层的设计方案。
2 异形柱框架的计算
因为框架结构的侧向刚度远小于框架-剪力墙结构, 故在较高抗震设防区异形柱框架结构的应用会受到更大的限制, 对此, 《混凝土异形柱结构技术规程》 (JGJ149-2006) 在异形柱结构适用的房屋最大高度和最大高宽比、抗震等级确定、弹性层间位移角限值、柱轴压比限值等方面都作出了详细的规定。有关技术文献指出:异形柱结构适用高度在VII度及以下烈度区由柱轴压比控制, 在VIII度 (0.20g) 烈度区则由框架梁节点核心区受剪承载力控制。
由于异形柱框架梁柱节点核心区受剪承载力低于同截面面积矩形柱, 在柱截面对称轴内受水平力作用时, 弹性分析计算其翘曲应力很小, 此时如同承受水平力的偏压构件, 仍可按平截面假定分析, 按砼设计规范计算, 特别是在框-剪结构中, 对VI度及其以下烈度区的Ⅰ、Ⅱ类场地, 框架柱只承担水平风载的一小部分, 如按一般偏压柱计算, 误差较小, 此时异形柱可用刚度等效面积等效代换成矩形柱后由程序进行整体分析。而在水平力较大, 且水平力作用在非主轴方向时, 则翘曲应力不容忽视, 按平截面假定误差较大, 故应对异形柱框架结构进行有限元分析, 以合理确定内力和配筋类型数量及位置。在进行内力计算和配筋计算时, 宜选用带有异形柱计算功能的计算软件。目前国内可直接进行异形柱截面内力计算和截面设计的软件有中国建研院的TAT、SATWE程序, 广东省建院的SS、SSW程序以及天津大学的钢筋砼异形柱结构配筋计算程序CRSC。这些程序均运用数值积分法进行正截面配筋设计, 准确性较高, 经过大量工程校算, 能有效地满足结构安全性要求。
3 异形柱的轴压比控制
框架结构、框-剪结构中柱的延性对于耗散地震能量防止框架倒塌起着十分重要的作用, 轴压比是影响砼柱延性的一个关键指标。有关研究成果表明:柱的侧移延性比随着轴压比的增大而急剧下降。
异形柱由于多肢的存在, 其剪力中心与截面形心往往不重合, 在受力状态下, 各肢产生翘曲正应力和剪应力。剪应力会使柱肢混凝土先于普通矩形柱出现裂缝, 即产生腹剪破坏裂缝, 导致异形柱脆性明显, 使异形柱的变形能力比普通矩形柱的变形能力低。有试验研究成果表明:异形柱的延性普遍低于普通矩形柱, 而轴压比、高长比 (即柱净高与截面肢长之比) 是影响异形柱破坏形态及延性的两个重要因素。
在高轴压比情况下, 增加箍筋用量对提高柱的延性作用已很小, 因而作为异形柱延性的保证措施, 必须严格控制轴压比, 同时避免高长比小于4 (短柱) 。控制柱截面轴压比的目的, 在于要求柱应具有足够大的截面尺寸, 以防止出现小偏压破坏, 提高柱的变形能力, 满足抗震要求。广东《钢筋混凝土异形柱设计规程》 (DBJ/T15-15-95) 按国家建筑抗震设计规范中所规定的柱子轴压比降低0.05取用 (按截面的实际面积计算) 。根据笔者既往工作经验, 为便于应用, 在实际工作中建议在VI度设防区, 对于异形柱框架结构, L形截面柱的轴压比不应超过0.6 (按截面的实际面积计算, 下同) , T形截面柱的轴压比不应超过0.65, 十字形截面柱的轴压比不应超过0.8;对于异形柱框架-剪力墙 (或核心筒) 结构, 由于框架是第二道抗震防线, 所以框架柱的轴压比限值可放宽到0.65 (L形截面柱) 、0.70 (T形截面柱) 、0.90 (+字形截面柱) , 但对于转换层下的支承柱, 其轴压比仍不应超过0.60。
短柱在压剪作用下往往发生脆性的剪切破坏, 故在设计中应尽量避免出现短柱。根据高长比不宜小于4的标准, 在梁高为600mm的前提下, 当标准层层高为3.0m时, 异形柱的最大肢长可为600mm;底层层高为4.2m时, 肢长可为900mm。
4 配筋构造及肢厚选择
《混凝土异形柱结构技术规程》 (JGJ149-2006) 对异形柱结构的混凝土强度等级、钢筋类别、主筋连接和保护层厚度、梁柱钢筋在节点区的放置连接构造等均作出了明确的规定, 如混凝土强度等级应高于C25而低于C50, 截面肢厚和肢高分别应在200mm和500mm以上, 高厚比≤4.0等。
在正确的结构选型及计算后, 截面内钢筋的构造也是保证异形柱受力性能的重要因素。由于异形柱的肢厚有限, 当纵向受力钢筋的直径太大时, 会造成粘结强度不足及节点核心区钢筋设置困难, 故纵向钢筋的直径不应大于Ф25。由于异形柱截面的特点, 柱肢端部会出现较大应力, 加上梁作用于柱肢上的应力不均匀, 一般越靠近肢端应力就越大, 这会对柱肢形成偏心压力从而进一步加大肢端压应力。因而在异形柱配筋时, 应在肢端设置暗柱, 暗柱的外排钢筋由计算而定。离端部厚度范围内设2Ф14的构造纵筋, 箍筋同柱, 这样做可限制柱肢的砼裂缝的开展, 提高异形柱局部抗压抗剪强度及变形能力。柱上的箍筋不仅能抗剪, 也可约束砼变形, 增大其延性。异形柱由于不易形成多肢复合箍, 因而其配筋率只能由加大箍筋直径和加密箍筋间距来实现。相同配箍率下, 箍筋直径大则其延性指标好, 因而箍筋宜采用Ф8、Ф10, 其间距可比普通柱箍筋间距小。
广东地区的居住建筑围护墙、分户墙和楼梯墙厚度通常为200mm、190mm、180mm, 其它室内分隔墙厚度为120mm、100mm、90mm, 由于异形柱的肢厚规定在200mm以上300mm以下, 故外墙肢厚通常取200mm, 特殊情况下外墙肢厚需取250mm时, 则与之配合的围护墙厚须取240mm。
5 结论
异形柱结构有着较大的市场需求但其应用也有一些限制条件, 在设计中应根据工程受力特点选用合理的结构形式, 加强构造措施, 正确掌握计算分析方法和截面配筋, 确保设计质量和结构安全。
参考文献
浅谈异形柱框架结构设计 篇5
近年来, 从多层框架结构衍生发展的异形柱框架结构因其能较好地满足建筑使用上和结构性能上的要求, 而逐渐得到了推广应用。异形柱框架结构主要应用于多层住宅, 填充墙采用粉煤灰加气混凝土砌块, 厚度与异形柱 (T形边柱, 十字形中柱, L形角柱等) 肢厚相同, 室内不出现柱楞, 钢筋混凝土异形柱框架结构有如下特点:
1.1 具有一般矩形柱框架结构整体性较强, 抗振延性好的优点。
1.2 兼有砖混结构的优点, 使用面积增加8%~10%, 同时又有效解决了砖混房屋超高的技术问题。
1.3 提供了大空间及住户拆改装修的便利条件。
目前, 现行国家规范或规程中尚未给出有关异形柱结构设计的条款, 设计人员所能依据的是一些地方规程, 主要是浙江省标准<<钢筋混凝土异形柱设计规程》和杭州市<<大开间住宅钢筋混凝土异形柱框轻结构技术规程》。结构设计人员在设计中常会遇到一些规范或规程尚未论及的问题, 需要设计人员积累经验, 利用正确的概念进行设计。
2 异形柱的概念
异形柱是指截面肢厚小于300mm的L、T、+形的截面柱。建筑界所讲的“异形柱”, 特点是截面肢薄, 由此引起构件性能与矩形柱性能的包括受力、变形、构造做法等一系列差异。制定规程主要是针对肢厚200、250mm的异形柱。其形式与短墙肢相似, 若肢较长就称短墙肢, 很难划分两者的界线。
其中“Z”、“一”形柱未列入规程的原因如下。
第一, “Z”形柱在实际工程中, 应用很多。“Z”形截面柱与“一”形截面柱类似, 即两主轴方向抗弯能力相差甚大, 多数情况下是Z形的上下两水平肢受与其方向一致的力, 即由两根梁传来的拉力或压力, 这只有通过中间肢的受扭来传递, 后果只能是中间肢的断裂。“Z”形异形柱目前研究的不是很多, 但在实际工程还是有用的。如果结构中只是个别柱为Z形, 可以采用加强构造的设计。
第二, “一”形柱截面两主轴方向抗弯能力相差甚大。不论是在风荷载作用下还是在地震作用下结构中的柱一般都是受到两个方向的弯矩同时作用, 其受力后的表现可想而知, 它在双向剪力作用下性能也不好, 由GB50010柱双向受剪承载力计算公式可见, 柱截面相邻两边长相差越多, 其斜向受剪承载力越低。
3 异形在结构设计的一般规定
今年实施的新规范中, 并没有把异形柱列入其内, 说明国家对异形柱设计是非常慎重的, 能够借鉴的也只有上面提到的两地方规程, 同时仍应依据我国现行标准中的规定, 进行截面、构造、抗震等设计。
3.1 结构布置
异形柱框轻结构平面布置的一般原则:在异形柱结构的一个独立结构单元内, 宜使结构平面形状和刚度均匀对称, 明显不对称的结构应考虑扭转对结构受力的不利影响, 异形柱框架应双向设置, 并宜纵向交联。
竖向布置的一般原则:异形柱结构的竖向体型应力求规则、均匀, 避免有过大的外挑、内收以及楼层刚度沿竖向的突变。
3.2 适用高度及高宽比、长细比、肢长等限制
异形柱根架在7度抗震设防烈度区, 要求房屋高度不大于35m, 高宽比不宜超过5;8度区房屋高度不大于25m, 高宽比不宜超过4。
柱净高与截面长边之比即长细比不宜小于4且不大于8, 根据砼结构规范, 长细比小于4即短柱, 短柱在压剪作用下往往发生脆性的剪切破坏, 设计中应尽量避免出现短柱, 长细比大于8, 易引起附加偏心矩, 对轴压构件及小偏心受压构件承载力影响较大。
根据长细比不直小于4, 在梁高为600mm的前提下, 当标准层层高为3.0m时, 异形柱的最大肢长可为600mm;底层层高为4.2m时, 肢长可为900mm。因此, 异形柱的柱肢不应过长, 各肢肢高与肢厚比不应大于4, 且异形柱截面肢厚对多层建筑不应小于150mm;对高层建筑不应小于200mm。
3.3 抗震等级
异形柱框架结构应根据结构类型、房屋高度及抗震设防烈度采用不同的抗震等级, 并应符合相应的计算和构造措施要求, 根据浙江《规程》规定:抗震设防烈度为7度, 房屋高度<22m时, 为三级抗震, 高度≥22m时, 为二级抗震;抗震设防烈度为8度, 房屋高度≤25m时, 为二级抗震.浙江《规程》规定异形柱框架结构只适用于抗震设防烈度为7度及7度以下的地区且房屋高度不超过35m。
异形柱框架结构对房屋高度控制是比较严格的, 一般仅适用于多层住宅, 但由于它在结构布置上灵活、方便, 室内不出现柱楞、不露梁等优点, 使之成为近几年住宅设计的一种潮流, 不论别墅、多层甚至小高层, 作为房产开发商几乎都要求设计院设计成钢筋砼异形柱结构体系。因此设计人员必须慎重对待, 不可盲木跟风, 应严格控制各项设计参数。
4 异形柱框架结构设计构造
4.1 框架柱
柱纵筋与箍筋设置形式有“L”、“T”、“十”及双排布置等形式, 在同一截面内, 纵向受力钢筋宜采用相同直径, 其直径不应大于25mm, 且不小于14mm:纵筋间距大于250mm时, 应设置纵向构造筋, 其直径可采用12mm, 并设拉筋, 拉筋间距为箍筋间距的两倍。
柱截面厚度小于200mm时, 纵向受力钢筋每排不应多于2根;肢厚在200~250mm时, 每排钢筋不应多于3根, 必要时可分二排设置, 二排钢筋之间的净距不应小于50mm。
框架柱中全部纵向受力钢筋的配筋率:抗震等级为2级时, 中柱、边柱不应小于0.7%, 角柱不应小于0.9%;抗震等级为3级时, 中柱、边柱不应小于0.6%, 角柱不应小于0.8%, 框架柱中全部纵向钢筋的配筋率, 抗震设计时, 对Ⅱ、Ⅲ级钢筋不宜大于3%。
框架柱应采用复合箍, 严禁采用具有内折角的箍筋, 箍筋必须做成封闭式.箍筋未端做成不小于135。的弯钩, 弯钩端头直段长度不应小于10d (d为箍筋直径) 。
箍筋加密区长度取柱截面的长边尺寸、层间柱净高的1/6和500mm者中的最大值.在加密区内, 箍筋的直径不变, 间距100mm。
4.2 框架节点
框架梁的截面宽度与异形柱的肢宽相等或梁截面宽度每侧凸出柱边小于50mm时, 在梁四角上的纵向受力钢筋应在离柱边大于800mm处, 且满足小于1/25坡度的条件下向柱筋内侧弯折伸入框架节点内。
当框架梁的截面宽度的任一侧凸出柱边大于等于50mm时, 则该侧梁角上的纵向受力钢筋可在本肢柱筋外侧伸入梁柱节点内。
4.3 柱与填充墙的连接
异形柱框架结构的填充墙应采用轻质墙体材料, 并必须与框架可靠地连接。当采用砌体填充墙时, 在框架与填充墙的交接处, 沿高度每隔500mm或砌体皮数的适当倍数, 用钢筋与柱拉接, 钢筋由柱的每边伸出, 进入墙内的长度:2级抗震时沿填充墙全长设置;3级时不小于填充墙长的1/5及700mm。填充墙的砌筑砂浆强度等级不应低于M2.5。
填充墙长度大于5m时, 墙顶部与梁宜有拉结措施;填充墙高度超过4m时, 宜在墙高中部设置与柱连接的通长钢筋砼水平墙梁。
5 结束语
随着我国住宅产业化、现代化不断深入, 今后将会对结构设计提出更高的要求。异型柱结构设计目前还没有统一的国家规范, 这说明还有许多基础性工作没有完成, 但在实际工程中异型柱框架结构却大量应用, 这就需要设计人员从该体系基本特征出发, 认真进行内力分析计算。并结合不同截面形式的异型柱进行承截力计算, 注意把握有关构件的配筋设计, 处理好一系列结构构造, 保证结构的安全性、可靠性、经济性, 不断地完善、充实、发展异型柱框架结构体系的有关设计理论。
参考文献
[1]GB50010-2002, 混凝土结构设计规范Is].
浅析钢筋混凝土异形柱延性性能 篇6
异形柱是指有别于通常使用的矩形、圆形截面而言的L、T和十字形等异形截面柱。其截面各肢长与肢厚之比不大于4, 柱肢一般与填充墙等厚。采用异形柱的结构可以避免普通框架柱在室内凸出、占用建筑空间的问题, 为建筑设计及使用功能带来灵活性和方便性。随着异形柱结构在工程中的广泛应用, 异型柱结构的抗震性能一直为研究者所关注。为了满足建筑抗震设计中“小震不坏、中震可修、大震不倒”的基本准则, 要求异形柱结构必须具有较好的延性。所谓延性是指材料、构件或结构在荷载作用或其它间接作用下, 进入非线性状态后在承载能力没有显著降低情况下的变形能力。在建筑抗震设计中, 延性设计和承载力设计具有同等重要的地位, 延性的好坏通常能够衡量一个结构在地震作用下的耐变形的能力和消耗地震能量的能力。在钢筋混凝土异形柱延性性能的研究上天津大学建筑工程学院的赵艳静、陈云霞、王玲勇等进行了系统的实验和大量的理论研究, 并根据钢筋混凝土双向压弯柱的工作原理, 提出了用非线性全过程分析方法来研究异形柱双向压弯柱截面延性的方法。
2 非线性分析基本方法
2.1 基本假定
根据《混凝土结构设计规范》GB50010-2002、相关文献和已有的试验, 在进行钢筋混凝土异形柱非线性全过程分析时有如下基本假定:
(1) 平截面假定, 即在构件从加载至破坏的整个受力过程中, 每一截面的平均应变符合平截面变化规律;
(2) 不考虑受拉区混凝土的受拉强度;受压区混凝土的应力-应变关系采用Kent-Park模型;考虑混凝土受到箍筋的约束作用;
(3) 纵向钢筋的应力-应变关系取为理想弹塑性模型;
(4) 将柱截面划分为若干混凝土矩形小单元, 近似认为各单元上混凝土应力分布均匀, 其合力位于形心。将每根钢筋也作为一个单元, 钢筋处的合力位于其形心;
(5) 忽略混凝土收缩、徐变及温湿度变化引起混凝土的内应力和变形;假设钢筋与混凝土粘结良好, 变形一致。
2.2 数值计算方法
在已知竖向轴力N和荷载角α的情况下采用逐级增加曲率的方法计算钢筋混凝土异型截面柱弯矩曲率关系, 从而求得界面的曲率延性比。下面介绍其具体步骤:
(1) 对异形柱截面进行单元划分, 确定各混凝土单元形心坐标和各钢筋单元的形心坐标;
(2) 初步选定中和轴距坐标原点的距离R以及中和轴法线角度θ, 按下式求得截面上各钢筋以及混凝土单元形心至中和轴的距离:γi=R- (xicosθ-yicosθ) ;
(3) 给定初始截面曲率ψ0, 并根据平截面假定确定各混凝土单元和钢筋单元形心的应变:ɛi=ψ0γi;
(4) 根据基本假定中钢筋和混凝土的应力-应变关系可求得各混凝土单元和钢筋单元的应力;
(5) 在已知竖向轴力N和荷载角α的情况下, 利用平衡关系可以得到截面的内力, 其公式如下:
undefined
其中, nc和ns分别为截面划分的混凝土单元数和钢筋单元数, Aci和Cci分别为第个混凝土单元的面积和应力, Asj和Csj分别为第j个钢筋单元的面积和应力, M'x和M'y分别是截面关于x、y轴的弯矩, M'为截面弯矩;
(6) 比较荷载抵抗角β (β=acrtan (M'x/M'y) ) 与外荷载角α以及所求轴力N'与给定轴力N是否满足误差要求。如果不满足则分别改变中和轴到原点的距离R和中和轴法线角度θ重新进行计算, 直到满足容许误差条件为止。此时的M'即为双向压弯柱在轴力N作用下截面曲率为ψ0时的弯矩值M;
(7) 以一个很小的步长Δψ逐级增加曲率, 利用迭代求得在一定的轴力N作用下各个曲率ψ所对应的弯矩, 并根据公式uφ=ψu/ψy计算截面的曲率延性比, 其确定截面的屈服曲率ψy和极限曲率ψu参考了文献[6]。
3 影响钢筋混凝土异形柱延性的因素
3.1 荷载角的影响
在异形柱结构中, 各柱肢通常采用L形、T形、十字形等非规则几何形状, 由于截面形状的特殊性, 决定了其在不同的荷载角作用下, 截面延性有较大的差异。荷载角影响延性的原因是其直接影响柱截面界限破坏时的钢筋和混凝土内应力和应变分布情况, 从而导致中和轴不同和受压区高度不同。大量试验研究表明:通常情况下, 对于常用L形、T形、十字形三种截面异形柱, 在最不利荷载角作用下, 十字形的截面延性最好, 和普通矩形柱相差不大, T形次之, L形最差。
3.2 轴压比的影响
轴压比对于钢筋混凝土的抗震性能影响很大, 是影响异形柱截面延性的最主要因素。试验研究和工程震害的事例已经表明:随轴压比的增加, 构件的延性都逐渐降低。当构件轴压比较小时, 受拉钢筋距离中和轴较远, 很容易屈服, 受压钢筋距离中和轴较近, 从而导致截面屈服曲率较小, 极限曲率较大, 使压弯构件的延性接近于受弯构件, 构件有较好的延性。随着轴压比的增大, 受压区边缘混凝土就会先压碎, 截面承载力下降较快, 从而导致极限曲率变小, 截面延性变差, 并且减弱了箍筋对构件延性的影响。因此, 为了确保结构和构件在地震作用下具有一定的延性, 2006年8月1日颁布的中华人民共和国行业标准《混凝土异形柱结构技术规程》JGJ 149-2006 (以下简称《规程》) 规定了不同抗震等级条件下的轴压比限值。
3.3 约束箍筋的影响
箍筋不但提高了柱的抗剪能力以防止柱的剪切破坏, 还可以对受压混凝土起约束作用, 在箍筋的约束作用下, 受压混凝土处于三向受压应力状态, 受压强度较单向受压时有所提高, 同时也阻碍了混凝土斜裂缝的发展, 延缓了混凝土的破坏, 从而提高了柱的截面延性。大量试验研究表明:在低轴比作用情况下, 配箍率对延性的影响比高轴压比大。单纯增加箍筋直径、减少箍筋间距都能提高异形截面柱的截面曲率延性。其中箍筋间距的影响远大于箍筋直径对它的影响, 加密箍筋间距可以显著提高截面延性。因此在实际工程中, 异型柱一般采用复合箍筋, 宜选用Φ8、Φ10钢筋, 箍筋间距应比普通柱箍筋间距小些, 其体积配箍率ρv不宜大于2%。
3.4 剪跨比的影响
剪跨比是决定异形截面柱截面特性的主要因素, 根据剪跨比λ (λ=M/Vhc0) 的大小, 可将异形柱分为长柱 (λ>2) 、短柱 (1.5<λ≤2) 和极短柱 (λ≤1.5) 。一般情况下, 长柱常发生正截面破坏, 而短柱特别是极短柱则多出现斜截面受剪破坏。大量试验研究表明:异形柱为长柱时, 在单调荷载特别在低周反复荷载作用下一般发生延性较好弯曲破坏, 而若为短柱特别是极短柱一般发生延性较差的斜截面受剪破坏时, 脆性破坏较矩形柱显著。因此为避免异形柱出现斜截面受剪破坏, 《规程》中规定异形柱的剪跨比宜大于2, 同时为避免出线极短柱, 减少地震作用下发生脆性破坏的危险性, 还规定不应小于1.5。
3.5 混凝土强度的影响
混凝土强度等级对异形柱截面延性的影响主要反映在轴压比的变化之中。当外轴力一定时, 提高混凝土强度, 则降低了柱界面的轴压比, 无疑可以提高异形柱的截面延性。当轴压比相同时, 提高混凝土强度等级的同时提高了轴压力, 致使截面中和轴距受拉区边缘的距离变小, 在钢筋先屈服时屈服曲率会增大, 从而导致截面延性会略有减小, 但此时混凝土强度对截面延性的影响很小。
4 改善异形柱延性性能的措施
结构延性在结构的抗震中起着非常重要的作用, 通过对异形柱延性性能影响因素的分析, 给出在异形柱结构设计中改善异形柱延性性能的一些措施:
(1) 加厚异形柱肢。 加厚柱肢来解决异形柱延性问题的方法在实际工程中已有应用。将异形柱肢厚由200mm加厚为 250mm, 异形柱截面积增加, 可以有效地降低柱子的轴压比。在不能提高混凝土强度的情况下, 加厚柱肢的方法有效的提高了异形柱延性。虽然, 由于柱肢及填充墙加厚至250mm, 丧失了因采用异形柱而提高建筑使用面积的优越性, 但只要肢厚不超过 250mm, 就仍然保留了柱棱不外露的优点。梁宽、柱肢厚达到 250mm, 既方便设计人员配筋, 又降低了施工难度, 对确保结构的安全非常有益。
(2) 设置暗柱。 在轴向力和弯矩共同作用下, 异形柱柱肢部分是最脆弱的, 容易造成小偏心破坏, 肢端受压区边缘混凝土应变超过极限压应变值, 异形柱的截面曲率延性变差。在异形柱的各肢端部及各肢交汇处设置暗柱, 不但可以提高腹板端部配筋, 缩小拉压筋的比例, 而且可以提高端部混凝土的极限压应变和承载力, 可以显著地提高异形柱的延性及截面承载力, 并提高异形柱的轴压比限值。国内目前对带暗柱的异形柱的研究较少, 还需要今后进一步的理论试验研究。
(3) 采用高强混凝土。 对于高强混凝土, 工程应用人员普遍认为它有两大缺点:技术难度大和延性差。但是, 随着新技术的应用以及对混凝土材料的深人研究, 高强混凝土长期以来被低估的性能已展现出来。高强混凝土在异形柱中的应用具有以下优点:可以减小柱内轴压比, 有利于提高柱的延性。此外其可减小异形柱截面肢长, 不易造成短柱。可以提高轴压强度, 使柱的剪跨比增大, 剪压比减小, 从而提高了柱的剪切抗力, 避免出现剪切型破坏, 提高结构的抗震性能。
(4) 应用钢纤维泥凝土。 钢纤维混凝土是20世纪80年代开发出来的新型建筑材料, 它是在普通混凝土中掺入少量乱向短钢纤维形成的一种复合材料。钢纤维混凝土具有较高的抗拉、抗裂和抗剪强度, 良好的抗冲击韧性和抗地震延性。鉴于钢纤维混凝土具有的优良性能, 如能在异形柱结构的底层或底部几层应用钢纤维混凝土, 将会很好地增强异形柱的受力性能和改善异形柱延性。目前关于应用钢纤维泥凝土的异形柱研究还很少, 对延性提高的程度还需要今后进一步的研究。
改善异形柱延性性能的方法较多, 各种方法可以单独使用, 也可以混合使用来解决具体问题。除此之外还应尽快推广与应用建筑行业新技术、新工艺、新材料, 同时还希望针对在改善异形柱延性方面存在的某些具体问题 (如暗柱、钢纤维混凝土等) 进行更多的研究。
参考文献
[1]中华人民共和国行业标准.混凝土异形柱结构技术规程 (JG J149-2006) [S].中国建筑工业出版社, 2006.
[2]中华人民共和国国家标准.混凝土结构设计规范 (GB50010-2002) [S].中国建筑工业出版社, 2002.
[3]田温苓, 周明杰, 陈向上.混凝土异形柱结构设计[M].中国建材工业出版社, 2007.
[4]王依群.混凝土异形柱结构理论及应用:全国混凝土异形柱结构学术研讨会论文集[M].知识产权出版社, 2006.
[5]张新培.钢筋混凝土抗震结构非线性分析[M].科学出版社, 2003.
[6]赵艳静, 陈云霞, 王玲勇.钢筋混凝土异形截面双向压弯柱延性性能的理论研究[J].建筑结构, 1999, (1) .
大开间异形柱框架结构设计 篇7
1 大开间异形柱结构的主要受力缺陷分析
普通的异形柱框架结构在受力上存有一些缺陷,当开间增大后形成大开间异形柱框架结构使得这些受力缺陷显得更加明显且不可忽视。这些受力缺陷主要有以下几点:
1)由梁中心与柱截面形心不重合导致附加偏心,进而引起柱附加内力增大。
2)柱截面刚度中心与重心不重合引起各肢竖向变形和受力的不协调。
3)柱各方向抗弯截面抵抗矩差别较大,存在明显的受力薄弱方向。
4)柱肢一般较薄,抗扭转性能较差。
2 大开间异形柱结构设计中常见的问题
2.1 结构布置方面应力求合理
2.1.1 平面布置
结构平面整体布置时,应尽量使整个结构的重心与刚度中心重合,整体上避免结构的扭转效应。平面上避免大的突出和收进,尽量综合利用伸缩缝、沉降缝或抗震缝将结构平面划分成矩形,力求避免L形,U形等平面布置等复杂连体结构平面布置,并应严格按文献[3]中表3.4.2-1规定。
平面整体确定后,结构构件布置时还应考虑如下内容:
1)选用截面时,优先选用工形、十字形等对称截面柱,有单轴对称截面的如Z形、T形截面次之,尽量减少L形截面柱的数量,避免单片矩形薄壁柱。
2)平面中各柱的承荷面积宜接近,柱轴向力应彼此相差不大,避免因单柱受荷过大引起截面过大,吸收水平力较多从而可能先于其他柱破坏;柱轴压比不宜太大。
3)柱顶四周梁的布置应力求对称,减小对柱的偏心。
4)柱肢不宜过长,肢厚不应太薄,以免受扭时柱肢在平面外失稳。
2.1.2 竖向布置
结构竖向整体布置时,应力求对称,不宜大的悬挑和收进,主要受力构件力求连续,整体层间刚度宜接近,避免竖向刚度产生较大突变。应严格按文献[3]中表3.4.2-2规定。竖向布置时还应考虑以下内容:
1)柱上下宜贯通不宜变截面。当底层柱轴压比不满足时,优先采用变换混凝土强度等级。
2)应考虑填充墙对框架抗侧刚度的影响,适当对结构周期进行折减,应避免由填充墙引起的短柱现象。
2.2 结构计算
2.2.1 计算方法及假定
1)楼、屋盖在其自身平面内的刚性假定。
对于大开间异形柱结构,多用于住宅等民用建筑中,楼板的开洞率一般不大,一般可满足刚性楼板假定。相应地,在结构设计中应采取保证楼、屋面整体刚度的构造措施。
2)梁柱节点刚化为刚域。
由于异形柱在梁作用平面内柱肢较长,梁柱节点处重合部分较大,梁端转动时受到较大制约,合理的力学模型应将重叠部分作为刚域,自重计算时亦不应重复计算重叠部分的混凝土重量。刚域长度取值如下:
梁两端刚域长度为:
Dbi扣除刚域后的梁长为:L0=L-(Dbi+Dbj)。
其中,梁两端与柱重叠部分长度分别为Di和Dj;梁长为L(两端节点间距);梁高为H。
简化后梁的力学模型为:a.梁自重按扣除刚域后的梁长计算。b.梁上的外荷载按梁两端节点间的长度计算。c.梁截面设计按扣除刚域后的梁长计算。
柱的计算模型为:柱计算长度按文献[1]中7.3.11条取值,配筋计算时按整体内力进行双偏压计算,并考虑重力二阶效应影响,用剪切刚度法对结构整体进行受力分析。轴压比按全截面计算,为保证柱在压弯条件下具有良好的延性性能,进入屈服时为大偏心受压的弯曲破坏状态,应严格控制轴压比不得超限。
2.2.2 计算前几个计算参数的确定
1)抗震等级。
宜按抗震规范查出,当为四级时宜提高一级进行抗震计算和采取构造措施。
2)扭转耦连。
异形柱结构对扭转作用比较敏感,对于质量、刚度不对称、不均匀的结构,计算时应考虑扭转耦连振动影响的振形分解反应谱法。规则结构可不考虑扭转耦连,但规范规定平行于地震作用的两个边榀框架应乘以增大系数:短边1.15;长边1.05。当扭转刚度较小时不小于1.3。目前的SATWE和TAT等均不能自动识别边榀,软件未予考虑放大,应人工加以调整。
3)偶然偏心。
由偶然因素引起的结构质量变化会导致结构固有振动特性的变化,因而结构在相同地震作用下的反应也不同。考虑受偶然偏心影响后,对最大位移比影响较大,平均增大约为18%,内力及配筋也有所增大。
4)计算振型数目。
振型数目是否足够应由有效质量系数来判断。一般当有效质量系数η*≥0.8时,基底剪力误差一般在5%以内,这时振型数目对结构计算已经足够。否则,一般基底剪力误差较大,内力及配筋计算中有异常现象。计算振型数目并不是越大越好,应不大于结构固有振型的总数,即采用刚性楼板假定时应不大于刚性楼层板数x3。
2.2.3 计算结果中几个指标的判断
大开间异形柱结构在上述假定下的计算结果是否合理需要对计算结果进行人工判断,除要满足梁柱等单个构件的强度要求外,对控制结构整体性能的以下几个指标还要进行重点分析。
1)位移控制:
采用SATWE计算时最大层间位移角,最大水平位移,平均水平位移,平均水平位移角及相应的比值在结果文件WDISP.OUT中,应满足文献[2]中4.3.5条要求。
2)周期比:
此条主要控制结构在地震作用下的扭转效应,是侧向刚度与扭转刚度的相对关系,应根据各振型情况分析找出第一侧振周期与第一扭转周期,注意大开间异形柱结构中不应出现第一振型为扭转振型的情况,第二振型也不宜为扭转振型。
3)层刚度比:
应严格满足文献[2]中4.4.2,5.3.7条规定。此条主要控制结构刚度沿竖向分布是否均匀,不满足时应采取加强措施或改变结构布置的方法。
2.3 构造措施
异形柱结构一般梁柱宽度相等或相近,梁内纵向角筋锚入柱内时易与柱纵筋冲突,故应将梁角筋按一定坡度弯过柱角筋,在柱角筋内侧(或外侧)锚入梁柱节点内,坡度应小于1/25,起弯点离柱边大于800 mm。尽量避免因梁角筋弯折引起刚度突变。节点内梁端箍筋宜加密至另一方向梁相交处,以保证梁柱节点刚域假定,实现强节点概念设计目标。文献[4]对大开间异形柱结构也作了一些构造规定,可作为设计参考。
3 结语
鉴于大开间异形柱轻框架结构在高层住宅中的应用越来越多,国家相关的规范或标准也不完善,在受力上又存在一些缺陷,文中建议对设防烈度为7度以上的高烈度区不宜采用此种结构形式。对于在低烈度区应用时,除应严格遵照现行规范和参照一些关于异形柱结构设计的地方规程外,应注重对结构方案的设计,整体布置和结构构件的布置应力求合理,根据实际情况选择结构计算模型并合理选取参数进行结构计算,对计算结果应进行系统分析,从整体上判断所设计的结构是否合理。设计时还应该根据大开间异形柱轻框架结构的特点加强对构造措施的设计,合理的构造措施是结构有效传力的保证。
参考文献
[1]GB 50010-2002,混凝土结构设计规范[S].
[2]JGJ 3-2002,钢筋混凝土高层建筑结构技术规程[S].
[3]GB 50011-2001,建筑抗震设计规范[S].
[4]DB 29-16-2003,钢筋混凝土异形柱结构技术规程[S].