能被253整除的数教学反思(共6篇)
能被253整除的数教学反思 篇1
《数学课程标准》指出:“学会与人合作,并能与他人交流思维和结果。”合作交流似乎成为一种时尚,在每节课中,我也总是追赶时髦似的让学生来那么一次合作,进行一次交流。但对于这种交流,我一直是不抱有什么希望的。因为我发现在交流合作后的反馈中,代表小组回答或汇报的学生总是用“我怎么怎么认为”“我觉得怎样怎样”“我的看法是什么什么”,在几次纠正无效后,我放弃了进一步的指导,没从根源上去认真组织和指导。因此,这样的合作学习失去了原本的面目,也不会产生合作的效应。
在能被3整除的数的特征这节课中,我在复习了能被2、5整除的数的特征后,让学生猜想能被3整除的数的特征是什么?学生提出了两种想法:
(1)、看个位上的数;
(2)、不一定是看个位上的数。
紧接着我布置了小组讨论的具体要求。由于合作的内容有利于产生争论,让学生在独立思考的基础上再交换意见。学生们都在大量举例的前提下说明自己的结论,有些小组在组内交流时还从正反两方面加以说明。由于有了讨论的巨大空间,学生讨论时主题明确、集中。反馈时得出了一致的结论:判断一个数能不能被3整除不能看个位上的数。随着第一个结论的出现,我提出了本节课的课题:能被3整除的数的特征。合作交流切实地落实在了实处,发挥了作用。
能被253整除的数教学反思 篇2
[片段1]创设情境, 激发猜想
小灵通早就走进千家万户了, 说说你的小灵通号码。
4902460 4979162 4971816 4963586
哪些号码能被2整除?
根据以往的经验, 猜猜哪些号码能被3整除?
教者通过创设说小灵通号码的生活情境, 温故知新, 使学生产生学习的需求, 激发学生猜想。
[片段2]动手操作, 猜想探索
首先让学生在计算器上拨一位数, 使它能被3整除。
其次让学生在计算器上拨两位数, 使它能被3整除。
再次让学生在计算器上拨三位数, 使它能被3整除。
生 (1) 个位上是0, 1, 3, 6, 9的数能被3整除。
生 (2) 每个数位上的数都能被3整除。
生 (3) 各个数位上的数相加能被3整除。
师:一个数能否被3整除, 与它每个数位上的数的前后顺序无关。
数学教学的过程是让学生用内心的创造与体验学习数学, 使学生在教师的指导下, 亲身经历主动探究, 积极思考与其交流的过程, 而不是简单地展示结论的过程。学生先在计算器上拨珠, 再猜猜什么样的数整除, 然后进行自主探索, 教师倾听学生的猜想, 学生也判断老师的猜想。
[片段3]运用类比, 验证猜想
摇奖号码, 判断该号码能不能被3整除;苹果园里, 苹果树上有哪些数能被6整除, 你能摘几个苹果?猜猜能被6整除的数的特征, 猜猜能被9整除数的特征。
把学生喜闻乐见的体育彩票摇奖和摘苹果等形式融于数学课堂中, 让学生的数学成长与快乐同行, 体验学习的快乐, 学生兴趣盎然, 运用类比, 验证猜想, 课堂上洋溢着成功的喜悦。学生运用类比, 推理猜想各位上的数的和能被6或9整除, 这个数就被6或9整除, 然后, 举例验证猜想, 得出正确的结论。
[片段4]奇思妙想, 一语惊人
通过学生的猜想, 验证, 得出各位上的数的和能被3 (6, 9) 整除, 这个数就能被3 (6, 9) 整除的结论。这节课上学生大胆猜想, 自主探究, 圆满地完成了教学目标。课末, 一位同学发言:“老师, 我还发现先划去3, 6, 9这三个数字, 剩下的数字的和能被3整除, 这个数就能被3整除。”教师倾听学生的心声, 投以赞许的目光。学生听到同学奇思妙想的发言, 情不自禁地热烈鼓掌, 更为这节课画上了一个感叹号!
[反思]
这是一个比较典型的探究式学习, 学生经历了“猜想——验证——概括”的过程。在教学中, 教师激励学生合理猜想, 引导学生经历观察、操作、类比、归纳等获得教学活动, 进一步寻求证据, 给出证明或举出反例, 从而获得正确的结论。这节课具有以下几个特点, 值得我们在今后教学中加以借鉴。
(1) 教师应精心设置情境, 激发学生的学习热情, 激活学生原有经验。
(2) 创设探索的契机, 放手让学生自主探索。
(3) 让学生在探索过程中充分表达自己的观点和思维, 改变传统的师讲生听, 告诉式教学, 捕捉学生的稍纵即逝的思维火花, 并巧妙地加以点拨, 发展学生个性化思维。
(4) 课堂上师生间, 生生在如朋友间的合作与交流中, 在经历了一次次思维的交锋, 一次次原汁原味的争论后, 留下的是一次次知识的收获, 一次次能力的提升, 一次次情感的满足, 教师甘为船工, 将学生引渡到知识的彼岸。
(5) 学生通过丰富多彩的、喜闻乐见的教学活动, 保持高昂的学习热情, 感受学习的快乐, 品尝着成功的喜悦, 这不正是新课改所提倡的新理念之一吗?
能被253整除的数教学反思 篇3
【关键词】兴趣 理解特征 灵活掌握
1.从激发学生的兴趣导入。
数学教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种有效情景,来激发学生的学习兴趣。比如在教学能被3整除的数的特征时,教师可以这样设计新课导入。先写出一个数“21”,问学生这个数能不能被3整除,学生口算后很快得出能,接着教师让每个学生自己准备一个多位数,每个学生报一个数,看老师不用计算,能不能快速判断出哪些数能被3整除,哪些数不能被3整除,这时,大家都想考倒老师,结果学生都感到很惊讶,教师进一步质疑:“不用计算,你能准确地一眼就看出一个数能否被3整除?”此时,学生学习的兴趣被调动起来了。
2.从理解特征入手来把握概念。
⑴激发学生的探究欲望。教师可出示下面两组数,请学生检验。
33 72 39 30 51 66 72 18
21 39 84 42 60 72 96 27
教师提问;这两组数都能被3整除,第一组从个位上看有什么特征吗?第二组从十位上看有什么特征吗?看来,其特征不仅仅由某一位上的数字所决定。那么,能被3整除的数可能与什么有关呢?这样,原有知识不能解决问题,必需要另想办法,学生探究的欲望被激发,迫切想要探究问题。
⑵出示100以内的数表。先让学生利用100以内的数表让学生逐步去探究,让学生先找出3的倍数,再观察特征,学生上节课已学过2、5的倍数的特征,学生可能受知识迁移的影响去研究个位上的数与十位上的数,会有如下的发现:个位是1、2、3、4、5、6、7、8、9、0的数都能被3整除,这时教师继续追问:是不是可以说个位上是1、2、3、4、5、6、7、8、9、0的数都能被3整除?以此让学生明白能被3整除的数个位数没有共同的特征,此时教师可提示:“将3的倍数的各个数位上的数字加起来观察呢?”这样逐步帮助学生发现规律。
3.灵活掌握方法,准确判断。
对于位数少的如21、39,口算就能算出来,并很快作出判断,但是如果出现较大的数,学生很容易受2、5的倍数的特征的影响,如3270,部分学生就判断不出它是不是3的倍数,但是能脱口说出它是2,5的倍数,因为判断2,5的倍数特征的方法比较单一,只看个位数字就行了,而判断一个数能否被3整除需要看各个数位。
判断一个数能否被3整除可以简算,此时,教师可介绍下列简便方法,来提高学生的计算能力。
⑴数位较少,就把各个数位相加,如39,根据3+9=12,12是3的倍数,那么39就能被3整除。
⑵数位较多,用“弃三法”,就是抛弃“3”和3的倍数的数字,利用这种方法判断比较准确、快速。如“3148782”这个七位数,如果利用能被3整除的数的特征来做就比较麻烦,这时可用“弃三法”,即先去掉3的倍数,再加其它的数字,看它们的和能否被3整除,或在加的过程中,一加出3的倍数就把该数扔掉,再继续加,看最后结果能否被3整除,所以“3148782”就能被3整除。这样判断既减少了计算的过程,做到了既准确又快。对比两种方法,很显然,后一种方法更简便。
《能被3整除的数》教学设计 篇4
1、探索并理解能被3整除的数的特征,并能应用特征判断一个数否能被3整除。
2、培养学生的探索意识和分析、概括、验证、判断及协作的能力。
教学重点:
1、引导学生通过捆绑小棒探索出能被3整除的数的特征。
2、理解并会用特征快速判断一个数能否被3整除。
教具准备:
1、24枝铅笔(10枝一捆,共两捆,零散枝数4枝)。
2、投影(有关练习)。
3、两套(0-----9)磁性数字卡片,及磁性小黑板两块。
教学过程:
一、复习:
1、你能用3、4、5这三个数字组成一个能被2整除的三位数吗?为什么这样组?同样用这三个数字、你们能组成一个能被5整除的三位数吗?为什么这样组?
2、能被2、5同时整除的数的特征是什么?
一、导入新课:
前面我们学习了能被2、5整除的数的特征,今天我们利用这节课共同探讨一下能被3整除的数的特征以及怎样利用该特征又快又准地判断出一个数能否被3整除的方法。
出示课题:能否被3整除的数。
要求学生齐读课题两遍
二、新授:
方法一:
师:同学们,你能随便说一个能被3整除的数吗?
生:9、3、12、15、21┉
师:这些数为什么能被3整除呢?
生:因为这些数都是3的倍数。
师:老师随口说一个数123,大家判断该数能否被3整除?
生:能(通过口算得出)。
方法二:
师:有些较大数我们可利用口算判断。同学们说123能被3整除,那么老师立刻就能说出132、312、231、312、321这些数都能被3整除,你们信吗?
生信。(不信)
师:别老师说什么你们就信什么,快用口算试试。
生:通过口算发现确实能被3整除。
师:为什么会出现这种情况呢?如果出现一个更大的多位数你能快速判断出能否被3整除吗?咱们一块来研究出一个更好的办法来。刚才有同学说12能被3整除,我们就从12入手研究。
师:出示12枝铅笔。同学们,先看这10枝铅笔,如果每三枝一小捆,看看可以分成几捆,还余几枝?
生:分成3捆,还余一枝。
师:也就是说10分成三个3和一个1,也可以看成&
生:一个9和一个1。
《能被3整除的数的特征》说课稿 篇5
3整除的数的特征》说课稿
今天我说课的内容是全日制聋校实验教材数学六年级下册第52页。《能被3整除的数的特征》。整个说课我将分五部分进行讲述,即说教材、说教法、说学法、说教学程序和板书设计。
一、教材分析:本节课主要学习能被3整除的数的特征,是在学生学习了约数和倍数的意义,掌握了能被2、5整除的数的基础上进行的教学。此知识是分解质因数,求最大公约数,最小公倍数的重要基础,同时也为今后学习约分、通分做好准备。让学生在教学活动中参与和完成真实的教学任务,从中体验学习的快乐。
1、教学目标定为:
(1)知识目标:使学生初步掌握能被3整除的数的特征,会判断一个数能否被3整除。
(2)能力目标:培养学生自主探索的能力,合作学习的品质。
(3)情感目标:让学生在探索发现过程中感受到生活中丰富的数学知识和体验到成功的乐趣,并培养学生学习数学的信心。
2、.教学重点和难点:根据以上对教学内容和教学目标的分析以及聋生学习数学的特点,我认为掌握能被3整除的数的特征是本课的重点及难点。
二、说教法:
根据新课程以人为本的理念以及以上对教学目标的分析,我主要采用以下几种教学方法: 1.合作学习法。合作学习是新课程积极倡导的有效学习方式之一,有效的合作学习可以加大学生的实践量,提高学生运用数学的能力,促进互相帮助,培养团队意识。
2.情境教学法。为了激发学生想学的愿望,我利用情景教学法,调动学生学习的积极性,充分发挥学生的主体作用,增加学生学习数学的兴趣。
3.鼓励法。有效的课堂活动需要评价手段的支持,有效的活动评价方式是实施有效活动的保障,所以,我的课堂评价主要以鼓励性评价为主。
三、说学法:
根据教材和学生的认知水平,使学生在不断参与竞争、团结合作的互动环节中渗透“你才是学习的主人”的意识,培养学生自主学习的能力和意识,使学生学到的是学习的方法,提高的是学习的能力。
四、说教学程序:
合理安排教学程序是教学成功的关键,针对学生的认知状况及本课教材的特点,我安排了以下几个教学环节:
1.新课导入:因为本节课是在学生掌握了能被2、5整除的数的基础上学习的,学生很自然地认为判断能否被3整除的数的特征也是看个位,容易产生思维定势,复习能被2、5 整除的数的特征为下面打破定势做好准备。导入新课时,我设计了一个情境,让学生先猜能被3整除的数的特征,然后举例否定,使学生产生疑问,制造认知冲突,产生迫切需要探索问题的内心需要,激起学生强烈的求知欲望,从而投入到新课的教学中。2.讲授新知:
(1)设疑激趣。我采用“质疑观察——概括”的顺序来突出重点,突破难点。首先问“能被3整除的数不能只看个位,那么能被3整除的数就没有特征了吗?”来激起学生的学习兴趣,紧接着我让学生讨论哪些数能被3整除,然后使他们初步的了解能被3整除的数不能只看个位,这样自然而然的引起学生的兴趣和求知的好奇心。
(2)探究新知。出示3的倍数,引导学生观察出能被3整除的数中个位上的数加起来,发现所得到的和都能被3整除,从而找到了规律。
3.巩固新知。为了遵循数学源于生活,用于生活的理念,我又 设计了形式多样的练习题。以学生乐于接受的内容,加深学生对知识点的巩固而且也拉近了师生间的距离,还活跃了课堂氛围,还把能被2、5整除的知识综合在一起,形成一个完整的知识网。
4.课堂小结。我让学生总结本节课所学知识,培养学生的综合能力和概括能力及语言表达能力。
5.作业设置。第6题 在每一个□中填上一个数,使这个数能被3整除,有几种填法? □7 4□2 □44 56□锻炼学生的思维,提高学生的灵活性。
五、说板书设计:
板书是老师教学的思路图。根据本节课的内容,我设计了十分简洁的板书,包括课题和能被3整除的数的以及不能被3整除的数和能被3整除的数的特征,重点突出,使学生看了一目了然。
能被253整除的数教学反思 篇6
“创造”的教与学――《能被9整除数的特征》教学案例
义务教育阶段的数学课程,不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学的理解,增进学好数学的信心。 学习数学的唯一正确方法是实行“再创造”,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。一、“创造”的教数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。教师是数学学习的组织者、引导者与合作者。 教材中对于“能被3整除数的特征”的归纳是通过找余数与这个数数位上的数字之间的关系来进行总结的,而任意一个自然数除以3只有余数0、1、2这三种情况。在教学过程中,学生很难通过余数发现与自然数的数位上数字的关系。因此,教师想到了如果先研究“能被9整除数的特征”的特征呢?任意一个自然数除以9有余数0、1、2、……6、7、8九种情况,与所研究的自然数的数位上的数字更容易建立关系,有利于学生的观察与理解。 虽然“能被9整除的数的特征”是教材中没有涉及的部分,但是却能很好的帮助学生通过借助能被9整除数的特征,以及3和9之间的关系,去理解能被3整除数的特征。分散了知识点的难度,同时也渗透了知识间的内在联系。二、“创造”的学《新课程标准》提出:“动手实践,自主探索与合作交流是学生学习数学的重要方式。数学学习活动应是一个活泼的、主动的和富有个性的过程”。这一理念不仅告诉我们创新意识和实践能力紧密想随,而且要使学生的探索经历和获取新发现的体验成为数学学习的重要途径。1.设“井”激趣数学的学习方式不能再是单一的、枯燥的,以被动听讲和练习为主的方式,它应该是一个充满生命力的过程。【片断一】出示:87602860、51001758、65064345、85992639师:老师这里有几位同学家的.电话号码。问:每个电话号码都是一个八位数,这四个数中哪些能被2整除?你怎么判断的?哪些能被5整除?判断的依据是什么?生答:87602860、51001758能被2整除,个位上是0、2、4、6、8的数能被2整除;87602860、65064345这两个数能被5整除,个位上是0或5的数能被5整除。问:哪些数能被9整除呢?你有什么办法吗?生:① 看个位,认为85992639能被9整除。② 算,可以口算、笔算,大数目可以用计算器帮助。③ 各数位上的数字和能否被9整除 师:同学们说了这么多种发法,那就用你们想到的方法来找找看哪些数能被9整除。 生:对这四个数进行验证,得出51001758能被9整除。 交流想法:能被9整除的数看个位是不成立的,85992639不能被9整除;如果身边没有计算工具,算起来很不方便;如果各数位上的数字和能被9整除,这个数就能被9整除。这个方法比较好,很快捷。生质疑:看“各数位上的数字和能否被9整除”这个方法对于每个数都成立成立吗?为什么成立呢? 在课上,同学们受“能被2或5整除数的特征”经验的影响,在验证、讨论的过程中,许多不正确的结论被一一否定,而只留下把“各数位上的数字相加求和,看和与9的关系”的方法。这个方法学生们找不到反例,但又迫切的想了解为什么?这样不仅抑制了前面所学知识的负迁移,同时又激发学生的学习欲望。 当学生意识到了“各数位上的数字相加求和,看和与9的关系”这个方法时,发现、解决问题的过程就有了目标,为最终问题的解决提供一个可能的方向。创设问题情境,把静态的知识结论转化为动态的探索对象,使学生在经历类似于数学家的探索创造过程中,激发探索意识,养成探索习惯,提高再创造的能力。2.追根溯源“学习任何知识的最佳途径是有学生自己去发现。因为这种发现,理解最深,也最容易掌握其中的内在规律联系。” 让学生自己去体验,用自己的思维方式去探究,这就是一个再创造的过程。如果离开了学生的学习活动,学生的发展就会落空。 判断一个数能否被9整除,不能只从一个数的某一位上的数来判断,必须把这个数各个数位上的数相加求和,如果和能被9整除,这个数就能被9整除。这一结论与能被2、5整除的数的特征相比而言不容易被发现,不容易理解。因此,就把重点放在了“说理”上,不仅要使学生知其然,还要使他们知其所以然。 在分析推理能被9整除的数的特征的过程中,充分重视学生的年龄、心理特点,利用他们已有的知识基础,分层次逐步进行研究。【片断二】⑴先引领学生集体先对整十数和整百数进行分析,找出整十数与9、整百数与99的关系,作为认识任意自然数能否被9整除数的特征的基础和突破口;问:10能被9整除吗?你怎么知道的?20、30呢?答:10÷9=1…1,所以10不能被9整除,可以把10写成10=9×1+1。20÷9=2…2,所以20不能被9整除,可以把20写成20=9×2+2。30÷9=3…3,所以30不能被9整除,可以把30写成30=9×3+3。生发现:①整十数都可以写成9乘几加几的形式。 ②余数正好是整十数十位上的数。问:那判断整十数能否被9整除有更简单的方法吗?答:直接看整十数十位上的数字。过渡:整十数能否被9整除的我们会了,那整百数呢? 问:100能被9整除吗?2000呢? 你又发现了什么?答:100不能被9整除,因为100÷9=11…1,所以100去掉1个99还余1。100可以写成99×1+1。200不能被9整除,因为200÷9=22…2,所以200去掉2个99还余2。200可以写成99×2+2。发现:余数与整百数百位上的数字相同。问:要很快的判断出整百数能被否被9整除看什么?生:看整百数的百位就可以了。⑵再小组合作把几百几十的数变成几个百、几个十的组合形式,与9和99建立联系,分散难点,初步归纳能被9整除数的特征;问:100能被9整除吗?80能被9整除吗?180呢?你能用前面的知识,小组合作研究为什么吗?小组探究:因为,180 100=99×1 + 1 80= 9×8 + 8 能被9整除 1+8=9 能被9整除 所以,180能被9整除。 发现:余数和与这个数的数位上的数字和是相同的,所以可以看这个数的数位上的数字和。⑶最后当学生发现这种暗含的关系后,他们可以把任意一个自然数变成由几个百、几个十、几个一的组合形式,与9和99建立联系,重视学生从具体到抽象,从一般中概括推力出结论的能力的培养。问:这有一个三位数216,你能马上判断出它能被9整除吗?怎么判断的?答:能。2+1+6=9能被9整除,216能被9整除。通过观察拆分之后的余数,学生发现余数和与所给数的数位上的数字和相同,所以可以直接看所给数的各个数位上的数字和能否被9整除。在这节课结束的时候,学生根据自己的理解、用自己的语言归纳出了“能被9整除的数的特征”。 课上学生有了充分的从事数学活动的时间和空间,在自主探索、亲身实践、合作交流的氛围中,解除困惑,更清楚的明确自己的思想,并有机会分享自己和他人的想法,在亲身体验和探索中认识数学,解决问题,理解和掌握基本的数学知识、技能和方法。在合作交流、与人分享和独立思考的氛围中,倾听、质疑、说明、推广而直至感到豁然开朗。
【能被253整除的数教学反思】推荐阅读:
“能被3整除的数的特征”教学反思06-01
小学奥数数论试题:数的整除09-01
数的整除复习( 二 )参考教案09-05
数的整除性找规律问题06-02
初中数学竞赛之数的整除教案08-18
六年级下册数学数的整除同步练习题08-29
幼儿园小班数学公开课教案《感知4以内的数》及教学反思08-29