数学《抽屉原理》教学反思

2024-10-10

数学《抽屉原理》教学反思(精选13篇)

数学《抽屉原理》教学反思 篇1

数学《抽屉原理》教学反思

学生的数学学习过程是一个以学生已有的知识和经验为基础的主动建构的过程,数学应强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。

只有学生主动参与到学习活动中,才是有效的教学。在4个苹果放入3个抽屉学习中,充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。

不足之处在于教学过程中应更多的关注学困生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。

数学《抽屉原理》教学反思 篇2

师:在上课之前, 老师特别想和大家做个游戏, 谁愿意参加?好!请5位同学到这来, 这里有4个凳子, 当老师说开始, 你们5位同学都要坐在凳子上, 好吗? (好)

师 (背对5位同学) :准备, 开始!

师:大家帮老师看看, 他们都坐下了吗?

生:坐下了。

师:老师不用看就知道, 一定有一个凳子上至少坐了两位同学, 是这样吗?

生:是!

师:那我们来看看 (转过身来) , 果真如此。这个凳子上坐了两位同学, 请起立。假如我们请这5位同学反复再坐, 不管怎么坐, 我肯定总有一个凳子上至少有两位同学, 你们相信吗? (相信)

师:其实, 这里面蕴藏着一个非常有趣的数学原理, 想不想研究? (想)

思考:“兴趣是最好的老师。”从学生熟悉的“抢凳子”游戏开始, 让学生初步体验不管怎么坐, 总有一个凳子上至少坐着两个同学, 使学生明确这是现实生活中存在着的一种现象, 从而激发学生的探究兴趣, 并为后面的探究活动作了有效地铺垫。

片段二:研究小棒的数量比杯子多1的情况

师:把6根小棒放在5个杯子里, 你觉得会有什么结果?

生:把6根小棒放在5个杯子里, 不管怎么放, 总有一个杯子里至少要放2根小棒。

师:老师想的也和大家一样, 可是我们想的到底对不对?我们应该怎么办? (验证一下) 对!用实验去验证, 那我们还要像刚才那样把所有的情况都一一列举出来吗? (不用) 那怎么验证?

生 (边操作边说) :我先在每个杯子里放上一根小棒, 还剩下一根, 这根小棒可以放在任意一个杯子里。不管它放在哪一个杯子里, 总有一个杯子里至少有两根小棒。

师:刚才他是怎么分的? (平均分) 为什么只用平均分这一种方法就能证明这个结论呢?

生:我是这样想的, 要想保证这个杯子里的小棒数量最少, 就得让每个杯子里都有小棒, 如果空着, 就不能保证杯子里的小棒最少, 因此我想到了平均分。

师:说得棒极了, 能用算式表示吗?

师:利用这种方法, 把7根小棒放在6个杯子里, 会怎么样?10根小棒放在9个杯子里呢?100根小棒放在99个杯子里呢?

……

师:你发现了什么规律?

生:我发现只要小棒数量比杯子数量多1, 就能保证总有一个杯子里至少有两根小棒。

思考:从最简单的数据入手, 步步为营, 通过平均分, 把“抽屉原理”的模型用“有余数除法”形式表示出来, 进而引导学生得出一般性的结论:只要放的小棒数量比杯子多1根, 就总有一个杯子里至少放进了两根小棒。在这样的教学活动中, 学生经历了知识的探究过程, 初步建构了“抽屉原理”的模型, 并初步感受了“抽屉原理”的魅力。

片段三:研究小棒的数量比杯子的数量至少多2的情况

师:把5根小棒放进3个杯子里, 会怎么样?

生:把5根小棒放在3个杯子里, 不管怎么放, 总有一个杯子里至少放两根小棒。

师:把5根小棒放进3个杯子里, 究竟总有一个杯子里至少有几根小棒呢?我们再来摆摆看。

生 (边摆边说) :我先在每个杯子里放上一根小棒, 还剩下两根。把这两根小棒继续平均分, 把它们分别放在两个杯子里, 不管它放在哪两个杯子里, 都能保证总有一个杯子里至少有两根小棒。

师:算式怎么列?

思考:通过动手操作, 使学生理解了余数不是1的情况, 要保证至少对余数也要进行平均分, 并将这一过程用除法算式表示出来。在这样的探究活动过程中, 学生充分感受了“抽屉原理”的魅力。

片段四:研究商不是1的情况

师:那如果9根小棒放进4个杯子里, 15根小棒也放进4个杯子里, 分别又会有怎样的结果呢?想知道吗? (学生分组讨论、交流。)

师:同学们, 我们研究到这了, 看一看有什么规律。

生:总有一个杯子里至少有小棒的根数是:商+余数。

师:谁有不同的意见?

生:总有一个杯子里至少有商+1根小棒。

师:你们的发现和他们的相同吗?

生:相同。

师:同学们, 今天我们研究的这个原理就是数学中有名的抽屉原理。现在, 你能利用所学的解释课前的“抢凳子”游戏的原理吗?

生:5个同学相当于物体, 4个凳子相当于抽屉, 因为5÷4=1……1, 1+1=2, 所以五位同学中至少有两位同学要坐在同一个凳子上。

《抽屉原理》教学设计 篇3

【关键词】数学;小学;抽屉原理;教学

一、设计理念

数学课程标准指出,数学课堂教学是师生互动与发展的过程,学生是数学学习的主人,教师是课堂的组织者,引导者和合作者。本节课的教学注重为学生提供自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,学会用“抽屉原理”解决简单的实际问题。本课充分利用学生的生活经验,为学生自主探索提供时间和空间,引导学生通过观察、实验、推理和交流等活动,经历探究“抽屉原理”的过程,学会用一般性的数学方法思考问题,培养学生的数学思维能力,发展学生解决问题的能力。

二、教学内容

《义务教育课程标准实验教科书?数学》六年级下册第五单元的“数学广角”(课本第70—71页例1、例2以及相应的“做一做”,练习十二1—2题。)

三、教学目标

1、知识与技能:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、过程与方法:

通过观察、猜测、分析、验证、推理、交流等数学活动,建立数学模型,发现规律。经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3、情感态度与价值观:

通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力,渗透“建构”思想。

四、教学重点

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

五、教学难点

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

六、教具、学具准备

多媒体课件、为每组都有相应数量的盒子、铅笔、书。

七、教学过程

1.创设情境,引入新课。

师:同学们,我们先来做个小游戏:老师在讲台上画了3个圈,请4个同学上来,谁愿来?(学生上台)

师:听清要求:老师说开始以后,你们4个同学都往那3个圈里跳,每个人必须都在圈里,好吗?(这时教师面向全体,背对那4个同学。)

师:开始。

师:都跳进去了吗?

生:跳进去了。

师:我虽然没有看到他们跳进圈里的情况,但是我敢肯定地说:“不管怎么跳,总有一个圈里至少坐两个同学”我说得对吗?

生:对!

师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。(课件演示课题:抽屉原理)

2.自主操作,主动探究

①教学例1

A.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?(课件演示)

学生实际摆放,相互交流自己摆放的情况?

指名学生上台摆。

根据学生摆的情况,师板书:(3,0)(2,1)

师小结:4个人跳进3个圈里,不管怎么跳,总有一个圈里上至少有两个同学。3支笔放进2个盒子里呢?

让学生充分发表自己的意见。(不管怎么放,总有一个盒子里至少有2枝笔)

B.指导学生理解“总有”、“至少”的含义。

师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(教师巡视指导)

师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。

(4,0,0)(3,1,0)

(2,2,0)(2,1,1),

师:你能发现什么?

生:不管怎么放,总有一个盒子里至少有2枝铅笔。

师:“总有”是什么意思?

生:一定有

师:“至少”有2枝什么意思?

生:不少于两只,可能是2枝,也可能是多于2枝?

师:就是不能少于2枝。(通过操作让学生充分体验感受)

C.初探规律。

师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?

学生思考。组内交流。小组汇报。

组1:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

师:你能结合操作给大家演示一遍吗?(学生操作演示)

师:同学们自己说说看,同位之间边演示边说一说好吗?

师:这种分法,实际就是先怎么分的?(平均分)

师:为什么要先平均分?(组织学生讨论)

生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?

师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)

师:哪位同学能把你的想法汇报一下,

生: 5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。(学生一边演示一边说)

师:把6枝笔放进5个盒子里呢?还用摆吗?

生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把7枝笔放进6个盒子里呢?

把8枝笔放进7个盒子里呢?

把9枝笔放进8个盒子里呢?……

你发现什么?

生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。

D.解决问题。

课件出示:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?(学生活动—独立思考 自主探究)

交流、说理活动。

让学生充分说出理由。

师小结:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。

②教学例2

A.课件出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

(留给学生思考的空间,师巡视了解各种情况)

B.学生汇报。

生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

板书:5本 2个 2本…… 余1本(总有一个抽屉里至有3本书)

7本 2个 3本…… 余1本(总有一个抽屉里至有4本书)

9本 2个 4本…… 余1本(总有一个抽屉里至有5本书)

师:2本、3本、4本是怎么得到的?生答完成除法算式。

5÷2=2本……1本(商加1)

7÷2=3本……1本(商加1)

9÷2=4本……1本(商加1)

师:观察板书你能发现什么?

生1:“总有一个抽屉里的至少有2本”只要用 “商+ 1”就可以得到。

师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+ 2”就可以了。

生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?

在小组里进行研究、讨论。

指名学生汇报。(让学生充分发表意见)

师小结:同学们的这一发现,称为“抽屉原理”,“ 抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

解决问题:独立完成71页的“做一做”,课件出示。(独立完成,交流反馈)

3.应用原理解决问题

师:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏(出示扑克牌):我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

生:2张/因为5÷4=1…1

师:先验证一下你们的猜测:举牌验证。

师:如有3张同花色的,符合你们的猜测吗?

师:如果9个人每一个人抽一张呢?

生:至少有3张牌是同一花色,因为9÷4=2…1

4.全课小结:

师:通过今天的学习,你有什么收获?(让学生畅所欲言谈自己的收获。)

师:同学们,通过今天的探究活动,我们知道了什么是抽屉原理,从中我们也得到研究数学问题的数学思想。在今后的学习和生活中,我们也许会经常遇到这类问题,老师希望同学们认真学习,用学到的知识解决生活中的实际问题,在数学天地里快乐遨游。

参考文献

[1]王庆明.小学数学开放式教学法的探索研究[J]. 中国教育学刊,2007(8).

[2]孙颖.基于协作建模的小学数学教学设计 [J].教育导刊(上半月),2012(2).

教育学知识

教育观察方法

观察法是研究者通过感官或一定仪器设备,有目的有计划地观察儿童的心理和行为表现,并由此分析儿童心理发展的特征和规律的一种方法。

儿童的心理活动有突出的外显性,通过观察其外部行为,可以了解他们的心理活动。因此,观察法是发展心理学研究的最基本、最普遍的一种方法。发展心理学早期的许多研究大多采用这种方法。例如,达尔文的《一个婴儿的传略》和陈鹤琴的《儿童心理学之研究》等都主要是通过观察法收集资料的。

进行观察研究必须首先进行观察设计。观察设计通常包括如下三个步骤:其一是确定观察内容。例如,要研究教师期望对师生交往的影响,就需要考虑在什么样的学校、在哪个年级和班进行,要观察哪些现象等等。其次是选择观察策略。常用的观察策略有参与观察策略、取样观察策略以及行为核查表策略等。最后是制定观察记录表。随着观察方法的不断发展,观察技术也日益完善,目前,在制定观察记录表时,通常采用观察代码系统,它们是为观察、记录和随后分析处理的方便而制定出的一些符号代码系统。

抽屉原理教学反思 篇4

“抽屉原理”教学反思

“抽屉原理”的教学目标主要有两个:一是经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。二是透过抽屉原理的灵活应用感受数学的魅力。在实际的教学过程中,我认为还是要让学生透过形象感知,动手操作中去理解其中的奥秘。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的潜力,透过动手操作、小组活动等方式组织教学。反思我的教学过程,有几下几点可取之处:课前设计了“抢椅子”的小游戏,透过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,抢椅子的游戏,让大家都感受到一个结论,那就是,无论怎样,肯定有一位同学是要和其他同学拼拼坐的,说明了至少有一张椅子坐着两个人,这其实是简单又真实的反映“抽屉原理”的本质。接下来,我着重让学生经历知识产生、构成的过程。4枝铅笔放进3个文具盒的结果早就可想而知,但让学生透过画一画、想一想、议一议的过程,把抽象的说理用图形画在纸上,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。接下来,那么5枝铅笔放进4个文具盒又会是怎样的结果呢?那么6枝铅笔放进5个文具盒又会是怎样的结果呢?------让学生自主的想到:铅笔数比文具盒数多

1时必须会出现怎样的现象,然后又问:那么5枝铅笔放进3个文具盒又会是怎样的结果呢?让学生自主的想到:铅笔数比文具盒数多2时又会出现怎样的现象?来继续开展探究活动,同时,透过活动结合板书引导学生归纳出求至少数的方法。最后,“抽屉原理”应用很广泛且灵活多变,能够解决一些看上去很复杂、觉得无从下手,却又是相当搞笑的数学问题。

抽屉原理教学反思 篇5

《课程标准》指出:数学务必注意从学生的生活情景和感兴趣的事物动身,为他们带给参与的机遇,使他们体会数学就在身边,对数学发生浓重的兴趣和亲近感。也就是创设丰盛的学习气氛,激发学生的学习兴趣。透过让学生放苹果的环节,激发学生的学习兴趣,引出本节课学习的资料。透过3个苹果放入2个抽屉的各种状况的猜测,进一步感知抽屉原理。认识抽屉原理不同的表述方式:①至少有一个抽屉的苹果有2个或2个以上;②至少有一个抽屉的苹果不止一个。

充分利用学生的生活经验,对可能涌现的成果进行猜测,然后撒手让学生自主思考,采用自己的方法进行“证明”,之后再进行交换,在交换中引导学生对“枚举法”、“假设法”等方法进行比较,教师进一步比较优化,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维潜力。在搞笑的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理。最后出示练习,让学生灵活利用所学知识,解决生活中的实际问题,使学生所学知识得到进一步的拓展。

这种“创设情境——建立模型——说明利用”是新课程倡导的课堂教学模式,让学生经历建模的过程,增进学生对数学原理的理解,进一步培育学生良好的数学思维潜力

[数学运算]抽屉原理 篇6

8326127 抽屉原理一

把4只苹果放到3个抽屉里去,共有4种放法,不论如何放,必有一个抽屉里至少放进两个苹果。

同样,把5只苹果放到4个抽屉里去,必有一个抽屉里至少放进两个苹果。

……

更进一步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。

利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。

【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?

【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。

【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?

【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。

想一想,例2中4改为7,3改为6,结论成立吗?

【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?

【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。

按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。

【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?

晨风公务员考试QQ讨论群

8326127

晨风公务员考试QQ讨论群

8326127

【分析与解】从最“不利”的取出情况入手。

最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。

接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。

故总共至少应取出10+5=15个球,才能符合要求。

思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?

当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路。

教练员提示语

抽屉原理还可以反过来理解:假如把n+1个苹果放到n个抽屉里,放2个或2个以上苹果的抽屉一个也没有(与“必有一个抽屉放2个或2个以上的苹果”相反),那么,每个抽屉最多只放1个苹果,n个抽屉最多有n个苹果,与“n+1个苹果”的条件矛盾。

运用抽屉原理的关键是“制造抽屉”。通常,可采用把n个“苹果”进行合理分类的方法来制造抽屉。比如,若干个同学可按出生的月份不同分为12类,自然数可按被3除所得余数分为3类等等

抽屉原理二

这里我们讲抽屉原理的另一种情况。先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。道理很简单。如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。

从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。这就说明了抽屉原理2。

不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。即抽屉原理2是抽屉原理1的推广。

例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?

分析与解:将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉

晨风公务员考试QQ讨论群

8326127

晨风公务员考试QQ讨论群

8326127 原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。

例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?

分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。

例3六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同?

分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。

订一种杂志有:订甲、订乙、订丙3种情况;

订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;

订三种杂志有:订甲乙丙1种情况。

总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。

例4篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?

分析与解:首先应弄清不同的水果搭配有多少种。两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。所以不同的水果搭配共有4+6=10(种)。将这10种搭配作为10个“抽屉”。

81÷10=8……1(个)。

根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。

例5学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同?

分析与解:首先要弄清参加学习班有多少种不同情况。不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。共有1+3+3=7(种)情况。将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生

晨风公务员考试QQ讨论群

8326127

晨风公务员考试QQ讨论群

8326127

7×(5-1)+1=29(名)。

晨风公务员考试QQ讨论群

运用抽屉原理妙解竞赛题 篇7

例1在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点.

分析与解答由中点坐标公式,点(x1,y1)、(x2,y2)连线中点坐标为要使其为整点,只须x1与x2,y1与y2的奇偶性相同.由此我们能将坐标系中所有点分为4类:(奇数、奇数),(偶数,偶数),(奇数,偶数),(偶数,奇数),得到四个“抽屉”,而依题有5个点,将其抽象为5个物体,放入4个“抽屉”,则必有一个“抽屉”至少有2个物体(点)的横、纵坐标相等,故其中点为整点.

反思与推广:由此题可以看出,运用抽屉原理解题的关键在于进行合理分类构造“抽屉”,这要求我们理解题中所给条件,抓住题中“至少”、“至多”等关键词.同时,此题还可推广为:如果(x1,x2,…,xn)是n维(元)有序数组,且x1,x2,…,xn中的每一个数都是整数,则称(x1,x2,…,xn)是一个n维整点(整点又称格点).如果对所有的n维整点按每一个xi的奇偶性来分类,由于每一个位置上有奇、偶两种可能性,因此共可分为2×2×…×2=2n个类.这是对n维整点的一种分类方法.当n=3时,23=8,此时可以构造命题:“任意给定空间中九个整点,求证它们之中必有两点存在,使连接这两点的直线段的内部含有整点”.在n=2的情形,也可以构造如下的命题:“平面上任意给定5个整点”,对“它们连线段中点为整点”的4个命题中,为真命题的是:(A)最少可为0个,最多只能是5个,(B)最少可为0个,最多可取10个,(C)最少为1个,最多为5个,(D)最少为1个,最多为10个(正确答案(D)).

例2 17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目.

证明此题属于组合范畴,故想到运用图论知识,结合分类讨论及抽屉原理解决此题.视17个科学家为17个点,每两个点之间连一条线表示这两个科学家在讨论同一个问题,若讨论第一个问题则在相应两点连红线,若讨论第2个问题则在相应两点连条黄线,若讨论第3个问题则在相应两点连条蓝线.三名科学家研究同一个问题就转化为找到一个三边同颜色的三角形.先考虑科学家A,他要与另外的16位科学家每人通信讨论一个问题,相应于从A出发引出16条线段,将它们染成3种颜色,而16=3×5+1,因而必有6=5+1条同色,不妨记为AB1,AB2,AB3,AB4,AB5,AB6同红色,若Bi(i=1,2,…,6)之间有红线,则出现红色三角线,命题已成立;否则B1,B2,B3,B4,B5,B6之间的连线只染有黄蓝两色.再考虑从B1引出的5条线,B1B2,B1B3,B1B4,B1B5,B1B6,用两种颜色染色,因为5=2×2+1,故必有3=2+1条线段同色,假设为黄色,并记它们为B1B2,B1B3,B1B4.这时若B2,B3,B4之间有黄线,则有黄色三角形,命题也成立,若B2,B3,B4,之间无黄线,则△B2B3B4,必为蓝色三角形,命题仍然成立.

反思与推广:本题源于一个古典问题———世界上任意6个人中必有3人互相认识,或互相不认识.(美国普特南数学竞赛题).

提示:将互相认识用红色表示,将互相不认识用蓝色表示,(1)将化为一个染色问题,成为一个图论问题:空间六个点,任何三点不共线,四点不共面,每两点之间连线都涂上红色或蓝色.之后的证明参照例2.

Ramsey定理:可以往两个方向推广:其一是颜色的种数,其二是点的数目.

本例便是方向一的进展,其证明已知上述.如果继续沿此方向前进,可有下题:

在66个科学家中,每个科学家都和其他科学家通信,在他们的通信中仅仅讨论四个题目,而任何两个科学家之间仅仅讨论一个题目.证明至少有三个科学家,他们互相之间讨论同一个题目.

回顾上面证明过程,对于17点染3色问题可归结为6点染2色问题,又可归结为3点染一色问题.反过来,我们可以继续推广.从以上(3,1)→(6,2)→(17,3)的过程,易发现

同理可得(66-1)×5+2=327,(327-1)×6+2=1958…记为r1=3,r2=6,r3=17,r4=66,r5=327,r6=1958,…

我们可以得到递推关系式:rn=n(rn-1-1)+2,n=2,3,4…这样就可以构造出327点染5色问题,1958点染6色问题,都必出现一个同色三角形.

例3已知在边长为1的等边三角形内(包括边界)有任意五个点.证明:至少有两个点之间的距离不大于

分析与解答本题看上去像平面几何,但仔细思考会发现本题有浓厚组合色彩,我们称这种题为“组合几何”.题中5个点的分布是任意的,说明我们应构造4个“抽屉”,并且同一个抽屉中的点距离不大于而我们熟知,三角形内(包括边界)任两点距离不大于最长边边长,故我们取三角形边中点并顺次连接,得到4个边长为的等边三角形,则5个点中必有2点位于同一个小等边三角形中(包括边界),其距离便不大于

以上结论要由定理“三角形内(包括边界)任意两点间的距离不大于其最大边长”来保证.

反思与推广:(1)这里是用等分三角形的方法来构造“抽屉”.类似地,还可以利用等分线段、等分正方形的方法来构造“抽屉”.例如“任取n+1个正数ai,满足0<ai≤1(i=1,2,…,n+1),试证明:这n+1个数中必存在两个数,其差的绝对值小于.又如“在边长为1的正方形内任意放置五个点,求证:其中必有两点,这两点之间的距离不大于

(2)例3中,如果把条件(包括边界)去掉,则结论可以修改为:至少有两个点之间的距离小于请读者试证之,并比较证明的差别.

(3)用同样的方法可证明以下结论:

ⅰ)在边长为1的等边三角形中有n2+1个点,这n2+1个点中一定有距离不大于的两点.

ⅱ)在边长为1的等边三角形内有n2+1个点,这n2+1个点中一定有距离小于的两点.

(4)将(3)中两个命题中的等边三角形换成正方形,相应的结论中的命题仍然成立.

(5)读者还可以考虑相反的问题:一般地,“至少需要多少个点,才能够使得边长为1的正三角形内(包括边界)有两点其距离不超过

分析与解答抽屉原理不仅能用于组合问题,在某些不等式证明中,也有意想不到的效果.观察不等式,知△ABC为正三角形时取等号,故以角度与60°的大小关系分类.

数学《抽屉原理》教学反思 篇8

姓名成绩

1、你所在的班中,至少多少人中,一定有2个人的生日在同一个月?

2、你所在的班中,至少有多少人的生日在同一个月?

3、32只鸽子飞回7个鸽舍,至少有几只鸽子要飞进

同个鸽舍?

4、在街上任意找来50个人,可以确定,这50人中至

少有多少个人的属相相同?

5、飞英学校五、六年级共有学生370人,在这些学生

中,至少两个人在同一天过生日,为什么?

6、张叔叔参加飞镖比赛,投了5镖,成绩是42环。

张叔叔至少有一镖不低于9环。为什么?

7、幼儿园买来不少猴、狗、马塑料玩具,每个小朋友

任意选择两件,那么至少几个小朋友中才能保证有两

人选的玩具相同。

8、有一个布袋里有红色、黄色、蓝色袜子各10只,问最少要拿多少只才能保证其中至少有2双颜色不相

同的袜子。

9、有红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几只,才能保证有两只是同色的?

10、抽屉理有4支红铅笔和3支蓝铅笔,如果闭着眼睛摸,一次必须拿几支,才能保证至少有1支蓝铅笔?加分题:每题20分

1、要拿出25个苹果,最多从几个抽屉中拿,才能保证从其中一个抽屉里至少拿了7个苹果

2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

3、五年级有49名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间,问至少有名学生的成绩相同。

4、一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现,从石子堆中任意选出五堆,其中至少有两堆石子数之差是4的倍数,你说他的结论对吗?为什么?

5、从2、4、6、…、30这15个偶数中,任取9

数学《抽屉原理》教学反思 篇9

推荐阅读:

2014年安徽政法干警笔试辅导简章【面授】

2014年安徽政法干警笔试辅导简章【网校】4680元不过全退

题干中含有诸如“至少„„才能保证„„”、“要保证„„至少„„”这类叙述的题目,一般可以用抽屉原理来解决,称为抽屉问题。对于这类问题,常应用到以下两个抽屉原理,中公教育政法干警考试专家通过以下两个例子为您详细解析。

抽屉原理1

将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2件。抽屉原理2

将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于(m+1)件。

除此之外,抽屉问题也可以用最差原则来考虑。所谓最差原则,就是考虑问题发生的最差情况,然后就最差情况进行分析。最差原则是极端法的一种应用,一般情况下,我们优先考虑用最差原则来解决抽屉问题。

【例题1】抽屉里有黑白袜子各10只,如果你在黑暗中伸手到抽屉里,最少要取出几只,才一定会有一双颜色相同?

A.2 B.3 C.4 D.5

解析:此题答案为B。应用最差原则,最差的情况是先取出两只不同的袜子,此时再取一只必然出现一双颜色相同的,故最少取出3只可保证题干条件。

【例题2】把154本书分给某班的同学,如果不管怎样分,都至少有一位同学会分得4本或4本以上的书,那么这个班最多有多少名学生?

A.77 B.54 C.51 D.50

解析:此题答案为C。此题首先考虑使用最差原则,发现不容易得出答案。看到“至少有一位同学会分得4本或4本以上”这种抽屉问题的标准表述,因此可以考虑使用抽屉原理。每位同学看成一个抽屉,每个抽屉内的物品不少于4件,逆用抽屉原理2,则有m+1=4,m=3。154=3×n+1,n=51,所以这个班最多有51名学生。

《抽屉原理》教学设计 篇10

教学目标:

1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教学过程:

一、创设情景

导入新课

师:同学们喜欢玩游戏吗?讲台前面有6张凳子,请7位同学来抢凳子坐。我不看同学们怎样坐,我敢肯定的说:这6张凳子中总有一张凳子至少有两个同学同坐,大家相信吗?(师生演示)

师:想知道老师为什么能做出如此准确的判断吗?这其中蕴含一个有趣的数学原理——抽屉原理。(板书课题)这节课我们就一起来研究这个数学原理。

师:通过今天的学习,你想知道些什么?

二、自主操作

探究新知(一)活动1 课件出示:把4枝铅笔放到3个笔筒里,可以怎么放? 师:你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。

1、学生动手操作,师巡视,了解情况。

2、汇报交流 说理活动

① 师:有什么发现?谁能说说看?

师根据学生的回答用数字在黑板上记录。板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1)师:你们是这样记录的吗?

师:还可以用图记录。我把用图记录的用课件展示出来。师:还可以用表格记录。师板书在黑板上。② 再认真观察记录,还有什么发现?

板书:不管怎样放,总有一个笔筒里至少有2枝铅笔。

③ 怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。)板书:4÷3=1(枝)„„1(枝)

④ 师:这种方法是不是很快就能确定总有一个笔筒里至少有几枝铅笔呢?(学生交流)

⑤ 把5枝铅笔放进4个笔筒里呢?还用摆吗?板书:5÷4=1(枝)„„1(枝)

⑥ 课件出示:把6枝铅笔放进5个笔筒呢? 把7枝铅笔放进6个笔筒呢? 把10枝铅笔放进9个笔筒呢? 把100枝铅笔放进99个笔筒呢? 板书:7÷6=1(枝)„„1(枝)10÷9=1(枝)„„1(枝)100÷99=1(枝)„„1(枝)

⑦ 观察这些算式你发现了什么规律? 预设学生说出:至少数=商+余数

师:是不是这个规律呢?我们来试一试吧!

3、深化探究 得出结论

课件出示:5只鸽子飞回3个鸽笼,至少有两只鸽子要飞进同一个鸽笼里,为什么? ① 学生活动 ② 交流说理活动

预设:生1:题目的说法是错误的,用商加余数,应该至少有3只鸽子要飞进同一个鸽笼。

生2:不同意!不是“商加余数”是“商加1”.③ 师:到底是“商加余数”还是“商加1”?谁的结论对呢?在小组里进行研究、讨论。

④ 师:谁能说清楚?板书:5÷3=1(只)„„2(只)至少数=商+1

(二)活动二

课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

1、分组操作后汇报

板书:5÷2=2(本)„„1(本)7÷2=2(本)„„1(本)9÷2=2(本)„„1(本)

2、那么探究到现在,大家认为怎样才能确定总有一个抽屉至少有几本书? 生:至少数=商+1

3、师:我同意大家的讨论。我们这个发现就是有趣的“抽屉原理

”,(点题)。“抽屉原理”又称“鸽笼原理”,最先是由19世纪德国数学家狄里克雷提出的,所以又称“狄里克雷原理”。这一原理在实际问题中有着广泛的应用。用它可以解决许多有趣的问题,让我们来试试好吗?

三、灵活应用

解决问题

1、解释课前提出的游戏问题。

2、课件出示:8只鸽子飞回3个鸽舍,不管怎样分,总有一个鸽舍至少有几只鸽子?

3、课件出示:任意13人中,至少有两人的出生月份相同。为什么?

4、课件出示:任意367名学生中,一定存在两名学生,他们在同一天过生日。为什么?

四、畅谈感受

教学结束

同学们,今天这节课有什么感受?(抽生谈谈,师总结。)在这堂课中,我首先设计(抢凳子游戏,讲台前面有6张凳子,请7位同学来抢凳子坐。我不看同学们怎样坐,我敢肯定的说:这6张凳子中同学们不管怎样坐,总有一张凳子至少有两个同学同坐,大家相信吗?)目的一:小孩子最喜欢玩游戏,一说玩游戏,调动了学生学习的积极性;目的二:激发学生思考什么是抽屉原理,对解决这类问题有什么作用?

接着出示:把4枝铅笔放到3个笔筒里,可以怎么放?我让学生用自已喜欢的方法动手操作、汇报、板书,得出结论,又提出:怎样摆可以一次得出结论?小组讨论,然后针对他们的方法进行讲解(边操作边讲解),其实这方法是用平均分的摆法,引出用除法计算。)板书:4÷3=1(枝)„„1(枝)得出预设学生说出:至少数=商+余数,让学生有更深的认识,同时也让他们了解平均分的摆法最好,为后面的学习打下铺垫。

抽屉原理教学设计 篇11

1.教材分析

《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。

2.学情分析

“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。

3.教学理念

激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

4.教学目标

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

5.教学重难点

重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

6.教学过程

一、课前游戏引入。

上课前,我们先来热身一下,一起来玩抢椅子的游戏。

请3位同学上来参加游戏,第三位同学是请女生还是男生呢?老师认为,不管是请男生还是女生,都一定至少有两位同学的性别是相同的。同意我的说法吗?

游戏规则是:在老师说开始时,3位同学绕着椅子走,当老师说停的,三位同学都要坐在椅子上。

为什么总有一张椅子至少坐两个同学?

在这个游戏中蕴含着一个有趣的数学原理叫做抽屉理原,这节课我们就一起来研究抽屉理原。(板书课题)

二、通过操作,探究新知

抽屉原理的运用教学设计 篇12

江华白芒营中心小学

陈冬姣

教学内容:

人教版教材六年级数学上册70页例3及练习十三。教学目标:

1.通过观察、猜测、实验、推理等活动,寻找隐藏在实际问 题背后的“抽屉问题”的一般模型。体会如何对一些简单的实际问题“模型化”,用“抽屉原理”加以解决。

2.在经历将具体问题“数学化”的过程中,发展数学思维能力和解决问题的能力,感受数学的魅力。同时积累数学活动的经验与方法,在灵活应用中,进一步理解“抽屉原理”。

教学重点、难点:

1.教学重点:利用“抽屉原理”解决实际问题。2.教学难点:怎样把具体问题转化为“抽屉问题”。教学准备:

一个袋子、4个红球和4个蓝球为一份,准备这样的教、学具若干份。教学过程:

一、小故事导入新课

讲《月黑风高穿袜子》的故事。

一天晚上,毛毛房间的电灯突然坏了,伸手不见五指,这时他又要急着出去,于是他就摸床底下的袜子,他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑暗中不知道哪些袜子颜色是相同的。毛毛想拿最少数目的袜子出去,到外面借街灯配成相同颜色的一双。你们知道最少拿几只袜子出去吗?

教师:这节课我们利用鸽巢问题解决生活中的实际问题。板书:“鸽巢问题”的具体应用。

二、推波逐浪,探究新知

1.把4个红球和4个蓝球装到盒子里,晃动几下。师:同学们,猜一猜:摸一个球可能会是什么颜色的?

2.如果老师想让这位同学摸出的球,一定有2个同色的,最少要摸出几个球?(课件出示)例题。

例:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,一次最少要摸出几个球?

3.师:那么就让我们摸2个球试试看吧?(1)摸出几种情况?(3种)(课件出示)(2)摸2个球能满足题目要求吗?为什么?(3)哪就摸3个球看一看,能不能满足题目要求。4.小组合作摸球,(1)小组活动

(2)汇报展示。师:刚才同学们通过讨论和动手操作得出了怎样的结果? 请每个小组派代表展示讨论结果。其他小组有不同想法可以补充汇报。(3)老师把每个组摸到的情况统计如下。(出示课件)(4)观察你有什么发现?(生自由说)

师小结:要想摸出的球一定有2个同色的,最少要摸出3个球。5.引导学生把具体问题转化为“鸽巢问题”。

教师:生活中像这样的例子很多,我们不能总是猜测或动手试验吧,能不能把这道题与前面所讲的“鸽巢问题”联系起来进行思考呢?

思考:

a.“摸球问题”与“鸽巢问题”有怎样的联系?

b.应该把什么看成“鸽巢”?有几个“鸽巢”?要分放的东西是什么? c.得出什么结论? 学生讨论,汇报。

结论:要保证摸出有两个同色的球,摸出的数量比颜色种数多一。6.把例3的一定有2个同色的球,改成3个同色的球。(1)学生思考,然后回答。(2)引导用假设法说。

(5)小结:物体数=(至少数-1)×抽屉数+1

三、巩固应用,内化提高

1.把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到3个颜色相同的球? 2.综合应用

从一副扑克牌(52张,没有大小王)中要抽出几张牌来,才能保证有一张是红桃?54张呢?

四、课堂总结:

数学《抽屉原理》教学反思 篇13

1.  使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2.  体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:抽取问题。

教学难点:理解抽取问题的基本原理。

教学过程:

一、创设情境,复习旧知

1.出示复习题:

师:老师这儿有一个问题,不知道哪位同学能帮助解答一下?

2.课件出示:把3个苹果放进2个抽屉里,总有一个抽屉至少放2个苹果,为什么?

3.学生自由回答。

二、教学例2

1、出示:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?

(1)组织学生读题,理解题意。

教师:你们能猜出结果吗?

组织学生猜一猜,并相互交流。

指名学生汇报。

学生汇报时可能会答出:只摸4个球就可以了,至少要摸出5个球……

教师:能验证吗?

教师拿出准备好的红球及蓝球,组织学生到讲台前来动手摸一摸,验证汇报结果的正确性。

(2)教师:刚才我们通过验证的方法得出了结论,联系前面所学的知识,这是一个什么问题?

2、组织学生议一议,并相互交流。再指名学生汇报。

教师:上面的问题是一个抽屉问题,请同学们找一找:“抽屉”是什么?“抽屉”有几个?

组织学生议一议,并相互交流。

指名学生汇报,使学生明确:抽屉就是颜色数。(板书)

教师: 能用例1的知识来解答吗?

组织学生议一议,并相互交流。

指名学生汇报。

使学生明确:只要分的物体比抽屉多,就能保证总有一个抽屉至少放荡2个球,因此要保证摸出两个同色的球,摸出球的数量至少要比颜色的种数多一。

(3)组织学生对例题的解答过程议一议,相互交流,理解解决问题的方法。

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

3、做一做

第1题。

1.独立思考,判断正误。

2.同学交流,说明理由。其中“370名学生中一定有两人的生日是同一天”与例1中的“抽屉原理”是一类,“49名学生中一定有5人的出生月份相同”则与例2的类型相同。教师要引导学生把“生日问题”转化成“抽屉问题”。因为一年中最多有366天,如果把这366天看作366个抽屉,把370个学生放进366个抽屉,人数大于抽屉数,因此总有一个抽屉里至少有两个人,即他们的生日是同一天。而一年中有12个月,如果把这12个月看作12个抽屉,把49个学生放进12个抽屉,49÷12=4……1,因此,总有一个抽屉里至少有5(即4+1)个人,也就是他们的生日在同一个月。

三巩固练习

完成课文练习十二第1、3题。

四、总结评价

1.师:这节课你有哪些收获或感想?

五、布置作业

1.做一做。把红、黄、蓝三种颜色的小棒各10根混在一起。如果让你闭上眼睛,每次最少拿出几根才能保证一定有2根同色的小棒?保证有2对同色的小棒呢?

2.试一试。给下面每个格子涂上红色或蓝色。观察每一列,你有什么发现?如果只涂两列的话,结论有什么变化呢?

3.拓展练习(选做)

(1)任意给出5个非0的自然数。有人说一定能找到3个数,让这3个数的和是3的倍数。你信不信?

上一篇:办理户口注销须知下一篇:六年级自我介绍150字