数学运算之抽屉原理专题

2024-06-25

数学运算之抽屉原理专题(精选4篇)

数学运算之抽屉原理专题 篇1

数学运算之抽屉原理专题 数学运算之抽屉原理专题

抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。

假设有3个苹果放入2个抽屉中,则必然有一个抽屉中有2个苹果,她的一般模型可以表述为:

第一抽屉原理:把(mn+1)个物体放入n个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。

若把3个苹果放入4个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:

第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。制造抽屉是运用原则的一大关键

1、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的?

A.12 B.13 C.15 D.16

【解析】根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。

2、从1、2、3、4„„、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?

A.7

B.10

C.9

D.8

【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。

3、有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?()

A.3

B.4

C.5

D.6 【解析】这是一道典型的抽屉原理,只不过比上面举的例子复杂一些,仔细分析其实并不难。解这种题时,要从最坏的情况考虑,所谓的最不利原则,假定摸出的前4粒都不同色,则再摸出的1粒(第5粒)一定可以保证可以和前面中的一粒同色。因此选C。传统的解抽屉原理的方法是找两个关键词,“保证”和“最少”。保证:5粒可以保证始终有两粒同色,如少于5粒(比如4粒),我们取红、黄、蓝、白各一个,就不能“保证”,所以“保证”指的是要一定没有意外。

最小:不能取大于5的,如为6,那么5也能“保证”,就为5。例

4、从一副完整的扑克牌中至少抽出()张牌.才能保证至少 6 张牌的花色相同。

A.21

B.22

C.23

D.24 解析:2+5*4+1=23 转载自:http://

抽屉原理数学练习题 篇2

(1)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.

(2)如果每道题只有4个学生解出,那么(1)的结论一般不成立.试构造一个例子说明这点.

2.时钟的表盘上按标准的方式标着1,2,3,…,11,12这12个数,在其上任意做n个的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.

3.试卷上共有4道选择题,每题有3个可供选择的答案.一群学生参加考试,结果是对于其中任何3人,都有一个题目的答案互不相同.问参加考试的学生最多有多少人?

4.六个小朋友每人至少有1本书,一共有20本书,试证明:至少有两个小朋友有相同数量的书。

5.全班有40个同学,共有不到780本书,试证明:至少有2个同学有相同数量的书。

6.有5050张数字卡片,其中1张上写着1,2张上写着2,3张上写着3……100张上写着100。现在要从中抽取若干张,为了确保抽出的卡片至少有10张以上的数字完全相同,至少要抽取多少张卡片?

7.口袋中装有10种不同颜色的`珠子,每种都是100个。要想保证从袋中摸出3种不同颜色的珠子,并且每种至少10个,那么至少要摸出多少个珠子?

8.两个布袋各有12个大小一样的小球,且都是红、白、蓝各4个。从第一袋中拿出尽可能少的球,但至少有两种颜色一样的放入第二袋中;再从第二袋中拿出尽可能少的球放入第一袋中,使第一袋中每种颜色的球不少于3个。这时,两袋中各有多少个球?

9.用载重1.5吨的汽车运送若干箱共重19.63吨的货物,每箱货物重量相同且不超过350千克。当每箱货物多重时,需要的汽车最多?最多需要多少辆汽车?

六年级数学下册抽屉原理教材分析 篇3

抽屉原理:把(n+1)个苹果放入n个抽屉中,那么必有一个抽屉中至少含有2个苹果。这个原理就是抽屉原理。

1。原理的证明:首先,若某个抽屉中被放入有2个苹果,那么原理得证;若一个抽屉放入一个苹果,那么n个抽屉中用去了n个苹果。n+1 个苹果还剩一个苹果,这一个苹果也要放入一个抽屉,无论这个苹果放入哪个抽屉中,这个抽屉中就含有2个苹果。原理得证。

2。关于抽屉原理:

(1)抽屉原理是说明一个操作的所有可能结果事件中,恰有一个结果必然存在的说理方法。

(2)做为原理本身,其表述是比较简单的。但是在解决实际问题要去使用这个原理的时候,有几个问题还是要注意处理好的:

[1]造抽屉:在实际问题中,抽屉往往是没有的,并且不同的问题,其抽屉往往也是不一样的。因此,在使用这个原理前,要先去构造抽屉。没有抽屉,抽屉原理是不能用的。

[2]造苹果:在实际问题中,苹果往往是没有的,并且不同的问题,其其苹果往往也是不一样的。因此,在使用这个原理前,也要去构造苹果。没有苹果,抽屉

3。学习抽屉原理的意义

1)培养抽象思维能力。因为对一个实际问题需要我们来说明的结论,我们是不可能把所有的情况一个一个列举出来,再去说明其正确性,而且有时候你想这样做也做不到,做不成。尤其是情况比较复杂、数量又比较大的时候,这样做(列举)几乎是不可能的。所以,在这样的背景下,要把问题解决好,说清楚,说明白,让别人认可你说的,你就必须要有一定的抽象思维能力。做使用抽屉原理解决问题的题目,可以发展我们的抽象思维。

数学运算之抽屉原理专题 篇4

人教版小学数学六年级下册《数学广角--抽屉原理》。

【学情分析】

抽屉原理是学生从未接触过的新知识,难以理解抽屉原理的真正含义,发现有相当多的学生他们自己提前先学了,在具体分的过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。有时要找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。

1.年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。

2.思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。

【教学方法】

1.借助学具,学生自主动手操作、分析、推理、发现、归纳、总结原理。

2.适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。

3.引导学生构建解决抽屉原理类问题的模式:明确“待分的物体”→哪是“抽屉”→平均分→商+1

4.完善评价体系,进行小组捆绑,激励学生全员参与,体验成功的乐趣。

5.师生课前准备:①学生:每组5根小棒、4个杯子;课件②学生记录自己是哪一个月出生的。③教师准备1副牌。

【教学目标】

知识目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

能力目标:经历抽屉原理的探究过程,通过实践操作发展学生的类推能力,形成比较抽象的数学思维。

情感目标:通过“抽屉原理”的灵活应用感受到数学的魅力。

【教学重点】经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。

【教学难点】理解抽屉原理,并对一些简单实际问题加以“模型化”。

【教具、学具准备】学生:每组5根小棒、4个杯子;课件

【教学过程】

一、联系生活,激趣导入

用一副牌展示“抽屉原理”。(师生合作完成魔术)

师:同学们喜欢魔术吗?今天老师客串一下魔术表演,想见识见识吗?请全班同当老师的助手,每一个小组有一副牌,大家知道一副扑克牌有54张去掉两张王牌,剩52张,现在用它变一个魔术。这个魔术的名字叫“猜花色”。在组长的组织下每人随意抽五张牌先反扣在桌上。我猜,每位同学的手中至少有两张花色是相同的。是这样的吗?见证奇迹的时刻到了。请翻牌看看,老师猜得准么?生:猜对了。

生:猜对了,给点掌声吧。老师为什么猜的那么准,想知道吗?其实这里面蕴藏着一个非常有趣的数学原理----抽屉原理(板书课题)相信你们认真学习后,会明白的。

(设计意图:老师通过一个魔术展示了在生活里“抽屉原理”问题中的一种,勾起了学生对这个魔术很好奇心,为原本枯燥的数学课注入了活力。)

师:看看这节课的学习目标。(指名读一读)

(设计意图:建立明确的目标,就会引起师生注意的集中性和指向性,引起对某类知识,某种能力的强烈注意。就能在最短的时间,最省力地完成“三个维度”的目标,最有效的提高教学质量。)

二、动手实验、探究新知

师:为研究这个原理,老师为大家准备了什么?

生:小棒和杯子(板书:小棒、杯子)

师:那我们今天就用小棒和杯子做几个有趣的数学实验来研究这个原理。

(一)第一步:研究4根小棒放入3个杯子中的现象。

1、请看大屏幕:

师:把4根小棒放进3个杯子里,请小组的同学摆摆看,在动手之前请看活动要求:

①4人为一组摆一摆,要求将小棒全部放进去,允许某个杯子空着。

②边摆边记录下来,(记录时:可以用1表示小棒,用0表示杯子(画一画)看看一共有几种摆法?

师补充:每个组要认真记录不同摆法。希望每个小组分工合作愉快,开始

2.汇报展示

要求学生边摆边说,老师同时在黑板上板书草图。可能会出现以下几种放法:

师:大部分学生都摆完了,谁来说说,你们是怎么摆的?

学习小组派代表到台前展示成果。要求学生边摆边说,老师同时在黑板上板书草图。可能会出现以下几种放法:

400310

220211

(引导学生明确虽然摆放的顺序不一样,但是同一种放法)

师:老师欣赏这组同学的操作步骤,按一定顺序,可以做到不重复,不遗漏。

师:还有别的放法吗?

生:没有了。

(3)引导观察,得出结论。

引导学生观察4种方法,从而得出:总有一个杯子里面至少有2根小棒。

师:是的,这4种放法,不管怎么放,你有什么发现?)

1组:……(可能会出现不同发现)

2组:我们发现不管怎么放,总会有一个小杯子里面至少有2根小棒。

强调至少!总有

师:说啥?再说一遍。

生:……

师:还有谁发现了什么?

生:……

(设计意图:这个环节鼓励每个小组都说出自己的看法,因为学生思维能力的不同,得出的结论也就不同。只有通过多种思维的碰撞,学生的逻辑思维能力、解决问题的能力才能提高,对抽屉原理的认识才会更加深刻。)

师:再次观察四种方法,哪种方法能直接得到这个结论。

这种分法,实际就是先怎么分的?(引导平均分)

师:关于平均分有没有问题?我有一个问题,为什么用平均分这一种方法,就能得出总有一个杯子里的至少有2根小棒这个结论。

(二)第二步:研究5根小棒放入4个杯子中的现象。

1、课件出示:5根小棒放进4个杯子里你感觉会出现什么情况。

师:再往下继续研究,5根小棒放在4个小杯子里你感觉会出现什么情况,

生猜测:5根小棒放在4个小杯子,不管怎么放,肯定有一个杯子里至少有2根小棒。

师:对不对需要实验验证,我们还要像刚才那样一一把所有摆法都列举出来吗?用什么方法操作验证这个结论对错就可以了。

生:用平均分的方法就可以了。

师:咱们试试看,小组合作交流,用这种平均分的方法操作验证,并像黑板上那样记录在学案里。

2、展示摆法,引导观察发现:

师:哪一个小组愿意展示分享一下?

生:5根,每个小杯子放一根,剩下的一根放在其中的一个小杯子。(实际演示一下)

师:谁和他的分法一样的,这种分法,实际就是先怎么分的?(板书:平均分)

课件演示

师:,既然用平均分的方法就可以解决这个问题,会用算式表示这种方法吗?

生:5÷4=1……1

师:能解释算式里每个数的意义吗?

生:5表示小棒数,4表示杯子是,商1表示平均每个杯子放进1根小棒,余数1表示还剩1根小棒。

师小结:要想发现存在着“总有一个杯子里一定至少有2根”,先平均分,余下1根,不管放在那个杯子里,一定会出现“总有一个杯子里一定至少有2根”。)

3、学以致用---照这样的思路,继续往前走:

课件出示:把7根小棒放进6个小杯子里,总有一个杯子里至少有()根,。

100根小棒放进99个小杯子里,总有一个杯子里至少有()根。

师:这么大的数字,同学们这么快就得出了结论,你是不是发现了什么规律了?(小棒的数量与杯子的数量有什么关系?))还要操作验证吗?说说你的想法。

学生独立解决以上问题,在展示汇报时学生要说明白解决问题的方法是什么。

4、引导学生知识点小结:

师:小棒数比杯子数多1,总有一个盒子至少放进的小棒数怎么算,你用谁加上谁就是我们想要结果?

生1:平均分

师:刚才他这样分,是怎么分的啊?(强调:“平均分”)

生2:商加余数(在这里老师不作过多解释,

生3:商加1表明持“待定”态度)

(三)第三步:研究研究小棒数比杯子数不是多1的现象

质疑:提出研究小棒数比杯子数不是多1的现象

师:研究到这里,你有什么疑问?

如果小棒数不是比杯子数多1,而是多2、3……结果还是这样吗?请同学们接着探究:

1、课件出示:如果把5根小棒放在3个杯子里,会出现什么情况?请在小组内摆一摆,看哪个小组最快得出来,开始。

2、交流汇报(小组代表上台边摆边说)

生1:我认为至少有3根小棒,因为把5根小棒平均分给3个杯子,就还剩2根小棒,所以总有一个杯子至少有3根小棒。

生2:我认为总有一个杯子里至少有2根小棒。我是先把3个杯子里各放1根,这样就还剩下2根小棒,我再把这2根小棒分在两个不同的杯子里,至少就是2根小棒了。

师:他们谁说的对呢?我们一起来摆一摆:先平均分掉3根,没问题吧。那这剩下的2根小棒该怎么分,才能保证至少有几根小棒?

生:剩下的2根小棒分开放,才能保证至少。

师:同意吗?

师:怎样用算式表示呢?5÷3=1……2

(设计意图:通过学生操作学具直观演示,很容易的就能理解是“商+1”还是“商+余数”的问题。)

2、深化研究、得出结论:

同桌讨论交流,说说你的想法,并完成表格。

小棒(根) 杯子(个) 算式 总有一个杯子至少放进()根小棒

7 4

9 4

15 4

4、汇报交流:怎么想?怎么算的?

5、引导发现得出结论

师:我们刚才研究这么多种情况,大家仔细观察算式,想想:“不管怎么放,总有一个杯子里至少有几根小棒”应该怎样求?

生:应该是商+1,不是商+余数。

全班交流(板书:“商+1”)

教师重点强调是“商+1”还是“商+余数”得出的答案。

小结:我们把小棒尽可能地平均分给各个杯子,总有一个杯子比平均分得的小棒数多1。

小结并板书:不管怎放,总有一个杯子里至少有(商+1)根小棒。

7、了解抽屉原理。

师:同学们知道吗?我们今天发现的原理其实早在200多年前就被德国数学家狄里克雷发现了,请看大屏幕:

学生读资料。

“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。

师:回想我们刚才做的小棒和杯子的实验中,谁相当于抽屉(鸽笼)?那小棒就可以看作是被放进抽屉的物体(鸽子)。

师:把m个物体任意放进n个抽屉里(m>n,n是非0自然数)如果m÷n=b---c,那么一定有一个抽屉至少放进了多少个物体?---板书:b+1个

生:m÷n=b……c,那么总有一个抽屉至少放了b+1个物体。

三、联系生活、运用原理

1.用所学知识解释课前魔术“猜花色”。能用今天的知识来来解释吗?谁为抽屉?谁为物体?

过渡:运用今天所学的抽屉原理的知识,你能不能解决一些实际问题啊?(能)有没有信心?(有)我们来试试。

2、(夸一夸本班同学)我们班有()名同学,至少有()名同学同一个月过生日呢?怎么想的?

3、(知道老师是哪个学校的吗?)我们山城中心小学有2188名学生,至少有几人是同一天出生的?

四、师生总结:这节课的探究学习中,我们一起来经历了与德国数学家狄里克雷一样的伟大发现过程。回顾一下,你有什么收获?

生活中还有很多这样的例子,老师相信你们会运用今天所学的抽屉原理去解决生活问题!

板书设计:

抽屉原理

小棒杯子总有一个杯子至少有:商+1

(物体)(抽屉)(至少数)

432

5÷4=1……12

5÷3=1……22111100

7÷4=1……3211110

9÷4=2……1311110

15÷4=3……341111

上一篇:牵一只蜗牛去散步作文下一篇:英语考试方面的学习建议