猜想证明和拓广

2024-10-25

猜想证明和拓广(精选3篇)

猜想证明和拓广 篇1

“哥德巴赫猜想”及“孪生素数猜想”的证明

贵州省务川自治县实验学校 王若仲(王洪)

摘要:我闲遐之余,喜好研究数学问题,我在一次偶然探究中,发现了“哥德巴赫猜想”的简捷证明方法,即就是不具体研究单个素数的位置如何,也不研究设定区域内素数的数量如何,而是利用集合的概念,设置一定的条件,在宽泛的前提下探讨整体情形,即假设偶数6,8,10,„,(2m-2),(2m)(m≧3);它们均可表为两个奇素数之和。设奇合数a1,a2,a3,„,at均为不大于偶数2m的全体奇合数,(ai<aj,i<j,i、j=1,2,3,„,t),t∈N。则集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}有缺项。利用前面已知情形,证明集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项;利用该结论以及前面已知情形,证明集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}也有缺项;假设偶数(2m+2)不能表为两个奇素数之和,设奇合数a1,a2,a3,„,ar均为不大于偶数(2m+2)的全体奇合数,(ai<aj,i<j,i、j=1,2,3,„,r),r∈N。则集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}∪{a1,a2,a3,„,ar}没有缺项。该集合中的元素均分别减去2后所得集合({2m-a1)(,2m-a2)(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}仍然没有缺项。这与前面所得结论产生矛盾,说明偶数(2m+2)能表为两个奇素数之和。由此得出“哥德巴赫猜想”成立。由“哥德巴赫猜想”成立,得出“孪生素数猜想”成立。

关键词:哥德巴赫猜想;素数;缺项集合

引言

德国数学家哥德巴赫,他在1742年提出:任一不小于6的偶数均可表为两个奇素数之和,这就是著名的哥德巴赫猜想问题,至今没有完全解决。我在遵义师范高等专科学校求学时,就对哥德巴赫猜想问题产生了兴趣,进行过肤浅的探索。特别是我在1993年的一次偶然的数字游戏演算中,发现了一个特别有趣的现象,通过归纳提炼,得出如下问题,即对于任一集合A,A={p1,p2,p3,„,pk},pi< pj(i

我们知道,只能被1和本身整除的正整数,称为素数。定义1:对于均满足某一特性或某一表达式的全体整数组成的集合A,关于集合A的子集A1,A2,A3,„,Ak;任一子集Ai≠A(i=1,2,3,„,k),则称集合Ai为该条件下的缺项集合。缺具体的某一项,该项则称为缺项。定理1:对于整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={a21,a22,a23,„,a2t},a1h≤a2t,h∈N,t∈N。若集合B∪C在集合A的条件下没有缺项,则集合{(a11±md),(a12±md),(a13±md),„,(a1h±md)}∪{(a21±md),(a22±md),(a23±md),„,(a2t±md)}在集合A的条件下仍然没有缺项,m∈N。

证明:对于整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={a21,a22,a23,„,a2t},a1h≤a2t,h∈N,t∈N。因为集合B∪C在集合A的条件下没有缺项,不妨设集合B∪C={b1,b2,b3,„,bt},则集合{b1,b2,b3,„,bt}={ r,(d+r),(2d+r),(3d+r),„,[(e-1)d+r],(ed+r)},e∈N。而集合{(b1-md),(b2-md),(b3-md),„,(bt-md)}={(r-md),(d+r-md),(2d+r-md),(3d+r-md),„,[(e-1)d+r-md],(ed+r-md)},集合{(b1+md),(b2+md),(b3+md),„,(bt+md)}={(r+md),(d+r+md),(2d+r+md),(3d+r+md),„,[(e-1)d+r+md],(ed+r+md)}。故定理1成立。

定理2:对于整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={a21,a22,a23,„,a2t},a1h≤a2t,h∈N,t∈N。若集合B∪ C在集合A的条件下有缺项,则集合{(a11±md),(a12±md),(a13±md),„,(a1h±md)}∪{(a21±md),(a22±md),(a23±md),„,(a2t±md)}在集合A的条件下仍然有缺项。

证明:对于整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={a21,a22,a23,„,a2t},a1h≤a2t,h∈N,t∈N。因为集合B∪C在集合A的条件下有缺项,不妨设集合B∪C={b1,b2,b3,„,bt},且设集合B∪C缺ai项,i<t。则集合{b1,b2,b3,„,bt}={ r,(d+r),(2d+r),(3d+r),„,[(i-1)d+r],[(i+1)d+r],„,[(e-1)d+r],(ed+r)},e∈N。而集合{(b1-md),(b2-md),(b3-md),„,(bt-md)}={(r-md),(d+r-md),(2d+r-md),(3d+r-md),„,[(i-1)d+r-md],[(i+1)d+r-md],„,[(e-1)d+r-md],(ed+r-md)},集合{(b1+md),(b2+md),(b3+md),„,(bt+md)}={(r+md),(d+r+md),(2d+r+md),(3d+r+md),„,[(i-1)d+r+md],[(i+1)d+r+md],„,[(e-1)d+r+md],(ed+r+md)}。故定理2成立。

定理3:对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)},设a11=bd+r,b∈N,若存在一个数v,v=ed,e∈N,使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b),那么必存在一个数u,u= md,m∈N,使得 {(a11-md),(a12-md),(a13 md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。证明:因为对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),有{(ak+r-a1),(ak+r-a2),(ak+r-a3),„,(ak+r-ak)}={(a2-d),(a3-d),(a4-d),(a5-d),(a6-d),(a7-d),„,(a(k-1)-d),(ak-d),„,ak},那么{(ak+ed+r-a1),(ak+ed+r-a2),(ak+ed+r-a3),„,(ak+ed+r-ak)}={(at-ed),(a(t+1)-ed),(a(t+2)-ed),(a(t+3)-ed),(a(t+4)-ed),(a(t+5)-ed),„,(a(k-1)-ed),(ak-ed),„,(ak+ed)},t>1,t<k,t∈N。

设集合{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed)},又设集合{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a21,a22,a23,„,a2h},根据题设,集合{a1,a2,a3,„,a1h,„,(a1h+ed)}没有缺项,由定理1可知,集合{(a11-ed),(a12-ed),(a13-ed),„,(a1h-ed)}∪{(a21-ed),(a22-ed),(a23-ed),„,(a2h-ed)}仍然没有缺项,e∈N,我们令e=m,则有{(a11-md),(a12-md),(a13 md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。故定理3成立。

定理4:对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)},设a11=bd+r,b∈N,若存在一个数u,u= md,m∈N,使得{(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。那么必存在一个数v,v=ed,e∈N,使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b)。证明:因为对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),有{(ak+r-a1),(ak+r-a2),(ak+r-a3),„,(ak+r-ak)}={(a2-d),(a3-d),(a4-d),(a5-d),(a6-d),(a7-d),„,(a(k-1)-d),(ak-d),„,ak},那么{(ak+ed+r-a1),(ak+ed+r-a2),(ak+ed+r-a3),„,(ak+ed+r-ak)}={(at-ed),(a(t+1)-ed),(a(t+2)-ed),(a(t+3)-ed),(a(t+4)-ed),(a(t+5)-ed),„,(a(k-1)-ed),(ak-ed),„,(ak+ed)},t>1,t<k,t∈N。设集合{(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)},m∈N,又设集合{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={a21,a22,a23,„,a2h},根据题设,集合{(r-md),„,a1,a2,a3,„,(a1h-bd)}没有缺项,由定理1可知,集合{(a11-md+ed),(a12-md+ed),(a13-md+ed),„,(a1h-md +ed)}∪{(a21+ed),(a22+ed),(a23+ed),„,(a2h+ed)}仍然没有缺项,e∈N,我们令e=m,则有{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b)。故定理4成立。

定理5:对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)},设a11=bd+r,b∈N,若不存在一个数v,v=ed,e∈N,使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b),那么也不可能存在一个数u,u= md,m∈N,使得 {(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。证明:由定理4知,假若存在一个数u,u= md,m∈N,关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)},使得{(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。那么必存在一个数v,v=ed,e∈N,使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b)。这与题设产生矛盾,故定理5成立。

定理6:对于非负整数集合A={a1,a2,a3,„,ak,„},任一ai∈N(i=1,2,3,„,k,„);a1,a2,a3,„,ak,„为等差数列,等差为d,a1=r(r≤d),关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+d+r-a11),(a1h+d+r-a12),(a1h+d+r-a13),„,(a1h+d+r-a1h)},设a11=bd+r,b∈N,若不存在一个数u,u= md,m∈N,使得{(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)},那么也不可能存在一个数v,v=ed,e∈N,使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b)。

证明:由定理3知,假定存在一个数v,v=ed,e∈N,关于集合A的子集B和C,B={a11,a12,a13,„,a1h},C={(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)},使得{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h,„,(a1h+ed-bd)}(e≥b)或{a11,a12,a13,„,a1h}∪{(a1h+ed+r-a11),(a1h+ed+r-a12),(a1h+ed+r-a13),„,(a1h+ed+r-a1h)}={a1,a2,a3,„,a1h}(e<b),那么必存在一个数u,u= md,m∈N,使得 {(a11-md),(a12-md),(a13-md),„,(a1h-md)}∪{(a1h+r-a11),(a1h+r-a12),(a1h+r-a13),„,(a1h+r-a1h)}={(r-md),„,a1,a2,a3,„,(a1h-bd)}。这与题设产生矛盾,故定理6成立。

哥德巴赫定理:任一不小于6的偶数均可表为两个奇素数之和。证明:(Ⅰ)、对于偶数6,8,10,12,14,16,18,20,22等等。有:6=3+3,8=3+5,10=3+7=5+5,12=5+7,14=3+11=7+7,16=3+13=5+11,18=5+13=7+11,20=3+17=7+13,22=3+19=5+17= 11+11。

(Ⅱ)、对于偶数6,8,10,„,(2m-2),(2m)(m≧3)。假设它们均可表为两个奇素数之和。现在设奇合数a1,a2,a3,„,at均为不大于偶数2m的全体奇合数,(ai<aj,i<j,i、j=1、2、3、„、t),t∈N,其中偶数(2m)为比较大的整数。则有{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}≠{1,3,5,7,9,11,„,(2m-5),(2m-3),(2m-1)},根据定义1,说明集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}有缺项。

现在对集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}有无缺项进行分析:

设奇素数p1,p2,p3,„,ps均为小于偶数2m的全体奇素数,(pi<pj,i<j,i、j=1、2、3、„、s),s∈N。对于集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}和集合{(p1-2),(p2-2),(p3-2),„,(ps-2)}以及集合{(p1+2),(p2+2),(p3+2),„,(ps+2)}而言,假设集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)},那么则有:2m-ak1=(p1+2),2m-ak2=(p2+2),2m-ak3=(p3+2),„,2m-aks=(ps+2),k∈N。

又因为集合{a1,a2,a3,„,at}包含集合{ ak1,ak2,ak3,„,aks}。那么则有:

(1)、2m-2-ak1=p1,2m-2-ak2=p2,2m-2-ak3=p3,„,2m-2-aks=p(s-1)(ps>2m-2);

(2)、2m-2-ak1=p1,2m-2-ak2=p2,2m-2-ak3=p3,„,2m-2-aks=ps(ps<2m-2)。从(1)和(2)的情形可得偶数(2m-2)不能表为两个奇素数之和。这与前面已知偶数6,8,10,„,(2m-2),它们均可表为两个奇素数之和产生了矛盾。故前面假定集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)}就不可能成立。说明集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项。

我们现在针对集合{p1,p2,p3,„,ps}中任一奇素数pi得到的奇数(pi-2)和奇数(pi+2)从以下几个方面加以分析:

对于任一奇素数pi以及奇数(pi-2)和(pi+2),令2m-ai=(pi-2),2m-aj=(pi+2),可得ai-2=aj+2,则(pi-2)和(pi+2)有下列情形之一:

①、若等式2m-ai=(pi-2),2m-aj=(pi+2),ai-2=aj+2均成立,当ai和aj均为奇合数时,那么(pi+2)∈({2m-a1)(2m-a2),(2m-a3),„,(2m-at)},(pi-2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)};

②、若等式2m-ai=(pi-2),2m-aj=(pi+2),ai-2=aj+2均成立,当ai和aj均为奇素数时,那么(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},(pi-2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)};

③、若等式2m-ai=(pi-2),2m-aj=(pi+2),ai-2=aj+2均成立,当ai为奇素数,aj为奇合数时,那么(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},(pi-2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)};

④、若等式2m-ai=(pi-2),2m-aj=(pi+2),ai-2=aj+2均成立,当ai为奇合数,aj为奇素数时,那么(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},(pi-2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}。

前面已知集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}不包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)},我们现在针对集合{p1,p2,p3,„,ps}内的全体奇素数均只适合①的情形,均只适合②的情形,均只适合③的情形,均只适合④的情形,均只适合①和②的情形,均只适合①和③的情形,均只适合①和④的情形,均只适合②和③的情形,均只适合②和④的情形,均只适合③和④的情形,均只适合①和②和③的情形,均只适合①和②和④的情形,均只适合①和③和④的情形,均只适合②和③和④的情形,适合①和②以及③和④的情形时,分别进行分析:

㈠、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若出现下列情形之一时,即均只适合①和②的情形或均只适合③和④的情形或均只适合①和②和③的情形或均只适合①和②和④的情形或均只适合①和③和④的情形或均只适合②和③和④的情形或适合①和②以及③和④的情形,其中任一情形,在集合{p1,p2,p3,„,ps}中至少有 奇素数pi和pj,使得(pi-2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},(pj+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}。

㈡、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合 ①的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,均有(pi-2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},这与前面已知集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}不包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)}产生了矛盾,故均只适合①的情形时不能成立。

㈢、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合②的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,均有(pi-2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},(pi+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},因集合{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}中的元素两两互不相同,说明集合{p1,p2,p3,„,ps}中元素的总个数与集合{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}中元素的总个数相等。那么根据式子2m-p=pi-2和2m-q=pi+2(p 和q均为奇素数)可得,p=q+4。这说明均只是②的情形时,则任一奇素数加4只能为奇素数,这就必然产生矛盾。故假定均只适合②的情形时不可能成立。

㈣、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合③的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,均有(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},这与前面已知集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}不包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)}产生了矛盾,故均只适合③的情形时不能成立。㈤、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合④的情形,那么有任一(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},而任一(pi+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},又因集合{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}中的元素两两互不相同,说明集合{p1,p2,p3,„,ps}中元素的总个数与集合{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}中元素的总个数相等。又因任一(pi-2)∈集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},那么根据式子2m-ai=pi-2和2m-q=pi+2(q为奇素数)可得,ai=q+4。这说明均只是④的情形时,则任一奇素数加4只能为奇合数,这就必然产生矛盾。故假定均只适合④的情形时不可能成立。

㈥、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合①和③的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,均有(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},这与前面已知集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}不包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)}产生了矛盾,故均只适合①和③的情形时不能成立。

㈦、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合①和④的情形,则有(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}或(pi+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},并且集合{p1,p2,p3,„,ps}至少有一个奇数(pj+2),(pj+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}(1≤j≤s)。说明对于任一奇素 数pi,pi均可分解为pi=2m-g-2(g为奇数)。而对于集合{p1,p2,p3,„,ps}中任一奇素数pi,则(pi-2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},说明对于任一奇素数pi,pi只能分解为pi=2m-ai+2(ai为奇合数)。由此可知,集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项,集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项。

我们现在来分析集合{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{(a1-2),(a2-2),(a3-2),„,(at-2)}中元素的构成情形: 因为奇合数a1,a2,a3,„,at均为不大于偶数2m的全体奇合数,在自然数2m范围内,因为集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项,而集合{(a1+2),(a2+2),(a3+2),„,(at+2)}中缺集合{3}∪{(p1+2),(p2+2),(p3+2),„,(ps+2)}中的全体奇数。说明集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}中至少缺集合{3}∪{(p1+2),(p2+2),(p3+2),„,(ps+2)}中的某一个奇数,也就是说明集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}中至少缺集合{3}∪{(p1+2),(p2+2),(p3+2),„,(ps+2)}中的某一个奇数。

又因为假定集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项,而集合{(a1-2),(a2-2),(a3-2),„,(at-2)}中缺集合{(p1-2),(p2-2),(p3-2),„,(ps-2)}中的全体奇数。说明集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}包含集合{(p1-2),(p2-2),(p3-2),„,(ps-2)}。

现在对已知集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项,假定集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项进行分析:

﹤1﹥、因为已知集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项,当3或5不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}时,由前面分析的情形可知,即3或5不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}。由集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项的情形可知,3和5属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)},即3和5属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},这就产生了矛盾,故这种情形下,集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项不能成立。

﹤2﹥、现在分析连续的三个奇数依次为奇素数,奇合数,奇素数的情形,即pi,(pi+2),(pi+4)。因为已知集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项,假设(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}时,由前面分析的情形可知,则(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}。我们令pj=(pi+4),则(pi+2)=(pj-2),pi和pj均为奇素数,由集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项的情形可知,那么(pj-2)属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)},即(pj-2)属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},也就是说(pi+2)属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},这就产生了矛盾,故这种情形下,集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项不能成立。

﹤3﹥、如果连续的三个奇数中只有下列情形中任意一种情形或任意两种情形组合而成的情形或任意三种情形组合而成的情形或全部四种情形组合而成的情形。

⒈连续的三个奇数依次为奇素数,奇合数,奇合数; ⒉连续的三个奇数依次为奇素数,奇素数,奇合数; ⒊连续的三个奇数依次为奇合数,奇合数,奇合数; ⒋连续的三个奇数依次为奇合数,奇素数,奇合数;

因为任一奇数(2m-a)(a为奇数,a<2m,a≠(2m-1),a≠1),总有等式(2m-a)=ai+2=aj-2成立,其中ai和aj均为奇数。如果连续的三个奇数中只是﹤3﹥中的情形,则对于任一奇数(2m-a)(a为奇数,a<2m,a≠(2m-1),a≠1),只有等式(2m-a)=ai+2=aj-2成 立,其中ai为奇数,aj为奇合数。对于上面任一组合情形,均可得到集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项,即集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项。

因为集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}总可以转换为集合{(p11+2),(p12+2),(p13+2),„,(p1r+2),(a11+2),(a12+2),(a13+2),„,(a1v+2)}或转换为集合{(p21-2),(p22-2),(p33-2),„,(p2w-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}。说明集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}的缺项与集合{(p11+2),(p12+2),(p13+2),„,(p1r+2),(a11+2),(a12+2),(a13+2),„,(a1v+2)}的缺项以及集合{(p21-2),(p22-2),(p33-2),„,(p2w-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}的缺项相同。

由集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项,根据定理1,则集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}∪{a1,a2,a3,„,at}没有缺项。我们设奇合数a1,a2,a3,„,ar均为不大于偶数(2m+2)的全体奇合数,则有下列情形:

(ⅰ)、若at=ar,则集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}∪{a1,a2,a3,„,at}没有缺项。而集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)} ∪{a1,a2,a3,„,at}总可以转换为集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}或转换为集合{(p21-2),(p22-2),(p33-2),„,(p2y-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}。说明集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}和集合{(p21-2),(p22-2),(p33-2),„,(p2y-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}均没有缺项;那么集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}包含集合{(a1+2),(a2+2),(a3+2),„,(at+2)},集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}包含集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)},则有集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)},由此可知,集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}没有缺项。又根据定理1,则集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}没有缺项,这与前面已知情形产生矛盾,故假定集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项不能成立;即对于﹤3﹥中前面任一组合情形均不可能成立。

(ⅱ)、若奇数(2m+2-1)为奇合数,则集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{a1,a2,a3,„,ar}没有缺项。而集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{a1,a2,a3,„,ar}总可以转换为集 合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}或转换为集合{(p21-2),(p22-2),(p33-2),„,(p2y-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}。说明集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}和集合{(p21-2),(p22-2),(p33-2),„,(p2y-2),(a21-2),(a22-2),(a23-2),„,(a2z-2)}均没有缺项;那么集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}包含集合{(a1+2),(a2+2),(a3+2),„,(at+2)},集合{(p11+2),(p12+2),(p13+2),„,(p1u+2),(a11+2),(a12+2),(a13+2),„,(a1e+2)}包含集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)},则有集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-at)}包含集合{(p1+2),(p2+2),(p3+2),„,(ps+2)},由此可知,则集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{(a1+2),(a2+2),(a3+2),„,(ar+2)}没有缺项。又根据定理1,则集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-ar)}∪{a1,a2,a3,„,ar}没有缺项,即集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at }没有缺项。这与前面已知情形产生矛盾,故假定集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项不能成立;即对于﹤3﹥中前面任一组合情形均不可能成立。

﹤4﹥、现在分析连续的三个奇数依次为奇素数,奇素数,奇素数的情形,即pi和(pi+2)以及(pi+4)。我们令(pi+4)=pj,则(pi+2)=(pj-2),假设(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)},因(pi+2)不属于{(a1+2),(a2+2),(a3+2),„,(at+2)},则(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}。又因假定集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}没有缺项,而(pj-2)不属于集合{(a1-2),(a2-2),(a3-2),„,(at-2)},则(pj-2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}。因(pi+2)=(pj-2),这就产生了矛盾,故集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}也要缺这种情形下的项。

﹤5﹥、现在分析连续的三个奇数依次为奇合数,奇合数,奇合数的情形,即ai和(ai+2)以及(ai+4)。我们令(pi+4)= a j,则(ai+2)=(a j-2),则(ai+2)属于集合{(a1+2),(a2+2),(a3+2),„,(at+2)},(ai+2)属于集合{(a1-2),(a2-2),(a3-2),„,(at-2)},即(ai+2)属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)},(ai+2)属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)},故集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}中均不可能缺这种情形下的项。

﹤6﹥、如果连续的三个奇数中只有下列情形中任意一种情形或任意两种情形组合而成的情形或任意三种情形组合而成的情形或全 部四种情形组合而成的情形:

第一、为奇合数,奇合数,奇素数; 第二、为奇合数,奇素数,奇素数; 第三、为奇合数,奇素数,奇合数; 第四、为奇合数,奇合数,奇合数。

因为任一奇数(2m-a)(a为奇数,a<2m,a≠(2m-1),a≠1),总有等式(2m-a)=ai+2=aj-2成立,其中ai和aj均为奇数。如果连续的三个奇数中只是﹤6﹥中的情形,则对于任一奇数(2m-a)(a为奇数,a<2m,a≠(2m-1),a≠1),只有等式(2m-a)=ai+2=aj-2成立,其中ai为奇合数,aj为奇数。对于上面任一种情形,均可得到集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}没有缺项,这与前面得到的集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}有缺项产生了矛盾,故﹤6﹥中的情形不可能成立。

综上﹤1﹥、﹤2﹥、﹤3﹥、﹤4﹥、﹤5﹥、﹤6﹥所述,故均只适合①和④的情形时不可能成立。

㈧、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合②和③的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,有(pi+2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}或(pi+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},并且集合{p1,p2,p3,„,ps}至少有一个奇数(pj+2),(pj+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}(1≤j≤s)。说明对于任一奇素数pi,pi 均可分解为pi=2m-g-2(g为奇数)。而对于集合{p1,p2,p3,„,ps}中任一奇素数pi,则(pi-2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},(pi-2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},说明对于任一奇素数pi,pi只能分解为pi=2m-q+2(q为奇素数),集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}中的任一奇数只能分解为a=2m-a i+2(a和a i均为奇合数),因为3和5以及7是奇素数,而所有自然数中除3和5以及7外,不可能再出现三个连续的奇数均为奇素数,说明对于任一奇素数pi,pi只能分解为pi=2m-q+2(q为奇素数)不可能成立,也就是说(2m+2-3)和(2m+2-5)以及(2m+2-7)中至少有一个奇合数。故均只适合②和③的情形时不可能成立。

㈨、对于集合{p1,p2,p3,„,ps}内的全体奇素数,若均只适合②和④的情形,说明对于集合{p1,p2,p3,„,ps}内的任一奇素数pi,有(pi-2)∈{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}或(pi-2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},并且集合{p1,p2,p3,„,ps}至少有一个奇数(pj-2),(pj-2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)}(1≤j≤s)。说明对于任一奇素数pi,pi均可分解为pi=2m-g-2(g为奇数)。而对于集合{p1,p2,p3,„,ps}中任一奇素数pi,则(pi+2)∈{(2m-p1),(2m-p2),(2m-p3),„,(2m-ps)},(pi+2)不属于集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)},说明对于任一奇素数pi,pi只能分解为pi=2m-q-2(q为奇素数),集合{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}中的任 一奇数只能分解为a=2m-ai-2(a和a i均为奇合数),因为3和5以及7是奇素数,而所有自然数中除3和5以及7外,不可能再出现三个连续的奇数均为奇素数,说明对于任一奇素数pi,pi只能分解为pi=2m-q-2(q为奇素数)不可能成立,也就是说(2m-2-3)和(2m-2-5)以及(2m-2-7)中至少有一个奇合数。故均只适合②和④的情形时不可能成立。

综上㈠、㈡、㈢、㈣、㈤、㈥、㈦、㈧、㈨所述,设奇合数a1,a2,a3,„,at均为不大于偶数2m(m≧3)的全体奇合数,(ai<aj,i<j,i、j=1、2、3、„、t),t∈N。设奇素数p1,p2,p3,„,ps均为小于偶数2m的全体奇素数,(pi<pj,i<j,i、j=1、2、3、„、s),s∈N。则集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}不包含集合{(p1-2),(p2-2),(p3-2),„,(ps-2)}。即集合{1,(2m-1)}∪(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(a3-2)}有缺项。

(Ⅲ)、对于偶数(2m+2),现在设奇合数a1,a2,a3,„,ah均为不大于偶数(2m+2)(m≧2)的全体奇合数,(ai<aj,i<j,i、j=1、2、3、„、h)。假设偶数(2m+2),不存在有两个奇素数pi和pj,使得(2m+2)=pi+pj。则说明集合{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}中包含了所有的奇合数和奇素数,那么必然有集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}={1,3,5,7,9,11,„,(2m+2-5),(2m+2-3),(2m+2-1)},由定理1 可知,集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}中的元素同时均减去2,于是可得集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}={1,3,5,7,9,11,„,(2m-5),(2m-3),(2m-1)}。又由(ⅱ)分析的情形可知,集合{1,(2m-1)}∪(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}有缺项,这样就与假设集合{1,(2m-1)}∪(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}={1,3,5,7,9,11,„,(2m-5),(2m-3),(2m-1)}产生了矛盾。说明集合{1,(2m-1)}∪(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}有缺项。由定理2可知,集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}也有缺项,说明集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}中至少有一个奇素数不在该集合中,即集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{(a1-2),(a2-2),(a3-2),„,(ah-2)}有缺项。故集合{1,(2m+2-1)}∪(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ah)}∪{a1,a2,a3,„,ah}≠{1,3,5,7,9,11,„,(2m+2-5),(2m+2-3),(2m+2-1)},所以假定偶数(2m+2)不存在有两个奇素数pi和pj,使得(2m+2)=pi+pj的情形不能成立。即偶数(2m+2)能表为两个奇素数之和。

综上所述,任一不小于6的偶数均可表为两个奇素数之和。推论1:对于任一不小于10的偶数2m,设奇合数a1,a2,a3,„,at均为不大于偶数2m的全体奇合数,(ai<aj,i<j,i、j=1、2、3、„、t),t∈N,则集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}均有缺项。

证明:由哥德巴赫定理的证明过程可知,推论1成立。孪生素数定理:孪生素数对的对数是无限的。

证明:由哥德巴赫定理以及推论1可知,对于任一比较大的偶数2m,设奇合数a1,a2,a3,„,at均为不大于偶数2m的全体奇合数,(ai<aj,i<j,i、j=1、2、3、„、t),t∈N,那么偶数2m有下列情形:

当偶数2m=6k-2时,则有下列情形: 3 5 7 9 11 13 15 17 19 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 6ki-3-1 3ki-3 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 6ki-4+1 6ki-4-1„ 6kr-1 3kr 6kr-1+1 6kr-1-1 3kr-1 6kr-1+1 „ 3ki-2 6ki-3-1 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki17 15 13 11 9 7 5 3 1 当偶数2m=6k时,则有下列情形: 3 5 7 9 11 13 15 17 19 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 6ki-3-1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 3ki-3 6ki-4+1 „ 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 3kr-1 „ 6ki-3-1 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 19 17 15 13 11 9 7 5 3 1 当偶数2m=6k+2时,则有下列情形: 3 5 7 9 11 13 15 17 19 6ki+1 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 6ki-3-1 3ki-3 „ 3kr 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 „ 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 6ki+1 19 17 15 13 11 9 7 5 3 1 因为不小于4的偶数的顺序为:(6k1-2),(6k1),(6k1+2),(6k2-2),(6k2),(6k2+2),(6k3-2),(6k3),(6k3+2),„。我们具体展开分析:

第一、分析偶数2m=6k时的情形:(11)、对于偶数2m=6k,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1 奇素数 奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1 3ki1-2 6ki1-3+1 6ki1-3-1(12)、对于偶数2m=6k,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1奇合数 奇素数 3kj2+2 6kj2+2-1 6kj2+2+1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2-2+1 6ki2-2-1 3ki2-2 6ki2-3+1 6ki2-3-1(13)、对于偶数2m=6k,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1奇素数 奇合数3kj3+2 6kj3+2-1 6kj3+2+1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1 3ki3-2 6ki3-3+1 6ki3-3-1(14)、对于偶数2m=6k,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1奇合数 奇合数3kj4+2 6kj4+2-1 6kj4+2+1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 3ki4-2 6ki4-3+1 6ki4-3-1 从上面(11),(12),(13),(14)的情形可知,只有当上面(11)的情形中奇数(6ki1-2+1)这样情形的奇数为奇素数时或者上面(11)的情形中奇数(6ki1-2-1)这样情形的奇数为奇素数时或者上面(11)的情形中奇数(6ki1-2+1)和(6ki1-2-1)这样情形的奇数均为奇素数时或者上面(12)的情形中奇数(6ki2-2-1)这样情形的奇数为奇素数时或者上面(13)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数时,集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}才能产生缺项。又因为集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}均有缺项。那么集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}中,必然有由上面(11)的情形中奇数(6ki1-2+1)这样情形的奇数为奇素数和上面(13)的情形中奇数(6ki3-2-1)这样情形的奇数为奇素数而产生的缺项或者必然有由上面(11)的情形中奇数(6ki1-2-1)这样情形的奇数为奇素数和上面(12)的情形中奇数(6ki2-2+1)这样情形的奇数为奇素数而产生的缺项或者必然有由上面(11)的情形中奇数(6ki1-2+1)和(6ki1-2-1)这样情 形的奇数均为奇素数而产生的缺项。

我们又分析偶数2m+2=6k+2时的情形: 3 5 7 9 11 13 15 17 19 6ki+1 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 6ki-3-1 3ki-3 „ 3kr 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 „ 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 6ki+1 19 17 15 13 11 9 7 5 3 1(15)、对于偶数2m+2=6k+2,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1 奇素数 奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 6ki1-1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1 3ki1-2 6ki1-3+1(16)、对于偶数2m+2=6k+2,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1 奇素数 奇合数 3kj2+2 6kj2+2-1 6kj2+2+1 6ki2-1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2-2+1 6ki2-2-1 3ki2-2 6ki2-3+1(17)、对于偶数2m+2=6k+2,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1 奇合数 奇素数 3kj3+2 6kj3+2-1 6kj3+2+1 6ki3-1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1 3ki3-2 6ki3-3+1(18)、对于偶数2m+2=6k+2,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1 奇合数 奇合数 3kj4+2 6kj4+2-1 6kj4+2+1 6ki4-1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 3ki4-2 6ki4-3+1 我们设奇合数a1,a2,a3,„,ar均为不大于偶数(2m+2)的全体奇合数,从上面(15),(16),(17),(18)的情形可知,只有当(15)的情形中奇数(6ki1-2+1)这样情形的奇数为奇素数时或者(17)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数或者(2m+2-3)为奇素数时,集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{a1,a2,a3,„,ar}才能产生缺项。由此可知,必然有上面(11)的情形中奇数(6ki1-2+1)和(6ki1-2-1)这样情形的奇数均为奇素数或者上面(12)的情形中奇数(6ki2-2+1)和(6ki2-2-1)这样情形的奇数均为奇素数或者上面(13)的情形中奇数(6ki3-2+1)和(6ki3-2-1)这样情形的奇数均为奇素数或者前面偶数2m+2=6k+2时的情形中奇数(6ki+1)和(6ki-1)均为奇素数。

第二、分析偶数2m=6k-2时的情形: 3 5 7 9 11 13 15 17 19 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 6ki-3-1 3ki-3 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 6ki-4+1 6ki-4-1„ 6kr-1 3kr 6kr-1+1 6kr-1-1 3kr-1 6kr-1+1 „ 3ki-2 6ki-3-1 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki17 15 13 11 9 7 5 3 1(21)、对于偶数2m=6k-2,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1奇素数奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 3kj1-3 6ki1+1 6ki1-1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1 3ki1-2 6ki1-3+1(22)、对于偶数2m=6k-2,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1 奇素数 奇合数3kj2+2 6kj2+2-1 6kj2+2+1 3kj2-3 6ki2+1 6ki2-1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2+1 6ki2-2-1 3ki2-2 6ki2-3+1(23)、对于偶数2m=6k-2,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1 奇合数 奇素数3kj3+2 6kj3+2-1 6kj3+2+1 3kj3-3 6ki3+1 6ki3-1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1 3ki3-2 6ki3-3+1(24)、对于偶数2m=6k-2,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1 奇合数奇合数3kj4+2 6kj4+2-1 6kj4+2+1 3kj4-3 6ki4+1 6ki4-1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 3ki4-2 6ki4-3+1 从上面(21),(22),(23),(24)的情形可知,只有当(21)的情形中奇数(6ki1-1-1)这样情形的奇数为奇素数或者(22)的情形中奇数(6ki2-1-1)这样情形的奇数为奇素数或者奇数(2m-3)为奇素数时,集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}才能产生缺项。又因为集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}均有缺项。那么集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}必然有由上面(21)的情形中奇数(6ki1-1-1)和(6ki1-2+1)这样情形的奇数均为奇素数而产生的缺项或者由上面(21)的情形中奇数(6ki1-1-1)这样情形的奇数为奇素数和上面(23)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数而产生的缺项或者由上面(21)的情形中奇数(6ki1-1+1)这样情形的奇数为奇素数和上面(22)的情形中奇数(6ki2-1-1)这样情形的奇数为奇素数及上面(23)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数而 产生的缺项等等。

我们又分析偶数2m+2=6k时的情形: 3 5 7 9 11 13 15 17 19 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 6ki-3-1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 3ki-3 6ki-4+1 „ 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 3kr-1 „ 6ki-3-1 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 19 17 15 13 11 9 7 5 3 1(25)、对于偶数2m+2=6k,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1 奇素数 奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 3ki1+1 6ki1+1 6ki1-1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1(26)、对于偶数2m+2=6k,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1奇合数 奇素数 3kj2+2 6kj2+2-1 6kj2+2+1 3ki2+1 6ki2+1 6ki2-1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2-2+1 6ki2-2-1(27)、对于偶数2m+2=6k,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1奇素数 奇合数3kj3+2 6kj3+2-1 6kj3+2+1 3ki3+1 6ki3+1 6ki3-1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1(28)、对于偶数2m+2=6k,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1奇合数 奇合数3kj4+2 6kj4+2-1 6kj4+2+1 3ki4+1 6ki4+1 6ki4-1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 我们设奇合数a1,a2,a3,„,ar均为不大于偶数(2m+2)的全体奇合数,从上面(25),(26),(27),(28)的情形可知,只有当上

面(25)中的情形奇数(6ki1-1+1)这样情形的奇数为奇素数时或者上面(25)的情形中奇数(6ki1-1-1)这样情形的奇数为奇素数时或者上面(25)的情形中奇数(6ki1-1+1)和(6ki1-1-1)这样情形的奇数均为奇素数时或者上面(26)的情形中奇数(6ki2-1-1)这样情形的奇数为奇素数时或者上面(27)的情形中奇数(6ki3-1+1)这样情形的奇数为奇素数时,集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{a1,a2,a3,„,ar}才能产生缺项。又由于集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{(a1+2),(a2+2),(a3+2),„,(ar+2)}和集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),„,(2m+2-ar)}∪{(a1-2),(a2-2),(a3-2),„,(ar-2)}均有缺项,由此可知,必然有上面(21)的情形中奇数(6ki1-1+1)和(6ki1-1-1)这样情形的奇数均为奇素数或者上面(22)的情形中奇数(6ki2-1+1)和(6ki2-1-1)这样情形的奇数均为奇素数或者上面(23)的情形中奇数(6ki3-1+1)和(6ki3-1-1)这样情形的奇数均为奇素数或者偶数2m=6k-2时的情形中奇数(6ki-1+1)和(6ki-1-1)均为奇素数。

第三、分析偶数2m=6k+2时的情形: 3 5 7 9 11 13 15 17 19 6ki+1 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 6ki-3-1 3ki-3 „ 3kr 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 „ 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 6ki+1

19 17 15 13 11 9 7 5 3 1(31)、对于偶数2m=6k+2,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1 奇素数 奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 6ki1-1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1 3ki1-2 6ki1-3+1(32)、对于偶数2m=6k+2,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1 奇素数 奇合数 3kj2+2 6kj2+2-1 6kj2+2+1 6ki2-1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2-2+1 6ki2-2-1 3ki2-2 6ki2-3+1(33)、对于偶数2m=6k+2,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1 奇合数 奇素数 3kj3+2 6kj3+2-1 6kj3+2+1 6ki3-1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1 3ki3-2 6ki3-3+1(34)、对于偶数2m=6k+2,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1 奇合数 奇合数 3kj4+2 6kj4+2-1 6kj4+2+1 6ki4-1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 3ki4-2 6ki4-3+1 从上面(31),(32),(33),(34)的情形可知,只有当(31)的情形中奇数(6ki1-2+1)这样情形的奇数为奇素数或者(33)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数或者(2m-3)为奇素数时,集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{a1,a2,a3,„,at}才能产生缺项。又因为集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1+2),(a2+2),(a3+2),„,(at+2)}和集合{1,(2m-1),}∪{(2m-a1),(2m-a2),(2m-a3),„,(2m-at)}∪{(a1-2),(a2-2),(a3-2),„,(at-2)}均有缺项。那么集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),„,33(2m-at)}∪{a1,a2,a3,„,at}必然有由上面(31)的情形中奇数(6ki1-1-1)和(6ki1-2+1)这样情形的奇数均为奇素数而产生的缺项或者由上面(31)的情形中奇数(6ki1-1-1)这样情形的奇数为奇素数和上面(33)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数而产生的缺项或者由上面(31)的情形中奇数(6ki1-1+1)这样情形的奇数为奇素数和上面(32)的情形中奇数(6ki2-1-1)这样情形的奇数为奇素数及上面(33)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数而产生的缺项等等。

我们又分析偶数2m-2=6k时的情形: 3 5 7 9 11 13 15 17 19 6ki-1 3ki 6ki-1+1 6ki-1-1 3ki-1 6ki-2+1 6ki-2-1 3ki-2 6ki-3+1 6ki-3-1 21 23 „ 6kj-2-1 6kj-2+1 3kj-1 6kj-1-1 6kj-1+1 3kj „ 3ki-3 6ki-4+1 „ 6kr+1 6kr-1 3kr 6kr-1+1 6kr-1-1 3kr-1 „ 6ki-3-1 6ki-3+1 3ki-2 6ki-2-1 6ki-2+1 3ki-1 6ki-1-1 6ki-1+1 3ki 6ki-1 19 17 15 13 11 9 7 5 3 1(35)、对于偶数2m-2=6k,必有如下情形:

3kj1 6kj1-1 6kj1+1 3kj1+1 奇素数 奇素数 3kj1+2 6kj1+2-1 6kj1+2+1 3ki1 6ki1-1+1 6ki1-1-1 3ki1-1 6ki1-2+1 6ki1-2-1 3ki1-2 6ki1-3+1 6ki1-3-1(36)、对于偶数2m-2=6k,必有如下情形:

3kj2 6kj2-1 6kj2+1 3kj2+1奇合数 奇素数 3kj2+2 6kj2+2-1 6kj2+2+1 3ki2 6ki2-1+1 6ki2-1-1 3ki2-1 6ki2-2+1 6ki2-2-1 3ki2-2 6ki2-3+1 6ki2-3-1(37)、对于偶数2m-2=6k,必有如下情形:

3kj3 6kj3-1 6kj3+1 3kj3+1奇素数 奇合数3kj3+2 6kj3+2-1 6kj3+2+1 3ki3 6ki3-1+1 6ki3-1-1 3ki3-1 6ki3-2+1 6ki3-2-1 3ki3-2 6ki3-3+1 6ki3-3-1(38)、对于偶数2m-2=6k,必有如下情形:

3kj4 6kj4-1 6kj4+1 3kj4+1奇合数 奇合数3kj4+2 6kj4+2-1 6kj4+2+1 3ki4 6ki4-1+1 6ki4-1-1 3ki4-1 6ki4-2+1 6ki4-2-1 3ki4-2 6ki4-3+1 6ki4-3-1 我们设奇合数a1,a2,a3,„,ar均为不大于偶数(2m-2)的全体奇合数,从上面(35),(36),(37),(38)的情形可知,只有当上面(35)中的情形奇数(6ki1-2+1)这样情形的奇数为奇素数时或者上面(35)的情形中奇数(6ki1-2-1)这样情形的奇数为奇素数时或者上面(35)的情形中奇数(6ki1-2+1)和(6ki1-2-1)这样情形的奇数均为奇素数时或者上面(36)的情形中奇数(6ki2-2-1)这样情形的奇数为奇素数时或者上面(37)的情形中奇数(6ki3-2+1)这样情形的奇数为奇素数时,集合{1,(2m-2-1)}∪{(2m-2-a1),(2m-2-a2),(2m-2-a3),„,(2m-2-ar)}∪{a1,a2,a3,„,ar}才能产生缺项。又由于集合{1,(2m-2-1)}∪{(2m-2-a1),(2m-2-a2),(2m-2-a3),„,(2m-2-ar)}∪{(a1+2),(a2+2),(a3+2),„,(ar+2)}和集合{1,(2m-2-1)}∪{(2m-2-a1),(2m-2-a2),(2m-2-a3),„,(2m-2-ar)}∪{(a1-2),(a2-2),(a3-2),„,(ar-2)}均有缺项,由此可知,必然有上面(31)的情形中奇数(6ki1-2+1)和(6ki1-2-1)这样情形的奇数均为奇素数或者上面(32)的情形中奇数(6ki2-2+1)和(6ki2-2-1)这样情形的奇数均为奇素数或者上面(33)的情形中奇数(6ki3-2+1)和(6ki3-2-1)这样情形的奇数均为奇素数或者偶数2m=6k+2时的情

形中奇数(6ki+1)和(6ki-1)均为奇素数。

从上面分析的情形,可得出如下结论:

(ⅰ)、对于有限大的偶数2m,使得偶数2m之前的全体孪生素数对,对于偶数(2m+2k)(2k为有限大的偶数)之前的任一偶数,均满足哥德巴赫定理和推论1成立。

(ⅱ)、对于有限大的偶数2m,偶数2m之前的全体孪生素数对,均满足哥德巴赫定理和推论1成立;而偶数2m之前的全体孪生素数对,对于偶数2m至偶数(2m+2k)(2k为有限大的偶数)之间的任一偶数均不满足哥德巴赫定理和推论1成立,则偶数2m至偶数(2m+2k)(2k为有限大的偶数)之间必至少存在一个孪生素数对,使得偶数2m至偶数(2m+2k)(2k为有限大的偶数)之间的任一偶数,均满足哥德巴赫定理和推论1成立。

综上所述,孪生素数对的对数是无限的。

参考文献

[1]戎士奎,十章数论(贵州教育出版社)1994年9月第1版

[2]闵嗣鹤,严士健,初等数论(人民教育出版社)1983年2月第6版 [3]刘玉琏,付沛仁,数学分析(高等教育出版社)1984年3月第1版 [4]闵嗣鹤 数论方法(哈尔滨工业大学出版社)2011年3月第1版 [5]潘承洞 潘承彪 简明数论(北京大学出版社)1998年1月第1版 [6]陈景润 数论概貌(哈尔滨工业大学出版社)2011年3月第1版

作者简介:王若仲(王洪),男,土家族,1966年生于贵州务川,1988年毕业于遵义师范高等专科学校,1988年务川县实验学校教员至今。

二〇一二年九月十六日

哥德巴赫猜想的证明思路 篇2

引言

数论之位数运算,一个新的的概念,一个新的方向,一个新的课题。希望广大数学爱好者能参加到这个课题的研究中,从中发现更多的理论,解决更多的问题。

目录

一、哥德巴赫猜想的证明思路

1、哥德巴赫猜想证明引入的一些符号代表含义

2、素数定理代数表达式

3、哥德巴赫猜想的证明

第一章 哥德巴赫猜想的证明思路

通过证明一任意大偶数可拆分2素数之和的数量呈增长趋势来证明哥德巴赫猜想成立

一、哥德巴赫猜想证明引入的一些符号代表含义

1、n,(n≥1;n∈自然数)

2、Pn≈π(x)任意正整数n包含的素数数量

3、Pn1,(0,m)区间内素数数量

4、Pn2,(m,2m)区间内素数数量

5、Pm,任意正整数n包含的素数类型数量

5、(γ,γ=-0.***2)素数分布系数

6、(λ,λ=0.6***984)素数类型中素数与伪素数等差比例系数。

7、logn,以n为底的对数

8、H,小于等于n的所有素数类型的组合数量

9、H1,小于等于n的素数类型组合数量

10、Hn,取值为n时可拆分素数对数量

11、HAL,偶数类型1

12、HBL,偶数类型2

13、HCL,偶数类型3

14、HDL,偶数类型4

15、(m,2m 2m=n)相对区间

16、Hnx=Pn2*(Pn2*2+1)*H1/H,相对区间内两素数组合下限

17、HALx,偶数类型1组合下限

18、HBLx,偶数类型2组合下限

19、HCLx,偶数类型3组合下限 20、HDLx,偶数类型4组合下限

21、Hns=Pn1*(Pn1*2+1)*H1/H,相对区间内两素数组合上限

22、HALs,偶数类型1组合上限

23、HBLs,偶数类型2组合上限

24、HCLs,偶数类型3组合上限

25、HDLs,偶数类型4组合上限

二、素数定理代数表达式

1、Pn=π(x)≈(0.8n/3)/{γ+λ*(logn-2)+1}

2、Pn1=π(x)≈(0.8n/6)/{γ+λ*log(n/2-2)+1}

3、Pn2≈Pn-Pn1

三、哥德巴赫猜想的证明

1、Pm≈0.8n/3

2、H=(0.8n/6)*(0.8n/3+1)

3、H1=144*(n/90-1)*(n/90-1)+328(n/90-1)+186+{(n/90-1)+2}/2

4、Hn={(Pn*(Pn+1)/2}*H1/H

5、HAL=Hn*0.08/(n/90+1);

6、HBL=Hn*0.06/(n/90+1);

7、HCL= Hn*0.04/(n/90+1);

8、HDL=(Hn/30)/(n/90+1),9、Hnx=Pn2*(Pn2*2+1)*H1/H;

10、HALx= Hnx*0.08/(n/90+1);

11、HBLx= Hnx*0.06/(n/90+1);

12、HCLx= Hnx*0.04/(n/90+1);

13、HDLx=(Hnx/30)/(n/90+1);

14、Hns=Pn1*(Pn1*2+1)*H1/H;

10、HALs= Hns*0.08/(n/90+1);

11、HBLs= Hnx*0.06/(n/90+1);

12、HCLs= Hnx*0.04/(n/90+1);

13、HDLs=(Hnx/30)/(n/90+1); 结论:取自然数n,随着n→∞,HAL、HBL、HCL、HDL的值呈扩张性增涨; HALx、HBLx、HCLx、HDLx的下限值也呈扩张性增涨;HALs、HBLs、HCLs、HDLs的上限值也呈扩张性增涨,因此哥德巴赫猜想成立。

猜想证明和拓广 篇3

5.6归纳、猜想、证明(讲义)

复习目标:1.掌握数学归纳法证明的书写过程

2.掌握用数归法证明恒等式及整除问题

3.培养观察、归纳、猜想、证明的能力

例1.求证:2+462n22222nn12n1 nN* 3

用数学归纳法证明命题的步骤:

1)证明

2)假设命题成立;证明 由1)2)得:命题对于都成立。

11111111例2.求证 :1 2342n12nn1n2nn

例3.设fn111+++nN*,那么fn1fn=__________ n1n22n

111111(A);(B);(C)+;(D)- 2n12n22n12n22n12n2

例4.用数学归纳法证明12-22+32-42++2n-12nn2n1 时,当nk1时2

2比nk时,等式左边增加的项是____________________

例5.在数列an中,9Sn10an7n nN*

(1)求出a1,a2,a3,并猜想an的通项公式;

(2)用数归法证明你的结论.

高三3+1复习——5.6数学归纳法归纳猜想证明

5.6归纳、猜想、证明(学生版)

1.某个与自然数有关的命题,如果nknN*时该命题成立,可推得nk1时命题成立,现

为了推得n5时该命题不成立,则有()

(A)n6时命题不成立;(B)n6时命题成立;

(C)n4时命题不成立;(D)n4时命题成立;

2.用数学归纳法证明1aaa

____________________________

2n11an2a1,在验证n1时,左端计算所得项为1a

nn1 nN*时,在假设2

nk等式成立后.要证明nk1时也成立,这时要证明的等式为_____________________________________________

111111114.数学归纳法证明:1nN*时,当n从k到2342n12nn1n2nn

k1时等式左边增加的项为____________________________________;等式右边增加的项为______________________________________

3.用数学归纳法证明等式12-22+32-42++-1n1n21n1

5.用数学归纳法证明:352n1222n4n212n11 3

6.已知正数列annN*中前n项和为Sn,且2Snan

上一篇:林木种苗业下一篇:区发改委14年工作总结及15年工作思路