七年级数学下册《三元一次方程组》教学反思(共11篇)
七年级数学下册《三元一次方程组》教学反思 篇1
七年级数学《三元一次方程组的解法》教学反思
教学过程可以由指令性操作活动向自主性探索实践转化。”“动手实验、自主探索与合作交流是学生学习数学的重要方式。”课堂教学应当走过这样的过程:“学什么?为什么学?怎么学?用在哪?”学生要学习新事物,除了自身对新事物的兴趣外,还要体会到学习的必要性,学习的价值。如教学《三元一次方程组的解法》这一课时,教学时我安排了比较充实的实践、探究和交流的活动。
首先提出了一个问题:如何解二元一次方程组?二元一次方程组的`解法体现一个什么数学思想?再出示一个三元一次方程组,三元一次方程组又该如何解?问题提出后,鼓励学生通过观察、讨论、交流并尝试解答,从而逐步探索出方法―逐步“消元”。这个过程中,学生不仅学会了解三元一次方程组,同时体会了分析问题的一种方法,及转化的数学思想积累了数学活动的经验,感受到学习的成功,体会了学习的功效。
七年级数学下册《三元一次方程组》教学反思 篇2
一、非负数到有理数
从小学里所学的数 (非负数) 到有理数是一次大的转折, 动摇了学生在小学建立的许多概念和经验, 容易使学生感到困惑和怀疑.由于负数的引入, 带来的绝对值的概念是学生理解的难点.有理数运算中的符号法则, 成了学生最易错的问题.如何让学生把有理数和小学里的算术数统一起来, 是教学中必须解决的问题.笔者认为在教学中应抓住以下几点:
1. 认识引进负数的必要性
小学阶段学生对零上5℃和零下5℃, 运进20吨和运出30吨的理解已很明确了, 这里除了用数字表示外还要用语言来区别相反意义.如何用一个数把它的意义全面表示出来呢?若取一个量的基准为“0”, 并规定其中一种意义的量为正, 与之相反意义的量就为负, 用“+”表示正, “-”表示负.再如, 小学里学过的简易方程, 小学里就会求解, 但有办法求解吗?激发学生的求知欲, 领会到还有算术数不能解决的问题, 而要引进新数, 从而让他们心理上认同引进负数的必要性, 再结合实际, 多举具有相反数意义的事例, 帮助学生加深对符号意义的理解.
2. 重新认识“0”
小学里, 0是最小的数, 0表示没有.这种认识学生已掌握得很牢固.要想改变学生对“0”的记忆已非常困难.“0℃不是没有温度”这个事例很能说明问题, 以此为基础得出0不是最小的有理数也不是表示没有, 在相反数、绝对值、倒数等的教学中突出“0”的特殊性, 重视对非负数、非正数的理解, 以达到学生对“0”的重新认识.
3. 注意数形结合
正确理解数轴概念是理解相反数、绝对值、有理数的大小比较、有理数的运算法则的关键.教学中要运用数轴, 让学生主动参与, 通过具体的模型感知, 逐步抽象出来.在利用数轴得出有理数的运算规律的基础上, 让学生理解有理数的运算分两步:小学里学过算术数的运算, 加上符号法则.要特别注意先定结果的符号, 再定结果的绝对值.
二、数到字母
字母表示数是在小学数的概念基础上更高一层次的抽象, 是数学思维上的一次飞跃.字母是表示数的, 但又不表示一个具体的数, 这正是七年级学生的思维困难之处, 教学中应注意以下几点:
1. 字母表示数的必要性
字母表示数简明扼要地表达数量间的关系, 是对具体数据的抽象和概括, 可以更方便地解决问题.从小学里学过的用字母表示数的知识入手:如等.用一些字母表示数的实例降低学习的难度, 让学生理解用字母表示数的意义和目的, 感知代数的本质.
2. 加深对字母的认识
首先弄清符号“-”的三种作用. (1) 表示运算符号, 如2-5; (2) 表示性质符号, 如-2; (3) 表示一个数的相反数, 如- (-3) ;再弄清字母a表示一个有理数, 字母a可以是一个正数、负数, 也可以是零.这样学生才能真正理解a, -a的意义.
三、算术法到代数法
苏教版七年级第四章一元一次方程教材分为三部分.从问题到解方程, 解一元一次方程, 用方程解应用题, 教材安排非常合理, 有效地分散了难点, 也有利于从小学到初中的过渡.小学解应用题是把某知识量放在特殊位置, 设法通过该量求出未知量, 而中学则要求把未知量与已知量放在同等位置, 寻找各个量之间的相等关系, 通过方程求解.小学算术讲究逆推思维, 强调套类型.中学讲究顺向推展, 灵活运用.学生初学时, 习惯于小学算术的思维定势, 对代数法不适应, 简易方程的应用, 虽然在小学里也学过, 但相对而言, 是零散的、具体的, 而中学则是抽象的, 理论化的, 更科学、更完整.在教学中应重点解决以下问题:
1. 有针对性的进行比较
尊重实际, 要肯定算术解法的合理性.在初学时, 允许学生用算术法或代数法解题, 不急于求成.教学中, 注意比较两者之间的联系和差异, 体会代数法的优越性.例如, 比一个数的2倍小1的数是13, 求这个数.算术解法是列式 (13+1) ÷2.代数解法则是:设这个数为x, 列方程2x-1=13.再请学生说出各自的解题依据, 明显地感到算术方法不方便解题.
2. 重视知识的形成过程
教学中尽可能让学生参与读题、审题、提炼相等关系、列方程、解方程的过程, 通过实践归纳类型, 培养学生独立解题时读题和审题的针对性、准确性, 不断提高解题能力.
七年级数学下册《三元一次方程组》教学反思 篇3
1.下列方程中,是二元一次方程的是()
A.3x-2y=4zB.6xy+9=0
C.+4y=6D.4x=
2.下列方程组中,是二元一次方程组的是()
3.二元一次方程5a-11b=21()
A.有且只有一解B.有无数解C.无解D.有且只有两解
4.方程y=1-x与3x+2y=5的公共解是()
A.5.下列各式,属于二元一次方程的个数有()
①xy+2x-y=7;②4x+1=x-y;③+y=5;④x=y;⑤x2-y2=
2⑥6x-2y⑦x+y+z=1⑧y(y-1)=2y2-y2+x
A.1B.2C.3D.46.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有()
A.二、填空题
7.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.8.在二元一次方程-x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.9.若x3m-3-2yn-1=5是二元一次方程,则m=_____,n=______.10.已知是方程x-ky=1的解,那么k=_______.11.二元一次方程x+y=5的正整数解有______________.12.以为解的一个二元一次方程是_________.13.已知的解,则m=_______,n=______.三、解答题
14.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)有相同的解,求a的值.15.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?
16.二元一次方程组的解x,y的值相等,求k.17.已知x,y是有理数,且
(│x│-1)2+(2y+1)2=0,则x-y的值是多少?
18.根据题意列出方程组:
(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?
七年级数学下册《三元一次方程组》教学反思 篇4
尊敬的各位评委:
上午好!
我说课的课题是《一元一次不等式组》。
我从教材分析、学情分析、教学目标、教学手段、教学过程这五个方面来进行说明。
一、教材分析
《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,我把本节内容分为两个课时,第一课时是一元一次不等式组的概念及解法,第二课时是不等式组的实践与探索。今天,我说课的内容是第一课时。
《数学课程标准》对本节的要求是:充分感受生活中存在着大量的不等关系,了解不等式组的意义;会解简单的一元一次不等式组,并会用数轴确定解集。
《一元一次不等式》的主要内容是一元一次不等式(不等式组)的解法及其简单应用。是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。
《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。因此,我把本节课的.教学重点确定为一元一次不等式组的解法。
数学课程应当从学生熟悉的现实生活开始,沿着数学发现过程中人类的活动轨迹,从生活中的问题到数学问题,从具体问题到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学、获取知识。得到抽象化的数学知识之后,再及时地把它们应用到新的现实问题上去。按照这样的途径发展,数学教育才能较好地沟通生活中的数学与课堂上的数学的联系,才能有益于学生理解数学,热爱数学和使数学成为生活中有用的本领。
本节课,既有概念教学又有解题教学,而概念教学,应该从生活、生产实例或学生熟悉的已有知识引入,引导学生通过观察、比较、分析、综合,抽取共性,得到概念的本质属性。在此基础上归纳概括出概念的定义,并引导学生弄清定义中每一个字、词的确切含义。华师版的教科书中,只设计了一个问题情境,我感觉还不够,不能从一个问题抽象出概念的本质。因此,在这里我又增加了一个问题情境,以增加对不等式组概念的理解,加强数学应用意识的培养。
二、学情分析
从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。
基于对学情的分析,我确定了本节课的教学难点是:正确理解不等式组的解集。
三、教学目标
在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下:
1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。
2.了解一元一次不等式组及解集的概念。
3.会利用数轴解较简单的一元一次不等式组。
4.培养学生分析、解决实际问题的能力。
5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。能在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。
四、教学手段
本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。
五、教学过程
本节课的教学流程如下:实际问题——一元一次不等式组——解集——解法——应用。
本节课我设计了五个活动。
活动一、实际问题,创设情境
问题1.
小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为72千克, 体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地.后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.猜猜小宝的体重约是多少?在这个问题中,如果设小宝的体重为x千克.
(1)从跷跷板的状况你可以找出怎样的不等关系?
(2)你认为怎样求x的范围,可以尽可能地接近小宝的体重?
我提出问题(1),学生独立思考,回答问题。
考察学生对应用一元一次不等式解决实际问题的能力,并引出新知。
教师提出问题(2),学生小组合作、探索交流,回答问题。
我预计学生对于这个问题会产生两种不同的看法:一种方法是利用估算的方法将特殊值代入来求出适合不等式组的特殊解;另一种方法是求出两个不等式的解集,并分别将这两个解集在数轴上表示。因此教师应引导学生进一步理解本题的实际意义,能将两个不等式的解集综合分析。
这里是通过对数量关系的分析、抽象,突出数学建模思想的教学,注重对学生进行引导,让学生充分发表意见,并鼓励学生提出不同的解法。
问题2.
现有两根木条,一根长为10厘米,另一根长为30厘米,如果再找一根木条,用这三根木条钉一个三角形木框,那么第三根木条的长度有什么要求?
教师提出问题,学生独立思考,回答问题。
教学效果预估与对策:预计学生对三角形三边关系可能有所遗忘,教师应给予提示。
设计意图:这是一个与三角形相关的问题,要求学生能综合运用已有的知识,独立思考、自主探索、尝试解决,促使学生在探索和解决问题的过程中获得体验、得到发展,学会新的东西,发展自己的思维能力。
活动二、总结归纳,得出概念
1.一元一次不等式组
通过上面两个实际问题的探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。
即:把两个(或两个以上)一元一次不等式合在一起,就得到了一个一元一次不等式组(linear inequalities of one unknown)。
2.一元一次不等式组的解集
同时满足不等式(1)、(2)的未知数x应是这两个不等式解集的公共部分。在同一数轴上表示出这两个解集,找到公共部分,就是所列不等式组的解集。
不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集。
师生活动:在活动一的基础上,将学生得出的结论进行归纳总结。教师要注意倾听学生叙述问题的准确性和全面性。
七年级数学下册《三元一次方程组》教学反思 篇5
(第1课时)
班级: 小组: 姓名: 评价:
【学习目标】:
1、了解二元一次方程,二元一次方程组和它的一个解含义。会检验一对对数是不是某个二元一次方程组的解。
2、激发学生学习新知的渴望和兴趣。【学习重点】:
1、设两个未知数列方程。
2、检验一对数是不是某个二元一次方程组的解。【学习难点】:
方程组的一个解的含义。【学习过程】:
一、创设问题情境。
问题:小亮家今年1月份的水费和天然气费共46.4元,其中水费比天然气费多5.6元,这个月共用了13吨水,12立方米天然气。你能算出1吨水费多少元。1立方米天然气费多少元吗?
二、建立模型。
1、填空:若设小亮家1月份总水费为x元,则天然气费为_____元。可列一元一次方程为__________做好后交流,并说出是怎样想的?
2、想一想,是否有其它方法?(引导学生设两个未知数)。
设小亮家1月份的水费为x元,天然气为y元。列出满足题意的方程,并说明理由。还有没有其他方法?
3、本题中,设一个未知数列方程和设两个未知数列方程哪能个更简单?
三、解释。
观察此列方程。xy46.4 xy5.613x12y46.4,13x12y5.6
1、说一说它们有什么特点?讲二元一次方程概念。
2、二元一次方程组的概念。
3、检查 x1x0x0.1x100
y45.4y46.4y46.3y200是否满足方程xy46.4。简要说明二元一次方程的解。
4、分别检查x26x1xy46.4 是否适合方程组中的每一个方程?
y20.4y45.4xy5.6讲方程组的一个解的概念。强调方程组的解是相关的一组未知数的值。这些值是相互联系的。而且要满足方程组中的每一个方程,写的时候也要象写方程组一样用括起来。
5、解方程组的概念。
四、练习:P4练习题
五、小结:通过本节课学习你学到了什么?
六、作业:P5习题1.1A组。
七年级数学下册教学反思 篇6
整节课进度较慢,各个环节推进也较慢。在备课的过程中,我忽略了学生的认知特点和接受能力,在平行线定义的归纳环节,我只是叫学生“说”出平行线的定义后,强调平行线应满足的三个条件,课后反思这个环节让学生来展示更好一些,在学生展示的基础上,再强调三个条件效果要好得多。
本节课的另一个失误是时间掌握不合理,完成两个“自学指导”用时太长,以致于在“巩固练习”环节,忽略还在板书的两个孩子,就开始对题目进行分析了,而且“达标检测”环节没有落实。反思失误的原因,我认为主要是对教材不熟悉。
1、在归纳平行线定义环节,学生ZGT认为“两线间的垂线段都相等,两直线就是平行线”,学生SJL认为“同一平面内永不相交的两条直线就是平行线”,我在选择哪个作为平行线定义的问题上解释的有些含糊不清。评课时马老师说,第一个可理解为平行线的一个性质,不能作为定义,这样的解释就比较清楚了。
2、在探讨同一平面内两直线的位置关系时,我给学生强调了不包括“重合”,因为两直线重合后实际上就是一条直线了,而马老师说可以把重合解释为“平行的一种特殊情况”,这样和“垂直是相交的一种特殊情况”形成对比便于记忆。
3、在画已知直线的平行线环节,过多强调画法、步骤,而这部分内容学生在小学六年级已经接触过了,又浪费了时间。
人教版七年级数学下册教学反思 篇7
谭春燕
一学期来,我通过不断努力,欣喜地看到传统的接受式教学模式已被生动活泼的数学活动所取代。课堂活起来了,学生动起来了:敢想、敢问、敢说、敢做、敢争论,充满着求知欲和表现欲。从学生的变化看课改,别有洞天。
一、成功的经验和感受
1、交流让学生分享快乐和共享资源,学生已有的生活经验、活动经验以及原有的生活背景,是良好的课程资源。大家共同分享发现和成功的快乐,共享彼此的资源。
2、从生活出发的教学让学生感受到学习的快乐
3、创新设计让学生体现积极向上 精心设计、指导下,成功地进行了讨论活动:以等腰三角形设计一幅图,并说明你想表现什么。事先由老师将课题内容布置给学生。由两位学生作为这节课的主持人,其他学生将自己的作品展示出来,并说明自己的创意。最后,老师作为特约指导,对学生的几何图形图案设计及创意、发言等进行总结,学生再自己进行小结、反思。整节课学生体验了图形来自生活、服务于生活的现代数学观,较好地体现了学生主动探究、交流、学会学习的有效学习方式,同时这也是跨学科综合学习的一种尝试。
4、合作探究给学生带来成功的愉悦,教学中,要求学生以小组为单位,调查、了解生活中各行各业、各学科中应用的各种统计图,调查、收集你生活中最感兴趣的一件事情的有关数据,必须通过实际调查收集数据,保证数据来源的准确。学生或通过报刊、电视广播等媒体,或对他们感兴趣的问题展开调查采访或查阅资料,经历搜集数据的过程,搜集的统计图丰富多彩,内容涉及各行各业。学生从中能体会统计图在社会生活中的实际意义,培养善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识。
二、不足和今后在教学中应注意
1.营造有利于新课程实施的环境氛围。
2.注重新型师生关系的建立,在处理好学生、教师、教材三者的关系上多下功夫,力求建立更为和谐融洽的师生关系,有良好的课堂教学气氛,以取得良好的课堂教学效果。
3.进一步学习新课程改革的教育教学理论,在教师角色转变上多做工作,增强自己是学生学习的促进者、教育教学的研究者、课程的建设者和开发者,向开放型的教师迈进。
4.努力提高自己的业务能力,特别是驾驭堂的能力和教材的能力。探索适合我校学生特点和自己特点的课堂教学模式。
5.不断学习和提高现代化教学技术,提高多媒体课件制作能力,能制作出针对性、实效性强的多媒体教学课件,使之更好地辅助教学,提高课堂教学效率、课堂教学质量。
6.教学研究侧重于:
七年级数学下册《三元一次方程组》教学反思 篇8
本节课内容选自人教版七上3。2。2章节的《解一元一次方程》,学生之前已经学习了用合并同类项的方法来解一元一次方程,这种方程的特点是含x的项全部在左边,常数项全部在右边。今天要学习的.方程类型是两边都有x和常数项,通过移项的方法化归到合并同类项的方程类型。教学重点是用移项解一元一次方程,难点是移项法则的探究。
我是从复习旧知识开始,合并同类项一节解方程都是之前学过的知识,为本节课作铺垫,再引出课本上的“分书”问题,应用题本身对学生来说,理解上有点难度,讲解其中的数量关系不是本节课的重点,所以我避重就轻地给了学生分析提示,通过填空的形式,找出数量关系,进而列出方程。
列出方程后,发现方程两边都有x和常数项,这个方程怎么解?从而引出本节课的学习内容:怎样解此类方程。方程出示后,通过学生观察,怎样把它变为我们之前的方程,也就是含x的项全部要在左边,常数项在右边。学生回答右边的4x要去掉,根据等式性质1,两边要同时减去4x才成立。左边常数项20用同样的方法去掉,通过方框图一步步演示方程的变化,最后成为3x—4x=—25—20,变为之前学过的方程类型。
通过原方程、新方程的比较(其中移项的数用不同颜色表示出来),发现变形后相当于把4x从右边移到左边变为—4x,20从左边移到右边变为—20,进而揭示什么是移项,在移项中强调要变号,没有移动的项是不要变号的,再让学生思考移项的作用:把它变为我们学过的合并同类项的方程。
学习了原理之后,把例题做完,板示解题步骤,特别是每一步的依据,进而给学生总结出移项解方程的三步:移项、合并同类项、系数化为1。
练习反馈环节,让学生自己练习一道解方程,明确各步骤,下面分别是移项正误判断、解方程、应用题,分层次让学生掌握移项法则以及解方程,最后再解决实际问题。
本节课主要存在的问题有:
1、对学生的实际情况了解不够,学生已经知道了移项变号的知识,那么怎样在认识的基础上再来讲授该知识,我有点困惑,还是接学生的话,通过学生来挖掘“移项”的原理。
2、语言不够简练,教师分析得多,学生的参与讨论性不高,发表看法机会少,限制了学生的语言表达能力和数学思维的锻炼。
七年级下册数学课后的教学反思 篇9
经过上学期一学期的实践,我们实验班的孩子们,已经渐渐地适应了先预习后授课的教学方式,授课时,尽可能地把课堂还给孩子们。让学生先自学本节内容,然后教师让学生谈自学的收获,同学们互相补充、交流探讨,我只是强调了重点、点拨难点,这样可以很顺利完成了本节课的任务,学生学习的效果很好,只是教师讲的少、轻松多了。以教师引导讲解为主,只点拨难点,学生才是学习的主体,教师要给学生足够的空间,让学生用自己的方式去设计并通过不断反思和修正来发现,而教师在课堂中的作用是对学生进行有效的指导,帮助学生形成科学概念,培养科学探究的方法、态度和习惯等等。
本节课,我的教学设想基本转化成课堂教学行为,但是在实践中还存在着一些不足之处,如:
1、在提出问题的时候,学生的思考时间较少,只有程度较好的学生思考出来,大部分学生都还在思考中。
2、欠缺对“学困生”的关注,我也没能用更好的语言激发他们。
3、合作探究的题目有一定的难度,大多数学生还是没能研究出结果。
北师大版七年级下册数学教学反思 篇10
威宁县思源实验学校 陈昌盛
从小学到初中,无论是学习内容,还是学习形式,学习方法,都是一个转折,尤其是数学思想的认识,更是一个质的飞跃过程。数学思想在数学知识转化成数学能力的过程中起着纽带和桥梁作用,数学教学中要渗透数学思想。学生对数学思想的掌握是螺旋式上升的,不能一蹴而就,而应当针对学生的认知水平,结合数学教学内容自然而然地、潜移默化地进行,是“润物细无声”的过程。
一、由特殊到一般的思想
用字母表示数,就是由特殊到一般的抽象,既能高度概括数学问题的本质规律,更具有普遍意义,又能使数学问题的表达变得简单明了。在教学过程中先让学生进行一些具体的数的计算,启发学生归纳出字母表示数的思想,认识到字母表示数具有问题的一般性,就便于问题的研究和解决,由此产生从算术到代数的认识飞跃。
例:搭一个三角形需要4根木棒.按上面的方式,搭2个三角形需要____根木棒, 搭3个三角形需要____根木棒, 搭4个三角形需要____根木棒.搭10个这样的三角形需要_____根木棒.搭100个这样的三角形需要多少根木棒?如果用x表示所搭三角形的个数, 那么搭x个这样的三角形需要多少根木棒? 字母既可以表示正数,也可以表示负数,还可以表示零。初学者往往会出现a是正数,一a是负数,3n>2n等错误,其原因在于没有弄清字母表示数的任意性。这里教师让学生充分体会这一点。学生领会了字母表示数的思想,就可以进行下面的教学了:(1)列代数式;(2)用字母表示规律:用字母表示运算律,用字母表示公式、法则。
二、数形结合的思想
一般地,人们把代数称为“数”而把几何称为“形”,数与形表面看是相互独立,其实在一定条件下它们可以相互转化,数量问题可以转化为图形问题,图形问题也可以转化为数量问题。
初一教材引入数轴,就为数形结合的思想奠定了基础。有理数的大小比较、相反数的几何意义、绝对值的几何意义、列方程解应用题中的画图分析等,充分显示出数与形结合起来产生的威力,这种抽象与形象的结合,能使学生的思维得到锻炼。
初一数学中的数形结合思想主要体现在以下几方面:(1)通过温度计引出数轴的概念,能直观地理解负数的意义。(2)利用数轴把点与数对应关系揭示出来,利用数形结合可以进行数的大小比较。(3)利用数轴进行相反数的教学。(4)利用数轴进行绝对值的教学。(5)有理数的加法运算。(6)有理数的乘法运算。同时第三章一元一次方程中行程问题的分析理解。尤其是对相反数的理解,当教材第一次出现a的相反数是—a时,学生会出现思维难点,利用数轴可以帮组学生理解。
三、分类讨论思想:
分类讨论思想就是要针对数学对象的共性与差异性,将其区分为不同种类,分类讨论思想的原则是:标准统一、不重不漏。分类讨论可以使问题化繁为简,化难为易,从而克服思维的片面性,有效地考查学生思维的全面性与严谨性.也能很好地训练一个人思维的条理性和概括性。
例:在数轴上点A表示的数是3,点B与点A的距离为5个单位长度,求点B所表示的数为。学生错填: 8。
分析:点B可能在A点的右侧,也有可能在A点的左侧,因此有两种情况,应填8或—2 两个数.学生往往只考虑点B在A点右侧的一种情况,忽略另一种情况,原因是没有分类讨论的思想,或不习惯分类讨论。
初一数学的分类思想主要体现在:(1)有理数的分类。(2)绝对值的分类。(3)有理数加法的分类。(4)有理数幂的分类。(5)整式的分类。(6)去括号法则的分类。(7)图形的分类。
四、整体思想
整体思想在初中教材中体现突出,如在实数运算中,常把数字与前面的“+,-”符号看成一个整体进行处理;又如用字母表示数就充分体现了整体思想,即一个字母不仅代表一个数,而且能代表一系列的数或由许多字母构成的式子等;再如整式运算中往往可以把某一个式子看作一个整体来处理,如:(a+b+c)2= [(a+b)+ c ]2视(a+b)为一个整体展开等等,这些对培养学生良好的思维品质,提高解题效率是一个极好的机会。
五、化归与转化思想
化归思想是数学思想方法体系主梁之一。人们在研究运用数学的过程中,获得了大量的成果,积累了丰富的经验,许多问题的解决已形成了固定的模式、方法和步骤,人们把这种已有相对确定的解决方法和程序的问题,叫做规范问题,而把一个未知的或复杂的问题转化为规范问题的方法,称为问题的化归。把有待解决的未解决的问题,通过转化过程,归结为已熟悉的规范性问题或已解决过的问题,从而求得问题解决的思想。转化的方向一般是把未知的问题朝向已知方向转化,把难的问题朝较易的方向转化,把繁杂的问题朝简单的方向转化,把生疏的问题朝熟悉的方向转化。
例:解方程:
解:去分母,得5(1-4X)-15=3(2-6X)(利用去分母转化为含括号的式子了)
去括号,得5-20X-15=6-18X 移项,得-20X+18X=6-5+15 合并同类项,得-2X=16(利用去括号和移项转化为ax=b的形式了)化系数成1,得X=-8(利用化系数为转化为x=c的形式了)把含分母的一元一次方程转化为含括号的一元一次方程,进一步转化成ax=b的形式,最终化归为x=c的形式。
七年级数学中的化归与转化思想主要体现在以下方面:(1)用绝对值将两个负数的大小比较化归为两个算术数(小学学过的数)的大小比较。(2)用绝对值将两个数的加法、乘法化归为两个算术数的加法、乘法。通过这样的化归既对绝对值的作用、有理数的大小比较和运算有清晰的认识,而且对知识的发展和解决问题的方法也有一定的认识。(3)用相反数将有理数的减法化归为有理数的加法。(4)用倒数将有理数的除法化归为有理数的乘法。(5)把有理数的乘方化归为有理数的乘法。(6)把合并同类项化归为系数的加法。(7)把含分母的一元一次方程转化为含括号的一元一次方程,进一步转化成ax=b的形式,最终化归为x=c的形式。
六、方程思想:
方程思想的实质就是数学建模,解应用题是方程思想应用的最突出体现。方程思想,就是一些求解未知问题,通过设未知数建立方程,从而化未知为已知。七年级第三章一元一次方程的应用就蕴含了方程思想。在教学中,要想学生讲清算术解法与代数解法的区别,明确代数解法的优越性。代数解法从一开始就抓住已知数也抓住未知数的整体,在这个整体中未知数与已知数的地位是平等的,通过等式变形,改变未知数与已知数的关系,从而使未知数变为已知数。而算术方法往往是从已知数开始,一步步向前探索,到解题基本结束才找出未知数与已知数的关系,这样的解法是把未知数排斥在外的局部出发的,因此未知数对已知数来说地位是特殊的。与算术解法比,代数解法显得省时省力。例:某排球队参加排球联赛,胜一场得2分,负一场得1分,该队参加了12场比赛,共得了20分。该队胜了多少场?
解析:若用小学的算术方法,我们要经过适当的尝试,如计算20÷10=2可知胜的场数少于10,计算20÷3=6„„2,可知胜的场数一定多余6。则胜的场数可能为7或8或9,再逐步验证。
但运用方程求解则显得十分简便,充分体现了方程解题的优越性。设该队赢了x场,则该队负了(12-x)场,由题意得: 2x+(12-x)=20 解得:x=8 答:(略)
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。作为教师要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。数学思想方法是在启发学生思维过程中逐步积累和形成的,为此,在教学中,首先要特别强调解决问题以后的“反思”。因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。其次要注意渗透的长期性,对学生数学思想方法的渗透不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练,才能使学生真正地有所领悟。
总之,在数学教学中,依据课本内容和学生的认知水平,从初一开始就有计划的渗透数学思想, 同时注意渗透的过程,就一定能提高学生的学习效率和数学能力。
七年级数学下册教学反思
陈
昌
盛
七年级数学下册《三元一次方程组》教学反思 篇11
1、教材的地位和作用
本节课是华东师大版七年级数学下册第七章《二元一次方程组》中第二节的第四课时,它是在学习了代入消元法和加减消元法的基础上进行学习的。能够灵活熟练地掌握加减消元法,在解方程组时会更简便准确,也是为以后学习用待定系数法求一次函数、二次函数关系式打下了基础,特别是在联系实际,应用方程组解决问题方面,它会起到事半功倍的效果。
2、教学目标
(1)知识目标:进一步了解加减消元法,并能够熟练地运用这种方法解较为复杂的二元一次方程组。
(2)能力目标:经历探索用“加减消元法”解二元一次方程组的过程,培养学生分析问题、解决问题的能力和创新意识。
(3)情感目标:在自由探索与合作交流的过程中,不断让学生体验获得成功的喜悦,培养学生的合作精神,激发学生的学习热情,增强学生的自信心。
3、教学重点难点
教学重点:利用加减法解二元一次方程组。
教学难点:二元一次方程组加减消元法的灵活应用。
4、教学准备:多媒体、课件。
二、学情分析
我所任教的初一(2)班学生基础比较好,他们已经具备了一定的探索能力,也初步养成了合作交流的习惯。大多数学生的好胜心比较强,性格比较活泼,他们希望有展现自我才华的机会,但是对于七年级的乡镇中学的学生来说,他们独立分析问题的能力和灵活应用的能力还有待提高,很多时候还需要教师的点拨和引导。因此,我遵循学生的认识规律,由浅入深,适时引导,调动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。
三、教法与学法分析
说教法:启发引导法,任务驱动法,情境教学法,演示法。
说学法:合作探究法,观察比较法。
四、教学设计
(一)复习旧知
1、解二元一次方程组的基本思想是什么?(消元)
2、前面我们学过了哪些消元方法?(“单身”代入法、“朋友”加减法)
下列两题可以用什么方法来求解?
2x3y=16①
X-y=3②3
学生:观察、思考、讨论和交流,然后口述解题方法。
教师:肯定、鼓励、板书。
[设计意图:通过复习,让学生巩固了相关的旧知识,同时也为本节课做了铺垫]
(二)探究新知
1、情境导入
师:我们用代入法来解题第一步是找“单身”,用加减法来解题第一步是找“朋友”,再用同减异加的法则进行解答,那么我们一起来看一下这道题目:
问:这题能否用“单身”代入法或“朋友”加减法来求解?为什么?导入课题,板书课题。[设计意图:利用富有挑战性的问题,激发学生的好奇心和求知欲,可引发学生对问题的思考,并促进学生运用已有的知识去发现和获取新的知识]
2、合作探究
(让学生分组讨论交流,主动探索出解法,教师巡视指导并肯定和鼓励他们。)
总结解题方法:如果一个方程组中x或y的系
数不相同时,也就是说它们不是“朋友”时,先要想办法把“陌生人”变成“朋友”。
方法一:将方程①变形后消去x。
方法二:将方程②变形后消去y。
让学生尝试着写出解题过程,请两位同学上台展示结果,集体订正。请做对的同学举手,全班同学都为自己鼓鼓掌,做对的表示给自己一次祝贺,暂时还没做对的表示给自己一次鼓励。[设计意图:让学生探索这道过渡性的题目,是遵循了学生的认识规律,由浅入深,为学习下面这道例题做好准备,同时通过变“陌生人”为“朋友”这一设想过程,也培养了学生的创新意识。]
3、例题探索例5、解方程组:3x-4y=10①
5x6y=42②
师:这道题的x与y的系数有何特点?如何变成“朋友”?
(让学生思考、分组讨论、交流,教师引导并板书解题过程。)
[设计意图:让学生通过探讨,逐步发现可以用加减消元法去解较为复杂的二元一次方程组,也让他们再次体会了消元化归的数学思想,同时也培养了学生分析问题和解决问题的能力。在整个探讨的过程中也增强了学生的信心,学生有了发现的乐趣和成功的喜悦后,会产生一种想表现自己的欲望。]
4、试一试
学生完成课本第30页的试一试,让学生用本节课的加减消元法和前面例2的代入消元法进行比较,看一看哪种方法更简便?
(小组之间互相交流,写出解答过程,并请一些同学谈谈自己的看法,教师展示两种解题方法让学生们进行比较。)
[设计意图:通过对比两种方法,使学生更清晰地掌握知识,当学生发现本节课的方法比例2的方法更简便时,学生会产生一种用本节课的知识去解题的`冲动。]
(三)反馈矫正
解方程组:
(给学生提供展现自我才华的机会,以前后两桌为一个小组进行讨论交流,此时可轻声播放一首钢琴曲,为学生创造一种轻松和谐的学习氛围)
让两个同学上台解题,教师巡视,并每一个组选两名代表检查本组同学的完成情况和及时帮助有困难的同学,待全班同学完成后,让台上这两位同学试着当一下小老师,为全班同学讲解自己所做的题目,教师为评委,进行点评并总结,全班同学为他们鼓掌。
[设计意图:由于学生人数较多,教师不能兼顾每个学生,所以让学生自做自讲,培养了学生综合能力的同时,也活跃了课堂气氛。选代表巡视并帮助有困难的同学,会让学生感受到老师对他们的重视,这样就能让他们主动参与到课堂中来。同时也培养了学生的合作精神和激发了学生的学习热情。]
(四)课堂小结:学完这节课,大家有什么收获?请同学们谈谈对这节课的体会。
[设计意图:加深对本节知识的理解和记忆,培养学生归纳、概括能力。]
(五)布置作业:
必做题:课本第31页的练习。
选做题:
①
(2)
②
[设计意图:进一步巩固本节课知识的同时,也给学生留下思考的余地和空间,学生是带着问题走进课堂,现在又带着新的问题走出课堂。]
五、板书设计:二元一次方程组的解法(四)
找“朋友”——变“陌生人”为“朋友”——同减异加
例题分析习题分析
【七年级数学下册《三元一次方程组》教学反思】推荐阅读:
【湘教版】七年级数学下册:1.1《建立二元一次方程组》教案09-24
小学三年级数学下册《第七单元小数的初步认识》的教学反思09-12
七年级下册数学教学心得10-08
5年级数学下册教学反思10-23
七年级数学上册的教学反思09-27
二年级下册数学《除法》教学反思07-15
八年级数学下册《方差》教学反思08-23
五年级数学下册《倒数》教学反思09-23
小学一年级数学下册《跳绳》的教学反思06-06
北师大一年级数学下册教学反思07-27