二元一次方程组的应用练习题(精选6篇)
二元一次方程组的应用练习题 篇1
1.某城市为了缓解缺水状况,实施了一项饮水工程,就是把200千米以外的的一条大河的水引到城市中来,把这个工程交给了甲乙两个施工队,工期50天甲乙两队合作了30天后,乙队因另有任务需要离开10天,于是甲队加快速度,每天多修了0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队也比原来多修0.4千米,结果如期完成.问甲乙两队原计划每天各修多少千米?
2.某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元;若经过粗加工后销售,每吨利润达到4500元;若经过精加工后销售,每吨利润达到7500元.当地一家农工商公司收获这种蔬菜140吨,代公司家工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天德时间将这批蔬菜全部销售或加工完毕,为此,公司制定了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成.你认为选择哪种方案获利最多?为什么?
3.某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?
4.一列快车长160米,一列慢车长170米,如果两车相向而行,从相遇到离开需5秒;如果两车同向而行,从快车追上慢车到完全离开慢车需要33秒,求快车和慢车的速度.5.北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台,已知重庆需要8台,武汉需要6台.从上海、北京将仪器运往重庆、武汉的费用如表所示:
有关部门计划用8000元运送这些仪器,请你设计一种方案,使武汉,重庆能得到所需的仪器,而且运费正好够用.
二元一次方程组的应用练习题 篇2
例1
解方程组
分析方程 (1) 中的未知数y的系数绝对值为1, 故用“代入消元法”.
解由 (1) 得:y=2x-2. (3)
将 (3) 代入 (2) , 得3x+2 (2x-2) =3,
解得x=1.
将x=1代入 (3) , 得y=0.
例2
解方程组
分析方程组中x, y的系数分别相反和相同, 故用“加减消元法”.
解 (1) + (2) , 得6y=12, y=2.
(1) - (2) , 得4x=-8, x=-2.
∴原方程组的解为
例3
解方程组
分析方程 (1) 中左边为5 (x+1) , 而方程 (2) 中右边也含有5 (x+1) 这一项, 故用“整体代入消元法”.
解将 (1) 代入 (2) , 得3 (y-1) =5+y+2.
解得y=5.
将y=5代入 (1) , 得5 (x+1) =5+5,
解得x=1.
∴原方程组的解为
例4
解方程组
分析本例虽具有例3的特征, 但将方程 (2) 代入 (1) 达不到消元的目的, 故不能用整体代入消元法, 应先将它化简再解之.
解原方程组化简为
(4) - (3) , 得3y=3, y=1.
二元一次方程组的实际应用 篇3
一、计费问题
例1 (2014年呼和浩特)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时以内(含180千瓦时)的部分,执行基本价格:第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,执行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格,我市一位同学家2014年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民2014年4、5月份的家庭用电量分别为160千瓦时、410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元.
思路分析:设基本电价为x元/千瓦时,提高电价为y元/千瓦时,根据“2月份用电330千瓦时,电费为213元”与“3月份用电240千瓦时,电费为150元”,即可列出方程组求解.
方法归纳:解答此类问题的常用方法是认真读题,审清题意,全面分析,设出未知数,找出合适的等量关系,列出方程组求解.读懂题中提供的信息和电费的计算方法是解题的关键.
二、生产问题
例2 (2014年菏泽)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知生产A、B两种饮料共100瓶恰好用了270克该添加剂,问A、B两种饮料各生产了多少瓶.
思路分析:采用直接设元法设出未知数,根据“生产4、B两种饮料共100瓶恰好用了270克该添加剂”即可列方程组求解,
方法归纳:此题设计新颖,可用二元一次方程组的知识来解决.读懂题意,找出其中的等量关系,建立方程组模型是求解的关键.
二元一次方程组的典型例题 篇4
分析 我们已经掌握一元一次方程的解法,那么要解二元一次方程组,就应设法将其转化为一元一次方程,为此,就要考虑将一个方程中的某个未知数用含另一个未知数的代数式表示.方程(2)中x的系数是1,因此,可以先将方程(2)变形为用含y的代数式表示x,再代入方程(1)求解.这种方法叫“代入消元法”. 解: 由(2),得 x=83y.(3)把(3)代入(1),得:
2(83y)+5y=21,166y+5y=21,y=37,所以y=37.
点评 如果方程组中没有系数是1的未知数,那么就选择系数最简单的未知数来变形.
分析 此方程组里没有一个未知数的系数是1,但方程(1)中x的系数是2,比较简单,可选择它来变形.
解: 由(1),得
2x=8+7y,(3)把(3)代入(2),得
分析 本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x,y的系数都是100、常数项是200的方程,而此方程与方程组中的(1)和(2)都同解.这样,就使问题变得比较简单了.
解:(1)+(2),得100x+100y=200,所以
x+y=2
(3)
解这个方程组.由(3),得
x=2y(4)把(4)代入(1),得53(2y)+47y=112,10653y+47y=112,6y=6,所以y=1.
分析 经观察发现,(1)和(2)中x的系数都是6,若将两方程相减,便可消去x,只剩关于y的方程,问题便很容易解决、这种方法叫“加减消元法”. 解:(1)(2),得12y=36,所以y=3.把y=3代入(2),得:
6x5×(3)=17,6x=2,所以:
点评 若方程组中两个方程同一未知数的系数相等,则用减法消元;若同一未知数的系数互为相反数,则用加法消元;若同一未知数的系数有倍数关系,或完全不相等,则可设法将系数的绝对值转化为原系数绝对值的最小公倍数,然后再用加减法消元.在进行加减特别是进行减法运算时,一定要正确处理好符号.
分析 方程组中,相同未知数的系数没有一样的,也没有互为相反数的.但不难将未知数y的系数绝对值转化为12(4与6的最小公倍数),然后将两个方程相加便消去了y.
解:(1)×3,得9x+12y=48
(3)(2)×2,得10x-12y=66(4)(3)+(4),得19x=114,所以x=6.把x=6代入(1),得 3×6+4y=16,4y=-2,点评 将x的系数都转化为15(3和5的最小公倍数),比较起来,变y的系数要简便些.一是因为变y的系数乘的数较小,二是因为变y的系数后是做加法,而变x的系数后要做减法.
例6 已知xmn+1y与2xn1y3m2n5是同类项,求m和n的值.
分析 根据同类项的概念,可列出含字母m和n的方程组,从而求出m和n. 解:因为xmn+1y与2xn1y3m2n5是同类项,所以
解这个方程组.整理,得
(4)(3),得2m=8,所以m=4.把m=4代入(3),得2n=6,所以n=3.所
分析 因为x+y=2,所以x=2y,把它代入方程组,便得出含y,m的新方程组,从而求出m.也可用减法将方程组中的m消去,从而得出含x,y的一个二元一次方程,根据x+y=2这一条件,求出x和y,再去求m. 解:将方程组中的两个方程相减,得x+2y=2,即(x+y)+y=2.
因为x+y=2,所以2+y=2,所以y=0,于是得x=2.把x=2,y=0代入2x+3y=m,得m=4.把m=4代入m22m+1,得m22m+1=422×4+1=9. 例8 已知x+2y=2x+y+1=7xy,求2xy的值.
分析 已知条件是三个都含有x,y的连等代数式,这种连等式可看作是二元一次方程组,这样的方程组可列出三个,我们只要解出其中的一个便可求出x和y,从而使问题得到解决. 解:已知条件可转化为
整理这个方程组,得
解这个方程组.由(3),得x=y1(5)把(5)代入(4),得5(y1)-2y-1=0,5y-2y=5+1,所以
y=2.
把y=2代入(3),得x-2+1=0,所以
x=1.
2x-y=0.
二元一次方程组的典型例题
二元一次方程组复习题
例题:
1、下列方程是二元一次方程的是()
110(A)x2+x+1=0
(B)2x+3y-1=0
(C)x+y-z=0
(D)x+y
2、下列各组数值是x-2y=4方程的解的是()
x2x1x0x4(A)y1(B)y1(C)y2(D)y1 x2
3、以y1为解的二元一次方程的个数是()
(A)有且只有一个
(B)只有两个
(C)有无数个
(D)不会超过100个
4、二元一次方程3x+2y=7的正整数解的组数是()(A)1组
(B)2组
(C)3组
(D)4组
x4
5、已知y2是二元一次方程mx+y=10的一个解,则m的值为
6、已知3xm-1-4y2m-n+4=1是二元一次方程,则m=,n=
.7、下列方程组中,属于二元一次方程组的是()。
xy5xy1xy1xy32x2y1xy2z2y1x20(A)
(B)
(C)
(D)
8、已知2ay+5b和-4a2xb2-4y是同类项,则x= ,y=
.x1y
29、写一个以为解的二元一次方程组:
。x12xay5bx3y1y2
10、如果是方程组的解,则ab
。xy13x2y
511、方程组的解是
.12、将下列二元一次方程变形,使其中一个未知数用含另一个未知数的代数式表示: ⑴2x-y-3=0
⑵x-2y-3=0
uv41⑶
2x+5y-13=0
⑷
313、用代入法解下利二元一次方程组:
y1xx2y4xy13x2y5①
②
③2s3t14s9t8
2x3y53x2y
414、用加减法解方程组时,下列变形正确的是()
6x9y54x6y106x3y152x6y106x4y49x6y126x2y123x6y12(A)
(B)(C)(D) 13x6y25(1)27x4y19(2)
15、解方程组
你认为下列4种方法中,最简便的是()
(A)代入消元法
(B)用(1)27-(2)13,先消去x(C)用(1)4-(2)6,先消去y
(D)用(1)2-(2)3,先消去y
3x5y21m5n62x5y113m6n4
16、用加减法解下列方程组:①
②
x2axby7axby5y1提高题:
1、已知是方程组的解,求ab的值。
x3y0x11(y0)y4z02、已知,则z()(A)12
(B)-1
2(C)-12
(D)12
3、已知︳4x+3y-5︳+︳x-2y-4︳=0,求x,y的值
x1x1y0y5,4、已知二元一次方程ax+by=10的两个解为,则a= ,b=
.mx2ny4x6y3xy1nx(m1)y
35、已知关于x,y的方程组与的解相同,求m,n的值。
xy22xy4a6、已知关于x,y的二元一次方程组的解也是方程x-y=2的解,求a的值。
7、方程2x+3y=11的正整数解是。
axby2x2cx7y8y
28、解方程组时,一学生把c看错而得到,已知该方程组的正确的解x3y2是,那么a,b,c的值是()
(A)不能确定
(B)a=4,b=5,c=-2(C)a,b不能确定,c=-2
二元一次方程组的应用练习题 篇5
开始引入了名人迪卡儿的数学思想,学生崇拜名人相信名人于是以名人名言给这节课定了基调,那就是数学与实际有密切的关系以及用方程思想解决实际问题的总方针。结合现实生活中的身边事例篮球赛为引例巧妙引导到新课。其中张老师设计了学生用原来解二元一次方程组的方法解时太麻烦,不好解,产生了困惑,学生自然而然就会想到有没有解决问题的好方法的猜想。这样就让学生产生了认知上的冲突,从而激发了学生的好奇心和求知欲,提高了学生的热情和兴趣,学生就会拼命地去探究科学奥秘。此时张老师抓住时机引导学生要探究好方法首先要有预备知识,抛出一个量来表示另一个量的探究内容。给学生指明了方向,使学生不至于太漫无边际的探究。也为接下来的自学铺平了道路。紧接着出示自学目标和指导。
二、师生活动融为一体民主气氛浓
自学指导学生自主探究,先个人独立思考后合作交流展示汇报。老师巡视,指导学困生,积极组织学生活动并参与其中,及时评价学生,关注每个学生的发展。这个过程学生提高了合作、交流能力,也展示了学生的表现能力,并锻炼了学生归纳总结能力,培养学生会听取别人的意见及看法,并给予承认、表扬和鼓励的情感意识,课堂上的掌声不由自主的响起,提升了个人的思想品质和为人素养,思想性很强,情感意识很浓。
三、技能训练及时跟上
学生一旦获得了探究的新知,马上进行训练和提高,练习中有生趣,有关注学生的严密细致的科学态度,学生练的热情高。其中有一个学生的不同解法, 张老师利用的惟妙惟肖,有效地开发和利用了课堂的生成性资源,启迪了学生的智慧,激励了他们的发散思维,培养了他们的创新能力,肯定了学生的一题多解,举一反三的学法,使我们的课堂异彩纷呈。
四、消元思想,代入消元,化归思想,让学生充分体会到化归思想的神奇魅力,从而把数学思想贯穿在教学中,让学生能力得到提高,以后可持续发展自己,一生有用。
二元一次方程组的应用练习题 篇6
一、教学内容分析
《二元一次方程组的解法---加减法(第1课时)》是九年义务教育教科书(人教版版)《数学》七年级下册第八章第二节的内容。它是在承接“代入法”的基础上,讲解的二元一次方程组的另一种重要的解法。本课主要学习的是某个未知数的系数的绝对值相同的二元一次方程组用加减法来解,它是学生用加减法解二元一次方程组的基础,为下一节用加减法解两个未知数的系数的绝对值均不相等的二元一次方程组预设铺垫,同时本节知识也为以后解应用题和用待定系数法求函数解析式起到了铺垫作用。
二、学生情况分析:,加减法是解二元一次方程组的一种重要的方法。这种全新的解法对学生来说是一次考验,同时也是一种挑战。学生已经经历了用代入法解二元一次方程组的方法,他们在探究新知的过程中会发现这种解法是简便实用的,不仅可以从中体会发现的乐趣,获得成功的喜悦,而且还可增强了他们学习数学的兴趣。
三、教学目标与重难点:
1、教学目标: ①知识目标 :
1.会阐述用加减法解二元一次方程组的基本思路:通过“加减”达到“消元”的目的,从而把二元一次方程组转化为一元一次方程来求解; 2.会用加减法解简单的二元一次方程组. ②能力目标: 1.让学生在运用代入法解二元一次方程组时,体会到代入法的不足,引发寻找新方法的意愿.
2.在探究的过程中,获得用加减法解二元一次方程组的初步经验,从而培养学生观察、归纳、类比、联想以及分析问题、解决问题的能力.
3.训练学生的运算技巧
③过程、方法与情感目标:通过对本节的学习,使学生了解加减法是解二元一次方程组的最基本最常用的方法,形成主动学习的态度,激发学生对数学问题的兴趣。同时渗透开放性的话题,组织讨论,鼓励学生大胆发表自己的观点,培养学生的口头表达能力和求异思维。通过组织竞赛活动,增强学生的竞争意识,团结协作精神,并通过师生互动,创建一种民主、平等、和谐的新型师生关系,同时渗透转化的数学思想,使之感受数学美。
2、教学重点和难点
教学重点:学会用加减法解简单的二元一次方程组.
教学难点:准确灵活地选择和运用加减消元法解二元一次方程组。
三、教学过程:
(一)创设问题情景、引入新课 教师展示课件,先出示前两个问题:
1、解二元一次方程组的基本思路是什么?
2、用代入法解方程组的关键是什么?
学生观察问题,动脑思考,积极发言,个别口答
教师在学生口答的基础上,及时给予评价鼓励,并提出第三个问题,你会解 3x+5y=5
(1)3x-4y=23
(2)
这个方程组吗?激发学生思维,引导学生思考。
学生各抒己见,最后达到共识:局部代入与整体代入两种方法。教师在学生口述大致过程的基础上提出问题:你能想一种新方法来解吗? 设计意图:由问题导入新课,既复习了旧知识,又引出了新课题,最后设置悬念,既增强了学生的学习兴趣,又激发了学生的学习热情,对学生探究新知起到很好的推动作用,让学生发表自己的见解,又培养了学生的数学语言表达的能力,发挥了学生学习的主动性,使他们的注意力始终集中在课堂上。
(二)观察归纳、探究新知、形成概念。
1、观察方程组(此方程组即为例3)
3x + 5y = 5
① 3x -4y = 23
②
(1)未知数 x 的系数有什么特点?
(2)怎么样才能把这个未知数x消去?这样做的根据是什么? 学生分小组讨论交流,形成共识。
教师在个别学生代表小组回答之后给予鼓励性评价。课件展示例3的具体分析与解题过程。
学生认真观察,形成影像。课件出示
例
4、解方程组
4x-7y = 5 3x + 7y = 9
学生仔细观察,对比例3,独立分析。教师请两名学生说步骤,教师跟着学生的思路逐步展示解题步骤,其他同学给予评价。
教师引导学生说出加减消元法(即加减法)的定义。
设计意图:把未知的知识交给学生,让他们在合作学习的过程中,体会到可以用自己的能力去解决新问题,探索新方法,从而获得成功的喜悦。这样一来又大大调动了学生的学习热情,培养和提高了学生学习的主动性和合作精神;同时又使学生的观察力和语言表达能力得到了锻炼。
(三)、讨论研究,深化概念。
教师提出问题:用加减法解二元一次方程组的时候,什么条件下用加法、什么条件下用减法? 学生分组讨论交流。
设计意图:这个问题,可使学生明确使用加减法的条件,体会在某些条件下使用加减法的优越性,不仅强化了学生对概念的理解,又培养了学生勤于动脑,勤于探究的好习惯,还可为之后灵活运用加减法解二元一次方程组打下良好的基础。
(四)、学生练习,巩固新知。练习题分四个题型:
1、选择题两个:第一个旨在考查学生在用减法时符号易出错的问题,第二个旨在考查学生能不能直接看出简单的用加法对二元一次方程组的求解。此题学生独立思考,做出判断。
2、填空题:旨在考察学生对两个未知数的系数的绝对值都分别相等的二元一次方程组能不能灵活运用加法和减法求解。此题有两名学生口答完成,学生评价。
3、找错改正题,旨在培养学生的观察能力、辨别能力、纠错能力。此题学生根据自己的判断,各抒己见,教师给予肯定鼓励。
4、用加减法解二元一次方程组(四个)。四名学生分别演板,其余学生分为两大组,一组做(1)(3)题,<(1)为加,(3)为减>,另一组做(2)(4)题。<(2)为加,(4)为减>。这样做旨在培养学生独立分析问题与解决问题的能力。
5、思维拓展题。此题可拓展学生的思维。教师直接给出引导:你能不解这个方程组就直接求出代数式的值吗?这样学生就在教师的引导下认真观察,从而根据未知数系数的特点顺利地得出结果。请两位学生试述方法,教师肯定鼓励,课件展示过程。
6、能力拔高题。此题只给出已知条件,让学生自己提出问题并完成解答。这样就可开阔学生的思维,学生会提出各式各样的问题。只要学生提出的问题合理,并且解答正确,教师都给予鼓励表扬。
设计意图:通过这一系列有层次有梯度形式多样的练习,使学生可以灵活熟练地选择准确的加减法完成对二元一次方程组的求解,并能在解解答的过程中摸索运算技巧,培养计算能力与观察问题、分析问题与解决问题的能力。
(五)、总结反思、提高认识。由学生总结本节课所学习的主要内容:1.用加减法解二元一次方程组的思想; 2.用加减法解二元一次方程组的条件:某一未知数系数的绝对值相等; 3.用加减法解二元一次方程组的步骤;
4、代入法与加减法的恰当选择。让学生通过知识性内容的小结,把课堂上学习的知识尽快转化为学生的内在素质。
【二元一次方程组的应用练习题】推荐阅读:
七年级下册数学二元一次方程组的应用导学案04-02
二元一次方程组的解法复习教案11-08
代入法解二元一次方程组的典型教案06-13
10.2二元一次方程组的解法(第一课时)07-10
二元回归方程05-24
二元二次方程09-19
二元一次方程教学反思06-18
二元一次方程组例题09-05
二元一次方程 -数学教案12-16
二元一次方程的整数解07-01