二元一次方程组的解法复习教案

2024-11-08

二元一次方程组的解法复习教案(共11篇)

二元一次方程组的解法复习教案 篇1

《二元一次方程组的解法复习》教案设计

湖州四中

金志彬

一、教材分析

本课是对七年级下册的第二章第三节《解二元一次方程组》加强巩固,熟练的解二元一次方程组在整个教材中起到了承上启下的作用,二元一次方程组的解法中不仅体现了“转化思想”和“整体思想”,而且也是解决后续——二元一次方程组的应用和三元一次方程组及其解法等学习的基础,为数学交流提供了有效的途径。

二、学情分析

学生已经学习了二元一次方程组的解法,包括代入消元法、加减消元法,对于书写的步骤也有一定的规范。但是对于不同类型的二元一次方程组不能用恰当的方法解决,对于复杂一点的二元一次方程组和有点技巧性的二元一次方程组解决方法还不熟练,所以在学习的过程中,教师要对他们进行学法指导,尤其要对他们进行数学学习方法和数学思想的培养。

三、教学目标 【知识与能力】

1.熟练的运用代入法和消元法解二元一次方程组; 2.会用整体思想解决二元一次方程组;

3.能根据具体的二元一次方程组来选择恰当的方法来解二元一次方程组。【过程与方法】 4.通过对二元一次方程组的解法复习巩固,体验数学学习中的转化思想;

5.在对方程的整体代入和计算中,渗透整体思想。【情感态度与价值观】

6.体会转化和整体的数学思想,在探求新知过程中体会小组合作的学习方式。

四、教学重难点

【教学重点】:熟练的运用代入法和加减法解二元一次方程组。【教学难点】:会用整体思想解二元一次方程组。

五、教学过程

(一)创设情境

3xy6 x3y10

师:这是什么? 生:二元一次方程组.师:那么接下来我们可以做些什么呢? 生:解二元一次方程组.师:那么解二元一次方程组的基本思想是什么呢? 生:消元(教师板书基本思想—消元)师:通过消元,我们可以得到什么? 生:把二元一次方程组转化成一元一次方程.师:这体现了什么数学思想? 生:转化思想(教师板书)师:请大家思考这个方程该怎么解?

请学生回答,引出二元一次方程组的解法有①代入法②消元法(教师板书)

师:听起来大家掌握的都不错,实践是检验真理的唯一标准,接下来练一练.【你会用恰当的方法解下列二元一次方程组吗?】

2x3y7(1) 3x2y

4xy126(2)x3y11010一、二大组做第1道,三、四大组做第2道.①请学生板演 ②板演完毕针对性点评

师:什么时候用代入法方便?解二元一次方程组时第一步要做什么? 学生回答教师引导总结如下: 【解二元一次方程组不要急】

先观察根据方程组的数和式的特点,然后选择恰当的方法.代入法:当未知数前面的系数为1或-1的.加减法:用代入法不方便的.用恰当的方法解题会有事半功倍的效果.(二)灵活运用

3xy6x3y101、已知二元一次方程组

求①x+y=________②x-y=__________

③2(x+3y)-(3x+y)=____________(引出整体思想并板书)

2.若方程组

3xy6x3y10的解是x13(ab)(ab)6,则方程组的解是_________.y3(ab)3(ab)10x22(y1)3.解方程组.2(x2)(y1)53xya54.方程组.2xy4a(1)其中x、y的值相等,求a的值.(2)①x=________(用a表示x)

②y=________(用a表示y)

③其中x是y的两倍,求a的值.(三)拓展提高

xy3.1、已知yz4,则xyz________xz5x4y0x2、已知(y0),求的值.zy2z0

(四)、课堂小结

通过本节课你有哪些收获?(请学生自由回答)

六、教学反思

本节课的目的是让学生熟练的用代入法和消元法解二元一次方程组并能用整体思想解决相关的二元一次方程组,整堂课完成了教学目标与教学重难点,课堂纪律也较好,个别学生上课积极举手发言。

当然不足之处也有许多,学生在录播教室很拘谨,气氛比较沉闷,我没能及时调动学生的积极性.此外,二元一次方程组的解法复习中应多总结解题规律以及在解方程组时易出现的错误。结束时的课堂的提问让学生谈收获的时候问的太宽泛了,导致学生不知如何回答.在以后的教学和学习中我会及时改正以上不足,多去请教老教师.

二元一次方程组的解法复习教案 篇2

例1

解方程组

分析方程 (1) 中的未知数y的系数绝对值为1, 故用“代入消元法”.

解由 (1) 得:y=2x-2. (3)

将 (3) 代入 (2) , 得3x+2 (2x-2) =3,

解得x=1.

将x=1代入 (3) , 得y=0.

例2

解方程组

分析方程组中x, y的系数分别相反和相同, 故用“加减消元法”.

解 (1) + (2) , 得6y=12, y=2.

(1) - (2) , 得4x=-8, x=-2.

∴原方程组的解为

例3

解方程组

分析方程 (1) 中左边为5 (x+1) , 而方程 (2) 中右边也含有5 (x+1) 这一项, 故用“整体代入消元法”.

解将 (1) 代入 (2) , 得3 (y-1) =5+y+2.

解得y=5.

将y=5代入 (1) , 得5 (x+1) =5+5,

解得x=1.

∴原方程组的解为

例4

解方程组

分析本例虽具有例3的特征, 但将方程 (2) 代入 (1) 达不到消元的目的, 故不能用整体代入消元法, 应先将它化简再解之.

解原方程组化简为

(4) - (3) , 得3y=3, y=1.

浅析二元一次方程组的解法 篇3

一、基本解法

1.代入法

(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.

(2)主要步骤:我将代入法主要步骤概括为四个字:变、代、求、写.

变:即变形,通常选择系数较小的方程变形,将方程中系数最小(系数为1的最好)的未知数用含有一个未知数的代数式表示;

代:将变形后的方程代入另一个方程,实现消元转化;

求:求出两个未知数的值;

写:写出二元一次方程组的解.

例1.解方程组2x+y=2 ①3x-2y=10 ②

分析:①中x与y的系数都较小,故选用①变形,而y系数为1,所以用x表示y.

解:由①得y=2-2x ③

将③代入②,得3x-2(2-2x)=10

解之,得x=2.

把x=2代入③,得y=-2.

所以这个方程组的解是x=2 y=-2

2.加减法

运用加减法解二元一次方程组时,一般先将二元一次方程组化为标准形式a1x+b1y=c1a2x+b2y=c2再观察能否直接使用加减法解方程组.

主要步骤:(1)加减:观察某一未知数的两系数是否存在相等或互为相反数的特点;若相等则方程两边对应相减,若互为相反数则相加,从而消去这一未知数.(2)求:求两未知数的值.(3)写:最后写出原方程组的解.

例2.解方程组3m+2n=16 ①3m-n=1 ②

分析:方程组中m的系数相同,故两式相减消去m.

解:①-②,得3n=15,解得n=5.

将n=5代入②,得3m-5=1,

解得m=2.

所以方程组的解为m=2 n=5

说明:为减少运算量,求出一个未知数的值后,在求另一未知数的值时,通常选择相对简单的方程代入求值.

例3.解方程组2x+3y=12 ①3x+4y=17 ②

分析:当方程组中不存在某一未知数的系数相等或互为相反数的特点时,必须用等式性质来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值相等的新的方程组,从而为加减消元法解方程组创造条件.

解:①×3得:6x+9y=36 ③

②×2得:6x+8y=34 ④

③-④得:y=2,

把y=2代入①,解得x=3,

所以原方程组的解是x=3 y=2

总之,解二元一次方程组时,多观察、多思考,根据方程组的特征,灵活运用一些技巧便可取得事半功倍之效。

二元一次方程组的解法复习教案 篇4

7.2.4二元一次方程组的解法教学案

一、学习目标:学会使用方程变形,再用加减消元法解二元一次方程组。经历观察、探索,通过创设条件把陌生问题转化为熟悉问题来解决的过程,感受数学思考过程的合理性。了解解决问题的一个基本思想:化归,即将“未知”化为“已知”,将“复杂”转为“简单”。(学生课后体会)

二、重难点:未知数的系数绝对值不等时,用加减消元法解二元一次方程组.(学生课后检测是否到达要求)

三、课前预习:阅读课本33---34页(学生自行安排时间)

四、教具准备:多媒体课件、教学案

五、学习过程: 例题5:解方程组

3x4y10, 5x6y42.大家想一想:直接相加减不能消去一个未知数怎么办呢? 分析:必须设法使同一未知数的系数的绝对值相等。

用加减法解方程组: 2x3y12 3x4y17

分析:

对于当方程组中两方程不具备某未知数系数的绝对值相等时,必须用等式性质来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值相等的新的方程组,从而为加减消元法解方程组创造条件.

1.加减消元法解方程组基本思路是什么?主要步骤有哪些?

试一试:

 在本节例2解方程组

2x7y8,3x8y100时,用了什么方法?现在你会不会用加减法来解?试试看,并比较一下哪种方法更方便?

请用加减消元法解下列方程组:

3x2y6(1)(2)2x3y175xy7

4x2y14 x3y202x3y8(3)(4)3x7y100

5y7x5课堂测试

2x7y3(1)不解方程组

3x2y17

则 x + y = _______(2)已知:a-b=3,b-c=4,则 6(a-c)+8=_______(3)关于x、y的方程组 的解满足2x+3y=3 3x2ym xy4m求m的值。

能力提高: 2x3y2x3y解方程组 743 2x3y2x3y8

32

你会用简便方法解这个方程组吗?

加减法解二元一次方程组的一般步骤:

1。把一个方程(或两个方程)的两边都乘以一个适当的数,使两个方程的一个未知数的系数的绝对值相等;

2。把一个未知数系数绝对值相等的两个方程的两边分别相加(或相减),得到一个一元一次方程,求得一个未知数的值;

3。把这个未知数的值代入原方程组的任何一个方程,求得另一个未知数的值; 4。写出方程组的解。

六、大家都来说:

我学了———————— 我学会了——————— 我还有待加强—————

七、布置作业

《二元一次方程组的应用》教案 篇5

二元一次方程组的应用(销售问题)

学习目标

1.进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;

2.会用销售问题中存在的利润、售价、成本的数量关系,列出二元一次方程组;

3.培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值.

重点

据题意正确找出问题中的相等关系,列出二元一次方程。

难点

会列二元一次方程组解决简单的实际问题。

导学过程

师生活动

一、情境导入

1、列方程组解决问题的一般步骤是什么?

2、与销售问题有关的等量关系:

利润=售价-成本(进价);

现售价=原售价x打折数

利润成本

利润率=100%;

利润= x

售价=成本(1+利润率)

二、导学

填空:

x

2、一只钢笔原价40元,现打8折出售,现售价是 元.;若原价为元,现打7折出售,现售价是 元.;

3、某件商品进价100元,售价150元,则其利润是 元,利润率是 .

________

_________

4、A服装进价为100元,现将A服装按40%的利润定价,则定价为元,再打8折销售,A服装的销售价为

5、一件服装进价200元,按标价的8折销售,仍可获利20%,设服装的标价为x元,则实际售价为 元,利润可表示为 (用含x的代数式表示)

根据题意列出方程为:

三、精讲点拔

例1、A、B两码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,求这艘轮船在静水中的速度和水流速。

自学指导:

1、题中的已知量有__________,未知量有___________。

2、顺流船的航速等于______________________________, 逆流船的航速等于_____________________________。

3、本题中的等量关系有哪些?

四、学习小结

1、在用二元一次方程组解决实际问题时,你会怎样设定未知数,可借助哪些方式辅助分析问题中的相等关系?

2、小组讨论,你接触过的行程问题有哪些种?能说上来吗?

学后反思

达标检测

只需要列出方程组即可

1、A市至B市的航线长1200千米,一架飞机从A市顺风飞往B市需2小时30分,从B市逆风飞往A市需3小时20分,求飞机的速度与风速。

2、一船顺水航行45千米需3小时,逆水航行65千米需要5小时,求船在静水中的速度与水流速。

3.甲、乙两车从相距60KM的A、B两地同时出发,相向而行,1小时相遇;同向而行,甲在后,乙在前,3小时后甲可追上乙,求甲、乙两车的速度分别是多少?

4.甲、乙两人从相距36千米的两地相向而行。如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两人每小时各走多少千米?

5.某站有甲、乙两辆汽车,若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车;若甲车先开出20km后乙车出发,则乙车出发4h后追上甲车.求两车速度.

课后作业

1.A、B两地相距20千米,甲从A地向B地前进,同时乙从B地向A地前进,2小时后二人在途中相遇,甲返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有2千米,分别求甲、乙两人的平均速度。若设甲、乙的平均速度分别为每小时x、y千米,可列方程组 。

2.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( )

{3x+5y=1200

{360x+560y=1.2

{3x+5y=1.2

{360x+560y=1200

3.甲、乙两人在周长为400m的环形跑道上练跑,如果同时、同地①相向②同向出发,经过80秒相遇;已知乙的速度是甲速度的2/3,求甲、乙两人的速度.

二元一次方程组的典型例题 篇6

分析 我们已经掌握一元一次方程的解法,那么要解二元一次方程组,就应设法将其转化为一元一次方程,为此,就要考虑将一个方程中的某个未知数用含另一个未知数的代数式表示.方程(2)中x的系数是1,因此,可以先将方程(2)变形为用含y的代数式表示x,再代入方程(1)求解.这种方法叫“代入消元法”. 解: 由(2),得 x=83y.(3)把(3)代入(1),得:

2(83y)+5y=21,166y+5y=21,y=37,所以y=37.

点评 如果方程组中没有系数是1的未知数,那么就选择系数最简单的未知数来变形.

分析 此方程组里没有一个未知数的系数是1,但方程(1)中x的系数是2,比较简单,可选择它来变形.

解: 由(1),得

2x=8+7y,(3)把(3)代入(2),得

分析 本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x,y的系数都是100、常数项是200的方程,而此方程与方程组中的(1)和(2)都同解.这样,就使问题变得比较简单了.

解:(1)+(2),得100x+100y=200,所以

x+y=2

(3)

解这个方程组.由(3),得

x=2y(4)把(4)代入(1),得53(2y)+47y=112,10653y+47y=112,6y=6,所以y=1.

分析 经观察发现,(1)和(2)中x的系数都是6,若将两方程相减,便可消去x,只剩关于y的方程,问题便很容易解决、这种方法叫“加减消元法”. 解:(1)(2),得12y=36,所以y=3.把y=3代入(2),得:

6x5×(3)=17,6x=2,所以:

点评 若方程组中两个方程同一未知数的系数相等,则用减法消元;若同一未知数的系数互为相反数,则用加法消元;若同一未知数的系数有倍数关系,或完全不相等,则可设法将系数的绝对值转化为原系数绝对值的最小公倍数,然后再用加减法消元.在进行加减特别是进行减法运算时,一定要正确处理好符号.

分析 方程组中,相同未知数的系数没有一样的,也没有互为相反数的.但不难将未知数y的系数绝对值转化为12(4与6的最小公倍数),然后将两个方程相加便消去了y.

解:(1)×3,得9x+12y=48

(3)(2)×2,得10x-12y=66(4)(3)+(4),得19x=114,所以x=6.把x=6代入(1),得 3×6+4y=16,4y=-2,点评 将x的系数都转化为15(3和5的最小公倍数),比较起来,变y的系数要简便些.一是因为变y的系数乘的数较小,二是因为变y的系数后是做加法,而变x的系数后要做减法.

例6 已知xmn+1y与2xn1y3m2n5是同类项,求m和n的值.

分析 根据同类项的概念,可列出含字母m和n的方程组,从而求出m和n. 解:因为xmn+1y与2xn1y3m2n5是同类项,所以

解这个方程组.整理,得

(4)(3),得2m=8,所以m=4.把m=4代入(3),得2n=6,所以n=3.所

分析 因为x+y=2,所以x=2y,把它代入方程组,便得出含y,m的新方程组,从而求出m.也可用减法将方程组中的m消去,从而得出含x,y的一个二元一次方程,根据x+y=2这一条件,求出x和y,再去求m. 解:将方程组中的两个方程相减,得x+2y=2,即(x+y)+y=2.

因为x+y=2,所以2+y=2,所以y=0,于是得x=2.把x=2,y=0代入2x+3y=m,得m=4.把m=4代入m22m+1,得m22m+1=422×4+1=9. 例8 已知x+2y=2x+y+1=7xy,求2xy的值.

分析 已知条件是三个都含有x,y的连等代数式,这种连等式可看作是二元一次方程组,这样的方程组可列出三个,我们只要解出其中的一个便可求出x和y,从而使问题得到解决. 解:已知条件可转化为

整理这个方程组,得

解这个方程组.由(3),得x=y1(5)把(5)代入(4),得5(y1)-2y-1=0,5y-2y=5+1,所以

y=2.

把y=2代入(3),得x-2+1=0,所以

x=1.

2x-y=0.

二元一次方程组的典型例题

二元一次方程组复习题

例题:

1、下列方程是二元一次方程的是()

110(A)x2+x+1=0

(B)2x+3y-1=0

(C)x+y-z=0

(D)x+y

2、下列各组数值是x-2y=4方程的解的是()

x2x1x0x4(A)y1(B)y1(C)y2(D)y1 x2

3、以y1为解的二元一次方程的个数是()

(A)有且只有一个

(B)只有两个

(C)有无数个

(D)不会超过100个

4、二元一次方程3x+2y=7的正整数解的组数是()(A)1组

(B)2组

(C)3组

(D)4组

x4

5、已知y2是二元一次方程mx+y=10的一个解,则m的值为

6、已知3xm-1-4y2m-n+4=1是二元一次方程,则m=,n=

.7、下列方程组中,属于二元一次方程组的是()。

xy5xy1xy1xy32x2y1xy2z2y1x20(A)

(B)

(C)

(D)

8、已知2ay+5b和-4a2xb2-4y是同类项,则x= ,y=

.x1y

29、写一个以为解的二元一次方程组:

。x12xay5bx3y1y2

10、如果是方程组的解,则ab

。xy13x2y

511、方程组的解是

.12、将下列二元一次方程变形,使其中一个未知数用含另一个未知数的代数式表示: ⑴2x-y-3=0

⑵x-2y-3=0

uv41⑶

2x+5y-13=0

313、用代入法解下利二元一次方程组:

y1xx2y4xy13x2y5①

②

③2s3t14s9t8

2x3y53x2y

414、用加减法解方程组时,下列变形正确的是()

6x9y54x6y106x3y152x6y106x4y49x6y126x2y123x6y12(A)

(B)(C)(D) 13x6y25(1)27x4y19(2)

15、解方程组

你认为下列4种方法中,最简便的是()

(A)代入消元法

(B)用(1)27-(2)13,先消去x(C)用(1)4-(2)6,先消去y

(D)用(1)2-(2)3,先消去y

3x5y21m5n62x5y113m6n4

16、用加减法解下列方程组:①

②

x2axby7axby5y1提高题:

1、已知是方程组的解,求ab的值。

x3y0x11(y0)y4z02、已知,则z()(A)12

(B)-1

2(C)-12

(D)12

3、已知︳4x+3y-5︳+︳x-2y-4︳=0,求x,y的值

x1x1y0y5,4、已知二元一次方程ax+by=10的两个解为,则a= ,b=

.mx2ny4x6y3xy1nx(m1)y

35、已知关于x,y的方程组与的解相同,求m,n的值。

xy22xy4a6、已知关于x,y的二元一次方程组的解也是方程x-y=2的解,求a的值。

7、方程2x+3y=11的正整数解是。

axby2x2cx7y8y

28、解方程组时,一学生把c看错而得到,已知该方程组的正确的解x3y2是,那么a,b,c的值是()

(A)不能确定

(B)a=4,b=5,c=-2(C)a,b不能确定,c=-2

二元一次方程组的解法复习教案 篇7

1.某校初三(.捐款情况如下表:

表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组().xy27xy27xy27xy27(A)(B)(C)(D) 2x3y662x3y1003x2y663x2y100

2.已知二元一次方程组为2xy7,则xy______,xy_______.x2y8

4x3y1,3.若方程组的解x与y相等,则a________.ax(a1)y3.

3m5n94m2n73x4y2是二元一次方程,则m值等于__________.4.若n

5.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和,商是5,余数是1,则这样的两位数()

A.不存在B.有惟一解C.有两个D.有无数解

6.4x+1=m(x-2)+n(x-5),则m、n的值是

m4m4n7m7A.B.C.D. n1n1n3n3

ax3y97.如果方程组无解,则a为 2xy1

A.6B.-6C.9D.-9

3x2y2k8.若方程组的解之和:x+y=-5,求k的值,并解此方程组.5x4yk3

yx29.以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()yx1

A.第一象限B.第二象限C.第三象限D.第四象限

10.若关于x,y的方程组

A.

12xymx2的解是,则|mn|为()y1xmynC.5D.2(备用图)

19.某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件。

(1)求A、B两种纪念品的进价分别为多少?

(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该

商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?

20.奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.

(1)求购买每个笔记本和钢笔分别为多少元?

(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x0)支钢笔需要花y元,请你求出y与x的函数关系式;

(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.

21.孔明同学在解方程组ykxb的过程中,错把b看成了6,他其余的解题过程没有出y2x

x1,又已知直线ykxb过点(3,1),则b的正确值应

y2错,解得此方程组的解为

该是.

二元一次方程组的解法复习教案 篇8

1、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆,经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;

(2)如果甲车的租金为每辆2 000元.乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?

2、某电脑经销商计划同时购进一批 电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器 8台,共需资金7 000元;若购进电脑机箱2台和液晶显示器 5台,共需资金4 120元.(1)每台电脑机箱和液晶显示器进价各多少元?

(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22 240元.根据市场行情,电脑机箱、液晶显示器销售一台获利分别为10元、160元.该经销商希望销售完这两种商品后,所获利润不少于4 100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?

3、响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过...132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.

(1)至少购进乙种电冰箱多少台?

(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?

4、为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资 金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?

(2)若该县的A类学校不超过5所,则B类学校至少有多少所?

(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国 家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?

5、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.

(1)今年三月份甲种电脑每台售价多少元?

(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?

二元一次方程组复习课 教学反思 篇9

中阳宁兴学校 王文海

本课为复习课,是学生再认知的过程,因此主要任务是使学生在复习回顾的基础上,系统掌握本章的主要内容及其联系,并进一步训练学生灵活运用所学知识分析解决问题的能力。

本节主要内容包括:二元一次方程(组)及其相关概念,消元思想和用代入法、加减法解二元一次方程组以及三元一次方程组解法举例,利用二元一次方程组分析与解决实际问题。其中,以方程组为工具分析问题、解决含有多个未知数的问题进行了简单涉及。

本章所涉及的数学思想方法主要包括两个:一个是由实际问题抽象为方程组这个过程中蕴涵的符号化、模型化的思想;另一个是解方程组的过程中蕴涵的消元、化归思想,它在解方程组中具有指导作用。解二元一次方程组的各个步骤,都是为最终使方程组变形为x=a,的形式而实施的,即在保持各方程的左右两边相等关系的前提之下,使“未知”逐步转化为“已知”。代入法和加减法都是消元解方程组的方法,只是具体消元的方法有所不同。

本节课主要设计思路如下:

1.教学模式:回顾梳理主要知识点,构建知识体系;通过典型问题探究加深对主要思想方法的理解,掌握常用解题方法;采取限时训练与开放研究相结合的方式进行巩固与拓展练习,以保证技能技巧的形成和不同学生发展的需求.2.复习目标:首要的一点是从总体上把握本章主要内容及其间的联系,重在回顾整理,查缺补漏;其次是综合创新,基础知识掌握了,综合灵活地解决问题才有可能,同时问题的难易程度要适合学生的实际情况,注重思维发散性与深刻性的训练,使不同层次的学生通过复习都得到较大的提高.同时在复习中注重知识之间的联系与相互转化,并形成一定的数学思想与经验。

通过课堂上的教学实践,我认为我的教学设计还是比较合理的,基本上达到预期目标,学生通过一节课的复习,进一步明确了二元一次方程组及其解的有关概念,二元一次方程组的解法更熟练准确了,对于不太复杂的应用性题目学生均能解决,但对于难度较大的应用性题目,学生的分析能力还有待于进一步提高。通过这一节的教学,我有许多感触,事实上,学生的潜能是不可低估的,教师应进一步大胆放手,给学生充分的自由空间,让他们去探索、去研究,这样他们的求知欲望反而会更强烈,积极性和主动性自然会大大提高。

再则,由于时间的原因,没能将最后一个题让学生解完,然后在更大范围内总结,让学生对多元方程有更深更全面的认识,感到好遗憾,其实这种遗憾是经常出现的。在设计课时,为了照顾到大多数学生,不可能设计的太难或太易,虽有分层优化的内容在里面,但总的来说,操作起来还是有好多困难,难以真正兼顾的很到位,感觉两边的学生没吃好。

二元一次方程教案范文 篇10

一、教材的地位与作用

《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

二、教学目标(一)知识与技能:

1.了解二元一次方程概念;

2.了解二元一次方程的解的概念和解的不唯一性;

3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。(二)数学思考:

体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

(三)问题解决:

初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。(四)情感态度:

培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

三、教学重点与难点

教学重点:二元一次方程及其解的概念。

教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

四、教法与学法分析

教法:情境教学法、比较教学法、阅读教学法。学法:阅读、比较、探究的学习方式。

五、教学过程

1.创设情境,引入新课 从学生熟悉的姚明受伤事件引入。

师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?

(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗? 设姚明投进了x个两分球,罚进了y个球,可列出方程______。

(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗? 设易建联投进了x个两分球,y个三分球,可列出方程______。

师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗? 从而揭示课题。

(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)2.探索交流,汲取新知

概念思辨,归纳二元一次方程的特征

师:那到底什么叫二元一次方程?(学生思考后回答)

师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)师:根据概念,你觉得二元一次方程应具备哪几个特征? 活动:你自己构造一个二元一次方程。快速判断:下列式子中哪些是二元一次方程? ①x2+y=0

②y=2x+4 ③2x+1=2-x

④ab+b=4(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)二元一次方程解的概念

师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?

师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)二元一次方程解的不唯一性

对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗? 师:这些解你们是如何算出来的?

(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解 例:已知方程3x+2y=10,(1)当x=2时,求所对应的y的值;

(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;(3)用含x的代数式表示y;(4)用含y的代数式表示x;

(5)当x=-2,0时,所对应的y的值是多少?

(6)写出方程3x+2y=10的三个解.

(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)大显身手: 课内练习第2题 梳理知识,课堂升华

本节课你有收获吗?能和大家说说你的感想吗? 3.作业布置

必做题:书本作业题1、2、3、4。选做题:书本作业题5、6。设计说明

本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解——不止一个解——无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。

二元一次方程 -数学教案 篇11

【知识目标】了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。【能力目标】通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

【情感目标】通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。【重点】二元一次方程组的含义

【难点】判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。【教学过程】

一、引入、实物投影

1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?

2、请每个学习小组讨论(讨论2分钟,然后发言)

上一篇:如何做好vip工作下一篇:非深圳户籍人员子女的学位申请材料