代入法解二元一次方程组公开课教案

2024-10-19

代入法解二元一次方程组公开课教案(精选7篇)

代入法解二元一次方程组公开课教案 篇1

丰台中学2012年数学观摩课教案

【课题】:8.2代入法解二元一次方程组(第一课时)【教者】:李秀琴 【班级】:七年级3班 【时间】:2012年4月19日 【教学目标】:

1.知识与技能:会熟练用代入法解简单的二元一次方程组,并初步体会解二元一次方程组的基本思想 ——“消元”。

2.过程与方法:通过用代入法解简单的二元一次方程组,提高学生的分析解决问题的能力。

3.情感态度与价值观:在解方程组的过程中让学生初步体会化未知为已知,化复杂为简单的化归思想,培养学生自主学习,合作交流的意识与探究精神。

【重点】:用含一个未知数的式子表示另一个未知数, 用代入法解简单的二元一次方程组。【难点】:用代入法解二元一次方程组的方法。【教学方法】:自主——合作——展示——应用 【教学用具】:导学案,多媒体辅助教学。【教学过程】:

学习目标:会熟练用代入法解简单的二元一次方程组,并初步体会解二元一次方程组的基本思想——“消元”。

【活动1】:自主学习:

自学课本P96-97页的内容,完成下列问题。

1.篮球联赛中,每场比赛要分胜负,每队胜1场得2分,负1场得1分,某队为了争取较好名次,想在全部的22场比赛中得40分,那么这个队胜负场数各为多少场? xy22

 如果设两个未知数:设胜x场,负y场,可得方程组

2xy40

如果设一个未知数:设胜x场,可得一元一次方程为 2x+(22-x)=40 把方程组中方程x+y=22变形后可写成y=________,然后把它代到方程2x+y=40中,这个方程就化为一元一次方程__________________,从而解出x的值,进而求得y的值。这样把二元一次方程组转化成了一元一次方程,得出了解二元一次方程组的方法。

xy22

2.写出解二元一次方程组  的过程。

2xy40

解:由①得:

y=_____________③

把③代入②得:

_____________ 解这个方程得:

x=_____________ 把x=________代入③,得: y=_______

x____y____所以原方程组的解是

3.思考:(1)在上面的解题过程中,把③代入①可以吗?试试看。

(2)把x的值代入①或②求y的值可以吗? 4.上面的解法,是把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现________,进而求出这个二元一次方程组的解,这种方法叫______________,简称__________。【活动2】反馈展示:

1.根据题后的要求变形下列各方程。

(1)x+y=1(用含x的式子表示y)(2)2y-x=3(用含y的式子表示x)2.解下列方程组。相信自己一定行!

xy1  2x3y7

(学生小组合作完成后展示)【活动3】:检测应用: 1.基础知识点对点: 在方程3x-y=1中,用含y的式子表示x为_____________.2.慧眼求真知。

用代入法解下列方程组。y1xyx2 

3x2y142xy0

3.激活巧思维。

xy5(1).方程组的解满足方程x+y+a=0,则a的值为().2xy5A.-5 B.0 C.5 D.10(选做题)(2).有48支队520名运动员参加篮、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只参加一项比赛,篮、排球队各有多少支参赛?

【活动4】:1.课堂小结:通过本节课的学习,你有哪些收获?有哪些困惑?

2.课堂作业:课本P103页的2题(1)(2),4题。板书设计:

一.自主学习过程展示: 二.反馈展示: 三.检测题展示:

代入法解二元一次方程组公开课教案 篇2

教育的本质是人为主体的发展, 教育应以人的发展为本, 在新课程标准中也提出“以学生的终身发展为本”的理念, 可见让学生学会自觉地学习是十分重要的.学生是学习的主人, 教师的教不能代替学生的学, 但教学活动是师生间的双边活动, 在教学中要充分发挥学生的主体作用和教师的主导作用.教师的教学观必须进行深层次的改变, 在教学过程中体现出理解和参与学生的学习过程, 使学生将学习的资源更好的内化和发展, 这就需要教师精心设计教学过程并让学生先在自主学习之前提下带着问题和困惑来听课, 来解疑以达到高效的学习效果, 也就是教师追求的教学目标.那么, 设计一堂新授课的课前导学学案不失为培养学生自主学习的一种策略, 为学生的自主学习提供了自主学习的线路图, 为学生高效地自主学习提供了有效途径, 能起到“以问拓思, 因问造势”的功效, 让学生学会独立地将课本上的知识进行分析综合, 整理归纳.通过精心设计问题, 使学生意识到:要解决教师设计的问题, 不看书不行, 看书不看详细也不行, 光看书不思考不行, 思考不深不透也不行.让学生真正从教师设计的问题中找到解决问题的方法, 学会看书, 学会自学.

下面笔者就如何进行“代入法解二元一次方程组”导学设计, 谈谈本人做法:创设情趣, 提出问题.

导学1

思考:体育节要到了, 篮球是七年级 (1) 班的拳头项目, 为了取得好的名次, 他们想在全部22场比赛中得到40分已知每场比赛都要分出胜、负, 胜队得2分, 负队得1分.那么, 七年级 (1) 班应该胜、负各几场?

想一想: (1) 用一元一次方程来解决.

该胜x场, 则负__场.

依题意得方程:2x+__=40. (1)

(2) 用二次一次方程组来解决.

设胜x场, 负y场.

观察方程 (1) 和方程 (3) , 在表示负场次数的时候, 有何不同?

【设计目的】首先让学生在已熟悉的一元一次方程解应用题的基础上解决上述问题, 比较容易完成.其次, 再进一步提出让学生用刚刚学习的二元一次方程组的方法来解决问题, 让学生感受到直接设两个未知数为x, y, 根据问题中的等量关系, 可以更容易地列出两个二元一次方程x+y=22和2x+y=40组成二元一次方程组也可以解决问题.接下来所产生的新问题是如何求出这个二元一次方程组的解呢?

通过对二元一次方程组的学习得到了二元一次方程组的解是方程组中的两个二元一次方程的公共解, 在此之前, 我们通过观察尝试的方法多次用不同组的一对未知数的数值分别代入这两个方程中, 检验是否是方程组中每一个方程的解, 进而来确定这一组未知数的值是否为二元一次方程组的解, 这种尝试方法犹如“大海捞针”, 既费时又具有不确定性.因而, 很自然地想到了应找出一种比较简捷的方法来求出二元一次方程组的解.

问题是数学的心脏, 而数学问题的解决常常运用到化归的思想方法, 把未知向已知、陌生向熟悉进行转化.对于一元一次方程的求解, 我们大家是非常熟悉的了, 那么求二元一次方程组的解的思想方法就是把二元一次方程转化为一元一次方程, 进而求得方程组的解.

于是, 再提出问题, 设计出导学2.

导学2

我们已经知道如何解一元一次方程, 那么如何解二元一次方程组呢?这就需要想办法把二元一次方程组转化为一元一次方程, 试一试. (没有困难的同学继续思考导学3, 有困难的同学接着往下看)

由方程 (2) 进行移项得y=22-x, 由于方程 (2) 中的y与方程 (3) 中的y都表示负的场数, 故可以把方程 (3) 中的y用22-x来代替.即得2x+ (22-x) =40.由此一来, 二次一次方程组就转化为一元一次方程了.

【设计目的】重视知识的发生过程, 让学生了解代入消元法解二元一次方程组的过程及依据, 体会化归的思想方法.

导学3

思考:选择哪个方程进行变形, 用含一个未知数的代数式表示另一个未知数, 从而代入另一个方程, 达到将二元一次方程组转化为一元一次方程的目的呢?

【设计目的】让学生通过自主学习归纳代入法消元的一般步骤.

导学4

初步应用:

1.将方程5x-6y=12进行变形, 若用含y的代数式表示x, 则x=_____, 若用含x的代数式表示y, 则y=_____.

【设计目的】通过一组基础题型的练习, 使学生认识到解二元一次方程组的思想方法和初步掌握用代入法消元解二元一次方程组的一般步骤.

至此, 完成了“代入法解二元一次方程组”的课前导学过程.目的是能够帮助学生梳理、构建知识体系, 引导学生形成恰当的学习习惯和学习策略, 不断提升学生发现问题、分析问题、探究问题和解决问题的能力, 使不同层次的学生在认知能力和情感等方面能够得到有效的发展和进步.

总之, 新课的导学至关重要, 全面了解学生的认识水平及知识现状, 熟悉教材, 灵活多样地提供学生自主学习的环境, 可以激发学生的学习热情, 提高教学质量.

用加减法解二元一次方程组教案 篇3

裴庄联区 裴庄初中 聂晓萍

一、教学目标

1、知识目标:使学生掌握用加减法解二元一次方程组的步骤,能运用加减法解二元一次方程组

2、能力培养:根据方程的不同特点,进一步体会解二元一次方程组的基本思想——消元;培养学生分析问题、解决问题的能力,训练学生的运算技巧。

3、情感态度与价值观:树立消元的思想,化“二元”为“一元”,体会化归思想。

二、学法引导

观察各未知数前面系数的特征,只要将相同未知数前的系数化为绝对值相等的值后就可以利用加减消元法进行消元,同时在运算过程中注意归纳解题的技巧和解题的方法

三、教学重点、难点

重点:使学生学会用加减法解二元一次方程组

难点:如何用加减法“消元”化“二元”为“一元”

四、教学过程

(一)明确目标

本节课通过复习代入法,从而引入另一种消元的方法——加减法解二元一次方程。

(二)整体感知

加减法解二元一次方程组的关键在于将相同字母的系数化为绝对值相等的值,即可用加减法消元。故在教学中应反复教会学生观察并抓住解题的特征及方法从而方便解题。

(三)教学过程

1、创设情境,复习导入

(1)用代入法解二元一次方程组的基本思想是什么?(2)解下列方程组,并验证所得结果是否正确。

3x5y21 2x5y11学生活动:口答第(1)小题,在学案上完成第(2)题。并让学生展示各种解法。

2、合作探究,交流展示

针对上面不同的解法,思考下面的问题:

(1)上面的几种解法中,哪一种更简单一些?(2)上面的几种解法中,都包含了什么思想? 我们通过刚才的学习,我相信大家都有了自己的认识,那么请同学们自己完成下面的例1 2x5y7例1:解方程组

2x3y1学生活动:独立完成上面题,几个同学板演,交流展示完后,教师点拔:在上面的解方程中,当方程组中的两个方程有一个未知数的系数相等或是互为相反数时,可以把方程的两边分别相减或相加来消去这个未知数,把“二元”化成“一元”,得到一个一元一次方程,进而求得方程组的解,像这种解二元一次方程组的方法,叫做加减消元法,简称“加减法。

如果方程组中没有一个未知数的系数是相等或是互为相反数的,我们应该怎样做?现在我们自己在导学案上完成例2,完成后同桌交流。

2x3y12例2:解方程组

3x4y17教师点拔:能否对方程组中的两个方程进行变形,把这两个方程的某个未知数的系数化为相等或互为相反数,进而求解。几个学生板演,由学生总结用加减法解二元一次方程组的基本步骤,教师在学生总结的基础上完善。

第一步:变形,使某个未知数的系数的绝对值相等

第二步:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程

第三步:解这个一元一次方程 第四步:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解。

3、双基检测

用加减消元法解下列方程组

7x2y36x5y35x6y94s3t

59x2y196xy157x4y52st54、思维拓展

(1)如果5x3m-2n-2yn-m=0是二元一次方程,则m= ,n= xy134(2)解方程组 

yx1

325、畅谈收获

在这节课的学习中,你有哪些收获?存在着哪些疑惑?说出来与大家交流、分享。

(四)板书

用加减法解二元一次方程组

3x5y21解方程组  基本思路:消元

2x5y11 一般步骤:

2x5y72x3y12学生板演

 

解二元一次方程组教学反思 篇4

“解二元一次方程组”是“二元一次方程组”一章中很重要的知识,占有重要的地位。通过本节课的教学,使学生会用加减消元法解二元一次方程组,进一步了解“消元”的思想。加减法解二元一次方程组的基本思想与代入法相同,仍是“消元”化归思想,通过代入法、加减法这些手段,使二元方程转化为一元方程,从而使“消元”化归这一转化思想得以实现。因此在设计教学过程时,注重化归意识的点拨与渗透,使学生在学习中逐步体会理解这种具有普遍意义的分析问题、解决问题的思想方法。

教学后发现,大部分学生能利用加减消元法解二元一次方程组,教学一开始给出了等式的基本性质的练习题和一个二元一次方程组。等式的基本性质的设置,有利于更好进行加减消元解二元一次方程组,然后让学生回顾用代入法求解二元方程组的基本思想,既复习了旧知识,又引出了新课题,引发学生探究的兴趣。通过学生的观察、发现、比较,理解加减消元法的原理和方法,使学生明确使用加减法的条件,体会在一定条件下使用加减法的优越性。之后,通过例题来帮助学生规范书写,同时明确用加减法解二元一次方程组的步骤。接下来,再通过一系列的练习来巩固加减消元法的应用,并在练习中摸索运算技巧,培养能力,训练学生思维的灵活性及分析问题、解决问题的综合能力。有个别同学在运算上比较容易出错,运用的灵活性掌握得不太好,解答起来速度较慢,我想只要多加练习,一定会又快又准确的。

代入法解二元一次方程组公开课教案 篇5

常言道:举一反三,触类旁通。数学教学尤其如此。旨在于对一个数学知识点反复例举、反复引导、反复训练,进而对类似问题能够参考性的对比解决并且不断提升知识的认知水平。消元二元一次方程组的解法这个课时的思想就是把未知数的个数递减而逐一解决。我在教学这个内容中得到如下反思。

一、在这节课的开始应该充分利用教材关于胜负问题的例子,让学生首先明白两个方程中的x都表示胜的场数,y都是表示负的场数,这个过程就是为了消除学生在以下的代入消元法和加减消元法中为什么能够互换的疑虑。这是个好的开端。

二、充分强调等式的变化。虽然这是个复习的问题,但是,让学生反复演练这样的等式变换是一个必要的过程,它将为后面的代入法顺利进行起到铺垫的作用。

三、在进行代入消元法时,遵循由浅入深、循序渐进的原则,引导并强调学生观察未知数的系数,注意系数是1的未知数,针对这个系数进行等式变换,然后代入另一个方程。在这个教学过程中,学生的学习难点就是当未知数的系数不是1的情况,教师就应该运用开课前复习的等式变换的知识点:用含有一个字母的代数式表示另一个字母,引导学生熟练进行等式变换,这个过程教师往往忽略训练的深度和广度,要引起注意把握训练尺度。

四、在进行加减消元法时,难点是:相同未知数的系数不相同也不是互为相反数的情况。基于此,教学原则也应该是由易到难、逐次深入的原则。教师应该先让学生熟悉简单的未知数相同或互为相反数这类题目的加减消元法则和原理;继而认真展示成倍数关系的未知数的系数;然后出示一些比如:3x-5y=10,2x+10y=1,等等的问题,提示学生怎样使相同未知数的系数相同或互为相反数,这时教师要帮助学生认真分析,强调遵循求几个数最小公倍数的原则,使它们相同未知数的系数变成为它们的最小公倍数,然后进行加减消元法去解决问题。

这就是我在这个课程教学的一些反思。

反思二:消元---解二元一次方程组教学反思

1、这节课的主要内容是用代入法解二元一次方程组。这种代入消元法的关键是如何选择一个方程,如何用含一个未知数的式子去表示另一个未知数。所以在教学上要抓住这个关键来讲解。

2、在教学过程中,学生虽然学会了用代入法解二元一次方程组,但是在结构不同的方程组中,学生就有点不知所措,不懂选择哪个方程代入另一个方程,以至

使运算简便。而是盲目地规定消那个未知数,使得计算量很大。出现这种问题的

原因是,没有抓住教师在课堂上强调的关键。针对这个问题,在以后的教学中,我会再强调这个解题的关键,甚至还专门利用课余时间,帮他们补回来。让他们在这方面多多练习。

3、如果让我重新上这节课,我觉得还有一些可以改进的地方。那就是在[活动4]

中,我布置学生做教科书第99页练习的第2题时,学生完成后,再强调第⑴小题,方程不用变形,直接选第一个方程代入第二个方程的原因。

4、我会虚心接受各位老师给我的建议。那就是,对不同的学生进行针对性的指导,使不同的学生都有发展。

反思三:消元---解二元一次方程组教学反思

解二元一次方程组是二元一次方程组一章中很重要的知识,占有重要的地位。通过本节课的教学,使学生会用加减消元法解二元一次方程组,进一步了解消元的思想。加减法解二元一次方程组的基本思想与代入法相同,仍是消元化归思想,通过代入法、加减法这些手段,使二元方程转化为一元方程,从而使消元化归这一转化思想得以实现。因此在设计教学过程时,注重化归意识的点拨与渗透,使学生在学习中逐步体会理解这种具有普遍意义的分析问题、解决问题的思想方法。

教学后发现,大部分学生能够通过加减消元法解二元一次方程组,教学一开始给出了一个二元一次方程组,先让学生用代入法求解,既复习了旧知识,又引出了新课题,引发学生探究的兴趣。通过学生的观察、发现,理解加减消元法的原理和方法,使学生明确使用加减法的条件,体会在一定条件下使用加减法的优越性。之后,通过两个例题来帮助学生规范书写,同时明确用加减法解二元一次方程组的步骤。接下来,通过一系列的练习来巩固加减消元法的应用,并在练习中摸索运算技巧,培养能力,训练学生思维的灵活性及分析问题、解决问题的综合能力。有个别同学在运算上比较容易出错,运用的灵活性掌握得不太好,解答起来速度较慢,我想只要多加练习,一定会又快又准确的。

反思四:消元---解二元一次方程组教学反思

解二元一次方程组分两节设置,第一节讲代入消元法,第二节讲加减消元法。从学生作业反馈,对两种消元法的步骤和方法能较好的掌握。但是学生解题中错误较多。问题出现在进行代入消元后的一元一次方程解错了。如去分母时忘了用最小公倍数乘遍每一项,移项要变号,数与多项式相乘要乘遍每项。这样导致整个方程组的解错。对于加减法应让学生明确方程组如果既能用加法消元又能用减法消元的情况下尽量用加法。毕竟加法不容易出错。对于减法尤其是减数是负号时是学生解题的易错点,应该多给学生一些思考的时间,让他们自己摸索出解决问题的办法。同时,也训练了学生的思维。

几个例题比较起来,学生做减法比较容易出错,看来减法的练习应该多些,上课应多花些时间解决减法的问题,而在加减消元法的引入时我选择了创设情景,二元一次方程组的应用问题等量关系相对比较简单,这样不仅可以让学生感受数学的实际应用价值,而且可以增加他们对于解应用题的信心,因为有大部分的学生对于应用题有畏难的心理。这样做的效果不错。在第一课时着重讲解系数相同和互为相反数的加减消元,不要涉及其他的,要巩固前面的知识。第二节着重观察、整理方程组,要多板书几组规范的解题步骤。

用加减法解二元一次方程组 篇6

②加减消元.

③解一元一次方程.

④代入得另一个未知数的值,从而得方程组的解.

3.尝试反馈,巩固知识

练习:P23 1.(4)(5).

【教法说明】通过练习,使学生熟练地用加减法解二元一次方程组并能在练习中摸索运算技巧,培养能力.

4.变式训练,培养能力

(1)选择:二元一次方程组 的解是( )

A. B. C. D.

(2)已知 ,求 、 的值.

学生活动:第(1)题口答,第(2)题在练习本上完成.

【教法说明】第(1)题可以用解方程组的方法得解,也可以把四组值分别代入原方程组中,利用检验的方法解,这道题能训练学生思维的灵活性;第(2)题通过分析,学生可得方程组 从而求得 、 的值.此题可以培养学生分析问题,解决问题的综合能力.

代入法解二元一次方程组公开课教案 篇7

一、在教学过程中,我采用了提出问题与情境教学,利用日常生活中的一些事,引导学生充分发挥他们的智慧,发现,提出,讨论,最后解决问题,完成了预定的教学内容,达到了预期的效果。

二、代入消元法和加减法都是二元一次方程组的解法,它们的.基本思路都是消元,即将二元方程转化为一元方程。而加减法是通过相加减达到消元的目的的,因此在教学这部分内容时,引导学生仔细观察、分析、讨论,最后归纳解题方法,并且让学生掌握用加减法解二元一次方程组,然后和代入消元法比较,让学生发现在有些时候用加减消元法更方便、简单。由此突出了本节课的重点。

三、在本节课中,我利用了多媒体进行教学,形象、直观的展示了二元一次方程组转化为一元一次方程的过程,有利于学生理解和掌握,突破了本节课的难点。

三、在整个教学过程中,我始终坚持以学生为主体,让他们不断的发现问题、提出问题、讨论问题、最后解决问题,从而获取知识。

四、存在的不足:

①我对计算机操作还不是很熟,所以在使用时还存在一定的问题,影响了上课时间。

上一篇:神偷奶爸观后感800字下一篇:折子戏作文1200字