四年级下册数学广角鸡兔同笼教学设计

2024-07-22

四年级下册数学广角鸡兔同笼教学设计(精选14篇)

四年级下册数学广角鸡兔同笼教学设计 篇1

教学目标:

1、知识与技能

让学生学会“列举法”,并运用“列举法”解决问题。

2、过程与方法

让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

让学生养成“尝试”的数学思维与方法。

3、情感态度与价值观

利用发现的规律,解决生活中的实际问题,体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和信心。

了解中国数学历史,渗透数学文化的思想。

教学重点:

让学生学会“列举法”,并运用“列举法”解决“鸡兔同笼”问题及相类似的数学问题。

教学难点:

让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

教学关键:

让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——列表。

教具准备:

三个表格,卡片。

教学过程:

一、导入

1、师:一只鸡有几条腿?一只兔有几条腿?(生齐答)

2、师:(出示卡片:三只鸡两只兔)这个笼子里一共有几个头?(生齐答)一共有多少条腿?(让生独立计算后,再指名说说计算的方法)

3、谈话导入:今天我们就一起来学习“鸡兔同笼”。(师板书课题:鸡兔同笼)

二、授新课

1、师:老师想考考你们,你们看

(师出示:鸡兔同笼,一共有8个头,20条腿,鸡、兔各有多少只?

师:请你赶快猜一猜吧!生:独立思考后全班交流。

(此时,学生很容易猜出,师首先肯定学生的各种想法,再说:我把这题的数字变大一些,你能猜出鸡、兔各有多少只吗?

2、师(出示题目):鸡兔同笼,共有20个头,54条腿,鸡、兔各有多少只?

(1)

a、让生齐读题目

b、师让生独立思考后再与同桌交流。

c、指名汇报(当学生猜不出答案时,师:我给大家带来了一位好朋友,它可以帮助我们解决这个问题,你看)师边说边出示表格)当学生猜出正确答案时,师追问:说说你是怎样想的?根据生的回答完成表格

d、此时,师明确告诉学生:像这样依次尝试的方法我们就叫它一一列举法。(师板书:一一列举法)

e、观察这个表格,你发现了什么?(指名生说)

(2)小结:对于发现的同学及时给予表扬,你真是个善于发现的孩子。

a、我们再来观察一下这个表格,我们从1开始假设时就有78

条腿和答案的54条腿相比,怎么样?我们能不能让列举的次数更少一些?现在就请你们四个人为一小组开始讨论:(讨论后再请小组汇报)

b、根据生的回答,师板书:

c、师小结:你真是个爱动脑筋的孩子,真聪明!那我们也给

这个表格取一个形象的名字,就叫它跳跃式列举法(师板书:跳跃式列举法)

(3)师:还有别的列举法?

a、学生可能会说出取中列举法,师就问让其说清楚,明白。

学生可能说不出时,师出示(先假设鸡和兔各占一半,再列表),再让生试填表格3,最后集体订正。

b、像这样,从中间开始列举的方法叫取中列举法(师板书:取中列举法)

3、观察比较这三种列举法,你喜欢哪种?为什么?(指明生说,师再小结)

4、师:在我们的实际生活中,还有很多类似鸡兔同笼的问题,大家有信心运用所学问题解决实际问题吗?

三、

1、试一试

完成81页练一练第2、3题。(先独立完成再集体订正。)

2、深化练习:一次数学竞赛,共10道题,每做对一道可得8分,每做错一道扣5分,小英最后得41分,她做对了几道题?(此题有时间就做,没时间就不做。)

四、课堂小结:

通过这节课的学习,你学会了什么?(先请生说,师再总结。)

四年级下册数学广角鸡兔同笼教学设计 篇2

小学数学中的数学模型, 主要的是确定性数学模型, 广义地讲, 数学的概念、法则、公式、性质、数量关系等都是模型。数学模型具有一般化、典型化和精确化的特点。模型思想就是针对要解决的问题, 构造相应的数学模型, 通过对数学模型的研究来解决实际问题的一种数学思想方法。

现以“鸡兔同笼”为例, 谈一谈如何让小学生形成数学模型思想的思考。

众所周知, “鸡兔同笼”问题的数学模型是二元一次整数方程, 然而, 在小学里学生并不学习二元一次整数方程。可是, “鸡兔同笼”却被广泛地运用到小学教材中。北师大版五年级上册“尝试与猜测”中用它来让学生学会表格列举;苏教版六年级上册将之作为一道练习题来巩固“假设和替换”的策略;人教版则是浓墨重彩, 在六年级上册“数学广角”中详细介绍了“鸡兔同笼”问题的出处、多种解法及实际应用, 而我们使用的北京版数学教材则是分两次安排的。第一次出现是在四年级下册教材中, 重点介绍用画图和列表法解决问题, 虽然算式法没有呈现, 但是已经“水到渠成”;第二次是在五年级教材中, 出现了列方程的方法。教学这些内容时, 如果仅是就题讲题, 就课本讲课本, 难免显得过于简单和浅薄。那么, 对小学生的数学学习而言, “鸡兔同笼”是否还隐藏着“模型”因素呢?在教学中, 笔者引领教师进行了尝试。

一、走进情境, 获取信息

以数学文化的介绍引入教学:在一千五百年前, 我国古代有一本数学巨著叫《孙子算经》。书里边有一道数学趣题:“今有鸡兔同笼, 上有三十五头, 下有九十四足。问鸡、兔各几何?”这道题世代相传, 甚至漂洋过海, 传到日本等很多国家, 历经千年而不衰。激发学生兴趣, 揭示学习内容, 引发学生思考。

二、搭桥引模, 形成策略

教学分为三个层次, 从头的数量为较小数开始。

1. 一个笼子, 从上面看有3个头, 从下面看有8条腿, 鸡有几只?兔有几只?由于给定的头数和腿数的数据比较小, 教师是这样引导的:“你们猜猜看, 鸡和兔各有几只呀?你们是怎样想的呢?说说你的想法。”留给学生思考的时间。

生:鸡有2只, 兔有1只。因为1只鸡有2条腿, 我想2只鸡就有4条腿, 还剩4条腿, 那就是1只兔子。

生:我用画图表示的。

2. 一个笼子, 从上面看有6个头, 从下面看有20条腿, 鸡有几只?兔有几只?要求学生根据上面那道题的想法, 自己喜欢用哪种方法就用哪种。可以猜一猜, 可以画一画, 也可以算一算。

数据变大了一些, 有的学生从猜出发, 从1只鸡5只兔开始;有的学生从3只鸡3只兔开始;有的学生从1只兔5只鸡开始。老师帮助学生把这种猜测、枚举的思路整理成一个表格的形式, 就成为列表法。

有的学生直接用了画图的方法, 把6只都看成是鸡, 或把6只都看成兔。

这时, 教师引导学生发现列表法和画图法之间的联系——方法不同, 实质相同, 都是运用了假设的方法。结合学生的画图法, 帮助学生梳理思考方法, 形成策略。

(1) 看成鸡 (或兔) , 算算有多少条腿。

(2) 与题中的腿数比较, 再算算相差多少条腿。

(3) 调整, 添上或去掉腿数。

(4) 求出数量, 标清鸡兔各几只。

3. 一个笼子, 从上面看有8个头, 从下面看有26条腿, 鸡有几只?兔有几只?要求学生自选方法, 独立解答。由于学生有列表法和画图法作支撑, 知道了方法之间的内在联系, 即假设的思路。所以独立解答这道题时, 算式的列法已“水到渠成”。学生不仅算式列得好, 而且说理清楚明白。

8×2=16 (条)

26-16=10 (条)

4-2=2 (条)

兔10÷2=5 (只)

鸡8-5=3 (只)

教师的这三个层次的设计, 数据从小变大, 方法由繁到简, 但是其核心思想是一致的, 都是“假设的思路”。“鸡兔同笼”的解题策略基本形成。

三、抽象概括, 建立模型

在数学学习过程中, 抽象与概括是数学能力、数学思想的核心要素之一, 是形成方法、得出规律的关键性手段, 同时也是建立数学模型最为重要的一环。抽象是从许多事实或现实中, 舍去个别的、非本质的属性, 而抽取出共同的、本质的属性。在数学中表现为抽取数量之间、空间形体之间的关系。当学生在头脑中形成各种具体的图式表象后, 教师还应引导学生进一步抽象和概括, 在理解的基础上进一步内化并掌握数量关系。

在学生能初步用假设思路解答“鸡兔同笼”问题后, 笔者要求教师要注意引导学生关注“鸡兔同笼”这类题本身的题型结构特征, 即:已知两个未知量的和以及两个未知量之间一定的量值关系, 求未知量;其次是教师要引导学生理解解答方法, 即“假设法”的一般解题思路;三是教师要引导学生深入思考, “生活中你见过有人把鸡和兔放在一个笼子里养殖的吗?就是放在一起养殖, 也没有谁去做数头数脚这种无聊的事吧。我们的老祖宗干嘛煞费苦心地进行研究呢?一千多年过去了, 为什么鸡兔同笼这道数学题还作为宝物似的流传到今?”

在学生对所提问题一时困惑皱眉时, 教师提议带着这个问题来继续进行“龟鹤同游”和“人狗同行”的研究并再次提出疑问:“鸡兔同笼”有什么独特的魅力?经过研究和比较, 学生发现:“鸡兔同笼”不只是代表着鸡、兔同笼的问题, 有很多类似的问题都可以看成是“鸡兔同笼”问题, 如人马问题、牛鸡问题、汽车和自行车的轮子问题, 等等。随后, 师生共同研究“信封里放着5元和2元的钞票, 共8张, 34元, 信封里5元和2元的钞票各有多少张?”探讨其与鸡兔同笼问题的关联。经过比较和猜想, 学生的认识再次提升:“这里的2元的钞票就相当于鸡有2只脚, 而5元的钞票就相当于兔, 是5只脚的怪兔。”最后, 教师让学生联系生活, 将一些实际问题编成“怪鸡”“怪兔”同笼的数学问题并解答。

到了课堂总结时, 屏幕上第三次出示:“鸡兔同笼”有什么独特的魅力?学生总结感受之后, 教师顺势给予强化:从一个具体的数学问题出发, 研究解法, 并上升到一种模型, 最后进行广泛的运用, 数学就是这样发展起来的。同样, 如果我们在学习各种数学问题时能有“模型”的意识, 举一反三, 触类旁通, 我们必将会走向数学学习的自由王国。

上述教学通过对“‘鸡兔同笼’有什么独特的魅力?”这一问题的三次追问把整节课串联起来, 虽然每一次追问的层次和目标是不一样的, 第一次是针对具体的、“原生态”的鸡兔同笼问题发问, 主要是激发学生的探究欲望, 向更高的学习层次迈进;第二次是进一步明确“鸡兔同笼”问题的结构、模型, 同时, 又让学生经历更高层次“数学化”的过程;第三次是帮助学生实现完整的“模型”建构, 实现“形式的”数学知识向现实生活的“复归”, 但是, 其核心都是让学生从“模型”和“建模”的角度来亲近数学, 了解数学。站在“高点”再回望探究之旅, 学生更加深入地认识了数学。当然, 这个过程不是一节课就能够完成的, 在第一阶段可以分2~3课时完成。

数学在本质上就是在不断地抽象、概括、模式化的过程中发展和丰富起来的。数学学习只有深入到“模型”“建模”的意义上, 才是一种真正的数学学习。这种“深入”, 就小学数学教学而言, 具有鲜明的阶段性、初始性特点, 它更多地是指用数学建模的思想和精神来指导数学教学, 从而达到“从学生已有的生活经验出发, 让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程, 进而使学生在获得对数学理解的同时, 在思维能力、情感态度与价值观等多方面得到进步和发展”的目的。

(北京市通州区教师研修中心101100)

四年级下册数学广角鸡兔同笼教学设计 篇3

关键词 小学数学;“鸡兔同笼”问题;教学反思

引言:著名的苏联教育学家苏霍姆林斯基曾经说过:不能促进学生进步的课堂教学是毫无益处的,而且,如果课堂教学没有实际作用,对教师和学生来说都是严重的损失。随着我国社会水平和经济水平的不断发展,新课改和素质教育的观念深入人心,对教师的教学方式也提出了更高的要求,教师必须顺应教改的步伐,转变自己的教学思路。只有灵活多变的教学方式,才能激发学生的学习热情,提高他们的学习主动性,同时也能够提高教师的教学质量。

一、“鸡兔同笼”问题的解决

“鸡兔同笼”问题早在一千五百多年前的《孙子算经》中就出现了,而北师大版的小学五年级数学课本的“数学广角”环节再现了这一题目。“鸡兔同笼”问题表现出了我国历史悠久的数学文化,解决这个问题能够大大增加学生对数学学习的兴趣,能在一定程度上培养逻辑思维的能力。“鸡兔同笼”问题贴近生活,具有很强的代表性。在以往的教材中,这类问题一般是针对水平较高的学生,用来锻炼自己的能力,而新教材则把这道问题作为全体学生都能够面对的问题。解决“鸡兔同笼”问题有多种多样的方法,例如假设法和列表法等,也表现出数学学习的灵活性。下面通过课堂上使用列表法解决“鸡兔同笼”问题:

教师:大家通过了解这道题目,知道主要问题是什么吗?

学生:题目告诉我们鸡兔共有八只,脚共有二十六只,问鸡和兔子各有多少只。

教师:大家可以先猜一下结果,也可以和你身边的同学交流一下,比较一下答案。然后来列举一下可能的情况。

学生:可能的情况有七只鸡,一只兔子;六只鸡,两只兔子;五只鸡,三只兔子;四只鸡的话,就有四只兔子;三只鸡,五只兔子;两只鸡;六只兔子;或者一只鸡,七只兔子,这么多种情况。

教师:还有其他可能吗。

学生:全部是鸡或者全部是兔子。

教师:那么我们来分别计算上面的情况,看哪种情况下,脚的数量是二十六只。大家来计算一下。

学生:计算后得到的结果是有五只兔子和三只鸡。

通过上述课堂教学的过程,让学生自主的解决了“鸡兔同笼”问题。这种方式加强了学生在课堂教学中的主体地位。在解决问题的初始阶段,鼓励学生大胆猜想,发散自己的思维。然后让学生列举所有可能的情况,再引导他们通过计算得到正确答案。让学生了解解决问题的基本思路和方法,培养良好的学习习惯。

二、“鸡兔同笼”问题的教学反思

从小学数学“鸡兔同笼”问题的解决过程中,可以引起数学教师的反思。第一个方面趣味是最好的老师,激发了学生的学习兴趣,那么课堂教学基本成功了一半。通过灵活多变的教学方式,活跃课堂氛围,转变传统课堂枯燥无味的气氛,能够大幅度激发学生的求知欲,而只有有了求知欲,学生才会主动去了解问题,解决问题。通过教师的引导,让学生感受到解决问题带来的快乐,满足他们丰富的学习欲望,才能保证高涨的学习热情。美国的教育学家通过研究证明,激发了学习兴趣,学习效果能够成倍增加。孔子的《论语》中也提到过“知之者不如好之者,好知之不如乐之者”,只有激发学习兴趣,才能达到教学的最终目标——快乐学习。但是,现今很多小学数学教师,虽然知道新课改和素质教育的理念,但是仍然固步自封,不远转变观念,填鸭式的教学,造成课堂效率低下,浪费时间,又阻碍了学生的发展,所以,激发兴趣对学生的数学学习至关重要。

学无定法,掌握方法也是提高学习质量的重要因素。而课堂教学除了提高学生的学习热情外,更重要的是让学生掌握方法。在“鸡兔同笼”问题的教学中,就体现了以下两种数学方法:

(1)检查检验:要保证得到的答案准确,就要做好检查和检验。通过培养学生良好的检查习惯,能够揪出在解决数学题时出现的问题,保证答案符合题目要求。在教师引导学生自主解决“鸡兔同笼”问题后,很多同学会将答案弄错,比如将鸡和兔子的数量弄反了,这种情况是很常见的。所以,检验是保证解题正确的重要方法。通过方程或者其他方法得到了鸡和兔子的只数,还要通过计算总的脚的数量,来保证答案的正确性。检查和检验,是学生务必养成的良好学习习惯。

(2)数形结合:数学知识是比较抽象难懂的,而且小学生的知识水平认知水平都还不高,对过于理论性的解题方式,很多都是一知半解。针对这个问题,在数学教学中就要采用数形结合的方法,教师可以使用符号、图形来代替题目中的元素,通过题目中的条件将这些元素结合起来,就能很快得到答案。教师还可以利用现今普遍使用的信息化技术,通过计算机、课件让抽象的数学知识更加形象、易于理解,课件还能够提供给学生视觉、听觉上的全方位的接受知识的方式,能够有效加深学生对知识的理解和记忆。

小学生的思维方式还不是很成熟,而且正处在由形象思维向逻辑思维发展过度的阶段,所以,这个阶段接受的数学知识,仍然具有较强的具体形象性。数学知识贴近生活,数学上的很多问题,都能够用生活上的知识来解答,而我们也可以使用数学知识解答生活中的难题,所以,数学和生活是紧密结合的。数学课堂的教学内容都是来源于生活的,经过知识性的凝聚和提高,成为专业的数学知识。学生对来源于生活的数学知识接受程度最高,而且,在讲解这部分内容的时候,学生首先能够通过自己在生活中的体验,了解这部分知识的大致内容,基本相当于预习,对接下来的学习有很大帮助。

结束语

综上,通过小学数学课本中的“鸡兔同笼”问题教学,可以发现教学中仍然存在一定问题。在教学中,教师应该使用多变的教学方法,活跃课堂气氛,激发学生的学习热情,通过知识的生活化,让抽象的数学知识易于接受。这样才能做好小学数学教学工作。

参考文献:

[1]卢春华.初中数学教学反思刍议[J].中学教学参考.2012,(31):90.

[2]周胜琼.小学数学六年级上册“鸡兔同笼”教学反思[J].中国科教创新导刊.2012,(18):86.

四年级下册数学广角鸡兔同笼教学设计 篇4

一、游戏体验

师:这节课我们来做个鸡兔同笼的游戏好吗?

师:谁来介绍鸡和兔的特征?

生1:鸡一个头,两条腿

生2:兔一个头,四条腿

师:现在你们可以自己选择当鸡或当兔,同一排同学算同一个笼子,当鸡的同学站着,当兔的同学坐着,互相说说你们这一笼子小动物有几个头,几条腿?

(学生游戏,体验鸡兔同笼)

二、建立模型

师:谁来说说你们刚才是怎样数出有多少只脚的?

生:用鸡数乘以2,用兔数乘以4。

板书:鸡数2+兔数4

师:通过刚才的游戏你有什么发现?

生:当头数相同,而鸡和兔的只数不同,脚数就会发生变化。

师:如果头数和脚数都不变,鸡兔同笼,数头20个,数脚54只,你能猜出有多少只鸡和兔吗?现在请同学们大胆地猜测,并在小组内说一说。

(小组讨论)

师;可以用什么办法把你们刚才猜测的过程记录下来。

生发言:可以用画图或制成统计表的方法。

师:今天我们主要来学习用统计表的方法解决鸡兔同笼的问题。

师:谁来说说,统计表中每栏要表示什么?

师:现在请同学们独立地把你们猜测的过程记录下来,然后在小组内交流不同的方法。

(小组活动)

师:谁来说说你是怎样记录的?

反馈总结:同学们记录的方法大致可纳成三种情况;逐一列举法、跳跃列举法、取中列举法。谁能说说这三种方法各自的特点?(学生发言)

您现在正在阅读的《鸡兔同笼》教学设计与反思文章内容由谁来说说三种方法哪种更快捷?

生:我们可以采用取中列表法,再结合跳跃列表法进行调整。

师:如何调整?

生:当发现在尝试过程中所算出的腿数比已知的腿数多,那么腿多的小动物要减少,当尝试过程中所算出的腿数比已知的腿数少,腿多的小动物要增加。

板书:猜测列举调整

三、巩固提升

师:刚才我们通过了猜测列举调整等过程,解决了鸡兔同笼的问题,你们学会了吗?

1、一只蜘蛛8条腿,一只蜻蜓6条腿 ,现在共有蜘蛛、蜻蜓12只,共有腿80条。你能猜出蜘蛛、蜻蜓各有多少只吗?

2、王大富买来65只鸡和兔,分别把他们安排在15个笼子里。现鸡兔不同笼,如果每个鸡笼住5只鸡,每个兔笼住4只兔,你知道需要几个鸡笼和兔笼吗?

四、思想教育与总结

师:鸡兔同笼的问题很有意思吧。早在15前我国古代的《孙子算经》里这记载着这样问题,后来传到日本,演变成龟鹤算。古代人真值得我们骄傲,可是今天你们是老师的骄傲,你们想出这么多解决鸡兔同笼的问题的方法,甚至有的同学还会自己设计问题,实在是了不起,希望同学们要把这种善于发现问题的精神发扬下去,将来成为一个了不起的人。

五、教学反思

对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本人本想以游戏为开端想去激发学生的学习兴趣,但由于本班学生学习基础差,参与意识不强,因此本人对本堂课不是很满意

我认为我做的比较成功的地方是,在这节课当中我主要借助教材上的列表法,再让学生进行大胆的尝试与猜测,去弄懂鸡兔同笼问题的基本解题思路。师生共同经历了和得出三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法。

就本堂课而言,还存在以下问题;

1 、在创设完情景引导学生用什么方法解这个问题时,学生的参与意思被动,是我没有预想到的。如果把前一部分改成让学生动手画图,可能效果会更好。情景创设上有漏洞,需进一步完善。

2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。

3 、在总结规律是我如果能让学生自己多动嘴说一说,也许课堂效果会更好。

四年级下册《鸡兔同笼》教学设计 篇5

四年级下册《鸡兔同笼》教学设计

教学内容:人教版《义务教育教科书.数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。

教材分析:“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

教学目标:

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。

3.在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。

教学重点:

1.理解掌握解决问题的不同思路和方法。

2.学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。

教学难点:理解掌握假设法,能运用假设法解决数学问题。

教学具准备: 课件、表格

教学过程:

一、导入

师生谈话导入新知

(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)

二、探究新知

1.质疑:提问:

(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?

(2)鸡和兔相比:什么比什么多?多多少?

(3)课件出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?

(4)尝试解决,交流想法;

(5)课件出示交换已知条件以后的题目。

(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)

2.教学例1

(1)出示例题1。

师:请同学们读一读,和前面的题目一样吗?什么地方不一样?

请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)

(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)

(2)学生自由猜测。

师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。

(3)验证猜想。

(4)观察发现规律。(5)总结概括:在数学中这种方法叫列表法。(板书)。

(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)

质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?

3.探讨假设法:

a.假设全是兔。

1.师以童话故事的形式引入全是兔的情境。

2.集体探究,引导交流。

b.假设全是鸡。

1.师再次继续童话故事引入全是鸡的情境。

2.小组独立探究交流假设全是鸡的计算方法。

3.指名小组展示并叙述计算过程。

4.小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)

5.延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。

(设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)

三、练习巩固

课件出示练习题。

四、课后总结

(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)

板书设计:

鸡兔同笼

1.列表法

数学广角-鸡兔同笼 篇6

教学目标:

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

教学重点:

用假设法解决“鸡兔同笼”问题。

教学具准备:

课件。教学过程:

一、揭示课题

1、师:同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。鸡和兔各有几只?(PPT展示

今意))

2、有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年,3、会做“鸡兔同笼”这类题吗?会做的我们今天进一步来学习,不会的也没关系,通过这节课的学习你老师相信今后你一定会做了。那同学们有没有信心把这节课的内容学好呢?

二、展示情境,尝试探究

(一)出示情景,获取信息

1.“鸡兔同笼”这四个字什么意思呀?(鸡和兔关在同一个笼子里)

为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”课件

出示)

2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?

学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。③鸡有2条腿。④兔有4条腿。(课

件出示)

(二)猜想验证,1、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?

学生猜测,老师板书

2、怎样才能确定同学们猜的对不对?(把鸡的腿和兔的腿加起来看等不等于26。)

3、和学生一起验证,找出正确的答案。(只有这一个正确答案吗?)

4、我们把这种方法叫做列举法。(板书:列表法)

5、你们觉得用猜想列表法解决鸡兔同笼问题怎么样?(生:麻烦,而且当头和脚的只数越多时,越

不容易找出答案。)

6、那我们还有研究新方法的必要。

(三)尝试假设法

1、、为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(课件出示:把一只兔当成一只鸡算,就少了两条腿。)

2、假设全是鸡一共就有16条腿。实际有26条腿,这样笼子里就少了10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。一只兔当成一只鸡算少两条腿,那把几只兔当成了鸡算就会少算10条腿呢?即10里面有几个2。就把几兔当成了鸡算,5个2,用五只兔当成了鸡算,这个五就表示应该有5只兔)

3、上面的过程能用算式表示出来吗?请同学们试试看。(学生试着列算式,请一个学生到黑板上去板演。)

4、假设全是鸡:(板书)

8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)

26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿

是少算了兔的腿)

4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少

算2条腿。)

10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当

成了鸡来算,所以10÷2=5就是兔的只数。)

8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)

5、算出来后,我们还要检验算的对不对,谁愿意口头检验。

生:3×2+5×4=26(只),5+3=8(只)。

师:看来做对了,最后写上答语。

6、假设全是兔

7、、我们再回到表格中,看看右起第一列中的8和0是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只

鸡当成一只兔算,就多了两条腿)

8、先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。

(学生讨论写算式,然后指名板演。)

8×4=32(条)(如果把鸡全看成兔一共就有8*4=32条腿)

32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多

算了鸡的腿)

4-2=2(假设全是兔,是把两条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了

2条腿。)

6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡

当成了兔算,所以6÷2=3就是现在鸡的只数。)

8-3=5(只)兔

小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种

基本方法。(板书:假设法)

(四)列方程解

在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)

要用列方程的方法就必须找到等量关系式。通过得到到信息能写出哪些等量关系式呢?

(兔的只数+鸡的只数=8;兔的腿+鸡的腿=26条腿)(课件出示)

这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设一个未知数为X,再把另一个表示出来。这道题我们可以设兔的知数为X只,根据兔和鸡共有8只。那鸡的只数就可以表示成:(8-X)只),因为一只鸡有2条腿,所以X只鸡就共有2X条腿。一只兔有4只脚,(8-X)只兔就有4(8-X)只脚。又因为鸡和兔共有26只脚,所以2X+4(8-X)=26

① 解:设鸡有X只,兔有(8-X)只。

2X+4(8-X)=26 在解的时候可以根据等式的性质将减变成加,分别加上4X,再来解。

② 解:设有兔X只,鸡有(8-X)只。

4X+2(8-X)=26 同样抽生说出自己想法。那种方程好解一点,(设兔的只数为X好解点)所以我们可以设脚数多的兔为X,在解的时候容易一点。

列方程的重点是找出等量关系:设头数,以脚数相等来列出方程;

小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)

三、练习

1、现在我们就用刚才学到的这些方法来解决《孙子算经》中原题,你会做吗?用你喜欢的一种方法

课件出示《孙子算经》中原题学生解答并集体讲评

四、延伸、应用 1.课件出示“做一做1”

鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。

2.看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。下面我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。

3、课件出示“做一做”第二题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(大船相当于“兔”,小船相当于“鸡”)学生独立完成,集体讲评。

五、课后总结:

“鸡兔同笼”教学设计 篇7

[教学目标]

1.通过活动了解“鸡兔同笼”问题,尝试不同的方法解决“鸡兔同笼”问题,使学生体会到画图法、列表法和假设法的一般性,并能选择合适的方法解决“鸡兔同笼”问题。

2.在解决问题的过程中培养学生的合作意识,使学生感受到数学方法的运用和解决实际问题的联系。

3.感受我国古代数学问题的趣味性,激发学生学学习兴趣。

[教学重点]

让学生亲历列表、图示、假设等解题的过程,体会解决问题的一般策略。

[教学难点]

建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略解决生活中的实际问题。

[活动过程]

活动一:联系生活激趣设疑

1.教师口袋中有1元和5角硬币一共5枚,猜猜教师总钱数。

2.揭示并板书课题:鸡兔同笼

学生利用自己的方法:猜测——验证——调整,使学生总结画图法和列表法。

(通过游戏调动学生积极性,引入课题,既提高了学生学习的兴趣,又让学生感受到数学就在身边。)

活动二:解读问题

师讲故事:大约一千五百年前,我国古代数学名著《孙子算经》书中记载着这样一道数学趣题。今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这道题的意思也就是:笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?这就是著名的“鸡兔同笼”问题,也正是这节课我们要来研究的内容。

(通过讲故事的方式让学生了解“鸡兔同笼”问题的简单历史,吸引学生注意力,使学生感受古代数学的神秘,激发求知欲,调动学生学习积极性。)

活动三:自主探究合作交流

1.学生猜想并说明猜想的理由。

2.学生语言陈述验证方法,有的学生利用画一画,有的列表,有的假设等。

3.学生分小组实验验证自己的猜想,并完成作业单。

4.学生汇报交流各组结果。

(让学生猜想,实验操作,合作交流,观察分析,主动探究新知和发现结论,教给学生获得知识的思想方法。让学生经历“猜想——验证——调整”的过程,改变了以教师讲解,示范为主的教学方式,充分体现以学生为主体,关注学生知识形成的过程这一新课程理念。)

活动四:化简为繁

1.教师根据学生总结的方法调整题目:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

2.学生根据之前总结的方法进行比较,选择出合适的方法来解决问题。

(在学生总结出画图法、列表法、假设法和方程法的基础上使学生选择合适的方法解决稍复杂的“鸡兔同笼”问题。遵循学生的认知规律,引导学生动脑、动手、动口参与学习的全过程,让学生在充分思考下对比方法、选择方法。)

活动五:巩固应用解决问题

1.课件出示“鸡兔同笼”问题的拓展。

2.学生对比和选择合适的方法自主完成,解决问题。教师指导利用列表法和假设法解决问题。

(把“鸡兔同笼”问题进一步拓展,是学生了解“鸡兔同笼”问题的意义所在。)

活动六:评价体验总结提升

总结全课,谈收获。(让学生增强学习数学的自信心。)

附板书设计: 鸡兔同笼

1.画图

2.假设法

假设全部是鸡。

2€?=16(只)

22-16=6(只)

兔:6€鳎?-2)=3(只)

鸡:8-3=5(只)

假设全部是兔。

4€?=32(只)

32-22=10(只)

鸡:10€鳎?-2)=5(只)

兔:8-5=3(只)

3.列表

四年级下册鸡兔同笼说课稿 篇8

大家上午好,我说课的内容是,人教版四年级下册第九单元数学广角中—《鸡兔同笼》教学内容。下面,我运用新课标理念,从以下几个方面:教材分析、学情分析、教法与学法、教学过程进行说课。

一、说教材分析:

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,之前安排在六年级重点掌握用方程方法来解决,现在下移至四年级,重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会假设法的一般性。《义务教育数学课程标准》在“学段目标”的“第二学段”中提出:“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果”“会独立思考,体会一些数学的基本思想”。

因此我制定的教学目标如下:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、经历自主探究解决问题的过程,体验解决问题策略的多样化。

3、了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。

说教学重、难点

教学重点:理解并掌握“鸡兔同笼”问题的解题方法。

教学难点:理解假设法解决“鸡兔同笼”问题的解题思路。

二、说学情分析:

“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。但是在理解假设法解题思路时还存在一定难度,因此我结合画图法,形象直观地将画图法和假设法结合,帮助学生理解假设法的算理。

三、说教法、学法:

教法:利用多媒体展台,ppt课件引导学生探究发现、小组合作交流、画图分析、归纳推理等方法,进行尝试、探究、自主的学习,使学生在学习知识探索的过程中体验学习的乐趣,感受数学的价值。

学法:运用“四四教学模式”课堂学习模式引导学生动手操作、观察发现、自主探究、合作交流等方法进行学习。让学生主动参与到学习的过程中,让每个学生都动口、动手、动脑。老师成为学生的学习伙伴,与学生一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

四、说教学过程。

依据“三位一体”的“四四”课堂学习活动的基本结构,我设计有四个学习活动:

①情境体验,引发兴趣;

②自主探索,合作交流;

③实践运用,拓展创新;

④反思总结,自我建构。

第一个学习活动:情境体验,引发兴趣;

利用ppt课件,从《孙子算经》中的一道古代数学趣题入手,从而引出课题并板书课题。目的是为了给数学课堂带来了浓厚的数学文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。由于“鸡兔同笼”的原题中数据较大,不利于首次接触该类问题进行探究,因此将数据变小,出示例1。

第二个学习活动:自主探索,合作交流

利用ppt课件出示例1:笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?引导学生分析问题:从这个题目中你了解到什么信息?学生先独立思考,在学生自主探究的基础上,小组讨论、合作交流,采用不同的方法解决例1中的问题。我让学生大胆的进行猜测、尝试,鼓励学生用不同的方法解决问题,归纳总结出解决例1问题的列举法和假设法。

第三个学习活动:实践运用,拓展创新

在上一个环节的基础上,学生选择喜欢的方式解决《孙子算经》中“鸡兔同笼”问题,同时介绍古人解决“鸡兔同笼”的方法。之后引出日本的“龟鹤算”,让学生比较“龟鹤算”和中国的“鸡兔同笼”,揭示“龟鹤算”其实就是从“鸡兔同笼”演变而来,感受中国文化的魅力。

第四个学习活动:反思总结,自我建构

引导学生回顾、梳理本节课所学知识,交流本节课的收获,学生在相互提醒和分享中进一步明确本课知识重点难点,将知识融入自己的认知体系中。

下面我将谈谈自己对三位一体四四教学模式的理解。首先它与新课标的理念是相符的,新课程标准提出:人人都能获得良好的数学教育,不同的人在数学上得到不同发展。接着《课程改革纲要》中提出“把育人为本作为教育工作的根本要求。”我和我们学校“以生为本”的课堂的要求是一致的。将课堂还给学生,学生是学习的主体。这促使我这节课的设计理念始终将学生放在了第一位,让学生去探究,去发现解决鸡兔同笼问题的方法,鼓励学生用多种方式来呈现他们的思路,最后选择他们喜欢的方式来解决此类问题。

人教版四年级下册鸡兔同笼说课稿 篇9

(一)教材的编排特点

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

(二)说教学目标:

知识与技能:尝试不同方法解决“鸡兔同笼”问题的过程,体验解决问题方法的多样性,体会代数方法的一般性。并能运用画册图法、列举法、假设法解决“鸡兔同笼”问题。

过程与方法:经历“鸡兔同笼”问题的探究与解答过程,体会分析问题、解决问题的不同方法。在解决问题的过程中渗透假设、有序等数学思想,培养学生的逻辑推理能力。

情感、态度与价值观:了解“鸡兔同笼”问题,感受我国古代数学问题的趣味性,提高学生的爱国主义热情。体会数学与日常生活的紧密联系,培养学生学习数学的兴趣。

(三)说教学重、难点

教学重点:理解并掌握“鸡兔同笼”问题的解题方法。

教学难点:理解假设法解决“鸡兔同笼”问题的解题思路。

二、说学情分析:

“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。

三、说教法、学法

教法:利用班班通,ppt课件引导学生探究发现、小组合作交流、画图分析、归纳推理等方法,进行尝试、探究、自主的学习,使学生在学习知识探索的过程中体验学习的乐趣,感受数学的价值。

学法:运用“4+2合作互助”课堂教学模式引导学生动手操作、观察发现、自主探究、合作交流等方法进行学习。让学生主动参与到学习的过程中,让每个学生都动口、动手、动脑。老师成为学生的学习伙伴,与学生一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

四、说教学过程

本课时我共设计了”创设情境-自主探究—合作交流-展示提升-知识运用-总结反馈”六个教学环节。

第一环节:创设情境:

利用ppt课件,从《孙子算经》中的一道古代数学趣题入手,从而引出课题并板书课题。目的是为了给数学课堂带来了浓厚的数学文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。

第二环节:自主控究:

利用ppt课件出示例1:笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?引导学生分析问题:从这个题目中你了解到什么信息?学生独立思考,如何解决问题,教师巡视指导,给学生留有充足的时间进行思考、交流。

第三环节;合作交流

在学生自主探究的基础上,小组讨论、合作交流,采用不同的方法解决例1中的问题,在这里我只要求学生说出解决的思路即可。我让学生大胆的进行猜测、尝试,鼓励学生用不同的方法解决问题。

第四环节:展示提升

在上一个环节的基础上,引导学生归纳总结出解决例1问题的画图法,列举法和假设法。并引导学生找出画图法、列举法和假设法的优劣所在,并重点介绍取假设法。帮助学生学会灵活运用假设法的策略,并能够找到解决问题的最佳方法。

第五环节:知识运用:

通过练习,加深对知识的巩固和理解。并让学感受到《鸡兔同笼》问题在生活中的应用。 第六环节:总结反馈:

通过提问的方式本节课的知识进行总结。这个环节的设计目的是让每个学生建构自己的知识体系。

五、说教学效果预测

数学不仅仅要让学生学会计算、解决实际的问题等,还要通过如“鸡兔同笼”问题的学习让学生的思维得到锻炼。我估计,在“鸡兔同笼”整节课的教学中,学生的学习兴趣很高,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。教学效果应该不错吧! 六、说板书设计:

鸡兔同笼

例1:笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?

画图法:略

列表法: 假设法:假设8只都是鸡,那么兔有:(26-8×2)÷(4-2)=5(只)

鸡有:8-5=3(只)

“鸡兔同笼”妙解 篇10

胖胖问:“老师,你读的什么呀?我们是数学课呢,你怎么吟唱起诗歌来了!”

“呵呵,同学们,我唱曰的是一道古算题诗。”丁老师微笑着说。

“哈哈哈,古时候数学题原来是这样的。真有趣!”皮皮接着说。

“现在,请同学们也来解解这道古算题吧。”丁老师说,“这道古算题的意思是:有若干只野鸡和兔子放在同一个笼子里,从上面数,有35个头;从下面数,有94只脚。问:笼中野鸡和兔子各有多少只?”

同学们听清了题目的意思,便开始思考解法。不一会儿,小手陆陆续续地举起来了。

第一个发言的是丁丁:“老师,我是这样想的:我首先让鸡和兔都抬起1只脚,这时地上还剩下脚94—35=59(只);我再让鸡和兔各抬起1只脚,这时鸡的两只脚就都离地了,所以一屁股就坐地上了。”

“哈哈哈……听话的鸡一屁股坐在地上,真搞笑!”同学们都笑了。

可是丁丁没有笑,他继续说:“当兔子抬起第2只脚后,每只兔子地上还有2只脚。 这时地上总共剩下脚59—35=24(只),而这24只脚都是兔子的,因为每只兔子还剩2只脚,所以兔子的只数就是24€?=12(只),那么鸡的只数是35—12=23(只)。”

“妙!妙!想象丰富!看来数学课不比语文课缺少想象和幽默哦!”丁老师竖起了大姆指。

胖胖接着说:“老师,在我家餐馆里,我经常看到爸爸杀鸡,他杀鸡后都要把鸡脚砍下。我这样假设:假如把鸡和兔子的脚各砍掉一半,即鸡砍掉1只脚,兔子砍掉2只脚,那么还剩下脚94€?=47(只)。这时是35个头,47只脚。因为每只兔子剩2只脚,每只鸡剩1只脚,每只兔比每只鸡多1只脚,所以脚比头多的数就是兔的只数:47—35=12(只),那么鸡的只数是35—12=23(只)。”

“哇,你老爸真够残忍的。”“数学问题生活化,联系得好哦!”同学们七嘴八舌地说开了。

聪聪说:“老师,其实丁丁和胖胖用的都是假设法。我也想出了一种假设法:假设笼子里都是鸡,那么共有脚35€?=70(只),已知的94只脚比70只脚多94—70=24(只)。这24只脚是兔子多出来的,因为每只兔子多2只脚,所以24里面有几个2就有几只兔子:24€?=12(只)。所以笼子里有12只兔,23只鸡。当然,也可以假设笼子里都是兔。”

“不错,聪聪这种思路虽然比不上胖胖、丁丁的丰富想象,但思路清晰、明了。”丁老师不时地评点。

明明也发表了自己的观点:“丁老师,我不需要用什么假设法,直接列方程来解就好。”明明的解法如下:

解:设兔有x只,那么鸡就有(35—x)只。

根据兔和鸡共有94只脚,列方程得:

丽丽说:“我想到用画图的方法来解,可是数目有点大,有点麻烦。不过还是可行的。”

最后,丁老师进行小结:“看来同学们的解法很多,也很巧妙。其实这个鸡兔同笼的解法大致可为分方程法、假设法、列表法、画图法。如果数目不大时,后两种可行;如果数目比较大时,用方程法和假设法比较好。总之,我们要具体情况具体分析。”

练一练

1.鸡兔同笼,共有头48个,脚132只,鸡和兔各有多少只?

2.张大妈家养的鸡比兔多13只,兔脚比鸡脚少16只,鸡和兔各有多

四年级下册数学广角鸡兔同笼教学设计 篇11

二年级数学教学设计:《鸡兔同笼》

教学目标:、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

教学重点:从不同的角度分析,掌握解题的策略与方法。

教学流程:

一、创设情境,明确目标

1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5...)太少了?(50...)多了,(40...)少了(45...)差不多了,(46...)恭喜你,答对了,下课就由你发给同学们。

2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天。老师就向你们推荐一种有趣的问题------鸡兔同笼。

二、自主探索,合作交流出示问题:”鸡兔同笼,有5个头,14条腿,鸡兔各有几只?“

(1)你从中获取什么信息?......(2)请你们猜一猜将鸡、兔可能是几只?(......)

(3)把你猜的过程给大家说一说

(4)板书学生的过程

鸡 1 2 3

兔 4 3 2

腿 18 16 14

(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)

2、出示:”鸡兔同笼,有20个头,54条腿,鸡兔各几只?“

(1)自己先想一想如何利用列表来解决?

(2)小组内交流一下自己的想法。

(3)独立完成列表。

(4)汇报想法和过程

小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)

小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)

引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

小组3:取中列表------假设鸡兔各有10只

小组4:方程

小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)

三、适时反思,掌握策略(两题任选其一)

”同学们,鸡兔同笼"

1、观察三种列表的方法,比较异同?

2、谈一谈;你们有什么感受?

四、深化练习,拓展延伸

1、课后练习1、2、3(比较不同-----答案是否唯一)

四年级下册数学广角鸡兔同笼教学设计 篇12

鸡兔同笼问题

例1(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?

分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?

(4×6-128)÷(4-2)

=(184-128)÷2

=56÷2

=28(只)

②免有多少只?

46-28=18(只)

答:鸡有28只,免有18只。

我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:

鸡数=(每只兔脚数× 兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)

兔数=鸡兔总数-鸡数

当然,也可以先假设全是鸡。

例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?

假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

解:(2×100-80)÷(2+4)=20(只)。

100-20=80(只)。

答:鸡与兔分别有80只和20只。

例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?

分析1 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。

结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?

解法1:

一班:[135-5+(7-5)]÷3=132÷3

=44(人)

二班:44+5=49(人)

三班:49-7=42(人)

答:三年级一班、二班、三班分别有44人、49人和 42人。

分析2 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?

解法2:(135+ 5+ 7)÷3

=147÷3

=49(人)

49-5=44(人),49-7=42(人)

答:三年级一班、二班、三班分别有44人、49人和42人。

想一想:根据解法

1、解法2的思路,还可以怎样假设?怎样求解?

例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?

分析 我们分步来考虑:

①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。

②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。

③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。

解:[6×10-(41+1)÷(6-4)

= 18÷2=9(条)

10-9=1(条)

答:有9条小船,1条大船。

例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?

分析 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?

6×18=108(条)

②有蜘蛛多少只?

(118-108)÷(8-6)=5(只)

③蜻蜒、蝉共有多少只?

18-5=13(只)

④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)

⑤蜻蜒多少只?

(20-13)÷ 2-1)= 7(只)

鸡兔同笼问题新探 篇13

关键词:小学数学;应用题;鸡兔同笼;解题方法

鸡兔同笼并不是一种题目,而是一类题目的总称,指的是把两种有联系的事物放在一起,已知这两种事物的总和与它们本身特有的数量关系,然后分别求解这两种事物数量的一种题型。教师在教学的过程中应该注重鸡兔同笼问题的变式训练,以使小学生在理解的基础上真正掌握该类题型,做到举一反三。

一、《九章算术》中的鸡兔同笼问题

小学数学中的鸡兔同笼问题来自于古代数学的《九章算术》,解题方法多样化,分为假设法、列表法与方程法等,在现阶段的小学数学教学中,一般采用的是方程法。教师在教学的过程中应根据小学生的不同知识水平与性格特点,教授给他们不同的解题方法,以便小学生更好地掌握知识。

例如在应用题“已知笼子里有一些鸡和兔子,它们的总数为24只,从笼子下面数脚的只数为62,试求鸡和兔子分别有多少只”中,教师可进行如下教学设计:

师:通过题目我们发现,鸡的数量+兔子的数量=24,一只鸡有两只脚,一只兔子有四只脚,大家思考一下,应该怎么计算呢?

生1:要是笼子里全部都是鸡就好了,都是2只脚比较容易计算。

生2:都是鸡的话,脚的数量就是2×24=48只,比62少14只。

生3:这样的话,再增加兔子的数量就好了,我们可以列出表格:

生4:通过表格,可以得出鸡的只数为17,兔子的只数为7。其实,减少一只鸡增加一只兔子,脚的数量就会增加2,这样的话用(62-2×24)÷2=7,也可以得出兔子的数量,进一步再求鸡的数量就可以了。

生5:那我们也可以假设笼子里全部都是兔子。

师:大家都总结得很好,这是我们鸡兔同笼问题中常用的假设法。那还有没有其他的解题方法呢?比如说我们之前学过的方程法。

生1:可以假设鸡的数量为x,兔子的数量就是24-x。列算式的话是2x+4(24-x)=62。

生2:也可以假设兔子的数量为x,鸡的数量就是24-x,列算式4x+2(24-x)=62。

师:相对来说,方程法比假设法还要简单一点。那么还有没有其他的方法呢?

在上述案例中,学生较好地掌握了鸡兔同笼问题中的假设法与方程法。这样教师在教学的过程中还应注意让小学生总结与思考不同解题方法的优缺点,以便在后续做题中做到有的放矢。

二、变式训练中的鸡兔同笼问题

鸡兔同笼问题中涉及的变式题较多,例如例题中是鸡和兔子两种动物,但在有的题型中会涉及三种动物。这样教师在教学的过程中就应该设计多样化的变式题题组,帮助小学生掌握与深化所学知识。

例如在应用题“鸡、鸭、狗三种动物一共有34个头,108只脚,试求狗的数量有多少只”中,小学生潜意识里会觉得要分别求出鸡、鸭、狗的数量,才可以解决问题。但是涉及三种动物的应用题之前没有学过,难免会不知道如何下手。教师在教学的过程中要善于引导小学生,进行如下教案设计:

师:要想求狗的数量应该怎么计算呢?

生:需要知道鸡和鸭分别是多少只,才能根据题目的已知条件求出狗的数量。

师:那我们可不可以求出鸡和鸭的总数,然后再进一步求狗的数量呢?

生1:这样做也是可以的,而且题目里面没有让我们求解鸡和鸭各有多少只,求它们的总数就可以了。

生2:这样的话,我们就可以把鸡和鸭看作是一种动物了,反正鸡与鸭都只有两只脚,这样就可以按照鸡兔同笼问题进行解答了。

生3:我们可以通过列方程的形式来快速求解,即设狗的数量为x,那么鸡和鸭的数量总和就是(34-x),可以列出算式4x+2(34-x)=108,可以得出狗有20只,鸡和鸭一共有14只。

师:是的,在遇到变式题目的时候,我们首先要做的就是看能不能根据已经学过的鸡兔同笼问题进行计算。例如,在如下变式题中,蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现在三种昆虫共有22只,腿和翅膀的数量分别为140条和28对,试求三种昆虫各有多少只?这道题根据我们所学的鸡兔同笼问题应该怎么计算呢?

生1:题目中不仅有动物腿之间的关系,还有翅膀之间的关系,这应该怎么计算啊?

生2:可以根据变式训练1进行计算,反正蜻蜓和蝉都有6条腿,先求出它俩的总数,再根据翅膀分别求就可以了。

师:是的,在遇到比较有难度的数学应用题时,还是应该保持良好的解题心态,一步一步解决就好了。那大家知道怎么列算式了吗?

综合上述案例,教师在教学的过程中,还可在鸡兔同笼问题的基础上设计更多有趣味性的题目,一方面激发小学生学习的积极性与主动性,另一方面还能有效提升小学生的数学思维与能力,取得较好的教学效果。

三、多样化练习中的鸡兔同笼问题

当然,鸡兔同笼问题的变式题并不是简单地与动物相关的题目,只要题目中所涉及的事物之间有一定的联系,都可以看作是鸡兔同笼问题的变式题。教师在教学的过程中应该组织小学生做好多样化练习题的训练,真正锻炼他们解决实际问题的能力,有效提高数学课堂教学的效率。

四年级下册数学广角鸡兔同笼教学设计 篇14

----惠安县涂寨镇东庄小学

苏清山

教学内容:北师大版(五年级数学第99—100页。)教学目标:

1、使学生感受数学问题的趣味性,培养学生提出问题和分析问题的能力,提高学习数学的兴趣。

2、使学生了解“鸡兔同笼”问题,掌握用列表法、作图法和假设法解决问题,初步形成解决此类问题一般性策略。

3、让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会代数方法的一般性。

教学重点:尝试用不同的方法解决鸡兔同笼问题,对假设法有所了解和体验,并使学生体会假设方法解决此类问题的优越性。

教学难点:在解决问题的过程中培养学生的逻辑推理能力。教具准备:电脑课件。

教学过程:

一、创设故事、引入课题。

1.教师创设故事情境引入课堂

2、让学生找一找故事中出现了哪些数学问题.引导提出数学问题:

(1)、故事里讲了一件什么事情?有哪些动物?

(2)、从故事中我们哪些条件呢?

(3)、你能从这些条件中提个与数学有关和问题吗?

二、合作探究、学习新知:

1.整理信息,提出数学问题: 鸡兔同笼,有9个头,26条腿,鸡,兔各有几只?

2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么? 学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有18条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有36条腿。

3.独立思考:

(1).你想怎样解决这个问题?。

(2).师:用你们的方法先计算一下,如果有困难可以在小组讨论一下.学生合作,教师巡视指导。

4、汇报:(汇报时,师生、生生质疑,评价)

......5、展示结果,列表作答.小结:列表是我们数学中常用的数学方法,可以帮我们分析和解决很多难题.列表的方法也灵活多样,同学们可以根据我们要的条件灵活的运用它们.完成练习,探索新方法.练习1:鸡兔同笼,有10个头,30条腿,鸡,兔各有几只?

1、学生独立完成.2、汇报结果.3、师:有没有同学能用不同的方法来解决这个问题?

引导学生探索画图法:先画好10个圆圈代表10个头,给每只动物先安上2条腿(也就是都看成鸡),这样一共用20条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条安完,要把5只鸡变成兔。问:谁听懂他的方法了?能再说说吗?你觉得这样做怎么样?

C、师:画图的方法非常便于观察、非常容易理解。还有什么方法吗? 练习2:《孙子算经》: 今有鸡兔同笼,上有三十五个头,下有九十四足,问鸡兔各几何?

1、学生小组合作完成

2、讨论:用列表和画图法哪个比较好?

3、有哪个同学能有不同的方法解? 引入假设法。

方法1:假设全都是鸡:

35×2=70(条)

94-70=24(条)

4-2=2(条)

10÷2=5(只)„„兔子

8-5=3(只)„„鸡

作答.谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”

师:鸡兔同笼,同样都是一只,它们什么是一样的什么是不一样的? 生:同样是一只,它们的头一样,腿不一样? 师:我们解题的关键就是要考虑到这两个问题,特别是哪个问题对我们解题的影响最大呢?

生;腿.师:嗯,那我们还看一下它们的腿有什么不一样的呢?

生:兔子4条腿,鸡2条腿.师:我们用假设法要抓住这个关键的信息,差2条腿.来解决非问题哦.巩固练习。

让学生完成假设全部是兔的情况.师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?

师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。

五、课堂小结。

同学们,今天们通过本节尝试和猜测认识了鸡兔同笼.有谁来说一说鸡兔同笼有什么是一样的,又有什么不同的呢?你会用哪些方法来解这一类数学问题呢? 你知道吗?其实生活中还有很多类似的问题我们都可以用鸡兔同笼的方法来解题哦.比如课后练习第100页的最后一题。

六、布置作业。

课本100页最后一题

上一篇:销售部部门职责与权限下一篇:关于学校周边饮食经营状况的调查报告