高中数学平面向量练习

2024-10-14

高中数学平面向量练习(共7篇)

高中数学平面向量练习 篇1

1.(2015·课标Ⅰ,7,易)设D为△ABC所在平面内一点,=3,则()

A.=-+

B.=-

C.=+

D.=-

【答案】 A 如图所示,在△ABC中,=-.又∵=3,∴==-,∴=+=-+.2.(2015·安徽,8,中)△ABC是边长为2的等边三角形,已知向量a,b满足=2a,=2a+b,则下列结论正确的是()

A.|b|=1

B.a⊥b

C.a·b=1

D.(4a+b)⊥

【答案】 D 如图,在等边△ABC中,=2a,=2a+b,∵+=,∴=b.又∵||=2,||=2,∴|b|=2,|a|=1,a与b的夹角为120°,∴a·b=|a||b|cos

120°=-1.∴A,B,C不正确.

4a+b=+=2,又⊥,故D正确.

3.(2015·课标Ⅱ,13,易)设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=________.

【解析】 因为λa+b与a+2b平行,所以存在实数μ,使λa+b=μ(a+2b),即(λ-μ)a+(1-2μ)b=0,由于a,b不平行,所以解得λ=.【答案】

4.(2015·江苏,6,易)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为________.

【解析】 由ma+nb=(9,-8)得,m(2,1)+n(1,-2)=(9,-8),即(2m+n,m-2n)=(9,-8),∴解得∴m-n=-3.【答案】 -3

5.(2015·北京,13,易)在△ABC中,点M,N满足=2,=,若=x+y,则x=________;y=________.【解析】 如图,在△ABC中,=++

=-++

=-++(-)

=-,∴x=,y=-.【答案】  -

1.(2013·辽宁,3,易)已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()

A.B.C.D.【答案】 A =(3,-4),||=5.与同方向的单位向量为=.故选A.2.(2012·广东,3,易)若向量=(2,3),=(4,7),则=()

A.(-2,-4)

B.(2,4)

C.(6,10)

D.(-6,-10)

【答案】 A =+=-=(-2,-4),故选A.3.(2014·浙江,8,中)记max{x,y}=min{x,y}=设a,b为平面向量,则()

A.min{|a+b|,|a-b|}≤min{|a|,|b|}

B.min{|a+b|,|a-b|}≥min{|a|,|b|}

C.max{|a+b|2,|a-b|2}≤|a|2+|b|2

D.max{|a+b|2,|a-b|2}≥|a|2+|b|2

【答案】 D 根据向量运算的几何意义,即三角形法则,可知min{|a+b|,|a-b|}与min{|a|,|b|}的大小不确定;因为|a+b|2=|a|2+|b|2+2ab,|a-b|2=|a|+|b|2-2a·b,则当a·b≥0时,max{|a+b|2,|a-b|2}=|a|2+|b|2+2a·b≥|a|2+|b|2;

当a·b<0时,max{|a+b|2,|a-b|2}

=|a|2+|b|2-2a·b≥|a|2+|b|2,即总有max{|a+b|2,|a-b|2}≥|a|2+|b|2,故选D.4.(2012·安徽,8,中)在平面直角坐标系中,点O(0,0),P(6,8),将向量绕点O按逆时针方向旋转后得向量,则点Q的坐标是()

A.(-7,-)

B.(-7,)

C.(-4,-2)

D.(-4,2)

【答案】 A 由题意,得||=10,由三角函数定义,设P点坐标为(10cos

θ,10sin

θ),则cos

θ=,sin

θ=.则Q点的坐标应为.由三角函数知识得10

cos

=-7,10sin=-,所以Q(-7,-).故选A.5.(2014·北京,10,易)已知向量a,b满足|a|=1,b=(2,1),且λa+b=0(λ∈R),则|λ|=________.【解析】 ∵λa+b=0,∴λa=-b.∴|λa|=|b|,∴|λ|·|a|=|b|,∴|λ|·1=,∴|λ|=.【答案】

6.(2014·课标Ⅰ,15,中)已知A,B,C为圆O上的三点,若=(+),则与的夹角为________.

【解析】 由=(+)可知O为BC的中点,即BC为圆O的直径,又因为直径所对的圆周角为直角,所以∠BAC=90°,所以与的夹角为90°.【答案】 90°

7.(2014·陕西,18,12分,中)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.

(1)若++=0,求||;

(2)设=m+n(m,n∈R),用x,y表示m-n,并求m-n的最大值.

解:(1)方法一:∵++=0,又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y),∴解得x=2,y=2,即=(2,2),故||=2.方法二:∵++=0,则(-)+(-)+(-)=0,∴=(++)=(2,2),∴||=2.(2)=(x,y),=(1,2),=(2,1).

∵=m+n,∴(x,y)=(m+2n,2m+n),∴

②-①得,m-n=y-x,令m-n=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值,故m-n的最大值为1.思路点拨:(1)根据向量相等,求出P点坐标后求||;

(2)根据向量相等,将m-n转化为x,y的关系,变换为线性规划问题.

考向1 平面向量的线性运算

向量的线性运算

向量运算

定义

法则(或几何意义)

运算律

加法

求两个向量和的运算

(1)交换律:

a+b=b+a;

(2)结合律:

(a+b)+c=a+(b+c)

减法

求a与b的相反向量-b的和的运算叫作a与b的差

a-b=a+(-b)

数乘

求实数λ与向量a的积的运算

(1)|λa|=|λ||a|;

(2)当λ>0时,λa与a的方向相同;

当λ<0时,λa与a的方向相反;

当λ=0时,λa=0

(1)结合律:λ(μ

a)=λμ

a=μ(λa);

(2)第一分配律:

(λ+μ)a=λa+μ

a;

(3)第二分配律:

λ(a+b)=λa+λb

(1)(2014·课标Ⅰ,6)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()

A.B.C.D.(2)(2013·四川,12)在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=________.

【解析】(1)如图,+=+++=+=(+)=·2=.(2)如图,因为ABCD为平行四边形,所以+==2,已知+=λ,故λ=2.【答案】(1)A(2)2

【点拨】 解题(1)时注意向量加法平行四边形法则的运用;解题(2)的思路是在平行四边形中把+用表示,结合已知条件求出λ的值.

向量的线性运算的解题策略

(1)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来求解.

(2)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.

(2014·福建,10)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则+++等于()

A.B.2

C.3

D.4

【答案】 D 依题意知,点M是线段AC的中点,也是线段BD的中点,所以+=2,+=2,所以+++=4,故选D.考向2 共线向量定理、平面向量基本定理及应用

1.向量共线的判定定理和性质定理

(1)判定定理:a是一个非零向量,若存在一个实数λ使得b=λa,则向量b与a共线.

(2)性质定理:若向量b与非零向量a共线,则存在唯一一个实数λ,使得b=λa.(3)A,B,C是平面上三点,且A与B不重合,P是平面内任意一点,若点C在直线AB上,则存在实数λ,使得=+λ(如图所示).

2.向量共线定理的应用

(1)证明点共线;

(2)证明两直线平行;

(3)已知向量共线求字母的值(或范围).

3.平面向量基本定理

(1)平面向量基本定理

如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一组基底.

(2)平面向量基本定理的实质

平面向量基本定理反映了利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.

4.平面向量基本定理的应用

(1)证明向量共面,如果有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,那么a,e1,e2共面.

(2)根据向量基本定理求字母的值(或范围).

(1)(2014·福建,8)在下列向量组中,可以把向量a=(3,2)表示出来的是()

A.e1=(0,0),e2=(1,2)

B.e1=(-1,2),e2=(5,-2)

C.e1=(3,5),e2=(6,10)

D.e1=(2,-3),e2=(-2,3)

(2)(2013·江苏,10)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC.若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为________.

(3)(2015·安徽阜阳一模,14)在梯形ABCD中,已知AB∥CD,AB=2CD,M,N分别为CD,BC的中点.若=λ+μ,则λ+μ=________.

【解析】(1)方法一:若e1=(0,0),e2=(1,2),则e1∥e2,而a不能由e1,e2表示,排除A;若e1=(-1,2),e2=(5,-2),因为≠,所以e1,e2不共线,根据平面向量基本定理,可以把向量a=(3,2)表示出来,故选B.方法二:因为a=(3,2),若e1=(0,0),e2=(1,2),不存在实数λ,μ,使得a=λe1+μ

e2,排除A;若e1=(-1,2),e2=(5,-2),设存在实数λ,μ,使得a=λe1+μ

e2,则(3,2)=(-λ+5μ,2λ-2μ),所以解得所以a=2e1+e2,故选B.(2)∵=+=+=+(-)=-,又=λ1+λ2,∴λ1=-,λ2=.∴λ1+λ2=.(3)方法一:由=λ+μ,得=λ·(+)+μ·(+),则++=0,得++=0,得+=0.又因为,不共线,所以由平面向量基本定理得

解得

所以λ+μ=.方法二:连接MN并延长交AB的延长线于T,由已知易得AB=AT,∴==λ+μ,∵T,M,N三点共线,∴λ+μ=.【答案】(1)B(2)(3)

【点拨】 题(1)利用平面向量基本定理求解;解题(2)的思路是先在△ABC中用和表示,然后根据已知条件对应求出λ1,λ2;解题(3)时注意基底的选取.

1.求解向量共线问题的注意事项

(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.

(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.

(3)若a与b不共线且λa=μb,则λ=μ=0.(4)直线的向量式参数方程,A,P,B三点共线⇔=(1-t)·+t(O为平面内任一点,t∈R).

(5)=λ+μ(λ,μ为实数),若A,B,C三点共线,则λ+μ=1.2.用平面向量基本定理解决问题的一般思路

(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.

(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.

零向量和共线向量不能作基底,基向量通常选取确定整个几何图形的从同一结点出发的两边所对应的向量.

(2012·大纲全国,9)△ABC中,AB边的高为CD,若=a,=b,a·b=0,|a|=1,|b|=2,则=()

A.a-b

B.a-b

C.a-b

D.a-b

【答案】 D ∵a·b=0,∴∠ACB=90°,∴AB=,CD=.∴BD=,AD=,∴AD∶BD=4∶1.∴==(-)

=a-b.考向3 平面向量坐标运算的应用

1.平面向量的坐标运算

(1)若a=(x1,y1),b=(x2,y2)(b≠0),则a±b=(x1±x2,y1±y2).

(2)若A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).

(3)若a=(x,y),λ∈R,则λa=(λx,λy).

2.向量平行的坐标表示

(1)如果a=(x1,y1),b=(x2,y2),则a∥b的充要条件为x1y2-x2y1=0.(2)A(x1,y1),B(x2,y2),C(x3,y3)三点共线的充要条件为(x2-x1)(y3-y1)-(x3-x1)(y2-y1)=0.a∥b的充要条件不能表示成=,因为x2,y2有可能等于0.判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定.

3.平面向量中的重要结论

(1)||a|-|b||≤|a±b|≤|a|+|b|.(2)|a+b|2+|a-b|2=2(|a|2+|b|2).

(3)G为△ABC的重心⇔++=0

⇔G,其中A(x1,y1),B(x2,y2),C(x3,y3).

(1)(2012·重庆,6)设x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,则|a+b|=()

A.B.C.2

D.10

(2)(2013·北京,13)向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则=________.

【解析】(1)由⇒⇒

∴a=(2,1),b=(1,-2),a+b=(3,-1),∴|a+b|=.(2)以向量a和b的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A(1,-1),B(6,2),C(5,-1),∴a==(-1,1),b==(6,2),c==(-1,-3),.∵c=λa+μb,∴(-1,-3)=λ(-1,1)+μ(6,2),即

解得λ=-2,μ=-,∴=4.【答案】(1)B(2)4

【点拨】 解题(1)时注意应用向量平行与垂直的坐标表示;解题(2)的关键是建立平面直角坐标系,正确写出a,b,c的坐标,利用a,b,c之间的关系,列出方程组求解.

向量坐标运算问题的一般思路

向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.以向量为载体,可以解决三角函数、解析几何中的有关问题.

(2014·陕西,13)设0<θ<,向量a=(sin

2θ,cos

θ),b=(cos

θ,1),若a∥b,则tan

θ=________.

【解析】 因为a∥b,所以sin

2θ=cos2θ,2sin

θcos

θ=cos2θ.因为0<θ<,所以cos

θ>0,得2sin

θ=cos

θ,∴tan

θ=.【答案】

1.(2015·河北邯郸一模,5)已知向量a=(2,3),b=(-1,2),若(ma+nb)∥(a-2b),则等于()

A.-2

B.2

C.-

D.【答案】 C 由题意得ma+nb=(2m-n,3m+2n),a-2b=(4,-1),∵(ma+nb)∥(a-2b),∴-(2m-n)-4(3m+2n)=0,∴=-,故选C.2.(2015·青海西宁质检,6)已知△ABC的三个顶点A,B,C及平面内一点P满足++=,则点P与△ABC的关系为()

A.P在△ABC内部

B.P在△ABC外部

C.P在AB边所在直线上

D.P是AC边的一个三等分点

【答案】 D ∵++=,∴++=-,∴=-2=2,∴P是AC边的一个三等分点.

3.(2015·山东日照一模,5)在平行四边形ABCD中,AC与BD相交于点O,E是线段OD的中点,AE的延长线与CD交于点F,若=a,=b,则等于()

A.a+b

B.a+b

C.a+b

D.a+b

【答案】 B 如图,∵△DEF∽△BEA,∴DF∶BA=DE∶BE=1∶3,过点F作FG∥BD交AC于点G,∴FG∶DO=2∶3,CG∶CO=2∶3,∴=b,∵=+==a,∴=+=a+b.故选B.4.(2015·吉林长春调研,7)已知△ABC的重心为G,内角A,B,C的对边分别为a,b,c,若a+b+c=0,则角A为()

A.B.C.D.【答案】 A ∵G为△ABC的重心,∴++=0.∵a+b+c=0,∴+=0,∴a-c=0,b-c=0,∴a=c,b=c,∴cos

A=

==,∴A=.5.(2014·广东佛山二模,6)设=(1,-2),=(a,-1),=(-b,0),a>0,b>0,O为坐标原点,若A,B,C三点共线,则+的最小值是()

A.2

B.4

C.6

D.8

【答案】 D 方法一:由题意可得,=(1,-2),=(a,-1),=(-b,0),所以=-=(a-1,1),=-=(-b-1,2).

又∵A,B,C三点共线,∴∥,即(a-1)×2-1×(-b-1)=0,∴2a+b=1,又∵a>0,b>0,∴+=·(2a+b)=4+≥4+4=8,当且仅当=时,取“=”.故选D.方法二:kAB=,kAC=,∵A,B,C三点共线,所以kAB=kAC,即=,∴2a+b=1,所以+=+=4++≥4+2=8,∴+的最小值是8.思路点拨:先由A,B,C三点共线,找出a,b的关系,然后把“1”代换,利用基本不等式求解.

6.(2015·河南开封月考,13)平面直角坐标系xOy中,已知A(1,0),B(0,1),C(-1,c)(c>0),且|OC|=2,若=λ+μ,则实数λ,μ的值分别是________.

【解析】 ∵||=2,∴||2=1+c2=4,c>0,∴c=.∵=λ+μ,∴(-1,)=λ(1,0)+μ(0,1),∴λ=-1,μ=.【答案】 -1,7.(2015·山西临汾模拟,15)如图,△ABC中,++=0,=a,=b.若=ma,=nb,CG∩PQ=H,=2,则+=________.

【解析】 由++=0,知G为△ABC的重心,取AB的中点D,则===(+)=+,由P,H,Q三点共线,得+=1,则+=6.【答案】 6

8.(2014·山西阳泉三模,14)设O在△ABC的内部,且有+2+3=0,则△ABC的面积和△AOC的面积之比为________.

【解析】 设AC,BC的中点分别为M,N,则已知条件可化为(+)+2(+)=0,即2+4=0,所以=-2,说明M,O,N三点共线,即O为中位线MN上的一个三等分点,S△AOC=S△ANC=·S△ABC=S△ABC,所以=3.【答案】 3

1.(2015·山东,4,易)已知菱形ABCD的边长为a,∠ABC=60°,则·=()

A.-a2

B.-a2

C.a2

D.a2

【答案】 D ∵=+,且=,∴·=(+)·=·+2=||||cos

60°+||2=a2+a2=a2.故选D.2.(2015·重庆,6,易)若非零向量a,b满足|a|=|b|,且(a-b)⊥(3a+2b),则a与b的夹角为()

A.B.C.D.π

【答案】 A 设|b|=x,〈a,b〉=θ,则|a|=x,a·b=x2cos

θ.∵(a-b)⊥(3a+2b),∴(a-b)·(3a+2b)=0,∴3a2+2a·b-3a·b-2b2=0,即3×x2-x2cos

θ-2x2=0,∴cos

θ=,∴cos

θ=.∵θ∈[0,π],∴θ=,故选A.3.(2015·湖北,11,易)已知向量⊥,||=3,则·=________.

【解析】 ·=·(+)

=2+·=9.【答案】 9

1.(2014·重庆,4,易)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=()

A.-

B.0

C.3

D.【答案】 C 2a-3b=(2k-3,-6),由(2a-3b)⊥c,得4k-6-6=0,解得k=3.故选C.2.(2013·湖北,6,易)已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量在方向上的投影为()

A.B.C.-

D.-

【答案】 A 由=(2,1),=(5,5),得·=15,||=5.∵·=||||cos

〈,〉,∴||cos

〈,〉===.故选A.3.(2013·湖南,8,中)已知a,b是单位向量,a·b=0,若向量c满足|c-a-b|=1,则|c|的最大值为()

A.-1

B.C.+1

D.+2

【答案】 C 建立如图所示的平面直角坐标系,由题意知a⊥b,且a与b是单位向量,∴可设=a=(1,0),=b=(0,1),=c=(x,y).

∴c-a-b=(x-1,y-1),∵|c-a-b|=1,∴(x-1)2+(y-1)2=1,即点C(x,y)的轨迹是以M(1,1)为圆心,1为半径的圆.而|c|=,∴|c|的最大值为|OM|+1,即|c|max=+1,故选C.4.(2012·广东,8,难)对任意两个非零的平面向量α和β,定义α∘β=.若平面向量a,b满足|a|≥|b|>0,a与b的夹角θ∈,且a∘b和b∘a都在集合中,则a∘b=()

A.B.1

C.D.【答案】 C 根据题中给定的两个向量的新运算可知a∘b===,b∘a=,又由θ∈可得

θ<1,由|a|≥|b|>0可得0<≤1,于是0<<1,即b∘a∈(0,1),又由于b∘a∈,所以=,即|a|=2|b|cos

θ.①

同理>,将①代入后得2cos2θ>,又由于a∘b∈,所以a∘b=2cos2θ=(n∈Z),于是1<<2,故n=3,∴cos

θ=,|a|=|b|,∴a∘b=×=,故选C.5.(2014·江西,14,中)已知单位向量e1与e2的夹角为α,且cos

α=,向量a=3e1-2e2与b=3e1-e2的夹角为β,则cos

β=________.

【解析】 a·b=(3e1-2e2)·(3e1-e2)=9+2-9×1×1×=8.∵|a|2=(3e1-2e2)2=9+4-12×1×1×=9,∴|a|=3.∵|b|2=(3e1-e2)2=9+1-6×1×1×=8,∴|b|=2,∴cos

β===.【答案】

6.(2012·安徽,14,中)若平面向量a,b满足|2a-b|≤3,则a·b的最小值是________.

【解析】 由向量的数量积知-|a||b|≤a·b≤|a||b|⇒|a|·|b|≥-a·b(当且仅当〈a,b〉=π时等号成立).

由|2a-b|≤3⇒4|a|2-4a·b+|b|2≤9⇒9+4a·b≥4|a|2+|b|2≥4|a||b|≥-4a·b⇒a·b≥-(当且仅当2|a|=|b|,〈a,b〉=π时取等号),∴a·b的最小值为-.【答案】 -

思路点拨:先由|2a-b|≤3找出a·b与|a|·|b|之间关系,再利用基本不等式及数量积的定义求最值.

7.(2014·安徽,15,难)已知两个不相等的非零向量a,b,两组向量x1,x2,x3,x4,x5和y1,y2,y3,y4,y5均由2个a和3个b排列而成.记S=x1·y1+x2·y2+x3·y3+x4·y4+x5·y5,Smin表示S所有可能取值中的最小值,则下列命题正确的是________(写出所有正确命题的编号).

①S有5个不同的值;

②若a⊥b,则Smin与|a|无关;

③若a∥b,则Smin与|b|无关;

④若|b|>4|a|,则Smin>0;

⑤若|b|=2|a|,Smin=8|a|2,则a与b的夹角为.【解析】 S有3种结果:

S1=a2+a2+b2+b2+b2,S2=a2+a·b+a·b+b2+b2,S3=a·b+a·b+a·b+a·b+b2,故①错误.

∵S1-S2=S2-S3=a2+b2-2a·b

≥a2+b2-2|a||b|=(|a|-|b|)2≥0,∴S中的最小值为S3.若a⊥b,则Smin=S3=b2,与|a|无关,故②正确.

若a∥b,则Smin=S3=4a·b+b2,与|b|有关,故③错误.

若|b|>4|a|,则Smin=S3=4|a||b|cos

θ+b2>-4|a||b|+b2>-|b|2+b2=0,故④正确.

若|b|=2|a|,则Smin=S3=8|a|2cos

θ+4|a|2=8|a|2,∴2cos

θ=1,∴θ=,故⑤错误.

【答案】 ②④

考向1 平面向量的垂直与夹角

1.平面向量数量积的有关概念

(1)向量的夹角:已知两个非零向量a和b,记=a,=b,则∠AOB=θ(0°≤θ≤180°)叫作向量a与b的夹角.

(2)数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cos

θ叫作a与b的数量积,记作a·b,即a·b=|a||b|cos

θ.规定:0·a=0.(3)数量积的几何意义:数量积a·b等于a的模|a|与b在a的方向上的投影|b|cos

θ的乘积.

两个向量的数量积是一个数量,而不是向量,它的值为两个向量的模与两向量夹角的余弦值的乘积,其符号由夹角的余弦值确定.

2.平面向量数量积的性质

设a,b都是非零向量,e是与b方向相同的单位向量,θ是a与e的夹角,则

(1)e·a=a·e=|a|cos

θ.(2)a⊥b⇔a·b=0.(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地,a·a=|a|2或|a|=.(4)cos

θ=.(5)|a·b|≤|a||b|.3.平面向量数量积的坐标表示

设a=(x1,y1),b=(x2,y2),a,b的夹角为θ,则

(1)a·b=x1x2+y1y2.(2)|a|=.若A(x1,y1),B(x2,y2),则||=.(3)cos

θ=.(4)a⊥b⇔a·b=0⇔x1x2+y1y2=0.x1y2-x2y1=0与x1x2+y1y2=0不同,前者是两向量a=(x1,y1),b=(x2,y2)共线的充要条件,后者是它们垂直的充要条件.

(1)(2014·四川,7)平面向量a=(1,2),b=(4,2),c=ma+b(m∈R),且c与a的夹角等于c与b的夹角,则m=()

A.-2

B.-1

C.1

D.2

(2)(2014·天津,8)已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BE=λBC,DF=μDC.若·=1,·=-,则λ+μ=()

A.B.C.D.(3)(2013·山东,15)已知向量与的夹角为120°,且||=3,||=2.若=λ+,且⊥,则实数λ的值为________.

【解析】(1)c=ma+b=(m+4,2m+2),a·c=5m+8,b·c=8m+20.由两向量的夹角相等可得=,即为=,解得m=2.(2)以,为基向量,则·=(+λ)·(+μ)=μ2+λ2+(1+λμ)·=4(μ+λ)-2(1+λμ)=1.①

·=(λ-1)·(μ-1)=-2(λ-1)(μ-1)=-.②

由①②可得λ+μ=.(3)∵⊥,∴·=0,∴(λ+)·=0,即(λ+)·(-)=λ·-λ2+2-·=0.∵向量与的夹角为120°,||=3,||=2,∴(λ-1)||||·cos

120°-9λ+4=0,解得λ=.【答案】(1)D(2)C(3)

【点拨】 题(1)考查了平面向量的坐标运算以及向量的夹角公式,求解时先进行运算,最后代入坐标,使解题过程简洁;题(2)根据条件把,分别用,表示,然后根据向量数量积公式得方程组求解;解题(3)的方法是根据·=0列出等量关系求出λ.平面向量数量积的应用

(1)根据平面向量数量积的性质:若a,b为非零向量,cos

θ=(夹角公式),a⊥b⇔a·b=0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.

(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.

(1)(2011·课标全国,10)已知a与b均为单位向量,其夹角为θ,有下列四个命题

p1:|a+b|>1⇔θ∈

p2:|a+b|>1⇔θ∈

p3:|a-b|>1⇔θ∈

p4:|a-b|>1⇔θ∈

其中的真命题是()

A.p1,p4

B.p1,p3

C.p2,p3

D.p2,p4

(2)(2014·湖北,11)设向量a=(3,3),b=(1,-1),若(a+λb)⊥(a-λb),则实数λ=________.

(1)【答案】 A ∵|a|=|b|=1,且θ∈[0,π],若|a+b|>1,则(a+b)2>1,∴a2+2a·b+b2>1,即a·b>-,∴cos

θ==a·b>-,∴θ∈;

若|a-b|>1,同理求得a·b<,∴cos

θ=a·b<,∴θ∈,∴p1,p4正确,故选A.(2)【解析】 ∵a+λb=(3+λ,3-λ),a-λb=(3-λ,3+λ),又(a+λb)⊥(a-λb),∴(a+λb)·(a-λb)=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.【答案】 ±3

考向2 平面向量的模及其应用

求平面向量的模的公式

(1)a2=a·a=|a|2或|a|==;

(2)|a±b|==;

(3)若a=(x,y),则|a|=.(1)(2014·课标Ⅱ,3)设向量a,b满足|a+b|=,|a-b|=,则a·b=()

A.1

B.2

C.3

D.5

(2)(2014·湖南,16)在平面直角坐标系中,O为原点,A(-1,0),B(0,),C(3,0),动点D满足||=1,则|++|的最大值是________.

【解析】(1)由|a+b|=得a2+b2+2a·b=10,①

由|a-b|=得a2+b2-2a·b=6,②

①-②得4a·b=4,∴a·b=1,故选A.(2)方法一:设D(x,y),由=(x-3,y)及||=1可知(x-3)2+y2=1,即动点D的轨迹为以点C为圆心的单位圆.

又++=(-1,0)+(0,)+(x,y)=(x-1,y+),∴|++|=,问题转化为圆(x-3)2+y2=1上的点与点P(1,-)间距离的最大值.

∵圆心C(3,0)与点P(1,-)之间的距离为=,故的最大值为+1.方法二:设D(x,y),则由||=1,得(x-3)2+y2=1,从而可设x=3+cos

α,y=sin

α,α∈R.而++=(x-1,y+),则|++|=

==,其中sin

φ=,cos

φ=.显然当sin(α+φ)=1时,|++|有最大值=+1.方法三:++=+++,设a=++=(2,),则|a|=,从而++=a+,则|++|=|a+|≤|a|+||=+1,当a与同向时,|++|有最大值+1.【答案】(1)A(2)+1

【点拨】 解题(1)时注意先求模的平方,再用加减运算求解;题(2)方法一利用几何意义将问题转化为几何问题;方法二采用换元法将问题转化为求三角函数的最值;方法三利用向量运算性质求解.

1.求向量的模的方法

(1)公式法:利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算.

(2)几何法:利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.

2.求向量模的最值(范围)的方法

(1)代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.

(2)几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解.

(2015·河南开封模拟,14)已知向量a与b垂直,|a|=2,若使得(a-c)·(b-c)=0的c的模的最大值为,则|b|=________.

【解析】 因为(a-c)·(b-c)=a·b+c2-(a+b)·c=0且a与b垂直,所以c2=(a+b)·c,|c|=|a+b|cos

θ≤|a+b|(θ为a+b与c的夹角),由题意知|a+b|====,得|b|=1.【答案】 1

1.(2015·河北承德质检,4)已知两个非零向量a,b满足|a+b|=|a-b|,则下列结论正确的是()

A.a∥b

B.a⊥b

C.|a|=|b|

D.a+b=a-b

【答案】 B 因为|a+b|=|a-b|,所以(a+b)2=(a-b)2,即a·b=0,所以a⊥b.故选B.2.(2015·浙江温州二模,5)已知|a|=1,a·b=,(a-b)2=1,则a与b的夹角等于()

A.30°

B.45°

C.60°

D.120°

【答案】 C 设a与b的夹角为θ,因为a·b=|a||b|·cos

θ=,且|a|=1,所以|b|cos

θ=.①

又|a-b|2=|a|2+|b|2-2a·b=1,即1+|b|2-1=1,故|b|=1.②

由①②得cos

θ=.又θ∈[0°,180°],所以θ=60°.故选C.3.(2015·河南驻马店质检,6)若O为△ABC所在平面内任一点,且满足(-)·(+-2)=0,则△ABC的形状为()

A.正三角形

B.直角三角形

C.等腰三角形

D.等腰直角三角形

【答案】 C 因为(-)·(+-2)=0,即·(+)=0,∵-=,∴(-)·(+)=0,即||=||,所以△ABC是等腰三角形,故选C.4.(2015·上海嘉定模拟,15)已知i,j,k表示共面的三个单位向量,i⊥j,那么(i+k)·(j+k)的取值范围是()

A.[-3,3]

B.[-2,2]

C.[-1,+1]

D.[1-,1+]

【答案】 D 由i⊥j,得i·j=0,又i,j为单位向量,∴|i+j|==,则(i+k)·(j+k)=i·j+(i+j)·k+k2

=(i+j)·k+1=|i+j|cosi+j,k+1

=cosi+j,k+1,又∵-1≤cosi+j,k≤1,∴(i+k)·(j+k)的取值范围是[1-,1+].故选D.5.(2015·福建莆田一模,6)已知a,b,c均为单位向量,且|a+b|=1,则(a-b)·c的取值范围是()

A.[0,1]

B.[-1,1]

C.[-,]

D.[0,]

【答案】 C 由a,b为单位向量和|a+b|=1的几何意义,可知|a-b|=,设a-b与c的夹角为θ,则(a-b)·c=|a-b||c|·cos

θ,∵cos

θ∈[-1,1],∴(a-b)·c的取值范围为[-,].

6.(2014·湖南九校联考,9)对于非零向量m,n,定义运算“*”:m*n=|m||n|sin

θ,其中θ为m,n的夹角,有两两不共线的三个向量a,b,c,下列结论正确的是()

A.若a*b=a*c,则b=c

B.(a*b)c=a(b*c)

C.a*b=(-a)*b

D.(a+b)*c=a*c+b*c

【答案】 C a,b,c为两两不共线向量,则a,b,c为非零向量,故A不正确;设a,b夹角为θ,b,c夹角为α,则(a*b)c=|a||b|·sin

θ·c,a(b*c)=|b||c|sin

α·a,故B不正确;a*b=|a||b|sin

θ=|-a||b|sin(π-θ)=(-a)*b.故选C.7.(2015·山东淄博一模,14)若a,b是两个非零向量,且|a|=|b|=λ|a+b|,λ∈,则b与a-b的夹角的取值范围是________.

【解析】 设=a,=b,以OA与OB为邻边作平行四边形OACB,因为|a|=|b|,所以四边形OACB是菱形,设∠BOC=θ,则∠OBC=π-2θ,在△OBC中,由正弦定理可得=,化简得cos

θ=,由λ∈得∈,所以θ∈,所以b,a-b=θ+∈.【答案】

8.(2014·江西南昌二模,12)关于平面向量a,b,c,有下列三个命题:

①若a·b=a·c,则b=c;

②若a=(1,k),b=(-2,6),a∥b,则k=-3;

③非零向量a和b满足|a|=|b|=|a-b|,则a与a+b的夹角为60°.其中真命题的序号为________(写出所有真命题的序号).

【解析】 命题①明显错误.由两向量平行的充要条件得1×6+2k=0,k=-3,故命题②正确.由|a|=|b|=|a-b|,再结合平行四边形法则可得a与a+b的夹角为30°,命题③错误.

【答案】 ②

1.(2015·天津,14,中)在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°,动点E和F分别在线段BC和DC上,且=λ,=,则·的最小值为________.

【解析】 如图,分别过C,D作CN⊥AB于N,DM⊥AB于M,则AM=BN=,∴CD=MN=1.∴·=(+)·(++)

=2+·+·+·+·+·

=4-1-2-λ+λ+λ·

=++≥+2=,当且仅当=,即λ=时等号成立,此时·有最小值.【答案】

2.(2015·江苏,14,难)设向量ak=(k=0,1,2,…,12),则

(ak·ak+1)的值为________.

【解析】 ak·ak+1

=·

=coscosπ+·

=coscosπ+sinsinπ+sincosπ+cossinπ+coscosπ

=cos+sinπ+coscosπ,(ak·ak+1)=12cos+sinπ+coscosπ

=6+0+4

=9.【答案】 9

3.(2015·浙江,15,难)已知e1,e2是空间单位向量,e1·e2=.若空间向量b满足b·e1=2,b·e2=,且对于任意x,y∈R,|b-(xe1+ye2)|≥|b-(x0e1+y0e2)|=1(x0,y0∈R),则x0=______,y0=________,|b|=________.

【解析】 ∵e1·e2=|e1||e2|cos〈e1,e2〉=cos〈e1,e2〉=,∴〈e1,e2〉=.不妨设e1=,e2=(1,0,0),b=(m,n,t).

则由题意知b·e1=m+n=2,b·e2=m=.解得n=,m=,∴b=.∵b-(xe1+ye2)

=,∴|b-(xe1+ye2)|2=++t2.由题意,当x=x0=1,y=y0=2时,|b-(xe1+ye2)|2取到最小值1.此时t2=1,故|b|=

==2.【答案】 1 2 2

4.(2015·广东,16,12分,易)在平面直角坐标系xOy中,已知向量m=,n=(sin

x,cos

x),x∈.(1)若m⊥n,求tan

x的值;

(2)若m与n的夹角为,求x的值.

解:(1)∵m=,n=(sin

x,cos

x),m⊥n,∴m·n=sin

x-cos

x=0,即sin

x=cos

x,∴tan

x==1.(2)由题意知,|m|==1,|n|==1,m·n=sin

x-cos

x=sin.而m·n=|m|·|n|·cos〈m,n〉

=cos=.∴sin=,又∵x∈,x-∈,∴x-=,∴x=.1.(2012·湖南,7,中)在△ABC中,AB=2,AC=3,·=1,则BC=()

A.B.C.2

D.【答案】 A ∵·=·(-)=·-2=1,∴·=5,即2×3cos

A=5,∴cos

A=.由余弦定理得BC2=AB2+AC2-2AB·ACcos

A=3,∴BC=,故选A.思路点拨:先根据数量积求出角A的三角函数值,再由余弦定理求BC.2.(2012·江西,7,中)在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=()

A.2

B.4

C.5

D.10

【答案】 D 方法一:以C为原点,CA,CB所在直线分别为x,y轴建立直角坐标系.设A(a,0),B(0,b),则D,P.从而|PA|2+|PB|2=+=(a2+b2)=10|PC|2,故=10.方法二:因为-=,且+=2,两式平方相加得22+22=2+42=42+42=202,故=10.3.(2014·安徽,10,难)在平面直角坐标系xOy中,已知向量a,b,|a|=|b|=1,a·b=0,点Q满足=(a+b).曲线C={P|=acos

θ+bsin

θ,0≤θ<2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()

A.1<r<R<3

B.1<r<3≤R

C.r≤1<R<3

D.1<r<3<R

【答案】 A 由题意,可取a=(1,0),b=(0,1),则=(,),=(cos

θ,sin

θ),=(-cos

θ,-sin

θ),∴||2=(-cos

θ)2+(-sin

θ)2

=5-2(cos

θ+sin

θ)

=5-4sin.∵0≤θ<2π,∴≤θ+<,∴1≤||2≤9,即1≤||≤3.因为C∩Ω为两段分离的曲线,结合图象(如图)可知,1

A.B.C.D.【答案】 A 如图,=-,=-,∵·=-,∴(-)·(-)=-,·-·-·+·=-.又=λ,=(1-λ),代入上式得

(1-λ)·λ-(1-λ)·-·λ+·=-.(*)

∵△ABC为等边三角形,且||=||=||=2,∴·=||·||·cos

60°=2×2×=2,||2=4,||2=4,代入(*)式得4λ2-4λ+1=0,即(2λ-1)2=0,∴λ=,故选A.5.(2014·江苏,12,易)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,·=2,则·的值是________.

【解析】 由题意,=+=+,=+=+=-,所以·=

·

=2-·-2,代入数据得2=25-·-×64,解得·=22.【答案】 22

6.(2012·北京,13,中)已知正方形ABCD的边长为1,点E是AB边上的动点,则·的值为________;·的最大值为________.

【解析】 ①以D点为原点,DC,DA所在直线分别为x轴,y轴建立如图所示的直角坐标系,则D(0,0),A(0,1),B(1,1),C(1,0).设E(x,1),那么=(x,1),=(0,1),∴·=1.②∵=(1,0),∴·=x.∵正方形的边长为1,∴x的最大值为1,故·的最大值为1.【答案】 1 1

7.(2012·上海,12,中)在平行四边形ABCD中,∠A=,边AB,AD的长分别为2,1.若M,N分别是边BC,CD上的点,且满足=,则·的取值范围是________.

【解析】 方法一:因为点M,N分别在边BC和CD上,可设==k∈[0,1],则·=(+)·(++)

=(+k)·(++k)

= 2+·+k·+k·+k 2+k2·=4+2×1×-4k+2×1×k+k-1×2×k2=5-2k-k2=-(k+1)2+6∈[2,5],k∈[0,1].

方法二:建立平面直角坐标系,如图.

则B(2,0),C,D.令==λ,则M,N.∴·=·+λ=-λ2-2λ+5=-(λ+1)2+6.∵0≤λ≤1,∴·∈[2,5].

【答案】 [2,5]

8.(2013·江苏,15,14分,易)已知a=(cos

α,sin

α),b=(cos

β,sin

β),0<β<α<π.(1)若|a-b|=,求证:a⊥b;

(2)设c=(0,1),若a+b=c,求α,β的值.

解:(1)证明:由题意得|a-b|2=2,即(a-b)2=a2-2a·b+b2=2.又因为a2=b2=|a|2=|b|2=1,所以2-2a·b=2,即a·b=0,故a⊥b.(2)因为a+b=(cos

α+cos

β,sin

α+sin

β)=(0,1),所以

由此得,cos

α=cos(π-β).

由0<β<π,得0<π-β<π,又0<α<π,故α=π-β.代入sin

α+sin

β=1,得sin

α=sin

β=.又α>β,所以α=,β=.考向1 平面向量在平面几何中的应用

向量在几何中的应用

(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件:a∥b⇔a=λb⇔x1y2-x2y1=0.(2)证明垂直问题,常用向量垂直的充要条件:

a⊥b⇔a·b=0⇔x1x2+y1y2=0.(3)求夹角问题,常用公式:

cos

θ==.(4)求线段的长度,可以用向量的线性运算,向量的模

|a|==或

|AB|=||=.(1)(2013·福建,7)在四边形ABCD中,=(1,2),=(-4,2),则该四边形的面积为()

A.B.2

C.5

D.10

(2)(2013·天津,12)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若·=1,则AB的长为________.

【解析】(1)·=(1,2)·(-4,2)=0,故⊥.故四边形ABCD的对角线互相垂直,面积S=·||·||=××2=5,故选C.(2)方法一:由题意可知,=+,=-+.因为·=1,所以(+)·=1,则2+·-2=1.①

因为||=1,∠BAD=60°,所以·=||,因此①式可化为1+||-||2=1.解得||=0(舍去)或,所以AB的长为.方法二:以A为原点,AB为x轴建立如图的直角坐标系,过D作DM⊥AB于点M.由AD=1,∠BAD=60°,可知AM=,DM=.设|AB|=m(m>0),则B(m,0).

C,D.因为E是CD的中点,所以E.所以=,=.由·=1,可得+=1,即2m2-m=0,所以m=0(舍去)或.故AB的长为.【答案】(1)C(2)

【点拨】 解题(1)的关键是利用向量证明AC⊥BD;解题(2)的方法一是利用平面向量运算,将,用已知向量表示,然后求解;方法二是建立合适的平面直角坐标系,用坐标法求解,准确写出点的坐标是关键.

用向量解决平面几何问题的步骤

(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;

(2)通过向量运算研究几何元素之间的关系,如距离、夹角等问题;

(3)把运算结果“翻译”成几何关系.

(2013·课标Ⅱ,13)已知正方形ABCD的边长为2,E为CD的中点,则·=________.

【解析】 方法一:·

=·(-)

=2-2=22-×22=2.方法二:以A为原点建立平面直角坐标系(如图),可得A(0,0),E(1,2),B(2,0),C(2,2),D(0,2),=(1,2),=(-2,2),则·=(1,2)·(-2,2)=1×(-2)+2×2=2.【答案】 2

考向2 平面向量在三角函数中的应用

与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点问题.解此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.

(1)(2014·山东,12)在△ABC中,已知·=tan

A,当A=时,△ABC的面积为________.

(2)(2013·辽宁,17,12分)设向量a=(sin

x,sin

x),b=(cos

x,sin

x),x∈.①若|a|=|b|,求x的值;

②设函数f(x)=a·b,求f(x)的最大值.

【解析】(1)在△ABC中,·=||·|·cos

A=tan

A,∴||·||===.由三角形面积公式,得S=|AB|·|AC|sin

A=××=.(2)①由|a|2=(sin

x)2+(sin

x)2=4sin2x,|b|2=cos2x+sin2x=1,及|a|=|b|,得4sin2x=1.又x∈,∴sin

x=,∴x=.②f(x)=a·b=sin

x·cos

x+sin2x

=sin

2x-cos

2x+

=sin+,当x=∈时,sin取最大值1.∴f(x)的最大值为.【点拨】 解题(1)的关键是利用向量知识求出||·||的值;解题(2)时注意角x的取值范围.

向量与三角函数综合问题的特点与解题思路

(1)以向量为载体考查三角函数的综合应用题目,通过向量的坐标运算构建出三角函数,然后再考查有关三角函数的最值、单调性、周期性等三角函数性质问题,有时还加入参数,考查分类讨论的思想方法.

(2)对于三角函数求最值问题,大都有两种形式:一种是化成y=Asin(ωx+φ)或y=Acos(ωx+φ)的形式,另一种是化成y=asin2x+bsin

x+c或y=acos2x+bcos

x+c的形式.

(2015·安徽宣城模拟,17,12分)在△ABC中,角A,B,C的对边分别为a,b,c,若·=·=1.(1)判断△ABC的形状;

(2)求边长c的值;

(3)若|+|=2,求△ABC的面积.

解:(1)由·=·=1,得bc·cos

A=ac·cos

B,由正弦定理,即sin

Bcos

A=sin

Acos

B,∴sin(A-B)=0,∴A=B,即△ABC是等腰三角形.

(2)由·=1,得bc·cos

A=1,又bc·=1,则b2+c2-a2=2,又a=b,∴c2=2,即c=.(3)由|+|=2,得2+b2+2=8,∴b=2,又c=,∴cos

A=,sin

A=,∴S△ABC=bc·sin

A=×2××=.1.(2015·安徽铜陵质检,6)已知向量=(2,2),=(4,1),在x轴上存在一点P使·有最小值,则点P的坐标是()

A.(-3,0)

B.(2,0)

C.(3,0)

D.(4,0)

【答案】 C 设点P的坐标为(x,0),则=(x-2,-2),=(x-4,-1).

·=(x-2)(x-4)+(-2)×(-1)

=x2-6x+10=(x-3)2+1.当x=3时,·有最小值1.此时点P的坐标是(3,0).

2.(2015·湖北宜昌一模,6)已知△ABC的外接圆的圆心为O,半径为1,若3+4+5=0,则△AOC的面积为()

A.B.C.D.【答案】 A 由题设,得3+5=-4,即9+2×3×5·+25=16,∴cos∠AOC=-,∴sin∠AOC=,S△AOC=×1×1×=.3.(2015·辽宁大连质检,8)设F1,F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一条直线与椭圆交于P,Q两点,当四边形PF1QF2面积最大时,·的值等于()

A.0

B.2

C.4

D.-2

【答案】 D 由题意得c==,S四边形PF1QF2=2S△PF1F2=2××|F1F2|·h(h为F1F2边上的高),所以当h=b=1时,S四边形PF1QF2取最大值,此时∠F1PF2=120°,||=||=2.所以·=||

||cos

120°=2×2×=-2.4.(2014·湖南长沙二模,6)如图,在△ABC中,AD⊥AB,=,||=1,则·=()

A.2

B.C.-

D.【答案】 D 以A为原点,AB,AD分别为x轴,y轴建立平面直角坐标系,如图.

设B(xB,0),D(0,1),C(xC,yC),=(xC-xB,yC),=(-xB,1),∵=,∴xC-xB=-xB⇒xC=(1-)xB,yC=,=((1-)xB,),=(0,1),·=.5.(2014·河北石家庄一模,6)已知点G为△ABC的重心,∠A=120°,·=-2,则||的最小值是()

A.B.C.D.【答案】 C 设BC的中点为M,则=.又M为BC中点,∴=(+),∴==(+),∴||=.又∵·=-2,∠A=120°,∴||||=4.∴||=

≥=,当且仅当||=||时取“=”,∴||的最小值为,故选C.6.(2015·河南周口一模,14)已知点O为△ABC的外心,且||=4,||=2,则·=________.

【解析】 因为点O为△ABC的外心,且||=4,||=2,所以·=·(-)

=·-·

=||||cos〈,〉-||||·cos〈,〉

=||||×-||||×=6.【答案】 6

7.(2015·山东临沂质检,14)在直角梯形ABCD中,∠A=90°,∠B=30°,AB=2,BC=2,点E在线段CD上,若=+μ,则μ的取值范围是________.

【解析】 由余弦定理,得

AC2=AB2+BC2-2AB·BCcos

B

=(2)2+22-2×2×2cos

30°=4,∴AC=2,∴AC=BC=2,∴∠CAB=30°,∠DAC=60°.AD=1,∴AE∈[1,2],∵=+μ,∴||2=(+μ)2

=||2+|μ|2

=1+(2)2μ2=1+12μ2,∴μ2=,∵||∈[1,2],∴μ2∈,∴μ∈.【答案】

8.(2015·山西太原一模,14)设G是△ABC的重心,且sin

A·+3sin

B·+3sin

C·=0,则角B的大小为______________.

【解析】 ∵sin

A·+3sin

B·+3sin

C·=0,设三角形的边长顺次为a,b,c,由正弦定理得a·+3b·+3c·=0,由点G为△ABC的重心,根据中线的性质及向量加法法则得:

3=+,3=+,3=+,代入上式得:a(+)+3b(+)+3c(+)=0,又=+,上式可化为:

a(2+)+3b(+)+3c·(-+2)=0,即(2a-3b-3c)+(-a-3b+6c)=0,则有

①-②得3a=9c,即a∶c=3∶1,设a=3k,c=k,代入①得b=-k,∴cos

B===,∴B=.【答案】

9.(2014·江西五校联考,17,12分)已知向量m=,n=.(1)若m·n=1,求cos的值;

(2)记f(x)=m·n,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cos

B=bcos

C,求函数f(A)的取值范围.

解:m·n=sincos+cos2

=sin+×cos+

=sin+.(1)∵m·n=1,∴sin=,cos=1-2sin2=,cos=-cos=-.(2)∵(2a-c)cos

B=bcos

C,由正弦定理得(2sin

A-sin

C)·cos

B=sin

Bcos

C,∴2sin

Acos

B=sin

Ccos

B+sin

Bcos

C,∴2sin

Acos

B=sin(B+C).

∵A+B+C=π,∴sin(B+C)=sin

A,且sin

A≠0,∴cos

B=,B=.∴0

一、选择题(共10小题,每小题5分,共50分)

1.(2015·湖南株洲质检,4)已知向量a=(3,4),b=(sin

α,cos

α),且a∥b,则tan

α=()

A.B.-

C.D.-

【答案】 A 方法一:∵a∥b⇒a=λb,则(3,4)=λ(sin

α,cos

α),∴即tan

α=.方法二:∵a=(3,4),b=(sin

α,cos

α),且a∥b,∴3cos

α-4sin

α=0,即tan

α==.2.(2013·大纲全国,3)已知向量m=(λ+1,1),n=(λ+2,2),若(m+n)⊥(m-n),则λ=()

A.-4

B.-3

C.-2

D.-1

【答案】 B ∵m+n=(2λ+3,3),m-n=(-1,-1),由题意知(m+n)·(m-n)=0,即-(2λ+3)-3=0,因此λ=-3.故选B.3.(2015·浙江杭州二模,6)设A,B,C为直线l上不同的三点,O为直线l外一点.若p+q+r=0(p,q,r∈R),则p+q+r=()

A.-1

B.0

C.1

D.3

【答案】 B 由已知得=--,而A,B,C三点共线,所以-+=1,所以p+q+r=0.4.(2015·福建福州一模,6)如图,设向量=(3,1),=(1,3),若=λ+μ,且λ≥μ≥1,则用阴影表示C点所有可能的位置区域正确的是()

【答案】 D 设C(x,y).∵=λ+μ=λ(3,1)+μ(1,3)=(3λ+μ,λ+3μ),∴解得

∵λ≥μ≥1,∴故选D.5.(2015·黑龙江伊春质检,6)已知平面向量a,b满足|a|=3,|b|=2,a与b的夹角为120°,若(a+mb)⊥a,则实数m的值为()

A.1

B.C.2

D.3

【答案】 D ∵(a+mb)⊥a,∴(a+mb)·a=0,∴|a|2+m·|a|·|b|cos

120°=0,即9+m·3×2×=0,∴m=3.故选D.6.(2015·河南中原名校联考,4)已知不共线向量a,b,|a|=2,|b|=3,a·(b-a)=1,则|a-b|=()

A.B.2

C.D.【答案】 A 由a·(b-a)=1得a·b-a2=1,∴a·b=5.∴|a-b|2=a2-2a·b+b2=4-2×5+9=3,∴|a-b|=.故选A.7.(2013·广东,10)设a是已知的平面向量且a≠0.关于向量a的分解,有如下四个命题:

①给定向量b,总存在向量c,使a=b+c;

②给定向量b和c,总存在实数λ和μ,使a=λb+μc;

③给定单位向量b和正数μ,总存在单位向量c和实数λ,使a=λb+μc;

④给定正数λ和μ,总存在单位向量b和单位向量c,使a=λb+μ

c.上述命题中的向量b,c和a在同一个平面内且两两不共线,则真命题的个数是()

A.1

B.2

C.3

D.4

【答案】 B 对于①,因为a与b给定,所以a-b一定存在,可表示为c,即c=a-b,故a=b+c成立,①正确;对于②,因为b与c不共线,由平面向量基本定理可知②正确;对于③,以a的终点作长度为μ的圆,这个圆必须和向量λb有交点,这个不一定满足,故③错误;对于④,利用向量加法的三角形法则,结合三角形两边之和大于第三边,即必有|λb|+|μc|=λ+μ≥|a|,故④错,因此正确的有2个.故选B.8.(2015·山西晋中十校联考,6)已知O为原点,点A,B的坐标分别为(a,0),(0,a),其中常数a>0,点P在线段AB上,且有=t(0≤t≤1),则·的最大值为()

A.a

B.2a

C.3a

D.a2

【答案】 D ∵=t,∴=+=+t(-)

=(1-t)+t=(a-at,at),∴·=a2(1-t),∵0≤t≤1,∴0≤·≤a2.9.(2015·安徽安庆一模,6)已知点O为△ABC所在平面内一点,且2+2=2+2=2+2,则O一定为△ABC的()

A.外心

B.内心

C.垂心

D.重心

【答案】 C 由2+2=2+2,得2+(-)2=2+(-)2,∴·=·,∴·=0.∴O在边AB的高线上.

同理,O在边AC,BC的高线上,则O为△ABC的垂心.故选C.10.(2015·江西宜春一模,11)已知定义在区间(0,3)上的函数f(x)的图象如图所示,若a=(f(x),0),b=(cos

x,1),则不等式a·b<0的解集是()

A.(0,1)

B.(0,1]

C.(0,1)∪

D.(0,1]∪

【答案】 C ∵(0,3)上的函数f(x)的图象如图所示,a=(f(x),0),b=(cos

x,1)

∴当x∈(0,1)时,f(x)<0,cos

x>0;

当x∈时,cos

x≥0,f(x)≥0;

当x∈时,f(x)>0,cos

x<0,∴a·b=f(x)cos

x<0的解集是(0,1)∪.二、填空题(共4小题,每小题5分,共20分)

11.(2011·江苏,10)已知e1,e2

是夹角为的两个单位向量,a=e1-2e2,b=ke1+e2.若

a·b=0,则实数k的值为________.

【解析】 a·b=(e1-2e2)·(ke1+e2)

=ke+(1-2k)e1·e2-2e

=k+(1-2k)cos-2=0,解得k=.【答案】

12.(2015·山东烟台质检,14)△ABC的三内角A,B,C所对的边分别为a,b,c,设向量m=(3c-b,a-b),n=(3a+3b,c),m∥n,则cos

A=________.

【解析】 ∵m∥n,∴(3c-b)c=(a-b)(3a+3b),即bc=3(b2+c2-a2),∴=,∴cos

A==.【答案】

13.(2015·江西南昌一模,12)已知向量a=(1,1),b=(1,-1),c=(cos

α,sin

α)(α∈R),实数m,n满足ma+nb=c,则(m-3)2+n2的最大值为________.

【解析】 方法一:由ma+nb=c,可得

故(m+n)2+(m-n)2=2,即m2+n2=1,故点M(m,n)在以原点为圆心,1为半径的圆上,则点P(3,0)到点M的距离的最大值为|OP|+1=3+1=4,故(m-3)2+n2的最大值为42=16.方法二:∵ma+nb=c,∴(m+n,m-n)=(cos

α,sin

α)(α∈R).

∴m+n=cos

α,m-n=sin

α.∴m=sin,n=cos.∴(m-3)2+n2=m2+n2-6m+9

=10-6sin.∵sin∈[-1,1],∴(m-3)2+n2的最大值为16.【答案】 16

14.(2012·江苏,9)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若·=,则·的值是________.

【解析】 方法一:以A为原点,AB为x轴,AD为y轴建立平面直角坐标系,则A(0,0),B(,0),D(2,0),E(,1),设F(x,2),∴=(x,2),=(,0),∴·=x=,∴x=1,∴F(1,2),∴·=(,1)·(1-,2)=.方法二:·=||||cos∠BAF=,∴||cos∠BAF=1,即||=1,∴||=-1,·=(+)·(+)

=·+·+·+·

=·+·

=×(-1)×(-1)+1×2×1=.【答案】

三、解答题(共4小题,共50分)

15.(12分)(2015·山东德州一模,16)在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(cos(A-B),sin(A-B)),n=(cos

B,-sin

B),且m·n=-.(1)求sin

A的值;

(2)若a=4,b=5,求角B的大小及向量在方向上的投影.

解:(1)由m·n=-,得cos(A-B)cos

B-sin(A-B)sin

B=-,所以cos

A=-.因为0

A===.(2)由正弦定理,得=,则sin

B===,因为a>b,所以A>B,则B=,由余弦定理得

(4)2=52+c2-2×5c×,解得c=1,故向量在方向上的投影为

||cos

B=ccos

B=1×=.16.(12分)(2014·广东惠州三模,18)在△ABC中,AB边上的中线CO=2,若动点P满足=sin2θ·+cos2θ·(θ∈R),求(+)·的最小值.

解:因为=sin2θ·+cos2θ·,又因为sin2θ+cos2θ=1,所以C,P,O三点共线,且sin2θ,cos2θ∈[0,1],所以点P在线段OC上,故(+)·=2·,设||=t,t∈[0,2],则(+)·=2t(2-t)×cos

180°

=2t2-4t=2(t-1)2-2,所以当t=1时取最小值-2.17.(12分)(2015·重庆育才中学月考,17)在△ABC中,a,b,c分别为角A,B,C的对边,若m=,n=(-2,cos

2A+1),且m⊥n.(1)求角A的大小;

(2)当a=2,且△ABC的面积S=时,求边c的值和△ABC的面积.

解:(1)由于m⊥n,所以m·n=-2sin2+cos

2A+1

=1-2cos2+2cos2A-1

=2cos2A-cos

A-1

=(2cos

A+1)(cos

A-1)

=0.所以cos

A=-或cos

A=1(舍去),又A∈(0,π),故A=.(2)由S=及余弦定理得

=absin

C,整理得

tan

C=.又C∈(0,π),所以C=.由(1)知A=,故B=C=.又由正弦定理=得c=2,所以△ABC的面积S=acsin

B=.18.(14分)(2013·重庆二模,20)如图,A是单位圆与x轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),=+,四边形OAQP的面积为S.(1)求·+S的最大值及此时θ的值θ0;

(2)设点B的坐标为,∠AOB=α,在(1)的条件下求cos(α+θ0).

解:(1)由题意知A,P的坐标分别为(1,0),(cos

θ,sin

θ).

∵=+=(1,0)+(cos

θ,sin

θ)=(1+cos

θ,sin

θ),∴·=(1,0)·(1+cos

θ,sin

θ)

=1+cos

θ.由题意可知S=sin

θ.∴·+S=sin

θ+cos

θ+1

=sin+1(0<θ<π).

∴·+S的最大值是+1,此时θ0=.(2)∵B,∠AOB=α,∴cos

α=-,sin

α=.∴cos(α+θ0)=cos

=cos

αcos-sin

αsin

=-×-×=-.

高中数学平面向量练习 篇2

一、函数与方程的思想

在平面向量中, 如果涉及向量相等、向量的模及夹角之间的关系等问题时, 常常需要利用方程的思想, 建立方程 (组) 来解决;如果在向量中涉及与向量相关的最值及参数的取值范围等问题时, 常常需要建立某个变量的函数来解决。

例1已知向量, 求|a+b|的最大值。

分析:根据条件只须建立|a+b|关于变量θ的函数, 再利用三角函数的性质求得最大值。

点评:本题利用向量的模的求法, 建立|a+b|关于θ的函数, 再利用求三角函数最值的方法使问题获得解决。

二、分类讨论的思想

在平面向量中有时需要对向量的方向讨论;有时需要对向量夹角的大小讨论;有时在处理向量与几何图形时, 需要对涉及的边与角的大小及位置关系进行讨论。

例2已知平行四边形的三个顶点A (2, -3) , B (-2, 4) , C (-6, 1) , 求平行四边形的第四个顶点D的坐标。

分析:本题没有给出四边形的四个顶点的顺序, 所以应以AB、AC、BC为对角线分别求解。

解:设D点的坐标为 (x, y) 。

(1) 以AC为对角线, 即四边形为ABCD, 设AC与BD的交点为O, 由A (2, -3) , C (-6, 1) , 得O的坐标为 (-2, -1) , 又B, D的中点为O, 所以D点的坐标为 (-2, -6) 。

(2) 以AB为对角线的第四个顶点D的坐标为 (6, 0) 。

(3) 以BC为对角线的第四个顶点D的坐标为 (-10, 8) 。

点评: (1) 对于未画出图形的问题要注意顶点的不同位置情况。 (2) 本题若改为:“已知平行四边形ABCD的三个顶点A (2, -3) , B (-2, 4) , C (-6, 1) , 求第四个顶点D的坐标”, 则答案是D (-2, -6) 。

三、数形结合思想

向量是区别于数量的一种量, 它由大小和方向两个因素确定。研究的内容大都与图形有关, 所以向量是数形结合的典范。由于向量的加法、减法都是用几何法 (作图) 来定义的, 因此在向量中应用数形结合的思想一般利用三角形法则或平行四边形法, 则通过构造三角形, 解三角形获解。

例3已知a, b是两个非零向量, 且│a│=│b│=│a-b│, 求a与a+b的夹角。

分析:根据题设条件, 可构造以a与b为邻边的菱形, 运用菱形的性质及等边三角形的性质即可简便求解。

解:如图, 在平面内任取一点O, 作

∴OACB为菱形, OC平分∠AOB, 这时,

由于│a│=│b│=│a-b│, 即OA=OB=BA,

∴△AOB为正三角形, 即∠AOB=60°。故∠AOC=30°。

即a与a+b的夹角为30°。

高中数学平面向量练习 篇3

向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着丰富的实际背景.近40年来,国外课程内容发生较大的变化,而我国数学课程对一些现代数学内容却是拉锯式的进进出出,特别是向量的内容基本上很少涉及.由于向量具有的代数性质与几何性质,高中生感觉比较抽象,无法理解与掌握,只会解决一些基本的代数运算与变形,对具体的应用基本上束手无策.呈现出“重代数,轻背景;重运算,轻应用”的现象,所以如何帮助高中生掌握并学会应用向量,是摆在我们高中数学教师面前一个比较迫切的课题.基于这个观点,本文根据ACT-R理论中“精致练习”的方法,从建构主义学习理论和情境认知理论视角,结合具体的教学实践,来研究如何合理地进行向量教学的设计,让学生理解向量的知识结构,理解向量的性质,从而掌握向量,用好向量.

2.ACT-R理论

ACT-R(Adaptive Control of Thought-Rational)是一种认知体系结构的理论和计算模型,它是由美国人工智能专家和心理学家安德森(John R.Anderson)等人建立的理论,在国际心理学界可谓是独树一帜.其基本观点是:“复杂认识(complex cognition)是由相对简单的知识单元(knowledge uni‘ts)所组成的,而这些知识单元则是通过相对简单的原理(pfin—ciples)而获得的.”

ACT-R理论走的是一条“数学化”的道路:把复杂问题简单化,这种简单化的处理有利于揭示认知过程的本质特征.它提倡的是一种“精致练习(deliberate practice)”,而只有所谓的“精致的练习”才能导致真正的学习.“精致的练习”界定为具有良好的动机、接受有意义的反馈、及仔细的不断的指导与监督.这实际上是保证学习者的时问真正用于相应的学习任务上,而不是其它无关的活动上.

“精致练习”的概念对我国的“四基”教学来说是十分有意义的.实际上,我国传统教学在这方面有许多很好的经验,其中包括“变式训练”和“嵌入式训练”.实践表明,变式训练不仅可以提供多角度的理解,还可以提高练习的新鲜感和双基应用的灵活性;而嵌入式训练是指在学生初步掌握“四基”后,把它们结合到各种问题情境中去,也就是通常所说的“以实战代训练”.从ACT-R的角看,这有助于三种记忆信息:陈述性记忆、产生式和目标层级之间的联结.

3.具体教学案例

3.1理解与练习并重,聚焦典型例题

高中数学平面向量练习 篇4

1、向量有关概念:

(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A(1,2),B(4,2),则把向量AB按向量a=(-1,3)平移后得到的向量是_____(答:(3,0))

(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;

(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是AB);

|AB|

(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;

(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A、B、C共线AB、AC共线;

(6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。如下列命题:(1)若ab,则ab。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若ABDC,则ABCD是平行四边形。(4)若ABCD是平行四边形,则ABDC。(5)若ab,bc,则ac。(6)若a//b,b//c,则a//c。其中正确的是_______(答:(4)(5))

2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,等;(3)坐标表示法:在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量i,j为基底,则平面内的任一向量a可表示为axiyjx,y,称x,y为向量a的坐标,a=x,y叫做向量a的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

3.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数

1、2,使a=1e1+2e2。如(1)若a(1,1),b

13;(2)下列向量组中,能作为平面内所有向量基底的是 A.ab)2

213;(3)e1(0,0),e2(1,2)B.e1(1,2),e2(5,7)C.e1(3,5),e2(6,10)D.e1(2,3),e2(,)(答:B)2

424已知AD,BE分别是ABC的边BC,AC上的中线,且ADa,BEb,则BC可用向量a,b表示为_____ab);33(1,1),c(1,2),则c______(答:

(4)已知ABC中,点D在BC边上,且CD2DB,CDrABsAC,则rs的值是___(答:0)

4、实数与向量的积:实数与向量a的积是一个向量,记作a,它的长度和方向规定如下:1aa,2当>0时,a的方向与a的方向相同,当<0时,a的方向与a的方向相反,当=0时,a0,注意:a≠0。

5、平面向量的数量积:

(1)两个向量的夹角:对于非零向量,作OAa,OBb,AOB

0称为向量,的夹角,当=0时,同向,当=时,反向,当=2时,垂直。

(2)平面向量的数量积:如果两个非零向量a,b,它们的夹角为,我们把数量|a||b|cos叫做a与b的数量积(或内积或点积),记作:,即=abcos。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。如(1)△ABC中,|AB|3,|AC|4,|BC|5,则ABBC_________(答:-

9);(2)已知a(1,),b(0,),cakb,dab,c与d的夹角为12124,则

k等于____(答:1);(3)已知a2,b5,ab3,则ab等于____;(4)已知a,b是两个非零向量,且abab,则a与ab的夹角为____(答:30)

(3)b在a上的投影为|b|cos,它是一个实数,但不一定大于0。如已知|a|3,|b|5,且ab12,则向量a在向量b上的投影为______(答:



12)

5(4)的几何意义:数量积等于的模|a|与在上的投影的积。(5)向量数量积的性质:设两个非零向量,其夹角为,则: ①abab0;

②当,同向时,

=ab,特别地,aaaa,a;当与反向时,=-ab;当为锐角时,>0,且a、b不同向,ab0是为锐角的必要非充分条件;当为钝角时,<0,且a、b不反向,ab0是为钝角的必要非充分条件;

③非零向量,夹角的计算公式:cos

22abab

;④|ab||a||b|。如(1)已知a(,2),b(3,2),

如果a与b的夹角为锐角,则的取值范围是______(答:



41或0且);(2)已知OFQ的面积为S,3

3

13

且OFFQ1,若S,则OF,FQ夹角的取值范围是_________(答:(,));(3)已知

432

2a(cosx,sixnb),与b之间有关系式kabkb,其中k0,①用k表示ab;②求ab的最(cyos,ysain

1k21

(k0);②最小值为,60)小值,并求此时a与b的夹角的大小(答:①ab4k26、向量的运算:(1)几何运算:

①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加

法还可利用“三角形法则”:设ABa,BCb,那么向量AC叫做a与b的和,即abABBCAC;

②向量的减法:用“三角形法则”:设ABa,ACb,那么abABACCA,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。如(1)化简:①ABBCCD___;②ABADDC____

;③(ABCD)(ACBD)_____(答:①AD;②CB;③0);(2)若正方形ABCD的边长为1,;(3)若O是ABC所在平面内一点,且满足ABa,BCb,ACc,则|abc|=_____(答:)

ABCOBOCOBOC2OA,则ABC的形状为____(答:直角三角形);(4)若D为ABC的边BC的中点,|AP|

;(5)若点O是△ABC的外,则的值为___(答:2)

|PD|

心,且OAOBCO0,则△ABC的内角C为____(答:120);

(2)坐标运算:设a(x1,y1),b(x2,y2),则:

所在平面内有一点P,满足PABPCP0,设

①向量的加减法运算:ab(x1x2,y1y2)。如(1)已知点A(2,3),B(5,4),C(7,10),若

1;(2)已知APABAC(R),则当=____时,点P在第一、三象限的角平分线上(答:)21

;(3)已知作用在点A(1,1)A(2,3),B(1,4),且AB(sinx,cosy),x,y(,),则xy或)22226的三个力F1(3,4),F2(2,5),F3(3,1),则合力FF1F2F3的终点坐标是(答:(9,1))

②实数与向量的积:ax1,y1x1,y1。

③若A(x1,y1),B(x2,y2),则ABx2x1,y2y1,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。如设A(2,3),B(1,5),且AC

AB,AD3AB,则C、D的坐标分别是__________(答:

3(1,1

1;),(7,9))

④平面向量数量积:abx1x2y1y2。如已知向量a=(sinx,cosx), b=(sinx,sinx), c=(-1,0)。(1)

311,],求向量、的夹角;(2)若x∈[函数f(x)的最大值为,求的值(答:(1)150;(2)842

2或1);

若x=

⑤向量的模

:|a|_____;

⑥两点间的距离:若Ax

1,y1,Bx2y,a|a|2x2y2。如已知

a,b均为单位向量,它们的夹角为60,那么|a3b|=

,则|AB|如如图,在平面斜坐标系xOy中,xOy60,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若OPxe1ye2,其中

(1)若点P的斜坐标为(2,e1,e2分别为与x轴、y轴同方向的单位向量,则P点斜坐标为(x,y)。-2),求P到O的距离|PO|;(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程。(答:(1)2;(2)x2y2xy10);



baab律:abca,bcac,bcabab;(3)分配律:

aaa,abab,abcacbc。如下列命题中:① a(bc)abac;②

7、向量的运算律:(1)交换律:abba,aa,abba;(2)结合





a(bc)(ab)c;③(ab)|a|

2





2|a||b||b|;④ 若ab0,则a0或b0;⑤若abcb,则ac;⑥aa;⑦

aba

ba;

⑧(ab)2ab;⑨(ab)2a2abb。其中正确的是______(答:①⑥⑨)提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()(),为什么?

8、向量平行(共线)的充要条件:a//bab(ab)2(|a||b|)2x1y2y1x2=0。如(1)若向量

ua2b,v2ab,当x=_____时a与b共线且方向相同(答:2);(2)已知a(1,1),b(4,x),a(x,1),b(4,x),且u//v,则x=______(答:4);(3)设PA(k,12),PB(4,5),PC(10,k),则k=_____时,A,B,C共线(答:-2或11)

9、向量垂直的充要条件:abab0|ab||ab|

x1x2y1y20.特别地

(ABAB

ACAC)(ABAB

AC

3;(2))。如(1)已知OA(1,2),OB(3,m),若OAOB,则m)2AC

以原点O和A(4,2)为两个顶点作等腰直角三角形OAB,B90,则点B的坐标是________(答:(1,3)或(3,-1));(3)已知n(a,b),向量nm,且nm,则m的坐标是________(答:(b,a)或(b,a))

10.线段的定比分点:

(1)定比分点的概念:设点P是直线P1P2上异于P1、P2的任意一点,若存在一个实数,使PPPP2,则

1叫做点P分有向线段PP的定比分点; 12所成的比,P点叫做有向线段PP12的以定比为

(2)的符号与分点P的位置之间的关系:当P点在线段 P1P2上时>0;当P点在线段 P1P2的延长线上,则点P分有时<-1;当P点在线段P2P1的延长线上时1

0;若点P分有向线段PP12所成的比为

向线段P2P1所成的比为

。如若点P分AB所成的比为

37,则A分BP所成的比为_______(答:)

43x

,(3)线段的定比分点公式:设P则x1,y1)、P2(x2,y2),P(x,y)分有向线段PP1(12所成的比为

y

x1x

21,y1y21

x1x2x2特别地,当=1时,就得到线段P1P2的中点公式。在使用定比分点的坐标公式时,应明确(x,y),yy1y22(x1,y1)、(x2,y2)的意义,即分别为分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分

1

点和终点,并根据这些点确定对应的定比。如(1)若M(-3,-2),N(6,-1),且MPMN,则点P的坐标为

1_______(答:(6,));(2)已知A(a,0),B(3,2a),直线yax与线段AB交于M,且AM2MB,则a等于

32_______(答:2或-4)

xxh

11.平移公式:如果点P(x,y)按向量ah,k平移至P(x,y),则;曲线f(x,y)0按向量ah,k

kyy

平移得曲线f(xh,yk)0.注意:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不

变性,可别忘了啊!如(1)按向量a把(2,3)平移到(1,2),则按向量a把点(7,2)平移到点______(答:(-8,(3));(2)函数ysin2x的图象按向量a平移后,所得函数的解析式是ycos2x1,则a=________(答:

12、向量中一些常用的结论:

(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;

(2)||a||b|||ab||a||b|,特别地,当a、b同向或有0|ab||a||b|



,1))

;当a、b反向或有0|ab||a b不共线||a||b|||ab|;当a、|b||a||b||a||b).|a||b||a||ba||(这些和实数比较类似b

xx2x3y1y2y3

(3)在ABC中,①若Ax1,y1,Bx2,y2,Cx3,y3,则其重心的坐标为G1,。如

33若⊿ABC的三边的中点分别为(2,1)、(-3,4)、(-1,-1),则⊿ABC的重心的坐标为_______(答:(

4,)); 3

3②PG(PAPBPC)G为ABC的重心,特别地PAPBPC0P为ABC的重心;

③PAPBPBPCPCPAP为ABC的垂心;

④向量(ABAC)(0)所在直线过ABC的内心(是BAC的角平分线所在直线);

|AB||AC|

⑤|AB|PC|BC|PA|CA|PB0PABC的内心;

,点M为平面内的任一点,则MPMP1MP2,特别地P为PP(3)若P分有向线段PP12的中12所成的比为

1

1MP2; 点MPMP

2(4)向量PA、PB、PC中三终点A、B、C共线存在实数、使得PAPBPC且1.如平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(1,3),若点C满足OC



1OA2OB,其中1,2R且



高中数学平面向量练习 篇5

【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a。2.向量的模:向量的大小(或长度,记作:||AB 或||a。3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。

4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量:方向相同或相反的向量。6.相等向量:长度和方向都相同的向量。

7.相反向量:长度相等,方向相反的向量。AB BA =-。8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB-=(指向被减数 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b-。

10.共线定理://a b a b λ=⇔。当0λ>时,a b 与同向;当0λ<时,a b 与反向。11.基底:任意不共线的两个向量称为一组基底。

12.向量的模:若(,a x y =,则2||a x y =+22||a a =,2||(a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ⋅=⋅;cos ||||a b a b θ⋅=⋅

14.平行与垂直:1221//a b a b x y x y λ⇔=⇔=;121200a b a b x x y y ⊥⇔⋅=⇔+=

题型1.基本概念判断正误:(1共线向量就是在同一条直线上的向量。

(2若两个向量不相等,则它们的终点不可能是同一点。(3与已知向量共线的单位向量是唯一的。

(4四边形ABCD 是平行四边形的条件是AB CD =。(5若AB CD =,则A、B、C、D 四点构成平行四边形。(6因为向量就是有向线段,所以数轴是向量。(7若a 与b 共线, b 与c 共线,则a 与c 共线。(8若ma mb =,则a b =。(9若ma na =,则m n =。

(10若a 与b 不共线,则a 与b 都不是零向量。(11若||||a b a b ⋅=⋅,则//a b。(12若||||a b a b +=-,则a b ⊥。题型2.向量的加减运算

1.设a 表示“向东走8km ”, b 表示“向北走6km ”,则||a b +=。2.化简((AB MB BO BC OM ++++=。

3.已知||5OA =,||3OB =,则||AB 的最大值和最小值分别为、。4.已知AC AB AD 为与的和向量,且,AC a BD b ==,则AB = ,AD =。5.已知点C 在线段AB 上,且3

5AC AB =,则AC = BC ,AB = BC。题型3.向量的数乘运算

1.计算:(13(2(a b a b +-+=(22(2533(232a b c a b c +---+-= 2.已知(1,4,(3,8a b =-=-,则1 32a b-=。

题型4.作图法球向量的和

已知向量,a b ,如下图,请做出向量132a b +和3 22a b-。a b 题型5.根据图形由已知向量求未知向量

1.已知在ABC ∆中,D 是BC 的中点,请用向量AB AC ,表示AD。2.在平行四边形ABCD 中,已知,AC a BD b ==,求AB AD 和。题型6.向量的坐标运算

1.已知(4,5AB =,(2,3A ,则点B 的坐标是。2.已知(3,5PQ =--,(3,7P ,则点Q 的坐标是。

3.若物体受三个力1(1,2F =,2(2,3F =-,3(1,4F =--,则合力的坐标为。4.已知(3,4a =-,(5,2b =,求a b +,a b-,32a b-。

5.已知(1,2,(3,2A B ,向量(2,32a x x y =+--与AB 相等,求,x y 的值。6.已知(2,3AB =,(,BC m n =,(1,4CD =-,则DA =。

7.已知O 是坐标原点,(2,1,(4,8A B--,且30AB BC +=,求OC 的坐标。题型7.判断两个向量能否作为一组基底

1.已知12,e e 是平面内的一组基底,判断下列每组向量是否能构成一组基底: A.1212e e e e +-和 B.1221326e e e e--和4 C.122133e e e e +-和 D.221e e e-和

2.已知(3,4a =,能与a 构成基底的是(A.34(,55 B.43(,55 C.34(,55--D.4(1,3--题型8.结合三角函数求向量坐标

1.已知O 是坐标原点,点A 在第二象限,||2OA =,150xOA ∠=,求OA 的坐标。2.已知O 是原点,点A 在第一象限,||43OA =60xOA ∠=,求OA 的坐标。题型9.求数量积

1.已知||3,||4a b ==,且a 与b 的夹角为60,求(1a b ⋅,(2(a a b ⋅+,(31(2 a b b-⋅,(4(2(3a b a b-⋅+。2.已知(2,6,(8,10a b =-=-,求(1||,||a b ,(2a b ⋅,(3(2a a b ⋅+,(4(2(3a b a b-⋅+。题型10.求向量的夹角

1.已知||8,||3a b ==,12a b ⋅=,求a 与b 的夹角。

2.已知(3,1,(23,2a b ==-,求a 与b 的夹角。3.已知(1,0A ,(0,1B ,(2,5C ,求cos BAC ∠。题型11.求向量的模

1.已知||3,||4a b ==,且a 与b 的夹角为60,求(1||a b +,(2|23|a b-。2.已知(2,6,(8,10a b =-=-,求(1||,||a b ,(5||a b +,(61 ||2a b-。

3.已知||1||2a b ==,|32|3a b-=,求|3|a b +。题型12.求单位向量 【与a平行的单位向量:||a e a =±】

1.与(12,5a =平行的单位向量是。2.与1(1,2m =-平行的单位向量是。题型13.向量的平行与垂直 1.已知(6,2a =,(3,b m =-,当m 为何值时,(1//a b ?(2a b ⊥? 2.已知(1,2a =,(3,2b =-,(1k 为何值时,向量ka b +与3a b-垂直?(2k 为何值时,向量ka b +与3a b-平行? 3.已知a 是非零向量,a b a c ⋅=⋅,且b c ≠,求证:(a b c ⊥-。题型14.三点共线问题

1.已知(0,2A-,(2,2B ,(3,4C ,求证:,A B C 三点共线。

2.设2(5,28,3(2AB a b BC a b CD a b =+=-+=-,求证:A B D、、三点共线。

3.已知2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的三点是。4.已知(1,3A-,(8,1B-,若点(21,2C a a-+在直线AB 上,求a 的值。

5.已知四个点的坐标(0,0O ,(3,4A ,(1,2B-,(1,1C ,是否存在常数t ,使O A t O B O C +=成立? 题型15.判断多边形的形状

1.若3AB e =,5CD e =-,且||||AD BC =,则四边形的形状是。2.已知(1,0A ,(4,3B ,(2,4C ,(0,2D ,证明四边形ABCD 是梯形。3.已知(2,1A-,(6,3B-,(0,5C ,求证:ABC ∆是直角三角形。

4.在平面直角坐标系内,(1,8,(4,1,(1,3OA OB OC =-=-=,求证:ABC ∆是等腰直角三角形。

题型16.平面向量的综合应用

1.已知(1,0a =,(2,1b =,当k 为何值时,向量ka b-与3a b +平行? 2.已知(3,5a =,且a b ⊥,||2b =,求b 的坐标。3.已知a b 与同向,(1,2b =,则10a b ⋅=,求a 的坐标。3.已知(1,2a =,(3,1b =,(5,4c =,则c = a + b。

4.已知(5,10a =,(3,4b =--,(5,0c =,请将用向量,a b 表示向量c。5.已知(,3a m =,(2,1b =-,(1若a 与b 的夹角为钝角,求m 的范围;(2若a 与b 的夹角为锐角,求m 的范围。6.已知(6,2a =,(3,b m =-,当m 为何值时,(1a 与b 的夹角为钝角?(2a 与b 的夹角为锐角?

7.已知梯形ABCD 的顶点坐标分别为(1,2A-,(3,4B ,(2,1D ,且//AB DC ,2AB CD =,求点C 的坐标。

8.已知平行四边形 ABCD 的三个顶点的坐标分别为 A(2,1,B(1,3,C(3, 4,求第四个顶点 D 的坐标。9.一航船以 5km/h 的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成 30 角,求 水流速度与船的实际速度。10.已知 ABC 三个顶点的坐标分别为 A(3, 4,B(0, 0,C(c, 0,(1)若 AB  AC  0,求 c 的值;(2)若 c  5,求 sin A 的值。【备用】 1.已知 | a | 3,| b | 4,| a  b | 5,求 | a  b | 和向量 a, b 的夹角。2.已知 x  a  b,y  2a  b,且 | a || b | 1,a  b,求 x, y 的夹角的余弦。1.已知 a (1,3, b (2, 1,则(3a  2b (2a  5b 。4.已知两向量 a (3, 4, b (2, 1,求当 a  xb与a  b 垂直时的 x 的值。5.已知两向量 a (1,3, b (2, ,a与b 的夹角  为锐角,求  的范围。变式:若 a (, 2, b (3,5,a与b 的夹角  为钝角,求  的取值范围。选择、填空题的特殊方法: 1.代入验证法 例:已知向量 a (1,1, b (1, 1, c (1, ,则2 c (1 3 A. a  b 2 2 1 3 B. a  b 2 2 3 1 C.a  b 2 2 3 1 D. a  b 2 2)变式:已知 a (1, 2, b (1,3, c (1, 2,请用 a, b 表示 c。2.排除法 例:已知 M 是 ABC 的重心,则下列向量与 AB 共线的是(A.AM  MB  BC B.3 AM  AC C.AB  BC  AC)D.AM  BM  CM 6

广东省近八年高考试题-平面向量(理科)1.(2007年高考广东卷第10小题 若向量 a、b 满足| a |=| b |=1,a 与 b 的夹角为 120,则 a a  a b  2.(2008 年高考广东卷第 3 小题 3.已知平面向量 a =(1,2),b =(-2,m),且 a ∥b,则 2 a + 3 b =(A.(-5,-10)B.(-4,-8)4.(2009 年高考广东卷第 3 小题(x,1),b= 已知平面向量 a=,则向量 a  b =((-x, x 2).)C.(-3,-6)D.(-2,-4))A平行于 x 轴 C.平行于 y 轴 B.平行于第一、三象限的角平分线 D.平行于第二、四象限的角平分线       c =(3,x满足条件(8 a - b · c =30,b= 5.(2010 年高考广东卷第 5 小题若向量 a =(1,1),(2,5),则x=(A.6 B.5 C.4 D.3 6.(2011 年高考广东卷第 3 小题已知向量 a (1, 2, b

(1,0, c (3, 4 .若  为实数,(a  b / / c, 则 (B.1 2 A. 1 4 C.1 D.2 7.(2012 年高考广东卷第 3 小题 8.若向量 BA (2,3,CA (4,7,则 BC (A.(2, 4 B.(3, 4 C.(6,10)D.(6, 10 9.(2012 年高考广东卷第 8 小题对任意两个非零的平面向量  , ,定义

    .若平面

    n 向量 a, b 满足 a  b  0,a 与 b 的夹角    0, ,且

 和

 都在集合 | n  Z 中,则

高中数学平面向量练习 篇6

教材分析

两个向量的数量积是中学代数以往内容中从未遇到过的一种新的乘法,它区别于数的乘法.这篇案例从学生熟知的功的概念出发,引出平面向量数量积的概念和性质及其几何意义,介绍向量数量积的运算律及坐标表示.向量的数量积把向量的长度和三角函数联系在一起,这为解决三角形的有关问题提供了方便,特别是能有效解决线段的垂直等问题.这节内容是整个向量部分的重要内容之一,对它的理解与掌握将直接影响向量其他内容的学习.这节内容的教学难点是对平面向量数量积的定义及运算律的理解和对平面向量数量积的应用.

教学目标

1.理解并掌握平面向量的数量积、几何意义和数量积的坐标表示,会初步使用平面向量的数量积来处理有关长度、角度和垂直的问题,掌握向量垂直的条件.

2.通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维习惯.

任务分析

两个向量的数量积从形式和实质上都与数的乘法有区别,这就给理解和掌握这个概念带来了一些困难.在学习时,要充分让学生理解、明白两个向量的数量积是一个数量,而不是向量.两个向量的数量积的值是这两个向量的模与两个向量夹角余弦的乘积,其符号由夹角余弦值的正负而确定.

两向量的数量积“a·b”不同于两实数之积“ab”.

通过实例理解a·b=b·c与a=c的关系,a·b=0与a=0或b=0的关系,以及(a·b)c=a(b·c)与(ab)c=a(bc)的不同.

教学设计

一、问题情景

如图40-1所示,一个力f作用于一个物体,使该物体发生了位移s,如何计算这个力所做的功.由于图示的力f的方向与前进方向有一个夹角θ,真正使物体前进的力是f在物体前进方向上的分力,这个分力与物体位移的乘积才是力f做的功.即力f使物体位移x所做的功W可用下式计算.

W=|s||f|cosθ.

其中|f|cosθ就是f在物体前进方向上的分量,也就是力f在物体前进方向上正射影的数量.

问题:像功这样的数量值,它由力和位移两个向量来确定.我们能否从中得到启发,把“功”看成这两个向量的一种运算的结果呢?

二、建立模型

1.引导学生从“功”的模型中得到如下概念:

已知两个非零向量a与b,把数量|a||b|cosθ叫a与b的数量积(内积),记作a·b=|a||b|cosθ.其中θ是a与b夹角,|a|cosθ(|b|cosθ)叫a在b方向上(b在a方向上)的投影.

规定0与任一向量的数量积为0.

由上述定义可知,两个向量a与b的数量积是一个实数.

说明:向量a与b的夹角θ是指把a,b起点平移到一起所成的夹角,其中0≤θ≤π.当θ=时,称a和b垂直,记作a⊥b.为方便起见,a与b的夹角记作〈a,b〉. 2.引导学生思考讨论

根据向量数量积的定义,可以得出

(1)设e是单位向量,a·e=|a|cos〈a,e〉.(2)设a·b是非零向量,则a⊥b(3)a·a=|a|2,于是|a|=

a·b=0.

.(4)cos〈a,b〉=.(5)|a·b|≤|a||b|(这与实数|ab|=|a||b|不同).

三、解释应用 [例 题]

已知|a|=5,|b|=4,〈a,b〉=120°,求a·b. 解:a·b=|a||b|cos〈a,b〉=5×4×cos120°=-10. [练习]

1.已知|a|=3,b在a上的投影为-2,求:(1)a·b.

(2)a在b上的投影.

2.已知:在△ABC中,a=5,b=8,c=60°,求

四、建立向量数量积的运算律

·.

1.出示问题:从数学的角度考虑,我们希望向量的数量积运算,也能像数量乘法那样满足某些运算律,这样数量积运算才更富有意义.回忆实数的运算律,你能类比和归纳出向量数量积的一些运算律吗?它们成立吗?为什么?

2.运算律及其推导

已知:向量a,b,c和λ∈R,则(1)a·b=b·a(交换律). 证明:左=|a||b|cosθ=右.

(2)(λa)·b=λ(a·b)=a·(λb)(数乘结合律). 证明:设a,b夹角为θ,当λ>0时,λa与b的夹角为θ,∴(λa)·b=(λa)·|b|cosθ=λ|a||b|cosθ=λ(a·b); 当λ<0时,λa与b的夹角为(π-θ),∴(λa)·b=|λa||b|cos(π-θ)=-λ|a||b|(-cosθ)=λ|a||b|cosθ=λ(a·b);

当λ=0时,(λa)·b=0·b=0=λ(a·b). 总之,(λa)·b=λ(a·b); 同理a·(λb)=λ(a·b).(3)(a+b)·c=a·c+b·c(乘法对加法的分配律).

证明:如图40-2,任取一点O,作=a,=b,=c.

∵a+b(即)在c方向上的投影等于a,b在c方向上的投影的和,即

|a+b|cosθ=|a|cosθ1+|b|cosθ2,∴|c||a+b|cosθ=|c|(|a|cosθ1+|b|cosθ2)= |c||a|cosθ1+|c||b|cosθ2=c·a+c·b,∴(a+b)·c=a·c+b·c.

思考:(1)向量的数量积满足结合律,即(a·b)c=a(b·c)吗?(2)向量的数量积满足消去律,即如果a·b=c·b,那么a=c吗?

五、应用与深化 [例 题]

1.对实数a,b,有(a+b)=a+2ab+b,(a+b)(a-b)=a-b.类似地,对任意向量a,b,也有类似结论吗?为什么?

解:类比完全平方和公式与平方差公式,有

(a+b)2=a2+2a·b+b2,(a+b)·(a-b)=a2-b2. 其证明是:(a+b)=(a+b)·(a+b)= a·a+a·b+b·a+b·b= a2+2a·b+b2,2

2(a+b)·(a-b)=a·a-a·b+b·a-b·b= a2-b2. ∴有类似结论.

2.已知|a|=6,|b|=4,〈a,b〉=60°,求(a+2b)·(a-3b). 解:(a+2b)·(a-3b)= a2-3a·b+2b·a-6b2=

|a|-|a||b|cos60°-6|b|=-72.

3.已知|a|=3,|b|=4,且a与b不共线.当k为何值时,(a+kb)⊥(a-kb)? 解:(a+kb)⊥(a-kb),即(a+kb)·(a-kb)=0,即a2-k2b2=0,即9-k2×16=0,k=±. 2

2因此,当k=±时,有(a+kb)⊥(a-kb).

4.已知:正方形ABCD的边长为1,并且=a,=b,=c,求|a+b+c|.

解法1:∵a+b+c=++=2,∴|a+b+c|=2=2.

解法2:|a+b+c|2=(a+b+c)2=a2+b2+c2+2a·b+2a·c+2b·c=1+1+2+2×1×1×cos90°+2×1×

[练习]

1.|a|=4,|b|=3,(2a-3b)·(2a+b)=61,求a与b的夹角θ.

×

+2×1×

×

=8,∴|a+b+c|=2

2.在边长为2的正三角形ABC中,求

六、拓展延伸

·+·+·.

1.当向量a,b的夹角为锐角时,你能说明a·b的几何意义吗? 如图40-3,a·b,即以b在a上射影的长和a的长为两邻边的矩形面积(OA=OA1).

2.平行四边形是表示向量加法与减法的几何模型,如图40-4,=-

=+,.试说明平行四边形对角线的长度与两条邻边长度之间的关系.

3.三个单位向量a,b,c有相同终点且a+b+c=0,问:它们的起点连成怎样的三角形?

解法1:如图40-5,∵|a|=|b|=|c|=1,a+b+c=0,∴a+b=-c,∴(a+b)=(-c)2,2∴a2+b2+2a·b=c2,∴2|a|·|b|cos∠AOC=-1,cos∠AOC=,∠AOC=120°. 同理∠BOC=∠AOC=120°,故△AOB,△BOC,△BOC全等,∴AB=AC=BC,即该△ABC为等边三角形.

解法2:如图40-6,.

=c,=-a,=-b,由a+b+c=0,即=+

∵|a|=|b|=1,∴OADB为菱形.

又||=1,∴∠AOB=120°.

同理∠AOC=∠BOC=120°,…

4.在△ABC中,·=·=·,问:O点在△ABC的什么位置?

解:由同理⊥·,=⊥

·,即·(-)=0,即·=0,∴⊥,.故O是△ABC的垂心.

两角和与差的余弦

教材分析

这节内容是在掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进一步研究用单角的三角函数表示的两角和与差的三角函数.这些内容在高等数学、电功学、力学、机械设计与制造等方面有着广泛的应用,因此要求学生切实学好,并能熟练的应用,以便为今后的学习打下良好的基础. “两角差的余弦公式”在教科书中采用了一种易于教学的推导方法,即先借助于单位圆中的三角函数线,推出α,β,α-β均为锐角时成立.对于α,β为任意角的情况,教材运用向量的知识进行了探究.同时,补充了用向量的方法推导过程中的不严谨之处,这样,两角差的余弦公式便具有了一般性.

这节课的重点是两角差的余弦公式的推导,难点是把公式中的α,β角推广到任意角.

教学目标

1.通过对两角差的余弦公式的探究过程,培养学生通过交流,探索,发现和获得新知识的能力.

2.通过两角差的余弦公式的推导,体会知识的发生、发展的过程和初步的应用过程,培养学生科学的思维方法和勇于探索的科学精神.

3.能正确运用两角差的余弦公式进行简单的三角函数式的化简、求值和恒等式证明.

任务分析

这节内容以问题情景中的问题作为教学的出发点,利用单位圆中的三角函数线和平面向量的数量积的概念推导出结论,并不断补充推导过程中的不严谨之处.推导过程采用了从特殊到一般逐层递进的思维方法,学生易于接受.整个过程始终结合单位圆,以强调其直观性.对于公式中的α和β角要强调其任意性.数学中要注意运用启发式,切忌把结果直接告诉学生,尽量让学生通过观察、思考和探索,自己发现公式,使学生充分体会到成功的喜悦,进一步激发学生的学习兴趣,调动他们学习的积极性,从而使其自觉主动地学习.

教学过程

一、问题情景

我们已经学过诱导公式,如

可以这样来认识以上公式:把角α转动,则所得角α+的正弦、余弦分别等于cosα和-sinα.把角α转动π,则所得角α+π的正弦、余弦分别等于-sinα和-cosα. 由此,使我们想到一个一般性的问题:如果把角α的终边转动β(度或弧度),那么所得角α+β的正弦、余弦如何用α或β的正弦、余弦来表示呢? 出示一个实际问题:

右图41-1是架在小河边的一座吊桥的示意图.吊桥长AB=a(m),A是支点,在河的左岸.点C在河的右岸,地势比A点高.AD表示水平线,∠DAC=α,α为定值.∠CAB=β,β随吊桥的起降而变化.在吊桥起降的过程中,如何确定点B离开水平线AD的高度BE?

由图可知BE=asin(α+β).

我们的问题是:如何用α和β的三角函数来表示sin(α+β).如果α+β为锐角,你能由α,β的正弦、余弦求出sin(α+β)吗?

引导学生分析:事实上,我们在研究三角函数的变形或计算时,经常提出这样的问题:能否用α,β的三角函数去表示α±β的三角函数?为了解决这类问题,本节首先来探索α-β的余弦与α,β的函数关系式.

更一般地说,对于任意角α,β,能不能用α,β的三角函数值把α+β或α-β的三角函数值表示出来呢?

二、建立模型 1.探 究

(1)猜想:cos(α-β)=cosα-cosβ.(2)引导学生通过特例否定这一猜想.

例如,α=60°,β=30°,可以发现,左边=cos(60°-30°)=cos30°=-cos30°=-,右边=cos60°.显然,对任意角α,β,cos(α-β)=cosα-cosβ不成立.

(3)再引导学生从道理上否定这一猜想.

不妨设α,β,α-β均为锐角,则α-β<α,则cos(α-β)>cosα.又cosβ>0,所以cos(α-β)>cosα-cosβ. 2.分析讨论

(1)如何把α,β,α-β角的三角函数值之间建立起关系?要获得相应的表达式需要哪些已学过的知识?

(2)由三角函数线的定义可知,这些角的三角函数值都与单位圆中的某些有向线段有关系,那么,这些有向线段之间是否有关系呢?

3.教师明晰

通过学生的讨论,教师引导学生作出以下推理:

设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.

过点P作PM⊥x轴,垂足为M,那么,OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.

过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是

OM=OB+BM=OB+CP=OAcosα+APsinα= cosβcosα+sinβsinα. 4.提出问题,组织学生讨论

(1)当α,β,α-β为任意角时,上述推导过程还能成立吗?

若要说明此结果是否对任意角α,β都成立,还要做不少推广工作,可引导学生独立思考.

事实上,根据诱导公式,总可以把α,β的三角函数化为(0,)内的三角函数,再根据cos(-β)=cosβ,把α-β的余弦,化为锐角的余弦.因此,三、解释应用

[例 题]

1.求cos15°及cos105°的值.

分析:本题关键是将15°角分成45°与30°的差或者分解成60°与45°的差,再利用两角差的余弦公式即可求解.对于cos105°,可进行类似地处理,cos105°=cos(60°+45°).

2.已知sinα=的值.,α∈(,π),cosβ=-,且β是第三象限的角,求cos(α+β)分析:观察公式Cα+β与本题已知条件应先计算出cosα,cosβ,再代入公式求值.求cosα,cosβ的值可借助于同角三角函数的平方关系,并注意α,β的取值范围来求解.

[练习]

1.(1)求sin75°的值.

(2)求cos75°cos105°+sin75°sin105°的值.(3)化简cos(A+B)cosB+sin(A+B)sinB.(4)求cos215°-sin215°的值.

分析:对于(1),可先用诱导公式化sin75°为cos15°,再用例题1中的结果即可.对于(2),逆向使用公式Cα-β,即可将原式化为cos30°.对于(3),可以把A+B角看成一个整体,去替换Cα-β中的α角,用B角替换β角.

2.(1)求证:cos(-α)=sinα.

(2)已知sinθ=,且θ为第二象限角,求cos(θ-)的值.

(3)已知sin(30°+α)=,60°<α<150°,求cosα.

分析:(1)和(差)公式可看成诱导公式的推广,诱导公式是和(差)公式的特例.(2)在三角函数求值问题中,变角是一种常用的技巧,α=(30°+α)-30°,这样可充分利用题中已知的三角函数值.

3.化简cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°).

分析:这里可以把角36°+α与α-54°均看成单角,进而直接运用公式Cα-β,不必将各式展开后再计算.

分析:本题是一道综合题,由于cos(α-β)=cosαcosβ+sinαsinβ,欲求cos(α-β)的值,只须将已知两式平方相加求出cosαcosβ+sinαsinβ即可.

四、拓展延伸

1.由任意角三角函数定义,可知角α,β的终边与单位圆交点的坐标均可用α,β的三角函数表示,即α-β角与导公式Cα-β呢?

教师引导学生分析:在平面直角坐标系xOy内作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则由向量数量积的概念,有

=(cosα,sinα),=(cosβ,sinβ).,两向量的夹角有关,那么能否用向量的有关知识来推·=||||cos(α-β)=cos(α-β).

由向量的数量积的坐标表示,有

·=cosαcosβ+sinαsinβ.

于是,有

cos(α-β)=cosαcosβ+sinαsinβ.

依据向量数量积的概念,角α-β必须符合0≤α-β≤π,即在此条件下,以上推导才是正确的.

由于α,β都是任意角,α-β也是任意角,因此,须研究α-β为任意角时,以上推导是否正确.

当α-β为任意角时,由诱导公式总可以找到一个角θ,θ∈[0,2π),使cosθ=cos(α-β).

若θ∈[0,π],则·=cosθ=cos(α-β);

若θ∈[π,2π],则2π-θ∈[0,π],且 ·=cos(2π-θ)=cosθ=cos(α-β).

于是,对于任意角α,β都有

2.教师提出进一步拓展性问题:本节问题情景中,涉及如何用sinα,sinβ,cosα,cosβ来表示sin(α+β)的问题,试探索与研究sin(α+β)的表达式.

两角和与差的正弦

教材分析

在这节内容中,公式较多,一旦处理不当,将成为学生学习的一种负担.针对这个特点,应充分揭示公式的内在联系,使学生理解公式的形成过程及其使用条件,在公式体系中掌握相关的公式.同时,通过练习使学生能够熟练地运用这些公式.当然,这些公式的基础是两角和差的余弦公式.通过诱导公式sin(-α)=sinα,sinπ(-α)=cosα(α为任意

-(α+β)]角),可以实现正、余弦函数间的转换,也可推广为sin(α+β)=cos[=cos[(-α)-β],sin(α-β)=[

-(α-β)]=cos[(-α)+β].借助于Cα+β和Cα-β即可推导出公式Sα+β和Sα-β.Cα+β,Cα-β,Sα+β和Sα-β四个公式的左边均为两角和与差的正、余弦,右边均为单角α,β的正、余弦形式.不同点为公式Sα+β,Sα-β两边的运算符号相同,Cα+β与Cα-β两边的运算符号相反.Sα+β与Sα-β中右边是两单角异名三角函数的乘积,而Cα-β与Cα+β的右边是两单角同名三角函数的乘积.

任务分析

这节课计划采用启发引导和讲练结合的教学方式,对三角函数中的每一个公式要求学生会推导,会使用,要求不但掌握公式的原形,还应掌握它们的变形公式,会把“asinx+bcosx”类型的三角函数化成一个角的三角函数.在课堂教学中,将采用循序渐进的原则,设计有一定梯度的题目,以利于培养学生通过观察、类比的方法去分析问题和解决问题的能力,培养学生良好的思维习惯.在教学中,及时提醒学生分析、探索、化归、换元、类比等常用的基本方法在三角变换中的作用.这节课的重点是准确、熟练、灵活地运用两角和差的正、余弦公式进行三角函数式的求值、化简和证明,难点是公式的变形使用和逆向使用.

教学目标 1.能用两角差的余弦公式导出两角和的余弦公式,两角和差的正弦公式,并了解各个公式之间的内在联系.

2.能运用两角和差的正、余弦公式进行三角函数式的化简、求值和证明.

3.通过公式的推导过程,培养学生的逻辑思维能力,同时渗透数学中常用的换元、整体代换等思想方法.

教学过程

一、问题情景

如图42-1,为了保持在道路拐弯处的电线杆OB的稳固性,要加一根固定钢丝绳,要求钢丝绳与地面成75°角.已知电线杆的高度为5m,问:至少要准备多长的钢丝绳?

设电线杆与地面接触点为B,顶端为O,钢丝绳与地面接触点为A. 在Rt△AOB中,如果能求出sin75°的值,那么即可求出钢丝绳的长度.75°角可表示成两个特殊角45°与30°的和,那么sin75°的值能否用这两特殊角的三角函数值来表示呢?

二、建立模型 1.探 究

已知cos(α-β)=cosαcosβ+sinαsinβ,则sin(α+β),sin(α-β)中的角及函数名与cos(α+β)和cos(α-β)有何关系? 通过诱导公式可实现正、余弦函数的转换,即sin(α+β)=推导以上公式的方法并不是唯一的,其他推导方法由学生课后自己探索. 3.分析公式的结构特征

Sα+β与Sα-β中两边的加减运算符号相同,右边为α与β角的异名三角函数的乘积.应特别注意公式两边符号的差异.

三、解释应用 [例题一]

已知sinα=-,且α为第四象限角,求sin(-α)cos(+α)的值.

分析:本题主要训练公式Sα-β与Sα+β的使用.

由sinα=-及α为第四象限角,可求出cosα=,再代入公式求值.

[练习一]

分析:1.(1)强调公式的直接运用,寻找所求角与已知角之间的关系,α=(30°+α)-30°,再利用已知条件求出cos(30°+α).

2.应注意三角形的内角之间的关系,C=π-(A+B),再由诱导公式cos(π-α)=-cosα,要求cosC即转化为求-cos(A+B).

3.应注意分析角之间的关系,2β=(α+β)-(α-β),因此,求cos2β还应求出sin(α-β)和cos(α+β).解此题时,先把α+β与α-β看成单角,然后把2β用这两个单角来表示.

4.该题是在已有知识的基础上进一步深化,引导学生分三步进行:(1)求出α+β角的某个三角函数值.(2)确定角的范围.(3)确定角的值.其中,求α+β的某个三角函数值时,应分清是求cos(α-β)还是求sin(α-β).

已知向量的坐标. =(3,4),若将其绕原点旋转45°到′→的位置,求点P′(x′,y′)解:设∠xOP=α,∵|OP|=5,∴cosα=,sinα=.

∵x′=5cos(α+45°)=5(cosαcos45°-sinαsin45°)=-,y′=5sin(α+45°)=5(sinαcos45°+cosαsin45°)=,∴P′ -,.

已知向量=(4,3),若将其绕原点旋转60°,-135°到

1,2的位置,求点P1,P2的坐标.

[例题三]

求下列函数的最大值和最小值.

(1)y=cosx-sinx.

(2)y=3sinx+4cosx.

(3)y=asinx+bcosx,(ab≠0). 注:(1),(2)为一般性问题,是为(3)作铺垫,推导时,要关注解题过程,以便让学生充分理解辅助角φ满足的条件.

(3)解:考查以(a,b)为坐标的点P(a,b),设以OP为终边的一个角为φ,则

[练习三]

求下列函数的最大值和最小值.(1)y=cosx-sinx.

(2)y=sinx-sin(x+)

(3)已知两个电流瞬时值函数式分别是I1=12sin(ωt-45°),I2=10sin(ωt+30°),求合成的正弦波I=I1+I2的函数式.

四、拓展延伸

出示两道延伸性问题,引导学生独立思考,然后师生共同解决.

1.已知三个电流瞬时值的函数式分别为I1=5sinωt,I2=6sin(ωt-60°),I3=10sin(ωt+60°),求它们合成后的电流瞬时值的函数式I=I1+I2+I3,并指出这个函数的振幅、初相和周期.

2.已知点P(x,y),与原点的距离保持不变绕原点旋转θ角到点P′(x′,y′)(如图42-2),求证:

三角形边和角关系的探索

教材分析

初中已研究过解直角三角形,这节所研究的正、余弦定理是解直角三角形知识的延伸与推广,它们都反映了三角形边、角之间的等量关系,并且应用正、余弦定理和三角形内角和定理,可以解斜三角形.正弦定理的推证运用了从特殊到一般的方法,把直角三角形中得到的边角关系式推广到锐角三角形,再推广到钝角三角形,进而得出一般性的结论.余弦定理的推证采用向量的数量积做工具,将向量的长度与三角形的边长、向量的夹角与三角形的内角联系起来.对于正、余弦定理的推论,除了这节课的证法之外,还有其他的一些推证方法.教材中还要求,在证明了正、余弦定理之后,让学生尝试用文字语言叙述两个定理,以便理解其实质.当然,就知识而言,正弦定理有三个等式,可视为三个方程;余弦定理的三个式子也可看成三个方程,每个方程中均有四个量,知道其中任意三个量便可求第四个量.

这节课的重点是正、余弦定理的证明,以及用正、余弦定理解斜三角形,难点是发现定理、推证定理以及用定理解决实际问题.

任务分析

这节内容是在初中对三角形有了初步认识的基础上,进一步研究三角形的边、角之间的等量关系.对正弦定理的推导,教材中采用了从特殊到一般的方法,逐层递进,学生易于接受,而余弦定理的证明采用了向量的方法.应用两个定理解三角形时,要分清它们的使用条件.将正、余弦定理结合起来应用,经常能很好地解决三角形中的有关问题.

教学目标

1.理解正、余弦定理的推证方法,并掌握两个定理. 2.能运用正、余弦定理解斜三角形.

3.理解并初步运用数学建模的思想,结合解三角形的知识,解决生产、生活中的简单问题.

教学设计

一、问题情景

1.A,B两地相距2558m,从A,B两处发出的两束探照灯光照射在上方一架飞机的机身上(如图43-1),问:飞机离两探照灯的距离分别是多少?

2.如图43-2,自动卸货汽车的车厢采用液压机构,设计时应计算油泵顶杆BC的长度.已知车厢的最大仰角为60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平的夹角为6°20′,AC长为1.40m,计算BC的长.(精确到0.01m)

问题:(1)图中涉及怎样的三角形?(2)在三角形中已知什么?求什么?

二、建立模型

1.教师引导学生分析讨论

在问题情景(1)中,已知在△ABC中,∠A=72.3°,∠B=76.5°,AB=2558m.求AC,BC的长.

组织学生讨论如何利用已知条件求出AC,BC的长度.(让学生思考,允许有不同的解法)

结论:如图40-3,作AD⊥BC,垂足为D.由三角函数的定义,知AD=AC·sinC,AD=AB·sinB.

由此可得AC·sinC=AB·sinB.

又由∠A,∠B的度数可求∠C的度数,代入上式即可求出AC的长度,同理可求BC的长度.

教师明晰:

(1)当△ABC为直角三角形时,由正弦函数的定义,得

(2)当△ABC为锐角三角形时,设AB边上的高为CD,根据三角函数的定义,得CD=asinB=bsinA,所以,同理

.(3)当△ABC为钝角三角形时,结论是否仍然成立?引导学生自己推出.(详细给出解答过程)

事实上,当∠A为钝角时,由(2)易知设BC边上的高为CD,则由三角函数的定义,得 CD=asinB=bsin(180°-A).

根据诱导公式,知sin(180°-A)=sinA,.∴asinB=bsinA,即.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即

.正弦定理指出了任意三角形中三条边与它对应角的正弦之间的一个关系式,描述了任意三角形中边、角之间的一种数量关系.

思考:正弦定理可以解决有关三角形的哪些问题? 2.组织学生讨论问题情景(2)

这一实际问题可化归为:已知△ABC的边AB=1.95,AC=1.4,夹角为6°20′,求BC的长. 组织学生讨论:能用什么方法求出BC?(学生有可能有多种不同的解法)

教师明晰:如果已知三角形的两边和夹角,这个三角形为确定的三角形,那么怎样去计算它的第三边呢?由于涉及边长及夹角的问题,故可以考虑用平面向量的数量积.(也可用两点间的距离公式)

如图,设=a,=b,=c,则c=a-b.

∵|c|2=c·c=(a-b)·(a-b)=a2+b2-2abcosC,∴c=a+b-2abcosC.

同理a2=b2+c2-2bccosA,b2=c2+a2-2accosB. 于是得到以下定理:

余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即

a2=b2+c2-2bccosA,b2=c2+a2-2accosB,c2=a2+b2-2abcosC.

思考:余弦定理可以解决一些怎样的解三角形问题? 3.进一步的问题

勾股定理指出了直角三角形中三边之间的等量关系,余弦定理则指出了一般三角形三边之间的等量关系,那么这两个定理之间存在怎样的关系?如何利用余弦定理来判断三角形是锐角三角形还是钝角三角形?

三、解释应用 [例 题] 2221.(1)已知:在△ABC中,A=32.0°,B=81.8°,a=42.9cm,解三角形.

(2)已知:在△ABC中,a=20cm,b=28cm,A=40°,解三角形.(角精确到1°,边长精确到1cm)

分析:(1)本题为给出三角形的两角和一边解三角形问题,可由三角形内角和定理先求出第三个角,再两次利用正弦定理分别求出另两边.

(2)本题给出了三角形的两边及其中一边的对角,于是可用正弦定理求出b边的对角B的正弦,sinB≈0.8999,但0<B<π,故B角有两个值(如图43-8),从而C角与c边的取值也有两种可能.学生在解题时容易丢掉一组解,应引导学生从图形上寻找漏掉的解.

2.(1)已知:在△ABC中,已知b=60cm,c=34cm,A=41°,解三角形.(角精确到1°,边长精确到1cm)

(2)已知:在△ABC中,a=134.6cm,b=87.8cm,c=161.7cm,解三角形.(角精确到1′).

分析:本例中的(1)题,给出了两边及其夹角,可先用余弦定理求出第三边,求其他两角时既可用余弦定理也可用正弦定理.(2)题给出了三边长,可先用余弦定理求出其中一角,然后同样既可用正弦定理,也可用余弦定理求出其他两角.

3.AB是底部B不可到达的建筑物,A为建筑物的最高点.设计一种测量建筑物高度AB的方法. 分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高.由解直角三角形的知识,只要能知道一点C到建筑物顶部A的距离CA,并能测出由点C观察A的仰角,就可以计算出建筑物的高.为了求出CA的长,可选择一条水平基线HG(如图43-9),使H,G,B三点在同一条直线上.在G,H两点用测角仪器测得A的仰角分别为α,β,设CD=a,测角仪器的高为h,则在△ACD中,由正弦定理,得-β),从而可求得AB=AE+h=ACsinα+h=[练习]

1.在△ABC中,已知下列条件,解三角形.(角精确到1°,边长精确到1cm)(1)A=45°,C=30°,c=10cm.(2)A=60°,B=45°,c=20cm.(3)a=20cm,b=11cm,B=30°.(4)c=54cm,b=39cm,c=115°.

2.在△ABC中,已知下列条件,解三角形.(角精确到0.1°,边长精确到0.1cm)(1)a=2.7cm,b=3.696cm,C=82.2°.(2)b=12.9cm,c=15.4cm,A=42.3°.(3)a=7cm,b=10cm,c=6cm.

四、拓展延伸

1.在△ABC中,有正弦定理

+h.,sin(α

这涉及比值的连等式.请探索并研究是一个什么样的量,并加以证明.

2.在△ABC中,已知三边的长为a,b,c,如何判定△ABC的形状? 3.已知:在△ABC中,a=60,b=50,A=38°,求B.(精确到1°)

分析:.∵0°<B<180°,∴B≈31°或B≈149°,但当B≈149°时,A+B=187°,这与A,B为三角形内角矛盾,故B角只能取31°. 由此题与例1中的(2)题的分析可以发现,在已知三角形两边及其一边对角解三角形时,在某些条件下会出现一解或两解的情形,那么会不会出现无解的情形呢?

(1)当A为钝角或直角,必须满足a>b才有解(a≤b无解),并且由sinB=计算B时,只能取锐角,因此,只有一解,如图43-10.

(2)当A为锐角时,①若a>b或a=b,则由sinB=解,如图40-11.

计算B时,只能取锐角的值,因此,只有一②若a<bsinA,则由sinB=,得sinB>1,因此,无解.如图43-12.

③若a=bsinA,则由sinB=,得sinB=1,即B为直角,故只有一解,如图43-13.

④若b>a>bsinA,则sinB<1,故B可取一个锐角和一个钝角的值,如图43-14.

平面向量中的数学思想方法 篇7

一、化归思想

侧1 若α,β∈0,π),求满足cosα+cosβ-cos(α+β)=3/2的α,β值。

解:原等式化为(1-cosβ)cosα+sinβsinα=构造向量α=(1-cosβ,sinβ),b=(cosα,sina)。

由,可得

由,可得,即,所以,即得。同理可得。故。

评析:向量的引入大大拓宽了本题的解题思路,利用向量这个工具解题,可以简捷、规范地处理三角函数中的许多问题。

二、函数与方程思想

例2 已知向量a,b不共线,,若A,B,D三点共线,求实数k的值。

解:因为而a与b不共线,所以。

又A,B,D三点共线,所以共线。由两个向量共线,可知存在实数A,使得,即2a+kb=λa-4λb。

因为向量a与b不共线,所以由平面向量基本定理可得

评析:利用两个向量共线的条件与平面向量基本定理解题,其实质是解二元一次方程组问题。

三、分类讨论思想

侧≥ 试确定由向量所作的△ABC,它的一个角为直角时的k值。

解:①当A为直角时,由,得2×。②当B为直角时,,由,得2×,即。③当C为直角时,由,即

综上可知,或或

评析:解此题时有些同学容易考虑不周,以偏概全,只解一种情况(即A为直角时),应引起大家注意。

四、数形结合思想

例4 求,的值。

解:如图1所示,将边长为1的正七边形ABCDEFG放入直角坐标系中,则AB=(1,O),

由,可得

上一篇:温暖话题高中优秀作文开头下一篇:一年级新生入学采访稿