为什么三角形的内角和是180度
为什么三角形的内角和是180度 篇1
曾老师设计的教案中,第一部分是让学生运用猜想、图形剪拼、测量、归纳等方法发现这样一个结论:“三角形的内角和是180°”,第二部分教学内容就是运用演绎方法证明结论(教学过程如下)。
“(二)运用演绎方法证明结论
师:三角形的内角和确实是180°,如何用我们学过的数学知识来证明这个结论呢?
生:对于直角三角形,可以用两个完全一样的直角三角形拼成一个长方形(图略)。长方形四个角是直角,其内角和为90°×4=360°,这样每个直角三角形的内角和为180°。对于锐角和钝角三角形,我还没想出来。
生:对于非直角三角形,可以在内部作一条高,将其分成两个直角三角形(图略)。这样两个直角三角形的内角和为360°,减去高与底边所成的两个直角的度数,就得到所求的非直角三角形的内角和为180°。……
师:嗯,非常好!这样,我们就成功地证明了‘三角形的内角和为180°’这个非常重要的数学结论。”
事实上,这个被教师称为“成功的证明”并不是用演绎推理方法进行的“证明”,其“证明”过程中存在着两个值得商榷的问题。
一、 “长方形的内角和是360°”是怎么得到的
证明过程中用到了“长方形的内角和是360°”这个结论,这个结论是怎么得到的?
一般地,“四边形的内角和是360°”是通过将四边形用对角线分成两个三角形,再由“三角形内角和是180°”推导出来的。因为长方形是四边形,所以内角和是360°(当然也可直接将长方形分成两个三角形进行推导)。人教版教材在“三角形内角和”的教学中还安排了这样一个练习:“根据三角形内角和是180°,你能求出下面的四边形和正六边形的内角和吗?”由此可知,小学中求多边形内角和确实以“三角形内角和是180°”为依据。这样一来,证明过程就会有“循环证明”之嫌。好在长方形是特殊的四边形,教师可以不用“三角形内角和是180°”为依据,而是可以根据它的定义“有一个角是直角的平行四边形是矩形(长方形)”及平行线的某些性质(例如同旁内角互补)推导出长方形四个角都是直角,从而得到了“长方形内角和是360°”的结论,但是“平行线的性质”是初中数学的教学内容,并不是四年级小学生所掌握的知识,论证过程中不好应用。曾老师也许考虑到了这一点,因此提出了另一种说法,认为长方形四个角都是直角是“默认为正确的而不加以证明,相当于平面几何中的公理”。为了证明需要,就把“长方形四个角都是直角”当作“公理”而不加以证明,并且把它当作演绎推理的依据,这样处理不是很妥当。其实,即使把“长方形四个角都是直角”当作“公理”,仅用小学数学中的一些知识,要用演绎法来证明“三角形的内角和是180°”也是做不到的。
二、 两个完全一样的直角三角形为什么可以拼成一个长方形
学生在开始“证明”时就提出:“可以用两个完全一样的直角三角形拼成一个长方形。”这正是“证明结论”的关键。然而,正是这句话出了问题。试想在还不知道直角三角形的内角和是180°时,怎么能知道这样两个直角三角形一定能拼成一个长方形呢?
为了方便,笔者借助图形来说明问题。
假设△ABC和△CDA是两个完全一样的直角三角形,其中∠B=∠D=90°,∠2=∠4,∠1=∠3,BC=DA,AB=CD,AC=CA,把这两个三角形如图所示拼起来,如果能拼成一个长方形,那么必须满足条件:∠1+∠2=90°,∠3+∠4=90°。由于∠2=∠4,∠1=∠3,所以就有∠1+∠4=90°,∠2+∠3=90°。由此可知,当你说“可以用两个完全一样的直角三角形拼成一个长方形”时,已经应用了直角三角形的内角和是180°”这个结论。这样一来,证明过程就形成了这样一个怪圈:先默认直角三角形的内角和是180°,否则它的两个锐角就不能拼成一个直角)→它的两个锐角可以拼成一个直角→两个完全一样的直角三角形可以拼成一个长方形→长方形内角和是360°→每个直角三角形的内角和是180°。显然,用这样的方法来证明“三角形的内角和是180°”是错误的。这种“证明”方法的实质是用直角三角形的两个锐角拼一拼,而且没有任何理由就认定了这两个锐角拼成了一个直角,这根本不是在用“演绎方法”证明“直角三角形的内角和是180°”。再以此结论为依据来证明“非直角三角形的内角和也是180°”就失去了意义。像这种错误的“证明”也并不鲜见,例如在《中小学数学》2009年第12期中刊登的《“三角形内角和”一课的教学现象分析与思考》一文中也是用这种方法证明的,在公开发表的这些文章影响下,估计这样的错误证法还会在课堂教学中出现,对此教师应该予以足够重视。
要证明“三角形的内角和是180°”是需要以平行线的性质为基础的,在初中数学教材中,应用平行线的性质很容易用演绎推理的方法证明这个结论(证明略)。华东师大的张奠宙教授曾在《小学教学》(数学版)2011年第3期中指出:“要证明三角形内角和的定理,平行公理无论如何是绕不过去的。”显然,学生在未掌握平行线性质的情况下,要用演绎推理的方法来证明“三角形内角和是180°”是不可能的,而事实上也是没有必要的。《数学课程标准(实验稿)》第24页对这一内容提出的教学目标是了解“三角形内角和是180°”,与四年级下册数学教材(人教版)配套的《教师教学用书》第135页上对这一内容提出的教学目标是知道“三角形的内角和是180°”。有些教师在实际教学中总是喜欢拔高教学目标,例如对于“三角形内角和”这一教学内容,不仅要学生“知道三角形内角和是180°”,而且还要求他们用演绎推理的方法来证明,这样做有时真的会“弄巧成拙”。
文中不妥之处敬请各位老师批评指正。
(浙江省杭州师范大学初等教育学院 310036)
【为什么三角形的内角和是180度】推荐阅读:
三角形的内角08-04
三角形的内角和11-20
三角形的内角和导学案05-10
三角形内角和课后的教学反思11-06
[初中数学]三角形的内角和教案4 湘教版10-15
三角形内角和教学反思07-21
《三角形内角和》教学设计08-10
《三角形内角和》四年级数学下册说课稿11-11
暗度金针是什么意思05-31